JP3855612B2 - 自動車速制御装置 - Google Patents

自動車速制御装置 Download PDF

Info

Publication number
JP3855612B2
JP3855612B2 JP2000229139A JP2000229139A JP3855612B2 JP 3855612 B2 JP3855612 B2 JP 3855612B2 JP 2000229139 A JP2000229139 A JP 2000229139A JP 2000229139 A JP2000229139 A JP 2000229139A JP 3855612 B2 JP3855612 B2 JP 3855612B2
Authority
JP
Japan
Prior art keywords
vehicle speed
target
target vehicle
compensator
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000229139A
Other languages
English (en)
Other versions
JP2002036907A (ja
Inventor
英夫 中村
正浩 入山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000229139A priority Critical patent/JP3855612B2/ja
Publication of JP2002036907A publication Critical patent/JP2002036907A/ja
Application granted granted Critical
Publication of JP3855612B2 publication Critical patent/JP3855612B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Feedback Control In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は車両の速度を自動制御する装置に関する。
【0002】
【従来の技術】
目標車速に対する実車速の応答性を特定の規範モデルに一致させるモデルマッチング補償器を用いて、目標車速と実車速とにより目標駆動力を演算するとともに、外乱推定器により目標駆動力と実車速とにより走行抵抗や道路勾配などの車両走行にともなう外乱を推定演算し、この外乱推定値により目標駆動力を補正するようにした車両用自動車速制御装置が知られている(例えば、特開平08−207619号公報参照)。この装置はいわゆる二自由度制御系であり、目標車速に対する実車速の応答性を補償するモデルマッチング補償器と、外乱に対するロバスト性を補償する外乱推定器とが別個に構成されている。
【0003】
また、上述したモデルマッチング補償器を、フィードフォワード型補償器(位相進み補償器)とフィードバック型補償器(比例フィードバック補償器)とに分けて構成する自動車速制御装置も知られている(例えば、特開2000−071807号公報参照)。この装置では、フィードバック補償器だけでモデルマッチング補償を行うと応答性と安定性の両立が困難な場合があり、これを改善するために閉ループ系の安定性を悪化させないフィードフォワード型補償器を併用している。
【0004】
【発明が解決しようとする課題】
しかしながら、モデルマッチング補償器を用いた自動車速制御装置では、次のような問題がある。
【0005】
コーストスイッチにより目標車速を下げて減速する操作を終了したとき、また、アクセラレートスイッチにより目標車速を上げて増速する操作を終了したとき、さらに、自動車速制御中に乗員がアクセルペダルを踏んで手動で加速し、セットスイッチにより目標車速の再設定操作をしたときには、現在の車速を目標車速に強制的に再設定するので目標車速がステップ状に大きく変化することがある。目標車速がステップ状に変化すると、モデルマッチング補償器出力の目標駆動力が大きく変化し、そのために車速のオーバーシュートまたはアンダーシュートが発生する。特に、上述した後者の自動車速制御装置では、フィードフォワード補償器(位相進み補償器)が過度に動作するため、大きな車速オーバーシュートまたはアンダーシュートが発生する。
【0006】
図1は、コーストスイッチ操作終了時の従来の自動車速制御装置の制御結果を示す。コーストスイッチ操作終了時に、そのときの車速が目標車速に再設定されて目標車速がステップ状に大きく変化し、車速のオーバーシュートが発生している。また、図2は、自動車速制御中に手動で加速してセットスイッチにより目標車速を再設定したときの、従来の自動車速制御装置の制御結果を示す。セットスイッチ操作時に、そのときの車速が目標車速に再設定されて目標車速がステップ状に大きく変化し、車速のオーバーシュートが発生している。
【0007】
本発明の目的は、目標車速再設定時の車速のオーバーシュートおよびアンダーシュートを抑制することにある。
【0008】
【課題を解決するための手段】
一実施の形態の自動車速制御を示す制御ブロック図6に対応づけて本発明を説明すると、
