JP3865325B2 - 吸収式冷凍機 - Google Patents
吸収式冷凍機 Download PDFInfo
- Publication number
- JP3865325B2 JP3865325B2 JP10969296A JP10969296A JP3865325B2 JP 3865325 B2 JP3865325 B2 JP 3865325B2 JP 10969296 A JP10969296 A JP 10969296A JP 10969296 A JP10969296 A JP 10969296A JP 3865325 B2 JP3865325 B2 JP 3865325B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- combustion surface
- flame
- planar
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B15/00—Sorption machines, plants or systems, operating continuously, e.g. absorption type
- F25B15/02—Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
- F25B15/06—Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B33/00—Boilers; Analysers; Rectifiers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/003—Gas cycle refrigeration machines characterised by construction or composition of the regenerator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2333/00—Details of boilers; Analysers; Rectifiers
- F25B2333/003—Details of boilers; Analysers; Rectifiers the generator or boiler is heated by combustion gas
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Sorption Type Refrigeration Machines (AREA)
Description
【発明の属する技術分野】
この発明は、高温再生器の加熱効果を向上するようにした吸収式冷凍機機に関するものである。
【0002】
【従来の技術】
吸収式冷凍機としては、吸収剤を臭化リチウム、冷媒を水として混合した臭化リチウム水溶液などの吸収液を用いた図5のような吸収冷凍機100が周知である。
【0003】
図5において、太い実線部分は冷媒液・吸収液・冷却用水などの液体管路、二重線部分は冷媒蒸気の蒸気管路であり、まず、吸収液の循環系を、吸収器1の底部に溜っている低濃度の吸収液、つまり、稀液2aを起点として説明する。
【0004】
稀液2aは、ポンプP1により、管路3を経て、高温再生器5に入る。高温再生器5は、下方からバーナーなどの加熱器6で加熱しているので、稀液2aに中に含まれている冷媒が蒸発して、高温になった中濃度の吸収液、つまり、中間液2bと、冷媒蒸気7aとに分離する。
【0005】
高温の中間液2bは、管路8を経て、高温側の熱交換器9に入る。熱交換器9で、高温の中間液2bは、管路3を通る稀液2aに熱を与えて放熱し、温度が低下した後、管路10を経て、低温再生器11に入る。
【0006】
低温再生器11では、管路21を経て、中間液2bを加熱する低温再生器11内の放熱管11Aに冷媒蒸気7aを送り込んで加熱しているので、中間液2bの中に含まれている冷媒が蒸発して、高温になった高濃度の吸収液、つまり、濃液2cと、冷媒蒸気7bとに分離する。
【0007】
高温の濃液2cは、管路12を経て、低温側の熱交換器13に入る。熱交換器13で、高温の濃液2cは、管路3を通る稀液2aに熱を与えて放熱し、中温になった後、管路14を経て、吸収器1内の散布器1Aに入り、散布器1Aの多数の穴から散布する。
【0008】
散布した濃液2cは、冷却管1Bの外側を流下する際に、隣接する蒸発器26から入ってくる冷媒蒸気7cを吸収して稀薄化するときに、吸収器1内の冷却管1Bを流通する冷却用水32aによって冷却されて、低温の稀液2aに戻り、吸収液の一巡が終えるという吸収液循環を繰り返すものである。
【0009】
次に、冷媒の循環系を、吸収器1に入った冷媒蒸気7Cを起点にして説明する。冷媒蒸気7cは、上記の吸収液循環系で説明したように、吸収器1内の散布器1Aから分散した濃液2cに吸収されて、稀液2aの中に入り、高温再生器5で冷媒蒸気7aになる。
【0010】
冷媒蒸気7aは、管路21を経て、低温再生器11の放熱管11Aに入り、中間液2bに熱を与えて放熱し、凝縮して冷媒液24aになった後、管路22を経て、凝縮器25の底部に入る。
【0011】
凝縮器23は、隣接する低温再生器11との間の多数の通路11Bを経て入ってくる冷媒蒸気7bを、凝縮器23内の冷却管23Aを通る冷却用水32aで冷却し、冷媒蒸気7bを凝縮して低温の冷媒液24aにする。冷媒液24aは、管路25を経て、蒸発器26に入り、蒸発器26の低部に溜まって冷媒液24bになる。
【0012】
ポンプP2は、冷媒液24bを、管路28を経て、散布器26Aに送り、散布器26Aの多数の穴から散布することを繰り返す。散布した冷媒液24bは、蒸発器26内の熱交管26Bを通る被熱操作流体、つまり、冷温水/戻水35aを冷却する。この冷却の際に、冷媒液24bは、冷温水/戻水35aから熱を吸収して蒸発し、冷媒蒸気7cになった後、隣接する吸収器1との間の多数の通路26Cを経て、吸収器1に戻り、冷媒の一巡が終えるという冷媒循環を繰り返すものである。
【0013】
以上のよう運転により、高温再生器5と低温再生器11との二重の再生動作によって、吸収液と冷媒、つまり、熱操作流体を循環しながら蒸発器26内の熱交管26B、つまり、熱交換用配管によって、管路36から与えられる被熱操作流体、つまり、冷温水/戻水35aを冷却し、管路37から冷温水35bを室内冷房機器などの冷却対象機器などの冷却負荷に冷却用被熱操作流体として与える二重効用の冷却を行っており、主として、冷房用に用いている。