(1) 請求項1の発明は、目標車速Vsprに対する実車速Vspの応答性を規範モデルに一致させるモデルマッチング補償器を用いて、目標車速Vsprと実車速Vspとにより目標駆動力y4を演算するとともに、外乱推定器を用いて目標駆動力y1と実車速Vspとにより走行抵抗と道路勾配とが含まれる車両走行中の外乱を推定演算し、この外乱推定値により目標駆動力y4を補正する自動車速制御装置に適用され、目標車速Vsprの再設定時には外乱推定器による推定演算を継続しながらモデルマッチング補償器を初期化することにより、上記目的を達成する。
(2) 請求項2の自動車速制御装置は、目標車速Vsprの再設定時には、モデルマッチング補償器へ入力される目標車速Vsprと実車速VspとにそれぞれオフセットVsp0を加え、目標車速Vsprと実車速Vspをともに0にするようにしたものである。
【0009】
上述した課題を解決するための手段の項では、説明を分かりやすくするために一実施の形態の図を用いたが、これにより本発明が一実施の形態に限定されるものではない。
【0010】
【発明の効果】
(1) 請求項1の発明によれば、目標車速の再設定時には外乱推定器による推定演算を継続しながらモデルマッチング補償器を初期化するようにしたので、目標車速の再設定直後に目標車速がステップ状に大きく変化しても、モデルマッチング補償器出力、すなわち目標車速と実車速とに基づいて演算される目標駆動力が目標車速再設定直後にいったん0にリセットされ、0から立ち上がる。一方、外乱推定器は目標車速再設定前から設定後にかけて推定演算を継続しており、走行抵抗と道路勾配とが含まれる目標車速再設定前の外乱推定値が初期化されないから、目標車速再設定後も外乱推定値による目標駆動力の補正が継続して行われる。したがって、請求項1の発明によれば、目標車速の再設定時に車速のオーバーシュートおよびアンダーシュートが抑制され、目標車速がステップ状に大きく変化しても実車速を目標車速に速やかに収束させることができる。
(2) 請求項2の発明によれば、目標車速の再設定時には、モデルマッチング補償器へ入力される目標車速と実車速とにそれぞれオフセットを加え、目標車速と実車速をともに0にするようにしたので、モデルマッチング補償器のフィルターをマイクロコンピューターのソフトウエア形態で実現することができる。
【0011】
【発明の実施の形態】
上述したように、従来の自動車速制御装置では、コーストスイッチおよびアクセラレートスイッチによる目標車速の変更操作終了時とセットスイッチによる目標車速の再設定時に、目標車速がステップ状に変化して車速のオーバーシュートが発生していた。なお、コーストスイッチおよびアクセラレートスイッチによる目標車速の変更も目標車速を再設定することになるから、以下ではこれらをセットスイッチによる目標車速の再設定と合わせて単に「目標車速の再設定」と云うことにする。
【0012】
車速のオーバーシュートを防止するために、コーストスイッチ、アクセラレートスイッチおよびセットスイッチによる目標車速の再設定時に、モデルマッチング補償器および外乱推定器を初期化して再スタートすることが考えられる。ところがそうすると、自動車速制御中に外乱推定器で得られた走行抵抗や道路勾配などの外乱推定値も初期化されるので、登降坂中の目標車速再設定時に目標車速への収束性が悪化してしまう。
【0013】
図3は、登り坂でのコーストスイッチ操作終了時にモデルマッチング補償器と外乱推定器を初期化した場合の車速制御結果を示す。コーストスイッチ操作終了時に外乱推定器も初期化すると、特に登り坂の道路勾配が含まれる大きな外乱推定値が初期化されるので、道路勾配分の目標駆動力が不足することになり、コーストスイッチ操作終了後に車速のアンダーシュートが発生する。
【0014】
また、図4は、登り坂でのセットスイッチによる目標車速再設定時にモデルマッチング補償器と外乱推定器を初期化した場合の車速制御結果を示す。セットスイッチによる目標車速再設定時に外乱推定器も初期化すると、特に登り坂の道路勾配が含まれる大きな外乱推定値が初期化されるので、道路勾配分の目標駆動力が不足することになり、セットスイッチによる目標車速再設定後に車速のアンダーシュートが発生する。
【0015】
そこで本願発明では、コーストスイッチ、アクセラレートスイッチおよびセットスイッチによる目標車速の再設定時に、モデルマッチング補償器だけを初期化し、外乱推定器を初期化せずにその制御を継続させることにする。以下、図5〜図15により本願発明の一実施の形態を説明する。
【0016】
図5は一実施の形態の構成を示す。メインスイッチ1は、車速制御コントローラー10、変速機コントローラー11およびスロットルアクチュエーター12aへ電源を供給して自動車速制御装置を作動させる電源スイッチである。
【0017】
セットスイッチ2は、現在の車速を目標車速に設定して自動車速制御を開始させるための操作スイッチである。アクセラレートスイッチ3は設定されている目標車速を上げるための操作スイッチであり、操作中は目標車速が連続的に増加し、操作を止めるとそのときの車速が目標車速に再設定されて自動車速制御が再開される。コーストスイッチ4は設定されている目標車速を下げるための操作スイッチであり、操作中は目標車速が連続的に減少し、操作を止めるとそのときの車速が目標車速に再設定されて自動車速制御が再開される。