【0014】
そして、冷却用水32aが各目的箇所を冷却して加温された冷却用水/戻水32bは管路34を経て、放熱装置、例えば、空冷による冷却塔または空冷熱交換器などに送られ、放熱して低温の冷却用水32aに戻され。
【0015】
吸収式冷凍機100は、以上のように、二重効用の冷却を行うように構成されているものであるが、図5に点線で示したように、高温再生器5で蒸発した冷媒蒸気7aと高温熱交換器9に入れるべき高温の中間液2bを蒸発器26に与える管路41に設けた開閉弁V1を開いて、直接、蒸発器26に戻すとともに、蒸発器26の下部に溜まっている冷媒液24bを、管路28と管路4との間を側路する管路43に設けた開閉弁V2を開いて冷媒液24bを吸収液2aに混入するように切換えることにより、低温再生器11を用いずに、高温再生器5のみの運転によって、吸収液循環と冷媒循環とを行いながら蒸発器26内の熱交管26B、つまり、熱交換用配管によって、管路36から与えられる被熱操作流体、つまり、冷温水/戻水35aを加温し、冷水に代えて温水を供給にするようした構成を付加することにより、冷却負荷210を加温負荷に変更し、主として暖房用に用いている。
【0016】
さらに、上記の二重効用の冷却を行うようにした構成において、冷媒蒸気7bの管路21の途中に熱交換器81を設け、加温負荷を加温して戻された温水/戻水82aを冷媒蒸気7bとの熱交換により加温して温水82bとして供給することにより、管路37の冷温水32bは冷却負荷に冷却熱源として供給する動作を行わせた状態で、この動作と同時に、温水52bを加温負荷に加温熱源として供給する動作を行わせるようにした冷水温水併給型のものがある。
【0017】
そして、吸収式冷凍機100の制御部70は、所要の各部の状態を検出して得られる各検出信号と、運転条件などを入力する操作部(図示せず)から与えられる各操作信号とにもとづいて、所要の制御処理を行い、所要の各制御対象に各制御信号を与えることにより、目的とする運転を行うように構成されている。
【0018】
また、こうした吸収式冷凍機100において、高温再生器5の部分の構成として、図6のような液管型ボイラによる構成(以下、第1従来技術という)が特開昭63−294467・特開平6−221718によって開示されている。
【0019】
図6において、太線で示す箇所は、構成部材の肉厚部分であって、一般に、金属材料、例えば、ステンレス鋼材の板または管によって構成されている部分であり、斜線のハッチングを施した箇所は稀液2aを収容している部分である。
【0020】
そして、加熱器6を相当するノズル形バーナー60、つまり、先混合形ガスバーナーは、燃料ガス60Aと空気60Bとを混合した混合ガスをノズル61の先端側で燃焼させるものであり、この燃焼による火炎62にもとづく熱エネルギーを、加熱室63を囲む容器50の内壁50Bと加熱室63に設けた垂直な液管51とに与えた後に排熱ガスとして排出路64から排出する。
【0021】
稀液2aは、流入管52から加熱室63を囲む容器50の内部に流入し、容器50の外壁50Aと内壁50Bとの間の隙間と、〔a−a断面〕のように、千鳥掛けの行列状に配置した各液管51の内部とに貯留され、火炎62にもとづく加熱エネルギーを受けて冷媒蒸気7aを蒸発させて容器50の上方の空間部分に貯留しながら管路21から流出するとともに、冷媒蒸気7aを蒸発させて濃度の高くなった中間液2bを管路8に流出する。なお、蒸発したての冷媒蒸気7aには、飛沫状の吸収液成分が含まれているので、迂回板54で流出経路を迂回させることによって、冷媒蒸気7aのみを管路21に流出できるようにしている。
【0022】
なお、特開昭63−294467の構成では、加熱室63の構成が折り返し状の経路に形成され、液管51を折り返した側の経路に配置するとともに、経路の後方に位置する液管51には吸熱を向上させるためのひれ状体、つまり、吸熱フィン51X1を設ける構成を開示している。
【0023】
また、特開平6−221718の構成では、液管51を加熱室63の加熱経路に沿って長くした偏平状の液管にして形成するとともに、偏平状の液管51の後方側に吸熱フィンを設ける構成を開示している。
【0024】
加熱器6に利用できる元混合形ガスバーナーの一種として、図7の構成(以下、第2従来技術という)が日本機械学会昭和35年6月発行「機械工学便覧」第12編・第40図などによって開示されている。
【0025】
図7において、太線で示す箇所は、構成部材の肉厚部分であって、一般に、金属材料、例えば、ステンレス鋼材の板などによって構成されている部分であり、交差線のハッチングを施した箇所は多穴面状耐火ブロック60Dの断面部分である。
【0026】
そして、燃料ガス60Aは、混合室60Cで、燃焼に必要な酸素量を含む量の空気60Bと混合されて混合ガスになった後に、多穴面状耐火ブロック60Dの導穴60D1を通った外側の燃焼面60D2で多数の面状の火炎になって燃焼するように仕組まれており、火炎が平面状に分布したバーナー(この発明において、面状火炎形バーナーという)60Xを形成している。
【0027】
多穴面状耐火ブロック60Dは、厚板状の耐火材料、例えば、チタン合金などに図のような多数の微細な導穴60D1を設けたものを主体として形成したものである。
【0028】
そして、図8のように、上記の第1従来技術におけるノズル形バーナー60、つまり、先混合形ガスバーナーの部分に代えて、上記の第2従来技術による面状火炎形バーナー60Xを設けた高温再生器5の構成(以下、第3従来技術という)が提案されている。
【0029】
図8において、加熱器6に相当する面状火炎形バーナー60Xは、例えば、図7と同様の構成をもつものであるが、多穴面状耐火ブロック60Dの導穴60D1の部分を簡略して図示したものである。
【0030】
各液管51の配置は、燃焼面60D2に最も近い部分に配置した液管51の一群を第1管群51Aとし、燃焼面60D2から最も遠い部分に配置した液管51の一群を第3管群51Cとし、これらの中間に配置した液管51の一群を第2管群51Bとしている。
【0031】
そして、間仕切50Cは、第1管群51Aと第2管群51Bとの区分箇所に位置で、容器50の底側の外壁50Aと内壁50Bとの間を仕切る間仕切であり、ポンプP1によって送り込まれた稀液2aが、燃焼面60D2による加熱によって、第1管群51Aの部分では、〔B−B断面〕に示す矢印のように、液管51内の流路51aと、外壁50Aと内壁50Bとの間の流路、つまり、壁部側の流路50a・50bと底部側の流路50cのいずれの流路でも、上昇方向に流動し、容器50の上方側から第2管群51Bと第3管群51Cに向かって流動するようにしている。