【0018】
キャンセルスイッチ5は自動車速制御を解除するためのスイッチである。ブレーキスイッチ6はブレーキペダル(不図示)を踏み込むと作動するスイッチであり、ブレーキスイッチ6の作動により自動車速制御を解除する。
【0019】
車速センサー7は自動変速機13の出力軸に取り付けられる電磁ピックアップ式センサーであり、変速機出力軸の回転速度に応じた車速パルス信号を発生する。この車速パルス信号の所定時間当たりのパルス数およびパルス周期に基づいて車両の走行速度Vspを検出することができる。スロットルセンサー8はエンジン12のスロットルアクチュエーター12aに取り付けられるポテンショメーター型のセンサーであり、スロットルバルブ開度Twに応じた信号を出力する。クランク角センサー9はエンジン12に取り付けられ、エンジン回転速度Neを検出する。
【0020】
車速制御コントローラー10はマイクロコンピューター10aや駆動回路10bを備え、スイッチ2〜6の操作状態およびセンサー7〜9により検出された車両状態に基づいて、実車速が目標車速に一致するように制御する。車速制御コントローラー10は、変速機コントローラー11から「シフト位置情報」を入力し、変速機コントローラー11へ「車速制御中信号」および「オーバードライブ(O/D)キャンセル要求信号」を出力する。車速制御コントローラー10の駆動回路10bはエンジン12のスロットルアクチュエーター12aを駆動制御し、スロットルバルブ開度Twを調節する。変速機コントローラー11は、自動車速制御中は車速制御コントローラー10からの変速指令にしたがって変速機13の変速制御を行う。
【0021】
図6は、一実施の形態の自動車速制御を示す制御ブロック図である。この図により、実車速Vspを目標車速Vsprに一致させるための目標駆動力y4を演算し、さらに目標駆動力y4を走行抵抗や道路勾配などの外乱推定値により補正して最終的な目標駆動力(以下、最終目標駆動力と呼ぶ)y1を演算する方法を説明する。
【0022】
この演算は、線形制御手法であるモデルマッチング手法と近似ゼロイング手法による車速フィードバック補償器を用いて行なう。車速フィードバック補償器に組み込まれる制御対象の車両モデル(数式化モデル)を、最終目標駆動力y1を操作量とし、車速Vspを制御量としてモデル化することによって、相対的に応答性の速いエンジンやトルクコンバータの過渡特性、およびトルクコンバータの非線形定常特性を省略することができる。そして、例えば図7に示すような予め計測されたエンジン非線形定常特性データマップを用いて、車両の駆動力が最終目標駆動力y1に一致するようなスロットルバルブ開度指令値Twrを算出し、実際のスロットルバルブ開度Twをサーボコントロールすることによって、エンジン12の非線形定常特性を線形化することができる。
【0023】
図7において、実線は実験により得られたエンジン非線形定常特性であり、破線は変化率を一部補正してエンジントルクがスロットルバルブ開度に対応するように拡張した特性データマップである。なお、図7はあるエンジン回転速度における特性データマップであり、エンジン回転速度ごとにこのような特性データマップが用意され、マイクロコンピューター10aのROMに記憶される。
【0024】
最終目標駆動力y1を入力とし、車速Vspを出力とする車両モデルは積分特性となり、車速フィードバック補償器ではこの車両モデルの伝達特性をパルス伝達関数P(z-1)とおくことができる。
【0025】
図6において、zは遅延演算子であり、z-n(n=1,2,・・)を乗ずるとnサンプリング周期前の値となる。また、C1(z-1)、C2(z-1)は近似ゼロイング手法による外乱推定器であり、外乱やモデル化誤差による影響を抑制する。さらに、C3(z-1)、C4(z-1)はモデルマッチング手法による補償器であり、車速指令値Vsprを入力とし実車速Vspを出力とした場合の制御対象の応答特性を、予め定めた一次遅れとむだ時間要素を持つ規範モデルR(z-1)の特性に一致させる。この実施の形態では、C3(z-1)を比例フィードバック補償器、C4(z-1)を位相進み補償器(フィードフォワード補償器)とする。
【0026】
制御対象の伝達特性は、パワートレインの遅れであるむだ時間を考慮する必要がある。最終目標駆動力y1を入力とし実車速Vspを出力とする制御対象のパルス伝達関数P(z-1)は、積分要素P1(z-1)とむだ時間要素P2(z-1)(=z-n)の積で表わすことができる。
【数1】
Figure 0003855612
ここで、Tはサンプリング周期(この実施形態では50msec)、Mは平均車重である。また、nは(むだ時間)/Tであり、整数値に近似したものである。
【0027】
補償器C1(z-1)を時定数Tcの1次ローパスフィルターとすると、C1(z-1)は次式で表わされる。
【数2】
C1(z-1)=(1−γ)・z-1/(1−γ・z-1),
γ=exp(−T/Tc)
さらに、補償器C2(z-1)はC1/P1として次式で表わされる。
【数3】