【0032】
また、第3管群51Cでは、第1管群51Aと第2管群51Bとの箇所で既に熱エネルギーの大半を失った後の加熱が行われることになるので、直径を細くした液管51Yにして稀液2aの流動量を少なくするとともに、液管51Yに吸熱フィン51Y1を設けて吸熱量を増加するようにしている。
【0033】
【発明が解決しようとする課題】
上記の第1従来技術による高温再生器5の構成では、ノズル形バーナー60、つまり、先混合形ガスバーナーを用いているため、火炎62が集中して長い形状にならざるを得ないこと、また、稀液2aを流通する感情Aの通る液管51が火炎62に直接的に触れるように構成したのでは、火炎が冷却されて未燃焼ガスが残留してしまうなどの理由によって、全体形状を小型に構成することが困難である。
【0034】
全体形状を小型に構成するために、上記の第3従来技術のように、面状火炎形バーナー60Xを設けるとともに、面状火炎形バーナー60Xの近傍に液管51を配列して構成したのみでは、内壁50Aと外壁50Bとの間の流路50a・50bにおける稀液2aと液管51内の流路51aにおける稀液2aとが同様の加熱状態で加熱されるため、流路50a・50b内の稀液2aと流路51a内の稀液2aとが、図8の〔B−B断面〕における矢印方向のように、いずれも上昇方向に流動するので、高温化による腐食事故が全体または局部的に生ずるという不都合が生ずる。
このため、こうした不都合を無くして、稀液2aの流れがバランスよく流動するように構成した小型安価な吸収式冷凍装置の提供が望まれているという課題がある。
【0035】
【課題を解決するための手段】
この発明は、上記のような
吸収液の稀液を流通する垂直な液管を水平面内において行列状の配置にした加熱室を、面状火炎形バーナーの燃焼面で加熱することにより上記の稀液から冷媒蒸気を蒸発させるようにした吸収式冷凍機において、
上記の希液をバランスよく流動させるために、上記の燃焼面に設ける多穴面状耐火ブロックの導穴を、上記の水平面内において、上記の多穴面状耐火ブロックの中央部側では単位面積当りの配置数を多く、上記の加熱室の壁部側では単位面積当りの配置数を少なくし、または、上記の中央部側に設ける上記の導穴の直径を大きく、上記の壁部側に設ける上記の導穴の直径を小さくすることにより、上記の水平面内における上記の燃焼面の火炎量を上記の中央部側では大きく上記の壁部側では小さくする燃焼面火炎形成手段
を設ける第1の構成と、
【0036】
この第1の構成における燃焼面火炎形成手段に代えて、
上記の希液をバランスよく流動させるために、上記の燃焼面に設ける多穴面状耐火ブロックの導穴を、上記の水平面内において、上記の多穴面状耐火ブロックの中央部側では単位面積当りの配置数を多く、上記の加熱室の壁部側では単位面積当りの配置数を少なくし、または、上記の中央部側に設ける上記の導穴の直径を大きく、上記の壁部側に設ける上記の導穴の直径を小さくすることにより、上記の水平面内における上記の燃焼面の火炎量を上記の中央部側から上記の壁部側に至るに従って段階的に小さくする燃焼面火炎形成手段
を設ける第2の構成と、
【0037】
上記の第1の構成における燃焼面火炎形成手段に代えて、
上記の希液をバランスよく流動させるために、上記の燃焼面に設ける多穴面状耐火ブロックの導穴を、上記の水平面内において、上記の多穴面状耐火ブロックの中央部側では単位面積当りの配置数を多く、上記の加熱室の壁部側では単位面積当りの配置数を少なくし、または、上記の中央部側に設ける上記の導穴の直径を大きく、上記の壁部側に設ける上記の導穴の直径を小さくすることにより、上記の水平面内における上記の燃焼面の火炎量を上記の中央部側から上記の壁部側に至るに従って徐々に小さくする燃焼面火炎形成手段
を設ける第3の構成と、
【0038】
上記の第1の構成における燃焼面火炎形成手段に代えて、
上記の希液をバランスよく流動させるために、上記の燃焼面に設ける多穴面状耐火ブロックの導穴を、垂直面内において、上記の多穴面状耐火ブロックの上方側では単位面積当りの配置数を多く、上記の多穴面状耐火ブロックの下方側では単位面積当りの配置数を少なくし、または、上記の上方側に設ける上記の導穴の直径を大きく、上記の下方側に設ける上記の導穴の直径を小さくすることにより、上記の垂直面内における上記の燃焼面の火炎量を上記の多穴面状耐火ブロックの中央部分から上方側では大きく上記の中央部分から下方側では小さくする燃焼面火炎形成手段
を設ける第4の構成と、
【0039】
上記の第1の構成における燃焼面火炎形成手段に代えて、
上記の希液をバランスよく流動させるために、上記の燃焼面に設ける多穴面状耐火ブロックの導穴を、垂直面内において、上記の多穴面状耐火ブロックの上方側では単位面積当りの配置数を多く、上記の多穴面状耐火ブロックの下方側では単位面積当りの配置数を少なくし、または、上記の上方側に設ける上記の導穴の直径を大きく、上記の下方側に設ける上記の導穴の直径を小さくすることにより、上記の垂直面内における上記の燃焼面の火炎量を上記の多穴面状耐火ブロックの中央部分から上方側では大きく上記の中央部分から下方側に至るに従って段階的に小さくする燃焼面火炎形成手段
を設ける第5の構成と、
【0040】
上記の第1の構成における燃焼面火炎形成手段に代えて、
上記の希液をバランスよく流動させるために、上記の燃焼面に設ける多穴面状耐火ブロックの導穴を、垂直面内において、上記の多穴面状耐火ブロックの上方側では単位面積当りの配置数を多く、上記の多穴面状耐火ブロックの下方側では単位面積当りの配置数を少なくし、または、上記の上方側に設ける上記の導穴の直径を大きく、上記の下方側に設ける上記の導穴の直径を小さくすることにより、上記の垂直面内における上記の燃焼面の火炎量を上記の多穴面状耐火ブロックの中央部分から上方側では大きく上記の中央部分から下方側に至るに従って徐々に小さくする燃焼面火炎形成手段
を設ける第6の構成と、
【0041】
上記の第1の構成ないし第6の構成における吸収式冷凍機のいずれかにおいて、
前記稀液を流入する部分に、前記所定の複数の液管に跨る仕切壁を設けるとともに、前記仕切壁の前記各液管に対応する箇所に流入穴をそれぞれ設けることにより、前記稀液を前記各液管に直接的に流入するように方向付ける流入方向付手段
を設ける構成とにより、上記の課題を解決したものである。
【0042】
【発明の実施の形態】
この発明の実施の形態として、図8のような構成の高温再生器5に対して、この発明を適用した場合の実施例を説明する。
【0043】
【実施例】
以下、図1〜図4により実施例および参考例を説明する。図1〜図4において、図5〜図8における符号と同一の符号で示す部分は、図5〜図8で説明した同一符号の部分と同一の機能をもつ部分である。また、図1〜図4において同一の符号で示す部分は、図1〜図4のいずれかの図において説明した同一符号の部分と同一の機能をもつ部分である。
【0044】
〔面状火炎形バーナー構成の参考例〕
面状火炎形バーナー構成の参考例を図1によって説明する。図1の構成において、図8の構成と異なる箇所は、面状火炎形バーナー60Xの燃焼面60D2の幅60BXを、液管51の水平面内における行列状の配置幅51BXよりも小さくすることにより、燃焼面60D2からの火炎が、両側の内壁50Bを直接的に加熱しないように構成した箇所である。
【0045】
この構成によれば、両側面側の内壁50Bと外壁50Aとの間の流路50a・50bを流通する稀液2aが局部的に激しく加熱されることがないので、〔B−B断面〕における矢印方向のように、第1管群51Aにおける流路51aでは上昇方向に流動し、流路50a・50bでは下降方向に流動するため、稀液2aの流れがバランスのよい流動を行い得るようになり、局部的な高温化による腐食事故を防止できることになる。
【0046】
〔面状火炎形バーナー構成の第1実施例〕
面状火炎形バーナー構成の第1実施例を図2によって説明する。図2は、図8の〔a−a断面〕に相当する構成部分、つまり、水平面内における構成部分であり、図8の構成と異なる箇所は、面状火炎形バーナー60Xの燃焼面60D2の火炎量を、中央部分BYでは大きくし、中央部分BYから壁部側に至るに従って、つまり、内壁50Bに近付くに従って、段階的に小さくする配置に形成したものである。
【0047】
具体的には、例えば、中央部分に位置する多穴面状耐火ブロック部分60Daでは、図8における導穴60D1の単位面積当たりの配置数が多いか、または、導穴60D1の直径が大きくて、燃焼面60D2における火炎量が大きいようにし、両側に位置する多穴面状耐火ブロック部分60Dbでは、導穴60D1の単位面積当たりの配置数が少ないか、または、導穴60D1の直径が小さくて、燃焼面60D2における火炎量が小さいようにすることにより、火炎量に2段の段階的な変化を持たせているが、導穴60D1の配置密度の変化の種類、または、導穴60D1の直径の変化の種類を更に多くすれば、更に多くの段階的な変化をもつ構成にすることができる。
【0048】
この構成によれば、両側面側の内壁50Bに対する加熱量のみを少なくできるため、外壁50Aとの間の流路50a・50bを流通する稀液2aが局部的に激しく加熱されることがないので、図1の〔B−B断面〕における矢印方向と同様に、第1管群51Aにおける流路51aでは上昇方向に流動し、流路50a・50bでは下降方向に流動するため、稀液2aの流れがバランスのよい流動を行い得るようになり、局部的な高温化による腐食事故を防止できることになる。
【0049】
〔面状火炎形バーナー構成の第2実施例〕
面状火炎形バーナー構成の第2実施例を図2の第1実施例を基準にして説明する。第2実施例では、図2の第1実施例における導穴60D1の配置密度の変化の種類、または、導穴60D1の直径の変化を、例えば、両側に至るに従って、1つ毎に順次に小さくするように構成することによって、面状火炎形バーナー60Xの燃焼面60D2の火炎量を、中央部分BYでは大きくし、中央部分BYから壁部側に至るに従って、つまり、内壁50Bに近付くに従って、徐々に小さく配置に形成したものである。
【0050】
この構成によれば、第1実施例の場合と同様に、両側面側の内壁50Bに対する加熱量のみを少なくできるため、外壁50Aとの間の流路50a・50bを流通する稀液2aが局部的に激しく加熱されることがないので、図1の〔B−B断面〕における矢印方向と同様に、第1管群51Aにおける流路51aでは上昇方向に流動し、流路50a・50bでは下降方向に流動するため、稀液2aの流れがバランスのよい流動を行い得るようになり、局部的な高温化による腐食事故を防止できることになる。
【0051】
〔面状火炎形バーナー構成の第3実施例〕
面状火炎形バーナー構成の第3実施例を図3によって説明する。図3は、図8の〔正面縦断面〕に相当する構成部分、つまり、垂直面内における構成部分であり、図8の構成と異なる箇所は、面状火炎形バーナー60Xの燃焼面60D2の火炎量を、中央部分BZから上方では大きくし、中央部分から下方に至るに従って、つまり、底側の内壁50Bに近付くに従って、段階的に小さく配置に形成したものである。
【0052】
具体的には、中央部分から上方に位置する多穴面状耐火ブロック部分60Dcでは、図8における導穴60D1の単位面積当たりの配置数が多いか、または、導穴60D1の直径が大きくて、燃焼面60D2における火炎量が大きいようにし、中央部分から下方側に位置する多穴面状耐火ブロック部分60Ddでは、導穴60D1の単位面積当たりの配置数が少ないか、または、導穴60D1の直径が小さくて、燃焼面60D2における火炎量が小さいようにすることにより、火炎量に2段の段階的な変化を持たせているが、導穴60D1の配置密度の変化の種類、または、導穴60D1の直径の変化の種類を更に多くすれば、更に多くの段階的な変化をもつ構成にすることができる。
【0053】
この構成によれば、底面側の流路50cに対する加熱量のみを少なくできるため、外壁50Aとの間の流路50cを流通する稀液2aが局部的に激しく加熱されることがないので、底側の流路50cの局部的な沸騰による稀液2aの流動阻害を無くして、バランスのよい稀液2aの流動を行わせ得るため、局部的な高温化による腐食事故を防止することができる。
【0054】
〔面状火炎形バーナー構成の第4実施例〕
面状火炎形バーナー構成の第4実施例は、第3実施例における導穴60D1の配置密度の変化の種類、または、導穴60D1の直径の変化を、例えば、中央部分から下方に至るに従って、1つ毎に順次に小さくするように構成することによって、面状火炎形バーナー60Xの燃焼面60D2の火炎量を、中央部分BZから下方に至るに従って、つまり、底面側の内壁50Bに近付くに従って、徐々に小さく配置に形成したものである。
【0055】