C2(z-1)=M・(1−γ)・(1−z-1)/{T・(1−γ・z-1)}
【0028】
なお、補償器C2は、むだ時間要素P2を含まない車両モデルの逆系(1/P1)にローパスフィルターC1をかけたものであり、この補償器C2に実車速Vspを入力することによって実車速Vspに応じた駆動力、すなわち走行抵抗や道路勾配などの外乱が含まれない実車速Vspのみに応じた駆動力を求めることができる。
【0029】
制御対象のむだ時間要素を無視して規範モデルR(z-1)を時定数Tbの1次ローパスフィルターとし、中間規範モデルF(z-1)を時定数Taの1次ローパスフィルターとすると、モデルマッチング補償器C3(z-1)およびC4(z-1)は次式で表される。
【数4】
Figure 0003855612
【0030】
次に、実車速Vspを目標車速Vsprに一致させるための最終目標駆動力y1の演算を、漸化式により示す。なお、変数y(k-1)は変数y(k)の一サンプリング周期前の値である。
【0031】
モデルマッチング補償器の入力y7とy8はそれぞれ、目標車速Vsprと実車速Vspをオフセットするための基準値Vsp0を用いて次式で表される。
【数5】
y7(k)=Vspr(k)−Vsp0,
y8(k)=Vsp(k)−Vsp0
また、位相進み補償器C4(z-1)の出力y6は次式により演算される。
【数6】
Figure 0003855612
さらに、比例フィードバック補償器C3(z-1)の出力、すなわち目標駆動力y4(k)は次式により求められる。
【数7】
y4(k)=K・{y6(k)−y8(k)}
【0032】
一方、外乱推定器では、リミッターにより最終目標駆動力y1(k)を最大駆動力Fmaxと最小駆動力Fminに制限して駆動力y5(k)を求める。図8に示すようなスロットルバルブ全開時および全閉時のエンジン回転速度Neに対するエンジントルクTeのデータを用いて、最大エンジントルクTemaxと最小エンジントルクTeminを求める。さらに、次式により最大駆動力Fmaxと最小駆動力Fminを求める。
【数8】
Fmax=(Temax・Gm・Gf)/Rt,
Fmin=(Temin・Gm・Gf)/Rt
ここで、Gmは変速機13のギア比、Gfはファイナルギア比、Rtはタイヤの有効半径である。そして、最終目標駆動力y1(k)を、最大駆動力Fmaxと最小駆動力Fminで制限して駆動力y5(k)を求める。
【数9】
y1(k)≧Fmaxの場合は、y5(k)=Fmax,
y1(k)≦Fminの場合は、y5(k)=Fmin,
Fmin<y1(k)<Fmaxの場合は、y5(k)=y1(k)
【0033】
補償器C1(z-1)は1次ローパスフィルターであるから、駆動力y2(k)はリミッター処理後の駆動力y5(k)をローパスフィルター処理した駆動力である。
【数10】
y2(k)=γ・y2(k-1)+(1−γ)・y5(k-1),
γ=exp(−T/Tc)
この駆動力y2(k)にむだ時間要素z-nを乗じた駆動力y2(k-n)は駆動力y2(k)のnサンプリング周期前の値であり、パワートレインの遅れ(むだ時間)を考慮したパワートレインの現在の駆動力と見なすことができる。
【0034】
これに対し駆動力y3(k)は実車速Vspに応じた駆動力、すなわち走行抵抗などの外乱が含まれない実車速Vspのみに応じた現在の駆動力である。
【数11】
Figure 0003855612
【0035】
したがって、走行抵抗などの外乱が含まれない駆動力y3(k)からパワートレインの駆動力y2(k-n)を減じた値{y3(k)−y2(k-n)}は、走行抵抗や道路勾配などの外乱分に相当することになり、これを外乱推定値とする。
【0036】
最後に、モデルマッチング補償器から出力される目標駆動力y4(k)から外乱推定値{y3(k)−y2(k-n)}を減じて補正し、最終目標駆動力y1(k)を求める。
【数12】
y1(k)=y4(k)−{y3(k)−y2(k-n)}
【0037】
図9は自動車速制御プログラムを示すフローチャートである。また、図10はアクセラレート処理ルーチンを示すフローチャート、図11はコースト処理ルーチンを示すフローチャートである。これらのフローチャートにより、一実施の形態の動作を説明する。
【0038】
車速制御コントローラー10のマイクロコンピューター10aは、所定時間(例えば50msec)ごとに図9に示す自動車速制御プログラムを実行する。ステップ1において、車速センサー7により車速Vspを、クランク角センサー9によりエンジン回転速度Neを、スロットルセンサー8によりスロットルバルブ開度Twをそれぞれ検出する。ステップ2ではキャンセルスイッチ5およびブレーキスイッチ6により自動車速制御を解除する操作がなされたかどうかを確認し、解除操作がなされた場合はステップ13へ進み、そうでなければステップ3へ進む。自動車速制御の解除操作がなされていない場合は、ステップ3でセットスイッチ2により目標車速の設定と自動車速制御の開始操作がなされたかどうかを確認する。目標車速の設定と自動車速制御の開始操作がなされた場合はステップ4へ進み、そうでなければステップ7へ進む。
【0039】
目標車速の設定と自動車速制御の開始操作がなされた場合は、ステップ4において、ステップ1で検出した現在の車速Vspを目標車速Vsprに設定し、続くステップ5で自動車速制御中フラグをセットする。