この構成によれば、第3実施例の場合と同様に、底面側の流路50cに対する加熱量のみを少なくできるため、底側の流路50cの局部的な沸騰による稀液2aの流動阻害を無くして、バランスのよい稀液2aの流動を行わせ得るため、局部的な高温化による腐食事故を防止することができる。
【0056】
〔吸収液流入路構成の実施例〕
吸収液流入路構成の実施例を図4によって説明する。図4において、分流部分3Aは管路3から流入する稀液2aを、第1管群51Aの各液管51に直接的に流入するように方向付けるためのものであり、内部に設けた仕切壁3Bには、第1管群51Aの各液管51に対向する箇所に流入穴3B1を配置してある。
【0057】
そして、管路3から流入してきた稀液2aは、〔B−B断面〕における矢印方向のように、各流入穴3B1によって矢印で示す方向に指向付けられるため、最初に液管51内の流路51aを矢印のように上昇した後に、外壁50Aと内壁50Bとの間の流路50a・50bを下降するように流動する。また、図1・図2のように、両側面側の火炎量を小さくした構成の場合には、さらに、稀液2aが外壁50Aと内壁50Bとの間の流路50a・50bを下降方向に流動するというバランスのよい稀液2aの流動を得ることができるので、腐食事故を防止できることになる。
【0058】
〔実施例の構成の要約〕
上記の実施例の構成を要約すると、面状火炎形バーナー構成の第1実施例の構成では、
吸収液の稀液2aを流通する垂直な液管51を水平面内において行列状の配置にした加熱室63を、面状火炎形バーナー60Xの燃焼面60D2で加熱することにより上記の稀液2aから冷媒蒸気7cを蒸発させるようにした吸収式冷凍機100において、
【0059】
上記の希液2aをバランスよく流動させるために、上記の燃焼面60D2に設ける多穴面状耐火ブロック60Dの導穴60D1を、上記の水平面内において、上記の多穴面状耐火ブロック60Dの中央部側、すなわち、中央部分BY側では単位面積当りの配置数を多く、上記の加熱室63の壁部側、すなわち、内壁50B側では単位面積当りの配置数を少なくし、または、上記の中央部側、すなわち、中央部分BY側に設ける上記の導穴60D1の直径を大きく、上記の壁部側、すなわち、内壁50B側に設ける上記の導穴60D 1 の直径を小さくすることにより、上記の水平面内における上記の燃焼面60D2の火炎量を上記の中央部側、すなわち、中央部分BY側では大きく上記の壁部側、すなわち、内壁50B側では小さくする燃焼面火炎形成手段
を設ける第1の構成を構成しており、
【0060】
面状火炎形バーナー構成の第1実施例の構成では、上記の第1の構成における燃焼面火炎形成手段に代えて、
上記の希液2aをバランスよく流動させるために、上記の燃焼面60D2に設ける多穴面状耐火ブロック60Dの導穴60D1を、上記の水平面内において、上記の多穴面状耐火ブロック60Dの中央部側、すなわち、中央部分BY側では単位面積当りの配置数を多く、上記の加熱室63の壁部側、すなわち、内壁50B側では単位面積当りの配置数を少なくし、または、上記の中央部側、すなわち、中央部分BY側に設ける上記の導穴60D1の直径を大きく、上記の壁部側、すなわち、内壁50B側に設ける上記の導穴60D 1 の直径を小さくすることにより、上記の水平面内における上記の燃焼面60D2の火炎量を上記の中央部側、すなわち、中央部分BY側から上記の壁部側に至るに従って段階的に小さくする燃焼面火炎形成手段
を設ける第2の構成を構成しており、
【0061】
面状火炎形バーナー構成の第2実施例の構成では、上記の第1の構成における燃焼面火炎形成手段に代えて、
上記の希液2aをバランスよく流動させるために、上記の燃焼面60D2に設ける多穴面状耐火ブロック60Dの導穴60D1を、上記の水平面内において、上記の多穴面状耐火ブロック60Dの中央部側、すなわち、中央部分BY側では単位面積当りの配置数を多く、上記の加熱室63の壁部側、すなわち、内壁50B側では単位面積当りの配置数を少なくし、または、上記の中央部側、すなわち、中央部分BY側に設ける上記の導穴60D1の直径を大きく、上記の壁部側、すなわち、内壁50B側に設ける上記の導穴60D 1 の直径を小さくすることにより、上記の水平面内における上記の燃焼面60D2の火炎量を上記の中央部側、すなわち、中央部分BY側から上記の壁部側、すなわち、内壁50B側に至るに従って徐々に小さくする燃焼面火炎形成手段
を設ける第3の構成を構成しており、
【0062】
面状火炎形バーナー構成の第3実施例と第4実施例の構成では、上記の第1の構成における燃焼面火炎形成手段に代えて、
上記の希液2aをバランスよく流動させるために、上記の燃焼面60D2に設ける多穴面状耐火ブロック60Dの導穴60D1を、垂直面内において、上記の多穴面状耐火ブロック60Dの上方側では単位面積当りの配置数を多く、上記の多穴面状耐火ブロック60Dの下方側では単位面積当りの配置数を少なくし、または、上記の上方側に設ける上記の導穴60D1の直径を大きく、上記の下方側に設ける上記の導穴60D1の直径を小さくすることにより、上記の垂直面内における上記の燃焼面60D2の火炎量を上記の多穴面状耐火ブロック60Dの中央部分BZから上方側では大きく上記の中央部分BZから下方側では小さくする燃焼面火炎形成手段
を設ける第4の構成を構成しており、
【0063】
面状火炎形バーナー構成の第3実施例の構成では、上記の第1の構成における燃焼面火炎形成手段に代えて、
上記の希液2aをバランスよく流動させるために、上記の燃焼面60D2に設ける多穴面状耐火ブロック60Dの導穴60D1を、垂直面内において、上記の多穴面状耐火ブロック60Dの上方側では単位面積当りの配置数を多く、上記の多穴面状耐火ブロック60Dの下方側では単位面積当りの配置数を少なくし、または、上記の上方側に設ける上記の導穴60D1の直径を大きく、上記の下方側に設ける上記の導穴60D1の直径を小さくすることにより、上記の垂直面内における上記の燃焼面60D2の火炎量を上記の多穴面状耐火ブロック60Dの中央部分BZから上方側では大きく上記の中央部分BZから下方側に至るに従って段階的に小さくする燃焼面火炎形成手段
を設ける第5の構成を構成しており、
【0064】
面状火炎形バーナー構成の第4実施例の構成では、上記の第1の構成における燃焼面火炎形成手段に代えて、
上記の希液2aをバランスよく流動させるために、上記の燃焼面60D2に設ける多穴面状耐火ブロック60Dの導穴60D1を、垂直面内において、上記の多穴面状耐火ブロック60Dの上方側では単位面積当りの配置数を多く、上記の多穴面状耐火ブロック60Dの下方側では単位面積当りの配置数を少なくし、または、上記の上方側に設ける上記の導穴60D1の直径を大きく、上記の下方側に設ける上記の導穴60D1の直径を小さくすることにより、上記の垂直面内における上記の燃焼面60D2の火炎量を上記の多穴面状耐火ブロック60Dの中央部分BZから上方側では大きく上記の中央部分BZから下方側に至るに従って徐々に小さくする燃焼面火炎形成手段
を設ける第6の構成を構成しており、
【0065】
吸収液流入路構成の実施例の構成では、上記の第1の構成における吸収式冷凍機と同様の吸収式冷凍機100において、
上記の希液2aをバランスよく流動させるために、上記の希液2aを流入する部分、例えば、管路3・分流部分3Aの部分に、所定の複数の上記の液管51、例えば、第1管群51Aに配置された複数の液管51に跨る仕切壁3Bを設けるとともに、上記の仕切壁3Bの各上記の液管51に対応する箇所に各流入穴3B1を設けることにより、上記の希液2aを各上記の液管51に直接的に流入するように方向付ける流入方向付手段
を設ける第7の構成を構成していることになるものである。
【0066】
〔変形実施〕
この発明は次のように変形して実施することを含むものである。
【0067】
(1)冷媒蒸気7aを流出する管路21の下側に、図6の場合と同様の迂回板54を設けて構成する。
【0068】
【発明の効果】
この発明によれば、以上のように、吸収液の稀液から冷媒蒸気を蒸発させるための高温再生器の加熱室を面状火炎形バーナーで加熱するとともに、面状火炎形バーナーの燃焼面における火炎の配置を、加熱室の両側面側と底面側の壁部側では小さくしたり、水平面内の中央部分と垂直面内の上方部分では大きくしたりしているため、加熱室を流通する稀液を局部的に激しく加熱させることがないように、バランスのよい稀液の流動を行わせることができるので、内壁の局部的な高温化による腐食事故を防止することができる。
【0069】
また、面状火炎形バーナーを加熱室内に配置した稀液を流通して加熱するための液管にごく接近して配置することができるため、稀液の加熱を効率良く行えるとともに、高温再生器を小型にして、小型安価な吸収式冷凍装置を提供し得るなどの特長がある。
【図面の簡単な説明】
図面中、図1は参考例を、図2〜図4はこの発明の実施例を、また、図5〜図8は従来技術を示し、各図の内容は次のとおりである。
【図1】 要部構成正面縦断面・平面横断面・側面縦断面図
【図2】 要部構成平面横断面図
【図3】 要部構成正面縦断面図
【図4】 要部構成正面縦断面・側面縦断面図
【図5】 全体ブロック構成図
【図6】 要部構成正面縦断面・平面横断面・側面縦断面図
【図7】 要部構成正面縦断面図
【図8】 要部構成正面縦断面・平面横断面・側面縦断面図
【符号の説明】
1 吸収器
1A 散布器
1B 冷却管
2a 稀液
2b 中間液
2c 濃度
3 管路
3A 分流部分
3B 仕切壁
3B1 流入穴
5 高温再生器
6 加熱器
6A 加熱調整器
7a 冷媒蒸気
7b 冷媒蒸気
7c 冷媒蒸気
8 管路
9 熱交換器
10 管路
11 低温再生器
11A 放熱管
11B 通路
12 管路
13 熱交換器
14 管路
21 管路
22 管路
23 凝縮器
23A 冷却管
24a 冷媒液
24b 冷媒液
25 管路
26 蒸発器
26A 散布器
26B 冷却管
28 管路
31 管路
32a 冷却用水
32b 冷却用水/戻水
33 管路
34 管路
35a 冷温水/戻水
35b 冷温水
36 管路
37 管路
41 管路
45 管路
50 容器
50A 外壁
50B 内壁
50C 間仕切
50a 流路
50b 流路
50c 流路
51 液管
51A 第1管群
51B 第2管群
51BX 配置幅
51C 第3管群
51X1 吸熱フィン
51Y 液管
51Y1 吸熱フィン
51a 流路
52 流入管
54 迂回板
60 ノズル形バーナー
60A 燃料ガス
60B 空気
60BX 燃焼面幅
60C 混合室
60D 多穴面状耐火ブロック
60D1 導穴
60D2 燃焼面
60Da 多穴面状耐火ブロック部分
60Db 多穴面状耐火ブロック部分
60Dc 多穴面状耐火ブロック部分
60Dd 多穴面状耐火ブロック部分
60X 面状火炎形バーナー
61 ノズル
62 火炎
63 加熱室
64 排出路
70 制御部
100 吸収式冷凍機
BY 中央部分
BZ 中央部分
P1 ポンプ
P2 ポンプ
V1 開閉弁
V2 開閉弁
Claims (7)
- 吸収液の稀液を流通する垂直な液管を水平面内において行列状の配置にした加熱室を、面状火炎形バーナーの燃焼面で加熱することにより前記稀液から冷媒蒸気を蒸発させるようにした吸収式冷凍機であって、
前記希液をバランスよく流動させるために、前記燃焼面に設ける多穴面状耐火ブロックの導穴を、前記水平面内において、前記多穴面状耐火ブロックの中央部側では単位面積当りの配置数を多く、前記加熱室の壁部側では単位面積当りの配置数を少なくし、または、前記中央部側に設ける前記導穴の直径を大きく、前記壁部側に設ける前記導穴の直径を小さくすることにより、前記水平面内における前記燃焼面の火炎量を前記中央部側では大きく前記壁部側では小さくする燃焼面火炎形成手段
を具備することを特徴とする吸収式冷凍機。 - 吸収液の稀液を流通する垂直な液管を水平面内において行列状の配置にした加熱室を、面状火炎形バーナーの燃焼面で加熱することにより前記稀液から冷媒蒸気を蒸発させるようにした吸収式冷凍機であって、
前記希液をバランスよく流動させるために、前記燃焼面に設ける多穴面状耐火ブロックの導穴を、前記水平面内において、前記多穴面状耐火ブロックの中央部側では単位面積当りの配置数を多く、前記加熱室の壁部側では単位面積当りの配置数を少なくし、または、前記中央部側に設ける前記導穴の直径を大きく、前記壁部側に設ける前記導穴の直径を小さくすることにより、前記水平面内における前記燃焼面の火炎量を前記中央部側から前記壁部側に至るに従って段階的に小さくする燃焼面火炎形成手段
を具備することを特徴とする吸収式冷凍機。 - 吸収液の稀液を流通する垂直な液管を水平面内において行列状の配置にした加熱室を、面状火炎形バーナーの燃焼面で加熱することにより前記稀液から冷媒蒸気を蒸発させるようにした吸収式冷凍機であって、