【0040】
ステップ6において、モデルマッチング補償器を初期化する。具体的には、位相進みフィードフォワード補償器C4(z-1)が保持している1サンプリング周期前の入力y7(k-1)と出力y6(k-1)を、ともに初期値0にリセットする。同時に、位相進み補償器C4(z-1)の入力である現在の目標車速Vspr(k)と、比例フィードバック補償器C3(z-1)の入力である現在の車速Vsp(k)とをオフセットするために、基準値Vsp0に現在の車速Vsp(k)を設定する。これにより、数式5から明らかなようにy7(k)とy8(k)をともに初期値0にリセットすることができる。
【0041】
この結果、比例フィードバック補償器C3(z-1)の入力y6とy8が同時に0にリセットされるので、比例ゲインKのみから構成されるフィードバック補償器C3(z-1)の出力y4も0となる。つまり、この実施の形態では、セットスイッチ2による目標車速の再設定時に外乱推定器による推定演算を継続しながらモデルマッチング補償器を初期化する。以上でセットスイッチ2による目標車速の設定または再設定時の自動車速制御を終了する。
【0042】
自動車速制御の解除操作がなく、また自動車速制御の設定操作もない場合は、ステップ7で自動車速制御フラグがセット(ON)されているかどうかを確認し、セットされている場合はステップ8へ進み、セットされていない場合はステップ14へ進む。自動車速制御フラグがセットされており、自動車速制御中の場合は、ステップ8で図10に示すアクセラレート処理ルーチンを実行し、アクセラレートスイッチ3が操作されている間、目標車速Vsprを増加する。このアクセラレート処理については後述する。続くステップ9では図11に示すコースト処理ルーチンを実行し、コーストスイッチ4が操作されている間、目標車速Vsprを低減する。このコースト処理ついては後述する。
【0043】
ステップ10において、上述した演算方法により実車速Vspを目標車速Vsprに一致させるための最終目標駆動力y1(k)を演算する。続くステップ11では最終目標駆動力y1(k)に基づいて次式により目標エンジントルクTerを演算する。
【数13】
Ter=y1(k)・Rt/(Gm・Gf)
上述したように、Gmは変速機13のギア比、Gfはファイナルギア比、Rtはタイヤの有効半径である。
【0044】
ステップ12で、予めマイクロコンピューター10aのROMに記憶されたエンジン非線形定常特性データマップ(例えば図7参照)を用いて、現在のエンジン回転速度Neと上記目標エンジントルクTerに対応する目標スロットルバルブ開度Twrを表引き演算する。
【0045】
一方、自動車速制御の解除操作が行われた場合は、ステップ13で自動車速制御中フラグをクリアし、続くステップ14でモデルマッチング補償器、外乱推定器などの車速制御に関わるすべての変数を初期値にリセットする。
【0046】
次に、図10に示すアクセラレート処理ルーチンにより、目標車速の増加処理を説明する。ステップ21において、アクセラレートスイッチ3により目標車速Vsprを増加させる操作(以下、増速操作と呼ぶ)がなされているかどうかを確認し、増速操作がなされているときはステップ26へ進み、そうでなければステップ22へ進む。
【0047】
増速操作がなされているときは、ステップ26でアクセラレート制御中フラグをセットし、続くステップ27で目標車速Vsprに所定値ΔVを加算して処理を終了する。したがって、アクセラレートスイッチ3が操作されているときは、図9に示す自動車速制御プログラムの実行間隔50msecごとに目標車速VsprがΔVずつ上がることになる。
【0048】
増速操作がなされていないときは、ステップ22でアクセラレート制御中フラグがセットされているかどうかを確認し、セットされているときはステップ23へ進み、セットされていなければアクセラレート処理を終了する。
【0049】
アクセラレートスイッチ3がオフ(解放)され、かつアクセラレート制御中フラグがセットされているときは、目標車速Vsprの増加操作が終了した直後である。したがって、ステップ23で、まず目標車速Vsprに図9のステップ1で検出した現在の車速Vspを設定し、続くステップ24でアクセラレート制御中フラグをクリアする。
【0050】
目標車速Vsprを増加するためのアクセラレートスイッチ操作が終了したときに、目標車速Vsprに現在の車速Vspを設定した後、ステップ25でモデルマッチング補償器を初期化する。具体的には、位相進みフィードフォワード補償器C4(z-1)が保持している1サンプリング周期前の入力y7(k-1)と出力y6(k-1)を、ともに初期値0にリセットする。同時に、位相進み補償器C4(z-1)の入力である現在の目標車速Vspr(k)と、比例フィードバック補償器C3(z-1)の入力である現在の車速Vsp(k)とをオフセットするために、基準値Vsp0に現在の車速Vsp(k)を設定する。これにより、数式5から明らかなようにy7(k)とy8(k)をともに初期値0にリセットすることができる。
【0051】
この結果、比例フィードバック補償器C3(z-1)の入力y6とy8が同時に0にリセットされるので、比例ゲインKのみから構成されるフィードバック補償器C3(z-1)の出力y4も0となる。つまり、この一実施の形態では、アクセラレートスイッチ3による目標車速の再設定時に外乱推定器による推定演算を継続しながらモデルマッチング補償器を初期化する。以上でアクセラレート処理を終了する。
【0052】
次に、図11に示すコースト処理ルーチンにより、目標車速Vsprの低減処理を説明する。ステップ31において、コーストスイッチ4により目標車速Vsprの低減操作(以下、減速操作と呼ぶ)がなされているかどうかを確認し、減速操作がなされているときはステップ36へ進み、そうでなければステップ32へ進む。
【0053】
減速操作がなされているときは、ステップ36でコースト制御中フラグをセットし、続くステップ37で目標車速Vsprから所定値ΔVを減算して処理を終了する。したがって、コーストスイッチ4が操作されているときは、図9に示す自動車速制御プログラムの実行間隔50msecごとに目標車速VsprがΔVずつ下がることになる。
【0054】
減速操作がなされていないときは、ステップ32でコースト制御中フラグがセットされているかどうかを確認し、セットされているときはステップ33へ進み、セットされていなければコースト処理を終了する。
【0055】
コーストスイッチ4がオフ(解放)され、かつコースト制御中フラグがセットされているときは、目標車速Vsprの低減操作が終了した直後である。したがって、ステップ33で、まず目標車速Vsprに図9のステップ1で検出した現在の車速Vspを設定し、続くステップ34でコースト制御中フラグをクリアする。
【0056】
目標車速Vsprを低減するためのコーストスイッチ操作が終了したときに、目標車速Vsprに現在の車速Vspを設定した後、ステップ35でモデルマッチング補償器を初期化する。具体的には、位相進みフィードフォワード補償器C4(z-1)が保持している1サンプリング周期前の入力y7(k-1)と出力y6(k-1)を、ともに初期値0にリセットする。同時に、位相進み補償器C4(z-1)の入力である現在の目標車速Vspr(k)と、比例フィードバック補償器C3(z-1)の入力である現在の車速Vsp(k)とをオフセットするために、基準値Vsp0に現在の車速Vsp(k)を設定する。これにより、数式5から明らかなようにy7(k)とy8(k)をともに初期値0にリセットすることができる。
【0057】
この結果、比例フィードバック補償器C3(z-1)の入力y6とy8が同時に0にリセットされるので、比例ゲインKのみから構成されるフィードバック補償器C3(z-1)の出力y4も0となる。つまり、この一実施の形態では、コーストスイッチ4による目標車速の再設定時に外乱推定器による推定演算を継続しながらモデルマッチング補償器を初期化する。以上でコースト処理を終了する。
【0058】
図12は、上述した一実施の形態による平坦路でのコーストスイッチ操作(減速操作)終了時の自動車速制御結果を示す図であり、図1に示す従来の装置の制御結果に対応するものである。目標車速Vsprを低減するためのコーストスイッチ操作中に、エンジンブレーキ力が飽和して目標車速Vsprと実車速Vspとの差が拡大した状態で、運転者がコーストスイッチ操作を終了すると、目標車速Vsprが実車速Vspまで大きくステップ状に変化する。このため、従来の装置では図1に示すようにコーストスイッチ操作終了直後に車速のオーバーシュートが発生する。
【0059】
上述した一実施の形態によれば、図11のステップ35の処理を行って車速のオーバーシュートを防止する。つまり、コーストスイッチ4による目標車速の再設定時に外乱推定器による推定演算を継続しながらモデルマッチング補償器を初期化するので、スイッチ操作終了直後に目標車速Vsprが大きくステップ状に変化しても、モデルマッチング補償器の出力、すなわち目標駆動力y4が0から立ち上がる。したがって、この一実施の形態では図1に示すような車速のオーバーシュートは発生せず、わずかな車速アンダーシュートがあっても実車速Vspが目標車速Vsprに速やかに収束する。
【0060】
図13は、上述した一実施の形態による平坦路でのセットスイッチによる目標車速の再設定操作時の自動車速制御結果を示す図であり、図2に示す従来の装置の制御結果に対応するものである。自動車速制御中に運転者が一時的にアクセルペダルを踏んで加速した場合に、実車速Vspが目標車速Vsprを大きく上まわることがある。この状態で運転者がセットスイッチ2を操作して目標車速Vsprの再設定を行うと、目標車速Vsprが実車速Vspまで大きくステップ状に変化するため、従来の装置では図2に示すようにセットスイッチ操作直後に車速のオーバーシュートが発生する。
【0061】
上述した一実施の形態によれば、図9のステップ6の処理を行って車速のオーバーシュートを防止する。つまり、セットスイッチ2による目標車速の再設定時に外乱推定器による推定演算を継続しながらモデルマッチング補償器を初期化するので、スイッチ操作終了直後に目標車速Vsprが大きくステップ状に変化しても、モデルマッチング補償器の出力、すなわち目標駆動力y4が0から立ち上がる。したがって、この一実施の形態では図2に示すような車速のオーバーシュートは発生せず、わずかな車速アンダーシュートがあっても実車速Vspが目標車速Vsprに速やかに収束する。
【0062】
図14は、上述した一実施の形態による登り坂でのコーストスイッチ操作終了時の自動車速制御結果を示す図であり、図3に示すコーストスイッチ操作終了時にモデルマッチング補償器と外乱推定器とをともに初期化した場合の車速制御結果に対応するものである。コーストスイッチ操作終了時にモデルマッチング補償器と外乱推定器とをともに初期化すると、登り坂の道路勾配が含まれる大きな外乱推定値も初期化されるので、図3に示すようにコーストスイッチ操作終了後に大きな車速アンダーシュートが発生する。この一実施の形態によれば、コーストスイッチ操作終了時にモデルマッチング補償器のみを初期化し、外乱推定器は初期化しないので、登り坂の道路勾配が含まれる外乱推定値が失われず、図14に示すようにコーストスイッチ操作終了後に大きな車速アンダーシュートは発生せず、わずかなアンダーシュートがあるが実車速Vspが目標車速Vsprに速やかに収束する。
【0063】
図15は、上述した一実施の形態による登り坂でのセットスイッチによる目標車速の再設定時の自動車速制御結果を示す図であり、図4に示すセットスイッチによる目標車速の再設定時にモデルマッチング補償器と外乱推定器とをともに初期化した場合の車速制御結果に対応するものである。セットスイッチによる目標車速の再設定時にモデルマッチング補償器と外乱推定器とをともに初期化すると、登り坂の道路勾配が含まれる大きな外乱推定値も初期化されるので、図4に示すようにセットスイッチによる目標車速の再設定時に大きな車速アンダーシュートが発生する。この一実施の形態によれば、セットスイッチによる目標車速の再設定時にモデルマッチング補償器のみを初期化し、外乱推定器は初期化しないので、登り坂の道路勾配が含まれる外乱推定値が失われず、図15に示すようにセットスイッチによる目標車速の再設定時に大きな車速アンダーシュートは発生せず、わずかなアンダーシュートがあるが実車速Vspが目標車速Vsprに速やかに収束する。
【0064】
なお、アクセラレートスイッチ操作終了時の制御結果については図示と説明を省略するが、上述したコーストスイッチ操作終了時と同様に、大きな車速のオーバーシュート、アンダーシュートが発生せず、実車速Vspが目標車速Vsprに速やかに収束する。
【0065】
上述した一実施の形態では、目標車速の再設定時にモデルマッチング補償器へ入力される目標車速Vsprと実車速VspにそれぞれオフセットVsp0を加え、目標車速Vsprと実車速Vspをともに0にするようにしたので、モデルマッチング補償器のフィルターをマイクロコンピューターのソフトウエア形態で実現することができる。
【0066】
上述した一実施の形態ではフィードフォワード補償器とフィードバック補償器とを有するモデルマッチング補償器を例に上げて説明したが、フィードバック補償器のみを有するモデルマッチング補償器を備えた自動車速制御装置に対しても本発明を適用することができ、上述したと同様な効果を得ることができる。
【図面の簡単な説明】
【図1】 従来の自動車速制御装置によるコーストスイッチ操作終了時の車速制御結果を示す図である。
【図2】 従来の自動車速制御装置による一時加速中のセットスイッチ操作時の車速制御結果を示す図である。
【図3】 登り坂でのコーストスイッチ操作終了時にモデルマッチング補償器と外乱推定器とをともに初期化した場合の車速制御結果を示す図である。
【図4】 登り坂でのセットスイッチによる目標車速の再設定時にモデルマッチング補償器と外乱推定器とをともに初期化した場合の車速制御結果を示す図である。
【図5】 一実施の形態の構成を示す図である。
【図6】 一実施の形態の自動車速制御を示す制御ブロック図である。
【図7】 エンジン非線形定常特性データマップを示す図である。
【図8】 スロットルバルブ全開時および全閉時のエンジン回転速度に対するエンジントルクのデータを示す図である。
【図9】 一実施の形態の自動車速制御を示すフローチャートである。
【図10】 一実施の形態のアクセラレート処理ルーチンを示すフローチャートである。
【図11】 一実施の形態のコースト処理ルーチンを示すフローチャートである。
【図12】 一実施の形態の平坦路でのコーストスイッチ操作終了時の車速制御結果を示す図である。
【図13】 一実施の形態の平坦路での一時加速中のセットスイッチ操作時の車速制御結果を示す図である。
【図14】 一実施の形態の登り坂でのコーストスイッチ操作終了時の車速制御結果を示す図である。
【図15】 一実施の形態の登り坂での一時加速中のセットスイッチ操作時の車速制御結果を示す図である。
【符号の説明】
1 メインスイッチ
2 セットスイッチ
3 アクセラレートスイッチ
4 コーストスイッチ
5 キャンセルスイッチ
6 ブレーキスイッチ
7 車速センサー
8 スロットルセンサー
9 クランク角センサー
10 車速制御コントローラー
10a マイクロコンピューター
10b 駆動回路
11 変速機コントローラー
12 エンジン
12a スロットルアクチュエーター
13 変速機

Claims (2)

  1. 目標車速に対する実車速の応答性を規範モデルに一致させるモデルマッチング補償器を用いて、目標車速と実車速とにより目標駆動力を演算するとともに、外乱推定器を用いて目標駆動力と実車速とにより走行抵抗と道路勾配とが含まれる車両走行中の外乱を推定演算し、この外乱推定値により目標駆動力を補正する自動車速制御装置において、
    目標車速の再設定時には前記外乱推定器による推定演算を継続しながら前記モデルマッチング補償器を初期化することを特徴とする自動車速制御装置。
  2. 請求項1に記載の自動車速制御装置において、
    目標車速の再設定時には、前記モデルマッチング補償器へ入力される目標車速と実車速とにそれぞれオフセットを加え、目標車速と実車速をともに0にすることを特徴とする自動車速制御装置。
JP2000229139A 2000-07-28 2000-07-28 自動車速制御装置 Expired - Lifetime JP3855612B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000229139A JP3855612B2 (ja) 2000-07-28 2000-07-28 自動車速制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000229139A JP3855612B2 (ja) 2000-07-28 2000-07-28 自動車速制御装置

Publications (2)

Publication Number Publication Date
JP2002036907A JP2002036907A (ja) 2002-02-06
JP3855612B2 true JP3855612B2 (ja) 2006-12-13

Family

ID=18722309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000229139A Expired - Lifetime JP3855612B2 (ja) 2000-07-28 2000-07-28 自動車速制御装置

Country Status (1)

Country Link
JP (1) JP3855612B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5190403B2 (ja) * 2009-03-30 2013-04-24 ダイハツ工業株式会社 制御装置
US10501076B2 (en) 2012-08-16 2019-12-10 Jaguar Land Rover Limited Speed control system and method of operating the same
KR101655594B1 (ko) 2014-12-08 2016-09-22 현대자동차주식회사 자동차의 오토크루즈 속도 제어 장치 및 방법

Also Published As

Publication number Publication date
JP2002036907A (ja) 2002-02-06

Similar Documents

Publication Publication Date Title
JP4462148B2 (ja) クルーズ制御装置
JP4489333B2 (ja) 車両の駆動力制御装置
US6763295B2 (en) Driving force control apparatus and method for automotive vehicle
JPH0619307B2 (ja) 自動車自動運転ロボットの制御方法
JPH1178600A (ja) 車両用走行制御装置
JP2009051403A (ja) 車両用制御装置及び制御システム
JP3855612B2 (ja) 自動車速制御装置
JP3796959B2 (ja) 無段変速機付き車両の車速制御装置
JP2004034886A (ja) 車両の駆動力制御装置
JP4147982B2 (ja) 車両の駆動力制御装置
JP2004276669A (ja) 車両の駆動力制御装置
JP2006142963A (ja) 車両の駆動力制御装置
JP3613974B2 (ja) 車速制御装置
JP3092444B2 (ja) 車両用定速走行制御装置
JP3719032B2 (ja) 無段変速機を装備した車両の駆動力制御装置
JPH11227592A (ja) 制駆動力制御装置
JP2004204832A (ja) 車両の駆動力制御装置
JP2007170274A (ja) 車両制御装置
JP3045067B2 (ja) 車速制御装置
JP2003154871A (ja) 車両の駆動力制御装置
JP2005125894A (ja) 車両の速度制御装置
JP3099725B2 (ja) 車速制御装置
JP3591015B2 (ja) 車両用定速走行制御装置
JP3235435B2 (ja) 車速制御装置
JP2006291870A (ja) 車速制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Ref document number: 3855612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

EXPY Cancellation because of completion of term