前記希液をバランスよく流動させるために、前記燃焼面に設ける多穴面状耐火ブロックの導穴を、前記水平面内において、前記多穴面状耐火ブロックの中央部側では単位面積当りの配置数を多く、前記加熱室の壁部側では単位面積当りの配置数を少なくし、または、前記中央部側に設ける前記導穴の直径を大きく、前記壁部側に設ける前記導穴の直径を小さくすることにより、前記水平面内における前記燃焼面の火炎量を前記中央部側から前記壁部側に至るに従って徐々に小さくする燃焼面火炎形成手段
を具備することを特徴とする吸収式冷凍機。 - 吸収液の稀液を流通する垂直な液管を水平面内において行列状の配置にした加熱室を、面状火炎形バーナーの燃焼面で加熱することにより前記稀液から冷媒蒸気を蒸発させるようにした吸収式冷凍機であって、
前記希液をバランスよく流動させるために、前記燃焼面に設ける多穴面状耐火ブロックの導穴を、垂直面内において、前記多穴面状耐火ブロックの上方側では単位面積当りの配置数を多く、前記多穴面状耐火ブロックの下方側では単位面積当りの配置数を少なくし、または、前記上方側に設ける前記導穴の直径を大きく、前記下方側に設ける前記導穴の直径を小さくすることにより、前記垂直面内における前記燃焼面の火炎量を前記多穴面状耐火ブロックの中央部分から上方側では大きく前記中央部分から下方側では小さくする燃焼面火炎形成手段
を具備することを特徴とする吸収式冷凍機。 - 吸収液の稀液を流通する垂直な液管を水平面内において行列状の配置にした加熱室を、面状火炎形バーナーの燃焼面で加熱することにより前記稀液から冷媒蒸気を蒸発させるようにした吸収式冷凍機であって、
前記希液をバランスよく流動させるために、前記燃焼面に設ける多穴面状耐火ブロックの導穴を、垂直面内において、前記多穴面状耐火ブロックの上方側では単位面積当りの配置数を多く、前記多穴面状耐火ブロックの下方側では単位面積当りの配置数を少なくし、または、前記上方側に設ける前記導穴の直径を大きく、前記下方側に設ける前記導穴の直径を小さくすることにより、前記垂直面内における前記燃焼面の火炎量を前記多穴面状耐 火ブロックの中央部分から上方側では大きく前記中央部分から下方側に至るに従って段階的に小さくする燃焼面火炎形成手段
を具備することを特徴とする吸収式冷凍機。 - 吸収液の稀液を流通する垂直な液管を水平面内において行列状の配置にした加熱室を、面状火炎形バーナーの燃焼面で加熱することにより前記稀液から冷媒蒸気を蒸発させるようにした吸収式冷凍機であって、
前記希液をバランスよく流動させるために、前記燃焼面に設ける多穴面状耐火ブロックの導穴を、垂直面内において、前記多穴面状耐火ブロックの上方側では単位面積当りの配置数を多く、前記多穴面状耐火ブロックの下方側では単位面積当りの配置数を少なくし、または、前記上方側に設ける前記導穴の直径を大きく、前記下方側に設ける前記導穴の直径を小さくすることにより、前記垂直面内における前記燃焼面の火炎量を前記多穴面状耐火ブロックの中央部分から上方側では大きく前記中央部分から下方側に至るに従って徐々に小さくする燃焼面火炎形成手段
を具備することを特徴とする吸収式冷凍機。 - 前記稀液を流入する部分に、前記所定の複数の液管に跨る仕切壁を設けるとともに、前記仕切壁の前記各液管に対応する箇所に流入穴をそれぞれ設けることにより、前記稀液を前記各液管に直接的に流入するように方向付ける流入方向付手段を構成したことを特徴とする請求項1ないし請求項6のいずれかに記載の吸収式冷凍機。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10969296A JP3865325B2 (ja) | 1996-04-30 | 1996-04-30 | 吸収式冷凍機 |
US08/846,212 US5832742A (en) | 1996-04-30 | 1997-04-28 | Absorption type refrigerator |
KR1019970016244A KR100458891B1 (ko) | 1996-04-30 | 1997-04-29 | 흡수식냉동기 |
CN971135541A CN1218151C (zh) | 1996-04-30 | 1997-04-30 | 吸收式制冷机 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10969296A JP3865325B2 (ja) | 1996-04-30 | 1996-04-30 | 吸収式冷凍機 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09296968A JPH09296968A (ja) | 1997-11-18 |
JP3865325B2 true JP3865325B2 (ja) | 2007-01-10 |
Family
ID=14516784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10969296A Expired - Fee Related JP3865325B2 (ja) | 1996-04-30 | 1996-04-30 | 吸収式冷凍機 |
Country Status (4)
Country | Link |
---|---|
US (1) | US5832742A (ja) |
JP (1) | JP3865325B2 (ja) |
KR (1) | KR100458891B1 (ja) |
CN (1) | CN1218151C (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3837196B2 (ja) * | 1997-01-10 | 2006-10-25 | 三洋電機株式会社 | 高温再生器 |
GB9910758D0 (en) * | 1999-05-11 | 1999-07-07 | British Gas Plc | An adsorption chiller |
GB9918581D0 (en) * | 1999-08-06 | 1999-10-06 | British Gas Plc | A generator for an absorption chiller |
JP2002295917A (ja) * | 2001-03-28 | 2002-10-09 | Sanyo Electric Co Ltd | 吸収式冷凍機の制御方法 |
US6601405B2 (en) | 2001-10-22 | 2003-08-05 | American Standard Inc. | Single-pass, direct-fired generator for an absorption chiller |
KR100678313B1 (ko) * | 2005-12-14 | 2007-02-02 | 엘에스전선 주식회사 | 흡수식 냉온수기용 고온 재생기 |
JP5761792B2 (ja) * | 2011-05-10 | 2015-08-12 | 川重冷熱工業株式会社 | 吸収式冷凍機 |
KR101797706B1 (ko) | 2015-07-31 | 2017-11-16 | 김찬오 | 휴대 및 보관이 간편한 접이식 히터기 |
KR101797707B1 (ko) | 2015-07-31 | 2017-12-12 | 김찬오 | 휴대 및 보관이 간편한 접이식 히터기 |
KR101797705B1 (ko) | 2015-07-31 | 2017-12-12 | 김찬오 | 휴대 및 보관이 간편한 접이식 히터기 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2121948A (en) * | 1935-05-11 | 1938-06-28 | Western Electric Co | Burner |
JPH079320B2 (ja) * | 1987-05-26 | 1995-02-01 | 三洋電機株式会社 | 直焚発生器 |
JP2664010B2 (ja) * | 1992-12-14 | 1997-10-15 | リンナイ株式会社 | 燃焼プレート |
JP3195100B2 (ja) * | 1993-01-26 | 2001-08-06 | 株式会社日立製作所 | 吸収式冷温水機の高温再生器及び吸収式冷温水機 |
-
1996
- 1996-04-30 JP JP10969296A patent/JP3865325B2/ja not_active Expired - Fee Related
-
1997
- 1997-04-28 US US08/846,212 patent/US5832742A/en not_active Expired - Lifetime
- 1997-04-29 KR KR1019970016244A patent/KR100458891B1/ko not_active IP Right Cessation
- 1997-04-30 CN CN971135541A patent/CN1218151C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR100458891B1 (ko) | 2005-04-08 |
JPH09296968A (ja) | 1997-11-18 |
KR970070852A (ko) | 1997-11-07 |
US5832742A (en) | 1998-11-10 |
CN1218151C (zh) | 2005-09-07 |
CN1171526A (zh) | 1998-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6301925B1 (en) | Absorption water heater/chiller and high temperature regenerator therefor | |
JP3865325B2 (ja) | 吸収式冷凍機 | |
US6145338A (en) | High-temperature regenerator | |
US5048308A (en) | Absorption refrigerator | |
US20040187511A1 (en) | Absorption chiller-heater | |
US5704225A (en) | Regenerator | |
JP2548789Y2 (ja) | 吸収式冷凍サイクルにおける冷却器構造 | |
KR100213780B1 (ko) | 흡수식 냉난방기의 급탕시스템. | |
JPH05256536A (ja) | 吸収式冷凍機 | |
JP3759549B2 (ja) | 液管対流式燃焼加熱炉 | |
EP0082018B1 (en) | Absorption refrigeration system | |
KR19990029907A (ko) | 흡수식냉동기 | |
JP2000257819A (ja) | 表面燃焼バーナ | |
JP3865327B2 (ja) | 直焚高温再生器 | |
JP3762483B2 (ja) | 液管対流式燃焼加熱炉 | |
JPH10238705A (ja) | 液管対流式燃焼加熱炉 | |
JP2000035261A (ja) | 吸収式冷凍機 | |
JPH10267205A (ja) | 液管対流式燃焼加熱炉 | |
JPH10267204A (ja) | 液管対流式燃焼加熱炉 | |
CN100513934C (zh) | 用在吸收式制冷加热装置中的发生器 | |
JPH10267202A (ja) | 液管対流式燃焼加熱炉 | |
JP2000257985A (ja) | 高温再生器 | |
JPH09184666A (ja) | 低温再生器 | |
JPH10267203A (ja) | 液管対流式燃焼加熱炉 | |
JPH09159307A (ja) | 吸収式冷凍機用再生器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050510 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060315 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060926 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061002 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101013 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111013 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121013 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |