JP3843827B2 - 磁気トンネル接合素子とその製法 - Google Patents

磁気トンネル接合素子とその製法 Download PDF

Info

Publication number
JP3843827B2
JP3843827B2 JP2001374435A JP2001374435A JP3843827B2 JP 3843827 B2 JP3843827 B2 JP 3843827B2 JP 2001374435 A JP2001374435 A JP 2001374435A JP 2001374435 A JP2001374435 A JP 2001374435A JP 3843827 B2 JP3843827 B2 JP 3843827B2
Authority
JP
Japan
Prior art keywords
layer
tunnel junction
magnetic
magnetic tunnel
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001374435A
Other languages
English (en)
Other versions
JP2003174215A (ja
Inventor
通直 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2001374435A priority Critical patent/JP3843827B2/ja
Publication of JP2003174215A publication Critical patent/JP2003174215A/ja
Application granted granted Critical
Publication of JP3843827B2 publication Critical patent/JP3843827B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、磁気センサ等に用いられる磁気トンネル接合素子とその製法に関するものである。この後の説明では、磁気トンネル接合素子をTMR素子と略記する。
【0002】
【従来の技術】
従来、複数のTMR素子を備えた磁気センサの製法としては、図40〜45に示すものが提案されている(例えば、本願と同一出願人の出願に係る特願平11−368776号参照)。
【0003】
図40の工程では、シリコン基板1の表面を覆う酸化シリコン膜2の上に下電極層としてのCr層3と、反強磁性層としてのRh−Mn合金層4と、下強磁性層としてのNi−Fe合金層5とを順次に重ねてスパッタ法で形成した後、Ni−Fe合金層5の上にAl層を形成して酸化することによりトンネルバリア層としてのアルミナ層6を形成し、アルミナ層6の上に上強磁性層としてのNi−Fe合金/Co積層(Coが下層)7と、上電極層としてのMo層8とを順次に重ねてスパッタ法で形成する。Mo層8の上には、それぞれ図13の26a,26bに示すような四辺形状のパターンを有するレジスト層9a,9bを周知のホトリソグラフィ処理により形成する。
【0004】
次に、図41の工程では、レジスト層9a,9bをマスクとする選択的イオンミリング処理により層3〜8の積層に分離溝10を酸化シリコン膜2に達するように形成することにより該積層を層3〜8の部分3a〜8aからなる第1の積層部分と層3〜8の部分3b〜8bからなる第2の積層部分とに分離する。この後、レジスト層9a,9bを除去する。
【0005】
図41のイオンミリング工程では、図46に示したように分離溝10の側壁に側壁堆積膜DPが形成される。側壁堆積膜DPは、レジスト層9a,9bがイオンミリングにより削られて生ずるレジスト変性成分(有機物)を多量に含むもので、その他にも層3a〜5a,7a,8aの金属成分や酸化シリコン膜2の構成成分等を含んでいる。
【0006】
図41のレジスト除去工程では、レジスト層9a,9bに対してOプラズマによるアッシング処理を施した後、有機剥離液を用いて剥離処理を施す。しかし、このような処理を施しても、側壁堆積膜DPを完全に除去するのは困難であり、しかもレジスト残渣R,Rが残留する。レジスト残渣R,Rは、レジスト層9a,9bに由来するレジスト変性成分の他に、金属成分やSiO等の成分を含んでいるため、有機溶媒等を用いるレジスト除去処理によって完全に除去するのが困難である。
【0007】
図42の工程では、図41の工程で得られた第1及び第2の積層部分の上にそれぞれレジスト層9c,9d及びレジスト層9eをホトリソグラフィ処理により形成する。レジスト層9c,9d,9eのパターンは、図13のTa,Tb,Tcに示すような四辺形状のパターンとする。
【0008】
図43の工程では、レジスト層9c〜9eをマスクとする選択的イオンミリング処理(又は選択的ウエットエッチング処理)により第1及び第2の積層部分に分離溝12を層部分4a,4bに達するように形成することによりTMR素子Ta,Tb,Tcを得る。TMR素子Taは、分離溝10で囲まれた層3,4の部分3a,4aと分離溝12で囲まれた層5〜8の部分5a〜8aとの積層からなり、TMR素子Tbは、分離溝10で囲まれた層3,4の部分3a,4aと分離溝12で囲まれた層5〜8の部分5a〜8aとの積層からなる。層部分3a,4aの積層は、TMR素子Ta,Tbに共通の電極層であり、TMR素子Ta,Tbを相互接続している。TMR素子Tcは、分離溝10で層部分3a、4aから分離された層3,4の部分3b,4bと分離溝12で囲まれた層5〜8の部分5b〜8bとの積層からなる。イオンミリング処理の後、レジスト層9c〜9eを除去する。
【0009】
図43のイオンミリング工程では、図41の工程に関して前述したと同様にして図47に示すように分離溝10,12の側壁に側壁堆積膜DP,DPが形成される。そして、図43のレジスト除去工程では、図41の工程に関して前述したと同様にしてアッシング処理及び有機剥離液処理を行なうが、このようにしても、側壁堆積膜DP,DPを完全に除去するのが困難であり、しかもレジスト残渣R〜Rが残留する。側壁堆積膜DP,DPは、レジスト層9c〜9eがイオンミリングにより削られて生ずるレジスト変性成分(有機物)を多量に含むもので、その他にも層3a〜5a,7a、8aの金属成分及び酸化シリコン膜2の構成成分等を含んでいる。レジスト残渣R〜Rは、レジスト層9c〜9eに由来するレジスト変性成分を主体とするものである。なお、図43のレジスト除去工程では、分離溝12の側壁において側壁堆積膜DPがない個所にレジスト残渣が残留することもある。
【0010】
図44の工程では、TMR素子Ta〜Tc及び分離溝10,12を覆って基板上面にスパッタ法により層間絶縁膜としての酸化シリコン膜13を形成する。そして、選択的イオンミリング処理によりTMR素子Ta〜TcのMo層8a,8a,8bにそれぞれ対応する接続孔13a〜13cを酸化シリコン膜13に形成する。
【0011】
図45の工程では、酸化シリコン膜13の上に接続孔13a〜13cを覆ってAlをスパッタ法で被着した後、その被着層を選択的イオンミリング処理によりパターニングして配線層としてのAl層14a,14bを形成する。Al層14aは、接続孔13aを介してTMR素子TaのMo層8aに接続され、Al層14bは、接続孔13b,13cを介してTMR素子Tb,TcのMo層8a,8bを相互接続する。この結果、TMR素子Ta〜Tcは、直列接続されたことになる。
【0012】
【発明が解決しようとする課題】
上記した従来技術によると、次の(a)〜(c)のような問題点がある。
【0013】
(a)選択マスクとしてのレジスト層は、イオンミリングにより削られやすいので、図41,43の工程では、レジスト層9a〜9eを0.6〜2.0μm程度に厚く形成する必要があり、微細加工に適していない。すなわち、厚いレジスト層では、微細パターンの形成が困難であると共にパターン倒れが起こりやすく、しかも角度ミリングでの加工時には影となる部分が生ずるため加工精度が低下する。
【0014】
(b)分離溝12の側壁に側壁堆積膜DPやレジスト残渣が残留すると、トンネルバリア層6aの上下の金属層間で電気的な短絡やリークが生ずる原因となり、歩留りの低下や素子特性の劣化を招く。また、図46,47に示したようにレジスト残渣R〜Rが残留すると、パーティクル発生の原因となり、歩留りの低下を招く。
【0015】
(c)図43のイオンミリング工程で分離溝12を形成する際に分離溝10の底部で酸化シリコン膜がエッチングされるため、分離溝10の深さDがエッチング分だけ増大し、分離溝10の段差が急峻となる。このため、図44の工程でスパッタ法により酸化シリコン膜13を形成すると、分離溝10の開口端近傍で膜欠陥が生じやすく、図45の工程でAl層14bを形成すると、Al層14bと層部分4aとが膜欠陥を介して短絡する不良を生ずることがある。なお、スパッタ法に比べて段差被覆性が良好なCVD(ケミカル・ベーパー・デポジション)法は、膜欠陥は生じないものの、400℃程度の処理となり、TMR素子が高温に弱いため、酸化シリコン膜13の形成に適していない。
【0016】
上記(b)の問題点に対処する方法としては、酸又はアルカリ等の溶液により側壁堆積膜やレジスト残渣を除去する処理が考えられる。しかし、このような処理は、極めて薄いトンネルバリア層にダメージを与えたり、トンネルバリア層の上下の金属層をエッチングして形状悪化を招いたりするので、得策でない。また、レジスト変性成分を含む側壁堆積膜を有機溶媒等を用いて除去する処理では、人体や環境に有害な物質を使用しなければならず、有機廃液の処理のためにコスト上昇を招く。
【0017】
上記(b)の問題点に関してTMR素子のリーク電流を低減する方法としては、磁気トンネル接合積層を選択的イオンミリング処理によりパターニングしてTMR素子を形成する際に酸化性又は窒化性雰囲気中でイオンミリングを行なうことによりTMR素子の側壁に酸化物又は窒化物からなる絶縁層を形成するものが知られている(例えば、特開2001−52316号公報参照)。このようなイオンミリング処理を図43の工程で採用した場合、エッチング終点の検出に困難を伴うという問題点がある。すなわち、図43のイオンミリング処理では、エッチング終点検出法としてプラズマ発光測定法を用いることが多い。この方法を用いた場合、反強磁性層としてのRh−Mn合金層4a,4bの構成原子に基づく発光を検出してイオンミリングを停止する。酸化性又は窒化性雰囲気中でイオンミリングを行なう場合、酸素又は窒素を含まない雰囲気中でイオンミリングを行なう場合に比べてエッチレートが低下するため、単位時間当りの励起原子の発生量が減少し、発光検出に必要な信号強度が低下する。このため、エッチング終点の検出精度が低下し、アンダーエッチングによりTMR素子Tb,Tc間の短絡を招いたり、オーバーエッチングによりTMR素子Ta,Tb間で接続抵抗の増大(更には断線)を招いたりする。その上、図43の工程の前に分離溝10を形成しておくと、図43の工程においてRh−Mn合金層4a,4bの露出面積が分離溝10に相当する分だけ減少するため、発光検出に必要な信号強度は更に低下することになる。従って、エッチング終点の検出が一層困難となり、アンダーエッチング又はオーバーエッチングが一層発生しやすくなる。
【0018】
上記(c)の問題点に対処する方法としては、図43対応のイオンミリング工程の後、図41対応のイオンミリング工程を実施する方法が提案されている(例えば、本願と同一出願人の出願に係る特願2001−288809号参照)。この方法によれば、分離溝12を形成した後、分離溝10を形成することになるので、分離溝10の段差を低くすることができ、層間絶縁膜(酸化シリコン膜13に対応)の膜欠陥に基づく配線の短絡不良を防止することができる。また、図43対応のイオンミリング工程において分離溝10がない分だけ発光検出に必要な信号強度を増大させることができる。
【0019】
しかしながら、イオンミリングの選択マスクとしてレジスト層(レジスト層9a〜9eに対応)を用いるので、上記(a)及び(b)と同様の問題点を免れない。例えば、上記(b)の問題点に関しては、図43対応のイオンミリング工程では、図47に示すように分離溝12の側壁に側壁堆積膜DPが形成されたり、図43対応のレジスト除去工程では、側壁堆積膜DPやレジスト残渣R〜Rが残留したりする。また、図41対応のイオンミリング工程に先立って選択マスクとしてのレジスト層を形成する工程では、分離溝12の側壁にレジスト等が付着して汚染を招くことがある。さらに、図41対応のイオンミリング工程では、図47に示すように分離溝10の側壁に側壁堆積膜DPが形成されたり、図41対応のレジスト除去工程では、側壁堆積膜DPやレジスト残渣Rが残留したり、分離溝12の側壁において側壁堆積膜DPがない個所にレジスト残渣が残留したりする。従って、トンネルバリア層6aの上下の金属層間で電気的な短絡やリークが起こりやすい。
【0020】
この発明の目的は、高信頼且つ製造容易なTMR素子を提供することにある。
【0021】
この発明の他の目的は、高い製造歩留りを得ることができる新規なTMR素子の製法を提供することにある。
【0022】
【課題を解決するための手段】
この発明に係るTMR素子は、
絶縁性の一主面を有する基板と、
前記一主面に形成された磁気トンネル接合部であって、前記一主面に下から順に第1の導電材層、反強磁性層、第1の磁性層、トンネルバリア層、第2の磁性層及び第2の導電材層を重ねるか又は前記一主面に下から順に第1の導電材層、第1の磁性層、トンネルバリア層、第2の磁性層、反強磁性層及び第2の導電材層を重ねて構成されたものと、
前記磁気トンネル接合部の側壁を覆う保護膜であって、前記第1の導電材層と前記反強磁性層との積層又は前記第1の導電材層をパターニングする際に用いられた絶縁性ハードマスクからなるものと
を備えたものである。
【0023】
この発明のTMR素子によれば、磁気トンネル接合部の側壁が絶縁性ハードマスクからなる保護膜で覆われるので、安定した動作が可能であり、信頼性が向上する。また、絶縁性ハードマスクとしては、第1の導電材層と反強磁性層との積層又は第1の導電材層をパターニングする際に用いた絶縁性ハードマスクを除去しないで残しておくだけでよく、保護膜形成のための特別な工程が不要であるので、製造が容易である。
【0024】
この発明に係る第1のTMR素子の製法は、
基板の絶縁性の一主面に導電材層を介して磁気トンネル接合積層を形成する工程であって、前記導電材層の上に下から順に反強磁性層、第1の磁性層、トンネルバリア層及び第2の磁性層を重ねて前記磁気トンネル接合積層を形成するものと、
前記磁気トンネル接合積層に所望の素子パターンに従って第1の選択エッチング処理を施して前記磁気トンネル接合積層を前記反強磁性層に達するまでエッチングすることにより前記第1の磁性層、前記トンネルバリア層及び前記第2の磁性層の各々の残存部分からなる磁気トンネル接合部を形成する工程と、
前記磁気トンネル接合部において前記トンネルバリア層の端部に前記第1の選択エッチング処理の際に堆積した堆積物を除去する工程と、
前記堆積物を除去した後、前記磁気トンネル接合部と前記反強磁性層の露呈部とを覆ってマスク用絶縁膜を形成する工程と、
前記磁気トンネル接合部と前記反強磁性層の露呈部とを所望の電極パターンに従って覆うように前記マスク用絶縁膜を残存させるべく前記マスク用絶縁膜に第2の選択エッチング処理を施すことにより前記マスク用絶縁膜の残存部分からなるハードマスクを形成する工程と、
前記導電材層と前記反強磁性層との積層に前記ハードマスクを選択マスクとする第3の選択エッチング処理を施すことにより該積層の残存部分からなる電極層を前記磁気トンネル接合部の下に形成する工程と
を含むものである。
【0025】
第1のTMR素子の製法によれば、第1の磁性層、トンネルバリア層及び第2の磁性層を含む積層に第1の選択エッチング処理を施して磁気トンネル接合部を形成した後、トンネルバリア層の端部に第1の選択エッチング処理の際に堆積した堆積物を除去してから磁気トンネル接合部と反強磁性層の露呈部とを覆ってハードマスクを形成するので、磁気トンネル接合部の側壁(特にトンネルバリア層の端部)においてハードマスクの下にエッチング生成物等が残留するのを防ぐことが出来る。また、第2の選択エッチング処理によりハードマスクを形成する際には、磁気トンネル接合部がマスク用絶縁膜で覆われるため、磁気トンネル接合部の側壁(特にトンネルバリア層の端部)にレジスト等が付着するのを防ぐことができる。さらに、ハードマスクを選択マスクとする第3の選択エッチング処理により電極層を形成する際には、磁気トンネル接合部がハードマスクで覆われるため、磁気トンネル接合部の側壁(特にトンネルバリア層の端部)にエッチング生成物等が直接付着するのを防ぐことができる。従って、磁気トンネル接合部の側壁においてトンネルバリア層の上下の金属層がエッチング生成物等により接続されることがなくなり、電気的な短絡やリークを防止することができる。
【0026】
その上、ハードマスクを形成するための第2の選択エッチング処理では、マスク用絶縁膜の材料として、レジストよりイオンミリングレート(エッチングレート)が遅いSiO等の材料を選定するのが容易であり、マスク用絶縁膜を薄くすることができる。このため、マスク用絶縁膜をパターニングする際に選択マスクとして用いるレジスト層を薄くすることができる。従って、微細パターンの形成が容易であると共にパターン倒れが起こりにくく、しかも角度ミリングでの加工時に影となる部分が少ないため加工精度が向上する。なお、ハードマスクは、除去しないで残しておき、層間絶縁膜の一部として利用することもできる。
【0027】
第1のTMR素子の製法においては、第1の変形例として、次のような変更を加えてもよい。すなわち、磁気トンネル接合部を形成する工程では、磁気トンネル接合積層に所望の素子パターンに従って選択エッチング処理を施して磁気トンネル接合積層を導電材層に達するまでエッチングすることにより磁気トンネル接合積層の残存部分からなる磁気トンネル接合部を形成してもよい。この場合、ハードマスクは、磁気トンネル接合部と導電材層の露呈部とを覆うように形成し、電極層を形成する工程では、導電材層にハードマスクを選択マスクとする選択エッチング処理を施すことにより導電材層の残存部分からなる電極層を形成する。このようにすると、第1のTMR素子の製法に関して前述したと同様の作用効果が得られる。その上、電極層が導電材層の単層で構成されるため、導電材層と反強磁性層との積層で構成される場合に比べて電極層の端部での段差を低くすることができる。
【0028】
第1のTMR素子の製法において第1の変形例を採用した場合には、第2の変形例として、次のような変更を加えてもよい。すなわち、磁気トンネル接合積層を形成する工程では、導電材層の上に下から順に第1の磁性層、トンネルバリア層、第2の磁性層及び反強磁性層を重ねて磁気トンネル接合積層を形成してもよい。この場合、他の工程は、第1のTMR素子の製法及び第1の変形例に関して前述したと同様に実行する。このようにすると、第1のTMR素子の製法及び第1の変形例に関して前述したと同様の作用効果が得られる。
【0029】
第1のTMR素子の製法においては、電極層を形成した後、ハードマスク及び電極層に第3の選択エッチング処理の際に堆積した堆積物を除去するようにしてもよい。このことは、第1又は第2の変形例を採用した場合についても同様である。堆積物は、レジスト変性成分等の有機物を含まないので、有機溶媒等を用いなくても、希フッ酸等を用いる薬液処理で簡単に除去することができる。このようにすると、パーティクルの発生が抑制され、歩留りの向上が可能になる。
【0030】
この発明に係る第2のTMR素子の製法は、
基板の絶縁性の一主面に導電材層を介して磁気トンネル接合積層を形成する工程であって、前記導電材層の上に下から順に反強磁性層、第1の磁性層、トンネルバリア層及び第2の磁性層を重ねて前記磁気トンネル接合積層を形成するものと、
前記磁気トンネル接合積層を覆って第1のマスク用絶縁膜を形成する工程と、前記磁気トンネル接合積層を所望の素子パターンに従って覆うように前記第1のマスク用絶縁膜を残存させるべく前記第1のマスク用絶縁膜に第1の選択エッチング処理を施すことにより前記第1のマスク用絶縁膜の残存部部分からなる第1のハードマスクを形成する工程と、
前記磁気トンネル接合積層に前記第1のハードマスクを選択マスクとする第2の選択エッチング処理を施して前記磁気トンネル接合積層を前記反強磁性層に達するまでエッチングすることにより前記第1の磁性層、前記トンネルバリア層及び前記第2の磁性層の各々の残存部分からなる磁気トンネル接合部を形成する工程と、
前記磁気トンネル接合部において前記トンネルバリア層の端部に前記第2の選択エッチング処理の際に堆積した堆積物を除去する工程と、
前記堆積物を除去した後、前記磁気トンネル接合部と前記反強磁性層の露呈部とを覆って第2のマスク用絶縁膜を形成する工程と、
前記磁気トンネル接合部と前記反強磁性層の露呈部とを所望の電極パターンに従って覆うように前記第2のマスク用絶縁膜を残存させるべく前記第2のマスク用絶縁膜に第3の選択エッチング処理を施すことにより前記第2のマスク用絶縁膜の残存部分からなる第2のハードマスクを形成する工程と、
前記導電材層と前記反強磁性層との積層に前記第2のハードマスクを選択マスクとする第4の選択エッチング処理を施すことにより該積層の残存部分からなる電極層を前記磁気トンネル接合部の下に形成する工程と
を含むものである。
【0031】
第2のTMR素子の製法によれば、磁気トンネル接合積層を覆って第1のマスク用絶縁膜を形成した後、第1のマスク用絶縁膜に所望の素子パターンに従って第1の選択エッチング処理を施して第1のハードマスクを形成し、第1のハードマスクを選択マスクとする第2の選択エッチング処理により磁気トンネル接合積層を反強磁性層に達するまでエッチングして磁気トンネル接合部を形成するので、第2の選択エッチング処理では、磁気トンネル接合部の側壁(特にトンネルバリア層の端部)に付着する堆積物がレジスト変性成分等の有機物を含まず、堆積物を除去する工程では、有機溶媒等を用いなくても、希フッ酸等を用いる薬液処理で簡単に堆積物を除去することができる。有機溶媒等を使用しなくてよいので、人体や環境に有害な物質の使用量を削減することができ、工程の簡素化及びコストの低減が可能になる。
【0032】
また、第1のハードマスクを選択マスクとする第2の選択エッチング処理により磁気トンネル接合部を形成するので、微細パターンの形成が容易であると共に加工精度が向上する。
【0033】
磁気トンネル接合部を形成する工程より後の工程(堆積物除去工程、第2のハードマスクを用いる電極層形成工程等)は、第1のTMR素子の製法に関して前述したものと同様であり、前述したと同様の作用効果が得られる。
【0034】
第2のTMR素子の製法においては、前述した第1の変形例と同様の変更を加えてもよく、第1の変形例を採用した場合には、前述した第2の変形例と同様の変更を加えてもよい。なお、第1のハードマスクは、除去しないで残しておき、その上に第2のハードマスクを形成してもよい。第1及び第2のハードマスクは、除去しないで残しておき、層間絶縁膜の一部として利用するようにしてもよい。
【0035】
第2のTMR素子の製法においては、電極層を形成した後、第2のハードマスク及び電極層に第4の選択エッチング処理の際に堆積した堆積物を除去するようにしてもよい。このことは、第1又は第2の変形例を採用した場合についても同様である。堆積物は、レジスト変性成分等の有機物を含まないので、有機溶媒等を用いなくても、希フッ酸等を用いる薬液処理で簡単に除去することができる。このようにすると、パーティクルの発生が抑制され、歩留りの向上が可能になる。
【0036】
この発明に係る第3のTMR素子の製法は、
基板の絶縁性の一主面に導電材層を介して磁気トンネル接合積層を形成する工程であって、前記導電材層の上に下から順に反強磁性層、第1の磁性層、トンネルバリア層及び第2の磁性層を重ねて前記磁気トンネル接合積層を形成するものと、
前記磁気トンネル接合積層を所望の電極パターンに従って残存させるように前記磁気トンネル接合積層に第1の選択エッチング処理を施す工程と、
前記磁気トンネル接合積層の残存部を覆ってマスク用絶縁膜を形成する工程と、
前記磁気トンネル接合積層の残存部を所望の素子パターンに従って覆うように前記マスク用絶縁膜を残存させるべく前記マスク用絶縁膜に第2の選択エッチング処理を施すことにより前記マスク用絶縁膜の残存部分からなるハードマスクを形成する工程と、
前記磁気トンネル接合積層の残存部に前記ハードマスクを選択マスクとする第3の選択エッチング処理を施して前記磁気トンネル接合積層の残存部を前記反強磁性層に達するまでエッチングすることにより前記第1の磁性層、前記トンネルバリア層及び前記第2の磁性層の各々の残存部分からなる磁気トンネル接合部を形成すると共にこの磁気トンネル接合部の下に前記導電材層及び前記反強磁性層の各々の残存部分からなる電極層を残存させる工程と、
前記磁気トンネル接合部において前記トンネルバリア層の端部に前記第3の選択エッチングの際に堆積した堆積物を除去する工程と
を含むものである。
【0037】
第3のTMR素子の製法によれば、磁気トンネル接合積層に第1の選択エッチング処理を施して磁気トンネル接合積層を所望の電極パターンに従って残存させた後、磁気トンネル接合積層の残存部を覆ってハードマスクを形成し、このハードマスクを選択マスクとする第3の選択エッチング処理により磁気トンネル接合積層の残存部を反強磁性層に達するまでエッチングして磁気トンネル接合部を形成するので、第3の選択エッチング処理では、磁気トンネル接合部の側壁(特にトンネルバリア層の端部)に付着する堆積物がレジスト変性成分等の有機物を含まない。このため、堆積物を除去する工程では、有機溶媒等を用いなくても、希フッ酸等を用いて簡単に堆積物を除去することができる。従って、トンネルバリア層の上下の金属層間に電気的な短絡やリークが発生するのを防止することができる。
【0038】
また、ハードマスクを選択マスクとする第3の選択エッチング処理により磁気トンネル接合部を形成するので、微細パターンの形成が容易であると共に加工精度が向上する。なお、ハードマスクは、除去しないで残しておき、層間絶縁膜の一部として利用することもできる。
【0039】
第3のTMR素子の製法においては、第3の変形例として、次のような変更を加えてもよい。すなわち、磁気トンネル接合部を形成する工程では、磁気トンネル接合積層の残存部を選択エッチング処理により導電材層に達するまでエッチングすることにより反強磁性層、第1の磁性層、トンネルバリア層及び第2の磁性層の各々の残存部分からなる磁気トンネル接合部を形成すると共にこの磁気トンネル接合部の下に導電材層の残存部分からなる電極層を残存させる。このようにしても、第3のTMR素子の製法に関して前述したと同様の作用効果が得られる。
【0040】
第3のTMR素子の製法において、第3の変形例を採用した場合には、第4の変形例として、次のような変更を加えてもよい。すなわち、磁気トンネル接合積層を形成する工程では、第1の導電材層の上に下から順に第1の磁性層、トンネルバリア層、第2の磁性層及び反強磁性層を重ねて前記磁気トンネル接合積層を形成してもよい。この場合、他の工程は、第3のTMR素子の製法及び第3の変形例に関して前述したと同様に実行する。このようにすると、第3のTMR素子の製法に関して前述したと同様の作用効果が得られる。
【0041】
この発明に係る第4のTMR素子の製法は、
基板の絶縁性の一主面に導電材層を介して磁気トンネル接合積層を形成する工程であって、前記導電材層の上に下から順に反強磁性層、第1の磁性層、トンネルバリア層及び第2の磁性層を重ねて前記磁気トンネル接合積層を形成するものと、
前記磁気トンネル接合積層を覆って第1のマスク用絶縁膜を形成する工程と、前記磁気トンネル接合積層を所望の電極パターンに従って覆うように前記第1のマスク用絶縁膜を残存させるべく前記第1のマスク用絶縁膜に第1の選択エッチング処理を施すことにより前記第1のマスク用絶縁膜の残存部部分からなる第1のハードマスクを形成する工程と、
前記磁気トンネル接合積層に前記第1のハードマスクを選択マスクとする第2の選択エッチング処理を施すことにより前記電極パターンに従って前記磁気トンネル接合積層を残存させる工程と、
前記磁気トンネル接合積層の残存部を覆って第2のマスク用絶縁膜を形成する工程と、
前記磁気トンネル接合積層の残存部を所望の素子パターンに従って覆うように前記第2のマスク用絶縁膜を残存させるべく前記第2のマスク用絶縁膜に第3の選択エッチング処理を施すことにより前記第2のマスク用絶縁膜の残存部分からなる第2のハードマスクを形成する工程と、
前記磁気トンネル接合積層の残存部に前記第2のハードマスクを選択マスクとする第4の選択エッチング処理を施して前記磁気トンネル接合積層の残存部を前記反強磁性層に達するまでエッチングすることにより前記第1の磁性層、前記トンネルバリア層及び前記第2の磁性層の各々の残存部分からなる磁気トンネル接合部を形成すると共にこの磁気トンネル接合部の下に前記導電材層及び前記反強磁性層の各々の残存部分からなる電極層を残存させる工程と、
前記磁気トンネル接合部において前記トンネルバリア層の端部に前記第4の選択エッチング処理の際に堆積した堆積物を除去する工程と
を含むものである。
【0042】
第4のTMR素子の製法によれば、磁気トンネル接合積層を覆って第1のマスク用絶縁膜を形成した後、第1のマスク用絶縁膜に所望の電極パターンに従って第1の選択エッチング処理を施して第1のハードマスクを形成し、第1のハードマスクを選択マスクとする第2の選択エッチング処理を磁気トンネル接合積層に施して磁気トンネル接合積層を電極パターンに従って残存させるので、微細パターンの形成が容易であると共に加工精度が向上する。また、第2の選択エッチング処理では、磁気トンネル接合積層の残存部の側壁に付着する堆積物がレジスト変性成分等の有機物を含まないため、有機溶媒等を用いなくても、希フッ酸等を用いる薬液処理で簡単に堆積物を除去することができる。
【0043】
磁気トンネル接合積層を電極パターンに従って残存させる工程より後の工程(第2のハードマスクを用いる磁気トンネル接合部形成工程、堆積物除去工程等)は、第3のTMR素子の製法に関して前述したものと同様であり、同様の作用効果が得られる。
【0044】
第4のTMR素子の製法においては、前述の第3又は第4の変形例と同様の変更を加えてもよい。なお、第1のハードマスクは、除去しないで残しておき、その上に第2のハードマスクを形成してもよい。第1及び第2のハードマスクは、除去しないで残しておき、層間絶縁膜の一部として利用するようにしてもよい。
【0045】
【発明の実施の形態】
図1〜9は、この発明の第1の実施形態に係るTMR素子を備えた磁気センサの製法を示すもので、各々の図に対応する工程(1)〜(9)を順次に説明する。
【0046】
(1)例えばシリコンからなる半導体基板20の表面に熱酸化法により酸化シリコンからなる絶縁膜22を形成する。表面に絶縁膜22を形成した半導体基板20の代りに、ガラス又は石英等からなる絶縁性基板を用いてもよい。次に、絶縁膜22の上には、スパッタ法によりCrからなる導電材層24を10〜30nmの厚さに形成する。導電材層24としては、Tiの単層又はTi層にCu層を重ねた積層等を用いてもよく、あるいはW,Ta,Au,Mo等の導電性非磁性金属材料を用いてもよい。
【0047】
次に、導電材層24の上には、スパッタ法によりPt−Mn合金からなる反強磁性層26を30〜50nmの厚さに形成する。反強磁性層26としては、Rh−Mn合金、Fe−Mn合金等を用いてもよい。この後、反強磁性層26の上には、スパッタ法によりNi−Fe合金からなる強磁性層28を10nmの厚さに形成する。強磁性層28としては、Ni,Fe,Coのうちのいずれかの金属、Ni,Fe,Coのうちの2つ以上の金属の合金又は金属間化合物等を用いてもよく、あるいはNi−Fe合金層28の下にCo層を敷くなどして積層構造のものを用いてもよい。
【0048】
次に、強磁性層28の上には、スパッタ法によりAl層を1〜2nmの厚さに形成する。そして、Al層に酸化処理を施すことによりアルミナ(酸化アルミニウム)からなるトンネルバリア層30を形成する。トンネルバリア層30としては、金属又は半導体を改変した酸化物(例えばTiOx,SiO,MgO,Al+SiO[サイアロン])、窒化物(例えばAlN,Si)、酸化窒化物(例えばAlN+Al)等を用いてもよい。
【0049】
次に、トンネルバリア層30の上には、スパッタ法によりNi−Fe合金からなる強磁性層32を20〜100nmの厚さに形成する。強磁性層32としては、強磁性層28に関して前述したと同様の強磁性層を用いることができる。この後、強磁性層32の上には、スパッタ法によりMoからなる導電材層34を30〜60nmの厚さに形成する。導電材層34としては、Moの代りに、導電材層24に関して前述したと同様の金属材料を用いてもよい。
【0050】
次に、導電材層34の上には、それぞれ図13のTa,Tb,Tcに示すような四辺形状の素子パターンを有するレジスト層36a,36b,36cをホトリソグラフィ処理により形成する。このときのレジスト厚さは、0.3〜2.0μmとすることができる。
【0051】
(2)レジスト層36a〜36cをマスクとする選択的イオンミリング処理により層28〜34の積層に分離溝38を反強磁性層26に達するように形成することにより磁気トンネル接合部ATa,ATb,ATcを得る。磁気トンネル接合部ATaは、分離溝38で囲まれた層28〜34の部分28a〜34aの積層からなり、磁気トンネル接合部ATbは、分離溝38で囲まれた層28〜34の部分28b〜34bの積層からなり、磁気トンネル接合部ATcは、分離溝38で囲まれた層28〜34の部分28c〜34cの積層からなる。層24,26の積層は、磁気トンネル接合部ATa〜ATcに共通に配置されている。
【0052】
イオンミリング処理における処理条件は、一例として、
Ar流量:4sccm
圧力:2.0×10−4Torr
角度:0〜60度
パワー:500V、190mA
とすることができる。エッチング終点の検出法としては、プラズマ発光測定法を用い、反強磁性層26の構成原子に基づく発光を検出してイオンミリングを停止する。反強磁性層26の露出面積が大きいため、発光検出に十分な信号強度が得られ、エッチング終点を高精度で検出可能である。
【0053】
図2のイオンミリング工程では、図10に示すように分離溝38の側壁にエッチング生成物としての側壁堆積膜DP11が形成される。堆積膜DP11は、層36a〜36cのレジスト変性成分、層26,28,32,34の金属成分等を含んでいる。
【0054】
イオンミリング処理の後、レジスト層36a〜36cを除去する。レジスト除去は、例えばOプラズマによるアッシング処理を施した後、有機剥離液を用いた薬液処理を施すことにより行なうことができる。アッシング処理における処理条件は、一例として、
流量:100sccm
圧力:50mTorr
RFパワー:150W
とすることができる。レジスト除去法の他の例としては、アセトン超音波洗浄法等を用いてもよい。なお、独立のレジスト除去工程を設ける代りに、イオンミリング処理中に同時にレジスト層36a〜36cを除去するようにしてもよい。
【0055】
上記のようなレジスト除去工程において、図10に示したような側壁堆積膜DP11を分離溝38の側壁(特に30b等のトンネルバリア層の端部)から十分に除去するのが望ましいが、より確実な除去を行ないたいときは、クリーニングミリング処理(角度をもたせた短時間のミリング処理)を追加してもよい。クリーニングミリング処理における処理条件は、一例として、
Ar流量:4sccm
圧力:2.0×10−4Torr
角度:45〜80度(好ましくは60度)
パワー:500W、190mA
とすることができる。このようなミリング処理を追加することにより分離溝38の側壁から堆積膜DP11をきれいに除去することができ、側壁形状は、一層テーパー状となる。
【0056】
(3)基板上面には、磁気トンネル接合部ATa〜ATc及び分離溝38を覆って例えばSiOからなるマスク用絶縁膜40をスパッタ法又はCVD法等により形成する。絶縁膜40の厚さは、50〜300nm(好ましくは200nm)とすることができる。絶縁膜40をスパッタ法で形成する場合、処理条件は、一例として、
処理雰囲気:Arガス
圧力:1〜10mTorr(好ましくは5mTorr)
RFパワー:0.5〜2kw(好ましくは1kw)
膜厚:50nm
とすることができる。また、絶縁膜40をCVD法で形成する場合、処理条件は、一例として、
原料:SiH又はTEOS(テトラ・エチル・オルソ・シリケート)
又はO流量:8000sccm
圧力:1〜10Torr(好ましくは2.2Torr)
RFパワー:300〜1000w(好ましくは500w)
膜厚:50nm
ヒーター温度:300℃以下
とすることができる。
【0057】
(4)絶縁膜40の上には、図13の26a,26bに示すように四辺形状の電極パターンを有するレジスト層42a,42bをホトリソグラフィ処理により形成する。レジスト層42aは、磁気トンネル接合部ATa,ATbを覆うように形成し、レジスト層42bは、磁気トンネル接合部ATcを覆うように形成する。このときのレジスト厚さは、80〜600nm(好ましくは300nm)とすることができる。
【0058】
(5)レジスト層42a,42bをマスクとするイオンミリング法又はドライエッチング法等により絶縁膜40をパターニングしてハードマスク40a,40bを形成する。ハードマスク40a,40bは、それぞれレジスト層42a,42bに対応した絶縁膜40の第1,第2の残存部分からなる。絶縁膜40のパターニング処理をイオンミリング法で行なう場合、処理条件は、一例として、
Ar流量:4sccm
圧力:2.0×10−4Torr
角度:0〜30度
パワー:500V、190mA
ミリング時間:6.0〜6.5min程度
とすることができる。また、絶縁膜40のパターニング処理をドライエッチング法で行なう場合、処理条件は、一例として、
ガス流量:CHF/CF/Ar=30/5/100sccm
圧力:200mTorr
パワー:700W
とすることができる。
【0059】
(6)図2に関して前述したと同様の方法によりレジスト層42a,42bを除去し、ハードマスク40a,40bを残存させる。このようなレジスト除去工程に加えて、希フッ酸(又はBHF)処理及び純水洗浄処理を順次に施すか又はアンモニア+過酸化水素水処理及び純水洗浄処理を順次に施してもよい。これらの処理を施すことによりトンネルバリア層へのダメージなしにレジスト除去面を清浄化することができる。
【0060】
(7)ハードマスク40a,40bを選択マスクとするイオンミリング処理により層24,26の積層に分離溝44を絶縁膜22に達するように形成することにより該積層を分離溝44により第1及び第2の接続部分(電極層)に分離して磁気トンネル接合部ATa〜ATcにそれぞれ対応するTMR素子Ta〜Tcを得る。第1の接続部分は、層24、26の部分24a、26aの積層からなるもので、TMR素子Ta,Tbを相互接続した状態で残される。第2の接続部分は、層24、26の部分24b、26bの積層からなるもので、TMR素子Tcに接続された状態で残される。分離溝44の深さDは、イオンミリングによるエッチング深さに相当するもので、図43の場合のように増大しない。従って、分離溝44の段差を低く抑えることができる。なお、イオンミリング処理は、先に図2の処理に関して例示したのと同様の条件で行なうことができる。
【0061】
図7のイオンミリング工程では、図11に示すように分離溝38,44の側壁にエッチング生成物としての側壁堆積膜DP12,DP13が形成される。側壁堆積膜DP12,DP13は、ハードマスク40a,40bの絶縁材成分、層24,26の金属成分等を含むが、レジスト変性成分を含まない。側壁堆積膜DP12が存在しても、分離溝38の側壁がハードマスク40aで覆われているため、30b等のトンネルバリア層の上下の金属層間で電気的な短絡やリークが発生するのを防止することができる。
【0062】
側壁堆積膜DP12,DP13は、残しておいても素子特性上問題はないが、後工程で剥離してパーティクルとなり、歩留りを低下させる恐れがある。そこで、図12に示すように堆積膜DP12,DP13を除去する処理を施してもよい。この処理では、ハードマスク40a,40bの耐薬品性が高いため、種々の薬液を選択可能であり、しかも堆積膜DP12,DP13がレジスト変性成分等の有機物を含まないため、除去が容易である。例えば、希フッ酸(又はBHF)処理及び純水洗浄処理を順次に施すか又はアンモニア+過酸化水素水処理及び純水洗浄処理を順次に施すことができる。これらの処理では、40a等のハードマスクの表面が薄く溶解されるため、堆積膜DP12,DP13が浮き上がった状態で除去される。このとき、層24a,26aの積層の端部におけるエッチング量は、極くわずかである。40a等の薄くなったハードマスクは、残しておいて層間絶縁膜の一部として利用することができる。
【0063】
上記のような堆積膜除去処理に加えて、図2のレジスト除去工程に関して前述したと同様のクリーニングミリング処理を追加してもよい。このようにすると、堆積膜を十分に除去可能となり、側壁形状は、一層テーパー状となる。
【0064】
(8)基板上面には、ハードマスク40a,40b及び分離溝44を覆ってスパッタ法により酸化シリコンからなる層間絶縁膜46を形成する。図7に示したように分離溝44の段差が低いので、絶縁膜46は、分離溝44の開口端の近傍部で膜欠陥が発生しにくい。この後、選択的イオンミリング処理によりTMR素子Ta〜Tcの導電材層34a〜34cにそれぞれ対応する接続孔46a〜46cを絶縁膜46に形成する。
【0065】
(9)絶縁膜46の上には、接続孔46a〜46cを覆ってスパッタ法によりAl等の配線用金属を被着すると共にその被着層を選択的イオンミリング処理(又は選択的ウエットエッチング処理)によりパターニングして配線層48a,48bを形成する。配線層48aは、接続孔46aを介してTMR素子Taの導電材層34aに接続され、配線層48bは、接続孔46b,46cを介してTMR素子Tb,Tcの導電材層34b,34cを相互接続する。この結果、TMR素子Ta〜Tcは、直列接続されたことになる。図13は、TMR素子Ta〜Tcの接続状況を示すもので、図9は、図13のX−X’線断面に対応する。
【0066】
図9の工程では、分離溝44の開口端の近傍部において絶縁膜46の欠陥の発生が抑制されるため、配線層48bが反強磁性層26aと短絡するような不良を低減することができる。
【0067】
上記した第1の実施形態の製法によれば、図2の工程ではエッチング終点を高精度で検出できること、図2〜6の工程では分離溝38の側壁(磁気トンネル接合部の側壁)を清浄化すると共にハードマスクで被覆して分離溝38の側壁をレジスト汚染から保護できること、図4〜6の工程では薄いレジスト層を用いて寸法精度よくハードマスクを形成できること、図7の工程では分離溝38の側壁(磁気トンネル接合部)をハードマスクで保護しつつ電極層を寸法精度よく形成できること、図12の工程では側壁堆積膜を除去してパーティクルの発生を防止できること、図7の工程で分離溝44の段差を低くできるため図8の工程では絶縁膜46の欠陥発生を抑制できることなどの理由により磁気センサの製造歩留りが向上する。
【0068】
図9に示す磁気センサにおいて、TMR素子Ta〜Tcの動作は同様であり、代表として素子Taの動作を説明する。反強磁性層26aは、強磁性層28aの磁化の向きを固定すべく作用するので、強磁性層28aは、磁化固定層となる。一方、強磁性層32aは、磁化の向きが自由であり、磁化自由層となる。
【0069】
導電材層(電極層)24a,34a間に一定の電流を流した状態において基板20の平面内に外部磁界を印加すると、磁界の向きと強さに応じて強磁性層28a,32a間で磁化の相対角度が変化し、このような相対角度の変化に応じて電極層24a,34a間の電気抵抗値が変化する。従って、このような電気抵抗値の変化に基づいて磁界検出を行なうことができる。
【0070】
図14,15は、上記した第1の実施形態の変形例を示すもので、図1〜9と同様の部分には同様の符号を付して詳細な説明を省略する。
【0071】
図14の工程は、図1の工程の後、レジスト層36a〜36cをマスクとして選択的イオンミリング処理を行なう工程であり、分離溝38を導電材層24に達するように深く形成する点で図2の工程とは異なるものである。この場合、TMR素子Ta,Tb,Tcは、分離溝38で囲まれた層26の部分26a,26a,26bをそれぞれ含み、これらの層部分26a,26a,26bに共通に導電材層24が配置された状態となる。イオンミリング処理の後、図2に関して前述したと同様にしてレジスト層36a〜36cを除去し、必要に応じてクリーニングミリング処理を行なう。図14の工程では、図2に関して前述したと同様にエッチング終点検出法としてプラズマ発光測定法を用いることができ、高い精度でエッチング終点を検出可能である。
【0072】
次に、図15の工程では、図3〜6に関して前述したと同様にして基板上面に絶縁膜からなるハードマスク40a,40bを形成する。そして、ハードマスク40a,40bを選択マスクとするイオンミリング処理により導電材層24に分離溝44を絶縁膜22に達するように形成することにより層24を分離溝44により第1及び第2の接続部分(電極層)に分離する。第1の接続部分は、層24の部分24aからなるもので、反強磁性層26a,26aを相互接続した状態で残される。第2の接続部分は、層24の部分24bからなるもので、反強磁性層26bに接続された状態で残される。分離溝44の深さDは、図14の工程で反強磁性層26をエッチングしたため、図7の場合に比べて小さくなる。この後、図12に関して前述したと同様にして分離溝38,44の側壁の堆積膜(エッチング生成物)を除去してもよい。
【0073】
次に、図8に関して前述したと同様に基板上面に層間絶縁膜46を形成する。このとき、分離溝44の段差が低いので、絶縁膜46には欠陥が発生しにくい。図8に関して前述したと同様にして絶縁膜46に接続孔46a〜46cを形成した後、図9に関して前述したと同様にして絶縁膜46の上に配線層48a,48bを形成する。
【0074】
図14,15の変形例に係る製法によれば、前述した第1の実施形態に係る製法と同様に磁気センサの製造歩留りが向上する。また、得られる磁気センサは、図9に示した磁気センサと同様に動作する。
【0075】
図16,17は、図1〜9に関して前述した第1の実施形態の他の変形例を示すもので、図1〜9と同様の部分には同様の符号を付して詳細な説明を省略する。
【0076】
図16,17の変形例では、図1に対応する工程において、絶縁膜22の上に下から順に導電材層24、強磁性層28、トンネルバリア層30、強磁性層32、反強磁性層、導電材層34を形成する。ここで、強磁性層32と導電材層34との間の反強磁性層は、前述した反強磁性層26と同様のもので、強磁性層32を磁化固定層とするためのものである。
【0077】
図16の工程は、図1に対応する工程の後、図14に関して前述したと同様にレジスト層36a〜36cをマスクとする選択的イオンミリング処理により分離溝38を形成してTMR素子Ta〜Tcを得る工程であり、導電材層34a,34b,34cの下に(強磁性層32a,32b,32cの上に)反強磁性層33a,33b,33cがそれぞれ存在すると共に強磁性層28a〜28cに共通に導電材層24が配置された状態になる点で図14の工程とは異なるものである。イオンミリング処理の後、図2に関して前述したと同様にしてレジスト層36a〜36cを除去し、必要に応じてクリーニングミリング処理を行なう。図16の工程では、図2に関して前述したと同様にエッチング終点検出法としてプラズマ発光測定法を用いることができ、高い精度でエッチング終点を検出可能である。
【0078】
次に、図17の工程では、図3〜6に関して前述したと同様にして基板上面に絶縁膜からなるハードマスク40a,40bを形成する。そして、図15に関して前述したと同様にしてハードマスク40a,40bを選択マスクとするイオンミリング処理により導電材層24に分離溝44を絶縁膜22に達するように形成することにより層24を分離溝44により第1及び第2の接続部分(電極層)に分離する。第1の接続部分は、層24の部分24aからなるもので、強磁性層28a,28bを相互接続した状態で残される。第2の接続部分は、層24の部分24bからなるもので、強磁性層28cに接続された状態で残される。分離溝44の深さDは、導電材層24の上に(強磁性層28a〜28cの下に)反強磁性層が存在しないため、図7の場合に比べて小さくなる。この後、図12に関して前述したと同様にして分離溝38,44の側壁の堆積膜(エッチング生成物)を除去してもよい。
【0079】
次に、図8に関して前述したと同様に基板上面に層間絶縁膜46を形成する。このとき、分離溝44の段差が低いので、絶縁膜46には欠陥が発生しにくい。図8に関して前述したと同様にして絶縁膜46に接続孔46a〜46cを形成した後、図9に関して前述したと同様にして絶縁膜46の上に配線層48a,48bを形成する。
【0080】
図16,17の変形例に係る製法によれば、前述した第1の実施形態に係る製法と同様に磁気センサの製造歩留りが向上する。また、得られる磁気センサは、図9に示した磁気センサと同様に動作する。
【0081】
次に、図18〜27を参照してこの発明の第2の実施形態に係る磁気センサの製法を説明する。
【0082】
図18の工程では、図1に関して前述したと同様に絶縁膜22で表面が覆われた基板20を用意した後、絶縁膜22の上に下から順に下磁性層50、トンネルバリア層52、上磁性層54及びマスク用絶縁膜56を積層状に形成する。トンネルバリア層52は、図1に関して前述したトンネルバリア層30と同様にして形成することができる。
【0083】
下磁性層50は、図1に関して前述したように下から順に導電材層24、反強磁性層26及び強磁性層28を積層したものとすることができ、他の例としては、図16に関して前述したように導電材層24に強磁性層28を重ねたものとしてもよい。
【0084】
上磁性層54は、図1に関して前述したように強磁性層32に導電材層34を重ねたものとすることができ、他の例としては、図16に関して前述したように下から順に強磁性層32、反強磁性層及び導電材層34を積層したものとしてもよい。
【0085】
絶縁膜56は、一例としてSiOからなるもので、図3に関して前述した絶縁膜40と同様にしてスパッタ法又はCVD法等により形成することができ、膜厚は、100〜400nm(好ましくは300nm)とすることができる。
【0086】
絶縁膜56の上には、それぞれ図13のTa,Tbに示すような四辺形状の素子パターンを有するレジスト層58a,58bをホトリソグラフィ処理により形成する。このときのレジスト厚さは、100〜700nm(好ましくは350nm)とすることができる。
【0087】
図19の工程では、レジスト層58a,58bを選択マスクとするイオンミリング法又はドライエッチング法等により絶縁膜56をパターニングしてハードマスク56a,56bを形成する。ハードマスク56a,56bは、それぞれレジスト層58a,58bに対応した絶縁膜56の第1,第2の残存部分からなる。絶縁膜56のパターニング処理をイオンミリング法又はドライエッチング法で行なう場合、処理条件は、図5に関して前述したと同様にすることができる。
【0088】
次に、図2に関して前述したと同様の方法によりレジスト層58a,58bを除去し、ハードマスク56a,56bを残存させる。このようなレジスト除去工程に加えて、希フッ酸(又はBHF)処理及び純水洗浄処理を順次に施すか又はアンモニア+過酸化水素水処理及び純水洗浄処理を順次に施してもよい。
【0089】
図20の工程では、ハードマスク56a,56bを選択マスクとするイオンミリング処理により層50〜54の積層に分離溝60を層50内の反強磁性層(又は導電材層)に達するように形成することにより磁気トンネル接合部ATa,ATb(又はTMR素子Ta,Tb)を得る。磁気トンネル接合部ATa(又はTMR素子Ta)は、層52,54の残存部52a,54aを含むと共に、磁気トンネル接合部ATb(又はTMR素子Tb)は、層52,54の残存部52b,54bを含み、層50は、磁気トンネル接合部ATa,ATbに共通に配置された状態となる。磁気トンネル接合部ATa,ATbの詳細な構成は、図2に関して前述したと同様であり、TMR素子Ta,Tbの詳細な構成は、図14又は図16に関して前述したと同様である。なお、イオンミリング処理における処理条件及びエッチング終点検出法は、図2に関して前述したのと同様にすることができる。
【0090】
図20のイオンミリング工程では、分離溝60の側壁にエッチング生成物としての側壁堆積膜DP21,DP22が形成される。堆積膜DP21,DP22は、ハードマスク56a,56bの絶縁材成分、層50,54の金属成分等を含むが、レジスト変性成分等の有機物を含まないので、容易に除去可能である。
【0091】
図21の工程では、一例として、希フッ酸(又はBHF)処理及び純水洗浄処理を順次に施すか又はアンモニア+過酸化水素水処理及び純水洗浄処理を順次に施すことにより堆積膜DP21,DP22を分離溝60の側壁(特にトンネルバリア層52a,52bの端部)から除去する。この後、必要に応じて図2に関して前述したようなクリーニングミリング処理を追加してもよい。この処理により一層の清浄化が可能になると共に側壁形状は一層テーパー状となる。
【0092】
堆積膜DP21,DP22等のエッチング生成物を除去したので、52a等のトンネルバリア層の上下の金属層間で電気的な短絡やリークが発生するのを防止することができる。なお、ハードマスク56a,56bは、残しておいて層間絶縁膜の一部として利用することができる。
【0093】
次に、図22の工程では、磁気トンネル接合部ATa,ATb(又はTMR素子Ta,Tb)を覆って例えばSiOからなるマスク用絶縁膜62をスパッタ法又はCVD法等により形成する。絶縁膜62は、図3に関して前述した絶縁膜40と同様にして形成することができ、膜厚は、50〜300nm(好ましくは200nm)とすることができる。
【0094】
図23の工程では、絶縁膜62を覆って図13の26aに示すように四辺形状の電極パターンを有するレジスト層64をホトリソグラフィ処理により形成する。レジスト層64は、磁気トンネル接合部ATa,ATb(又はTMR素子Ta,Tb)を覆うように形成する。このときのレジスト厚さは、80〜600nm(好ましくは300nm)とすることができる。
【0095】
図24の工程では、レジスト層64を選択マスクとするイオンミリング法又はドライエッチング法等により絶縁膜62をパターニングしてハードマスク62Aを形成する。絶縁膜62のパターニング処理は、図5に関して前述した絶縁膜40のパターニング処理と同様にして行なうことができる。
【0096】
図25の工程では、図2に関して前述したと同様の方法によりレジスト層64を除去し、ハードマスク62Aを残存させる。このようなレジスト除去工程に加えて、希フッ酸(又はBHF)処理及び純水洗浄を順次に施すか又はアンモニア+過酸化水素水処理及び純水洗浄処理を順次に施してもよい。このようにすると、レジスト除去面を一層清浄化することができる。
【0097】
図26の工程では、ハードマスク62Aを選択マスクとするイオンミリング処理により下磁性層50に分離溝64を絶縁膜22に達するように形成する。この結果、下磁性層50の一部50aが分離溝64で取囲まれた形で残存する。
【0098】
図18に示した下磁性層50が図1に示したように下から順に導電材層24、反強磁性層26及び強磁性層28を積層した構成である場合、図20の工程で反強磁性層26に達するように分離溝60を形成したときは、下磁性層50aは、図7に示したように層24,26の残存部分24a,26aの積層からなり、この積層がTMR素子Ta,Tbを相互接続する形で残される。また、図20の工程で導電材層24に達するように分離溝60を形成したときは、下磁性層50aは、図15に示したようにTMR素子Taに関しては層24,26の残存部分24a,26aの積層からなると共にTMR素子Tbに関しては層24,26の残存部分24a,26aの積層からなり、導電材層24aがTMR素子Ta,Tbを相互接続する形で残される。
【0099】
図18に示した下磁性層50が図16に関して前述したように導電材層24に強磁性層28を重ねた構成である場合、図20の工程で導電材層24に達するように分離溝60を形成したときは、下磁性層50aは、図17に示したようにTMR素子Taに関しては層24、28の残存部分24a,28aの積層からなると共にTMR素子Tbに関しては層24、28の残存部分24a,28bの積層からなり、導電材層24aがTMR素子Ta,Tbを相互接続する形で残される。
【0100】
図26のイオンミリング工程では、分離溝38,44の側壁にエッチング生成物としての側壁堆積膜DP23〜DP25が形成される。これらの堆積膜DP23〜DP25は、残しておいても素子特性上問題はないが、歩留りの低下を防ぐためには除去するのが望ましい。
【0101】
図27の工程では、図12に関して前述したと同様の方法によハードマスク62Aの表面を薄く溶解させて堆積膜DP23〜DP25を除去する。薄くなったハードマスク62Aは、残しておいて層間絶縁膜の一部として利用することができる。
【0102】
この後は、図8,9に関して前述したと同様にして層間絶縁膜の形成、接続孔の形成、配線層の形成等の処理を行なう。
【0103】
上記した第2の実施形態の製法によれば、第1の実施形態の製法に関して前述した理由に加えて、図18,19の工程では薄いレジスト層を用いて寸法精度よくハードマスクを形成できること、図20の工程ではハードマスクを用いて寸法精度よく磁気トンネル接合部(又はTMR素子)を形成できること、図21の工程では側壁堆積膜を除去したため52a等のトンネルバリア層の上下の電極層間で電気的な短絡やリークを防げることなど理由により磁気センサの製造歩留りが向上する。
【0104】
図28〜33は、この発明の第3の実施形態に係る磁気センサの製法を示すもので、図18〜27と同様の部分には同様の符号を付して詳細な説明を省略する。
【0105】
図28の工程では、基板20の表面を覆う絶縁膜22の上に下から順に下磁性層50、トンネルバリア層52及び上磁性層54を積層状に形成する。層50〜54の形成は、図18に関して前述したと同様にして行なうことができる。
【0106】
上磁性層54の上には、図13の26aに示したような四辺形状の電極パターンを有するレジスト層70をホトリソグラフィ処理により形成する。このときのレジスト厚さは、0.3〜2.0μmとすることができる。
【0107】
図29の工程では、レジスト層70を選択マスクとするイオンミリング処理により層50〜54の積層に分離溝72を絶縁膜22に達するように形成する。この結果、層50,52,54の部分50A,52A,54Aからなる積層が分離溝72で取囲まれた形で残存する。また、イオンミリング処理では、分離溝72の側壁に側壁堆積膜DP31が形成される。堆積膜DP31は層70のレジスト変性成分、層50,54の金属成分等を含む。
【0108】
次に、図2に関して前述したと同様の方法によりレジスト層70を除去する。このような除去処理によっても堆積膜DP31やレジスト残渣R11〜R14を十分に除去できないときは、図2に関して前述したようなクリーニングミリング処理を施すことにより堆積膜DP31やレジスト残渣R11〜R14を除去することができる。
【0109】
図30の工程では、層50A,52A,54Aからなる積層と分離溝72とを覆って例えばSiOからなるマスク用絶縁膜74をスパッタ法又はCVD法等により形成する。絶縁膜74は,図3に関して前述した絶縁膜40と同様にして形成することができ、膜厚は、100〜400nm(好ましくは300nm)とすることができる。
【0110】
図31の工程では、絶縁膜74の上に図13のTa,Tbに示すような四辺形状の素子パターンを有するレジスト層76a,76bをホトリソグラフィ処理により形成する。このときのレジスト厚さは、100〜700nm(好ましくは350nm)とすることができる。
【0111】
図32の工程では、レジスト層76a,76bをマスクとするイオンミリング法又はドライエッチング法により絶縁膜74をパターニングしてハードマスク74a,74bを形成する。ハードマスク74a,74bは、それぞれレジスト層76a,76bに対応した絶縁膜74の第1,第2の残存部分からなる。絶縁膜74のパターニング処理をイオンミリング法又はドライエッチング法で行なう場合、処理条件は、図5に関して前述したと同様にすることができる。
【0112】
次に、図2に関して前述したと同様の方法によりレジスト層76a,76bを除去し、ハードマスク74a,74bを残存させる。このようなレジスト除去工程に加えて、希フッ酸(又はBHF)処理及び純水洗浄処理を順次に施すか又はアンモニア+過酸化水素水処理及び純水洗浄処理を順次に施してもよい。
【0113】
図33の工程では、ハードマスク74a,74bを選択マスクとするイオンミリング処理により層50A〜54Aの積層に分離溝78を層50A内の反強磁性層(又は導電材層)に達するように形成することによりTMR素子Ta,Tbを得る。TMR素子Taは、層52A,54Aの残存部分52a、54aを含むと共に、TMR素子Tbは、層52A,54Aの残存部分52b、54bを含み、層50Aの残存部50aは、TMR素子Ta,Tbに共通に配置された状態となる。
【0114】
図28に示した下磁性層50が図1に示したように下から順に導電材層24、反強磁性層26及び強磁性層28を積層した構成である場合、図33の工程で反強磁性層26に達するように分離溝78を形成したときは、下磁性層50aは、図7に示したように層24,26の残存部分24a,26aの積層からなり、この積層がTMR素子Ta,Tbを相互接続する形で残される。また、図33の工程で導電材層24に達するように分離溝78を形成したときは、下磁性層50aは、図15に示したようにTMR素子Taに関しては層24,26の残存部分24a,26aの積層からなると共にTMR素子Tbに関しては層24,26の残存部分24a,26aの積層からなり、導電材層24aがTMR素子Ta,Tbを相互接続する形で残される。
【0115】
図28に示した下磁性層50が図16に関して前述したように導電材層24に強磁性層28を重ねた構成である場合、図33の工程で導電材層24に達するように分離溝78を形成したときは、下磁性層50aは、図17に示したようにTMR素子Taに関しては層24、28の残存部分24a,28aの積層からなると共にTMR素子Tbに関しては層24、28の残存部分24a,28bの積層からなり、導電材層24aがTMR素子Ta,Tbを相互接続する形で残される。
【0116】
図33のイオンミリング工程では、分離溝72,78の側壁にエッチング生成物としての側壁堆積膜(図示せず)が形成される。これらの堆積膜は、52a等のトンネルバリア層の上下の金属層間で電気的な短絡やリークが発生する原因となるものであり、除去する必要がある。
【0117】
図33の工程では、図12に関して前述したと同様の方法により分離溝72,78の側壁(特にトンネルバリア層52a,52bの端部)から堆積膜を除去する。このとき、ハードマスク74a,74bの表面が薄く溶解される。薄くなったハードマスク74a,74bは、残しておいて層間絶縁膜の一部として利用することができる。
この後は、図8,9に関して前述したと同様にして層間絶縁膜の形成、接続孔の形成、配線層の形成等の処理を行なう。
【0118】
上記した第3の実施形態の製法によれば、図31,32の工程では薄いレジスト層を用いて寸法精度よくハードマスクを形成できること、図33の工程ではハードマスクを用いて寸法精度よくTMR素子を形成できること、図33の工程では側壁堆積膜を除去したため52a等のトンネルバリア層の上下の金属層間で電気的な短絡やリークを防げることなど理由により磁気センサの製造歩留りが向上する。
【0119】
図34〜39は、この発明の第4の実施形態に係る磁気センサの製法を示すもので、図18〜27と同様の部分には同様の符号を付して詳細な説明を省略する。
【0120】
図34の工程では、基板20の表面を覆う絶縁膜22の上に下から順に下磁性層50、トンネルバリア層52及び上磁性層54を積層状に形成する。層50〜54の形成は、図18に関して前述したと同様にして行なうことができる。
【0121】
上磁性層54の上には、例えばSiOからなるマスク用絶縁膜80を形成する。絶縁膜80は、図3に関して前述した絶縁膜40と同様にしてスパッタ法又はCVD法等により形成することができ、膜厚は、100〜400nm(好ましくは300nm)とすることができる。
【0122】
絶縁膜80の上には、図13の26aに示すような四辺形状の電極パターンを有するレジスト層82をホトリソグラフィ処理により形成する。このときのレジスト厚さは、100〜700nm(好ましくは350nm)とすることができる。
【0123】
図35の工程では、レジスト層82を選択マスクとするイオンミリング法又はドライエッチング法等により絶縁膜80をパターニングしてハードマスク80Aを形成する。ハードマスク80Aは、レジスト層82に対応した絶縁膜80の残存部分からなる。絶縁膜80のパターニング処理をイオンミリング法又はドライエッチング法で行なう場合、処理条件は、図5に関して前述したと同様にすることができる。
【0124】
次に、図2に関して前述したと同様の方法によりレジスト層82を除去し、ハードマスク80Aを残存させる。このようなレジスト除去工程に加えて、希フッ酸(又はBHF)処理及び純水洗浄処理を順次に施すか又はアンモニア+過酸化水素水処理及び純水洗浄処理を順次に施してもよい。
【0125】
図36の工程では、ハードマスク80Aを選択マスクとするイオンミリング処理により層50〜54の積層に分離溝84を絶縁膜22に達するように形成する。この結果、層50,52,54の部分50A,52A,54Aからなる積層が分離溝84で取囲まれた形で残存する。また、イオンミリング処理では、分離溝84の側壁に側壁堆積膜DP41が形成される。堆積膜DP41は、ハードマスク80Aの絶縁材成分、層50、54の金属成分等を含むが、レジスト変性成分等の有機物を含まない。
【0126】
堆積膜DP41は、図12に関して前述したように希フッ酸等の薬液処理で簡単に除去可能である。しかし、堆積膜DP41は、図38のマスクパターニング処理や図39のイオンミリング処理で除去されるので、残しておいてもよい。
【0127】
図37の工程では、ハードマスク80Aと層50A〜54Aからなる積層と分離溝84とを覆って例えばSiOからなるマスク用絶縁膜86をスパッタ法又はCVD法等により形成する。絶縁膜86は、図3に関して前述した絶縁膜40と同様にして形成することができ、膜厚は、100〜400nm(好ましくは300nm)とすることができる。
【0128】
図38の工程では、絶縁膜86の上に図13のTa,Tbに示すような四辺形状の素子パターンを有するレジスト層88a,88bをホトリソグラフィ処理により形成する。このときのレジスト厚さは、100〜700nm(好ましくは350nm)とすることができる。
【0129】
次に、レジスト層88a,88bをマスクとするイオンミリング法又はドライエッチング法によりハードマスク80Aと絶縁膜86との積層をパターニングしてハードマスク80a,80b,86a,86bを形成する。ハードマスク80a,80bは、それぞれレジスト層88a,88bに対応したハードマスク80Aの第1、第2の残存部分からなると共に、ハードマスク86a,86bは、それぞれレジスト層88a,88bに対応した絶縁膜86の第1,第2の残存部分からなる。ハードマスク80A及び絶縁膜86の積層のパターニング処理をイオンミリング法又はドライエッチング法で行なう場合、処理条件は、図5に関して前述したと同様にすることができる。
【0130】
次に、図2に関して前述したと同様の方法によりレジスト層88a,88bを除去し、ハードマスク80a,86aの積層とハードマスク80b,86bの積層とを残存させる。このようなレジスト除去工程に加えて、希フッ酸(又はBHF)処理及び純水洗浄処理を順次に施すか又はアンモニア+過酸化水素水処理及び純水洗浄処理を順次に施してもよい。
【0131】
図39の工程では、ハードマスク80a,86aの積層とハードマスク80b,86bの積層とを選択マスクとするイオンミリング処理により層50A〜54Aの積層に分離溝90を層50A内の反強磁性層(又は導電材層)に達するように形成することによりTMR素子Ta,Tbを得る。TMR素子Taは、層52A,54Aの残存部分52a、54aを含むと共に、TMR素子Tbは、層52A,54Aの残存部分52b、54bを含み、層50Aの残存部50aは、TMR素子Ta,Tbに共通に配置された状態となる。残存する下磁性層50aによるTMR素子Ta,Tbの接続形態は、図34の工程での下磁性層50の構成と図39の工程での分離溝90の深さとに応じて3通りありうるが、各々の接続形態の詳細については図33の工程に関連して図7,図15及び図17を参照して前述したと同様である。
【0132】
図39のイオンミリング工程では、分離溝84,90の側壁にエッチング生成物としての側壁堆積膜(図示せず)が形成される。これらの堆積膜は、52a等のトンネルバリア層の上下の金属層間で電気的な短絡やリークが発生する原因となるものであり、除去する必要がある。
【0133】
図39の工程では、図12に関して前述したと同様の方法により分離溝84,90の側壁(特にトンネルバリア層52a,52bの端部)から堆積膜を除去する。このとき、ハードマスク86a,86bの表面が薄く溶解される。薄くなったハードマスク86a,86bは、ハードマスク80a,80bと共に残しておいて層間絶縁膜の一部として利用することができる。
【0134】
また、ハードマスク86a,86bが丁度消費されてなくなり、ハードマスク80a,80bのみとなるようにイオンミリング条件を調整してもよい。このようにすると、層間絶縁膜を薄くしたり、マスク用絶縁膜86の厚さを小さくしたりすることが可能となり、微細パターニングを精度よく行なえる。
【0135】
この後は、図8,9に関して前述したと同様にして層間絶縁膜の形成、接続孔の形成、配線層の形成等の処理を行なう。
【0136】
上記した第4の実施形態の製法によれば、第3の実施形態の製法に関して前述した理由に加えて、図34,35の工程では薄いレジスト層を用いて寸法精度よくハードマスクを形成できること、図36の工程ではハードマスクを用いて寸法精度よく電極形状を決定できること、図36の工程で生じた側壁堆積膜を図38,39の工程で簡単に除去できるため52a等のトンネルバリア層の上下の金属層間で電気的な短絡やリークを防げることなどの理由により磁気センサの製造歩留りが向上する。
【0137】
なお、この発明は、上記したような磁気センサに限らず、他の磁気センサ、磁気メモリ、磁気ヘッド等のTMR素子応用製品の製造にも適用することができる。
【0138】
【発明の効果】
以上のように、この発明によれば、磁気トンネル接合部の側壁を覆う保護膜としてパターニングに用いた絶縁性ハードマスクを用いるようにしたので、高信頼且つ製造容易な磁気トンネル接合素子を実現できる効果が得られる。
【0139】
また、磁気トンネル接合部においてトンネルバリア層の端部に選択エッチング処理の際に堆積した堆積物を除去した後、絶縁膜からなるハードマスクを選択マスクとする選択エッチング処理により磁気トンネル接合部の下に電極層を形成したり、磁気トンネル接合積層の残存部に絶縁膜からなるハードマスクを選択マスクとする選択エッチング処理を施して磁気トンネル接合部を形成した後、磁気トンネル接合部においてトンネルバリア層の端部に選択エッチング処理の際に堆積した堆積物を除去したりするので、トンネルバリア層の上下の金属層間に電気的な短絡やリークが発生するのを防止でき、TMR素子の製造歩留りが向上すると共にTMR素子の特性劣化を防止できる効果が得られる。その上、この発明の製法では、酸化性又は窒化性雰囲気中でイオンミリング処理を行なう必要がないので、エッチング終点の検出精度が低下しない利点もある。
【0140】
さらに、絶縁膜からなるハードマスクを選択マスクとする選択エッチング処理では、エッチング生成物がレジスト変性成分等の有機物を含まないので、磁気トンネル接合部の側壁に付着したエッチング生成物を有機溶媒等を用いずに簡単に除去することができ、コスト低減が可能になる効果も得られる。また、微細なパターンの形成が容易であると共に加工精度が高い利点もある。
【図面の簡単な説明】
【図1】 この発明の第1の実施形態に係る磁気センサの製法における積層形成工程及びレジスト層形成工程を示す基板断面図である。
【図2】 図1の工程に続くイオンミリング工程及びレジスト除去工程を示す基板断面図である。
【図3】 図2の工程に続く絶縁膜形成工程を示す基板断面図である。
【図4】 図3の工程に続くレジスト層形成工程を示す基板断面図である。
【図5】 図4の工程に続くマスク形成工程を示す基板断面図である。
【図6】 図5の工程に続くレジスト除去工程を示す基板断面図である。
【図7】 図6の工程に続くイオンミリング工程を示す基板断面図である。
【図8】 図7の工程に続く絶縁膜形成工程及び接続孔形成工程を示す基板断面図である。
【図9】 図8の工程に続く配線形成工程を示す基板断面図である。
【図10】 図2のイオンミリング工程における側壁堆積膜の形成状況を示す基板断面図である。
【図11】 図7のイオンミリング工程における側壁堆積膜の形成状況を示す基板断面図である。
【図12】 図7のイオンミリング工程に続く側壁堆積膜除去工程を示す基板断面図である。
【図13】 TMR素子の接続状況を示す上面図である。
【図14】 図2の工程の変形例を示す基板断面図である。
【図15】 図14の変形例における分離溝形成工程を示す基板断面図である。
【図16】 図2の工程の他の変形例を示す基板断面図である。
【図17】 図16の変形例における分離溝形成工程を示す基板断面図である。
【図18】 この発明の第2の実施形態に係る磁気センサの製法における積層形成工程及びレジスト層形成工程を示す基板断面図である。
【図19】 図18の工程に続くマスク形成工程及びレジスト除去工程を示す基板断面図である。
【図20】 図19の工程に続くイオンミリング工程を示す基板断面図である。
【図21】 図20の工程に続く側壁堆積膜除去工程を示す基板断面図である。
【図22】 図21の工程に続く絶縁膜形成工程を示す基板断面図である。
【図23】 図22の工程に続くレジスト層形成工程を示す基板断面図である。
【図24】 図23の工程に続くマスク形成工程を示す基板断面図である。
【図25】 図24の工程に続くレジスト除去工程を示す基板断面図である。
【図26】 図25の工程に続くイオンミリング工程を示す基板断面図である。
【図27】 図26の工程に続く側壁堆積膜除去工程を示す基板断面図である。
【図28】 この発明の第3の実施形態に係る磁気センサの製法における積層形成工程及びレジスト層形成工程を示す基板断面図である。
【図29】 図28の工程に続くイオンミリング工程を示す基板断面図である。
【図30】 図29の工程に続く側壁堆積膜除去工程及び絶縁膜形成工程を示す基板断面図である。
【図31】 図30の工程に続くレジスト層形成工程を示す基板断面図である。
【図32】 図31の工程に続くマスク形成工程及びレジスト除去工程を示す基板断面図である。
【図33】 図32の工程に続くイオンミリング工程を示す基板断面図である。
【図34】 この発明の第4の実施形態に係る磁気センサの製法における積層形成工程、絶縁膜形成工程及びレジスト層形成工程を示す基板断面図である。
【図35】 図34の工程に続くマスク形成工程及びレジスト除去工程を示す基板断面図である。
【図36】 図35の工程に続くイオンミリング工程を示す基板断面図である。
【図37】 図36の工程に続く側壁堆積膜除去工程及び絶縁膜形成工程を示す基板断面図である。
【図38】 図37の工程に続くレジスト層形成工程及びマスク形成工程を示す基板断面図である。
【図39】 図38の工程に続くレジスト除去工程、イオンミリング工程及び側壁堆積膜除去工程を示す基板断面図である。
【図40】 従来の磁気センサの製法における積層形成工程及びレジスト層形成工程を示す基板断面図である。
【図41】 図40の工程に続くイオンミリング工程及びレジスト除去工程を示す基板断面図である。
【図42】 図41の工程に続くレジスト層形成工程を示す基板断面図である。
【図43】 図42の工程に続くイオンミリング工程及びレジスト除去工程を示す基板断面図である。
【図44】 図43の工程に続く絶縁膜形成工程及び接続孔形成工程を示す基板断面図である。
【図45】 図44の工程に続く配線形成工程を示す基板断面図である。
【図46】 図41のイオンミリング工程における側壁堆積膜の形成状況を示す基板断面図である。
【図47】 図43のイオンミリング工程における側壁堆積膜の形成状況を示す基板断面図である。
【符号の説明】
20:半導体基板、22:絶縁膜、24,34:導電材層、26,33a〜33c:反強磁性層、28,32:強磁性層、30,52:トンネルバリア層、36a〜36c,42a,42b,58a,58b,64,70,76a,76b,82,88a,88b:レジスト層、38,44,60,64,72,78,84,90:分離溝、40,56,62,74,80,86:マスク用絶縁膜、40a,40b,56a,56b,62A,74a,74b,80A,80a,80b,86a,86b:ハードマスク、46:層間絶縁膜、46a〜46c:接続孔、48a,48b:配線層、50:下磁性層、54:上磁性層、ATa〜ATc:磁気トンネル接合部、Ta〜Tc:TMR素子、DP11〜DP13,DP21〜DP25,DP31,DP41:側壁堆積膜、R11〜R14:レジスト残渣。

Claims (11)

  1. 絶縁性の一主面を有する基板と、
    前記一主面に形成された磁気トンネル接合部であって、前記一主面に下から順に第1の導電材層、反強磁性層、第1の磁性層、トンネルバリア層、第2の磁性層及び第2の導電材層を重ねるか又は前記一主面に下から順に第1の導電材層、第1の磁性層、トンネルバリア層、第2の磁性層、反強磁性層及び第2の導電材層を重ねて構成されたものと、
    前記磁気トンネル接合部の側壁を覆う保護膜であって、前記第1の導電材層と前記反強磁性層との積層又は前記第1の導電材層をパターニングする際に用いられた絶縁性ハードマスクからなるものと
    を備えた磁気トンネル接合素子。
  2. 基板の絶縁性の一主面に導電材層を介して磁気トンネル接合積層を形成する工程であって、前記導電材層の上に下から順に反強磁性層、第1の磁性層、トンネルバリア層及び第2の磁性層を重ねて前記磁気トンネル接合積層を形成するものと、
    前記磁気トンネル接合積層に所望の素子パターンに従って第1の選択エッチング処理を施して前記磁気トンネル接合積層を前記反強磁性層に達するまでエッチングすることにより前記第1の磁性層、前記トンネルバリア層及び前記第2の磁性層の各々の残存部分からなる磁気トンネル接合部を形成する工程と、
    前記磁気トンネル接合部において前記トンネルバリア層の端部に前記第1の選択エッチング処理の際に堆積した堆積物を除去する工程と、
    前記堆積物を除去した後、前記磁気トンネル接合部と前記反強磁性層の露呈部とを覆ってマスク用絶縁膜を形成する工程と、
    前記磁気トンネル接合部と前記反強磁性層の露呈部とを所望の電極パターンに従って覆うように前記マスク用絶縁膜を残存させるべく前記マスク用絶縁膜に第2の選択エッチング処理を施すことにより前記マスク用絶縁膜の残存部分からなるハードマスクを形成する工程と、
    前記導電材層と前記反強磁性層との積層に前記ハードマスクを選択マスクとする第3の選択エッチング処理を施すことにより該積層の残存部分からなる電極層を前記磁気トンネル接合部の下に形成する工程と
    を含む磁気トンネル接合素子の製法。
  3. 基板の絶縁性の一主面に導電材層を介して磁気トンネル接合積層を形成する工程であって、前記導電材層の上に下から順に反強磁性層、第1の磁性層、トンネルバリア層及び第2の磁性層を重ねるか又は前記導電材層の上に下から順に第1の磁性層、トンネルバリア層、第2の磁性層及び反強磁性層を重ねて前記磁気トンネル接合積層を形成するものと、
    前記磁気トンネル接合積層に所望の素子パターンに従って第1の選択エッチング処理を施して前記磁気トンネル接合積層を前記導電材層に達するまでエッチングすることにより前記磁気トンネル接合積層の残存部分からなる磁気トンネル接合部を形成する工程と、
    前記磁気トンネル接合部において前記トンネルバリア層の端部に前記第1の選択エッチング処理の際に堆積した堆積物を除去する工程と、
    前記堆積物を除去した後、前記磁気トンネル接合部と前記導電材層の露呈部とを覆ってマスク用絶縁膜を形成する工程と、
    前記磁気トンネル接合部と前記導電材層の露呈部とを所望の電極パターンに従って覆うように前記マスク用絶縁膜を残存させるべく前記マスク用絶縁膜に第2の選択エッチング処理を施すことにより前記マスク用絶縁膜の残存部分からなるハードマスクを形成する工程と、
    前記導電材層に前記ハードマスクを選択マスクとする第3の選択エッチング処理を施すことにより前記導電材層の残存部分からなる電極層を前記磁気トンネル接合部の下に形成する工程と
    を含む磁気トンネル接合素子の製法。
  4. 前記電極層を形成した後、前記ハードマスク及び前記電極層に前記第3の選択エッチング処理の際に堆積した堆積物を除去する工程を更に含む請求項2又は3記載の磁気トンネル接合素子の製法。
  5. 基板の絶縁性の一主面に導電材層を介して磁気トンネル接合積層を形成する工程であって、前記導電材層の上に下から順に反強磁性層、第1の磁性層、トンネルバリア層及び第2の磁性層を重ねて前記磁気トンネル接合積層を形成するものと、
    前記磁気トンネル接合積層を覆って第1のマスク用絶縁膜を形成する工程と、
    前記磁気トンネル接合積層を所望の素子パターンに従って覆うように前記第1のマスク用絶縁膜を残存させるべく前記第1のマスク用絶縁膜に第1の選択エッチング処理を施すことにより前記第1のマスク用絶縁膜の残存部部分からなる第1のハードマスクを形成する工程と、
    前記磁気トンネル接合積層に前記第1のハードマスクを選択マスクとする第2の選択エッチング処理を施して前記磁気トンネル接合積層を前記反強磁性層に達するまでエッチングすることにより前記第1の磁性層、前記トンネルバリア層及び前記第2の磁性層の各々の残存部分からなる磁気トンネル接合部を形成する工程と、
    前記磁気トンネル接合部において前記トンネルバリア層の端部に前記第2の選択エッチング処理の際に堆積した堆積物を除去する工程と、
    前記堆積物を除去した後、前記磁気トンネル接合部と前記反強磁性層の露呈部とを覆って第2のマスク用絶縁膜を形成する工程と、
    前記磁気トンネル接合部と前記反強磁性層の露呈部とを所望の電極パターンに従って覆うように前記第2のマスク用絶縁膜を残存させるべく前記第2のマスク用絶縁膜に第3の選択エッチング処理を施すことにより前記第2のマスク用絶縁膜の残存部分からなる第2のハードマスクを形成する工程と、
    前記導電材層と前記反強磁性層との積層に前記第2のハードマスクを選択マスクとする第4の選択エッチング処理を施すことにより該積層の残存部分からなる電極層を前記磁気トンネル接合部の下に形成する工程と
    を含む磁気トンネル接合素子の製法。
  6. 基板の絶縁性の一主面に導電材層を介して磁気トンネル接合積層を形成する工程であって、前記導電材層の上に下から順に反強磁性層、第1の磁性層、トンネルバリア層及び第2の磁性層を重ねるか又は前記導電材層の上に下から順に第1の磁性層、トンネルバリア層、第2の磁性層及び反強磁性層を重ねて前記磁気トンネル接合積層を形成するものと、
    前記磁気トンネル接合積層を覆って第1のマスク用絶縁膜を形成する工程と、
    前記磁気トンネル接合積層を所望の素子パターンに従って覆うように前記第1のマスク用絶縁膜を残存させるべく前記第1のマスク用絶縁膜に第1の選択エッチング処理を施すことにより前記第1のマスク用絶縁膜の残存部部分からなる第1のハードマスクを形成する工程と、
    前記磁気トンネル接合積層に前記第1のハードマスクを選択マスクとする第2の選択エッチング処理を施して前記磁気トンネル接合積層を前記導電材層に達するまでエッチングすることにより前記磁気トンネル接合積層の残存部分からなる磁気トンネル接合部を形成する工程と、
    前記磁気トンネル接合部において前記トンネルバリア層の端部に前記第2の選択エッチング処理の際に堆積した堆積物を除去する工程と、
    前記堆積物を除去した後、前記磁気トンネル接合部と前記導電材層の露呈部とを覆って第2のマスク用絶縁膜を形成する工程と、
    前記磁気トンネル接合部と前記導電材層の露呈部とを所望の電極パターンに従って覆うように前記第2のマスク用絶縁膜を残存させるべく前記第2のマスク用絶縁膜に第3の選択エッチング処理を施すことにより前記第2のマスク用絶縁膜の残存部分からなる第2のハードマスクを形成する工程と、
    前記導電材層に前記第2のハードマスクを選択マスクとする第4の選択エッチング処理を施すことにより前記導電材層の残存部分からなる電極層を前記磁気トンネル接合部の下に形成する工程と
    を含む磁気トンネル接合素子の製法。
  7. 前記電極層を形成した後、前記第2のハードマスク及び前記電極層に前記第4の選択エッチング処理の際に堆積した堆積物を除去する工程を更に含む請求項5又は6記載の磁気トンネル接合素子の製法。
  8. 基板の絶縁性の一主面に導電材層を介して磁気トンネル接合積層を形成する工程であって、前記導電材層の上に下から順に反強磁性層、第1の磁性層、トンネルバリア層及び第2の磁性層を重ねて前記磁気トンネル接合積層を形成するものと、
    前記磁気トンネル接合積層を所望の電極パターンに従って残存させるように前記磁気トンネル接合積層に第1の選択エッチング処理を施す工程と、
    前記磁気トンネル接合積層の残存部を覆ってマスク用絶縁膜を形成する工程と、
    前記磁気トンネル接合積層の残存部を所望の素子パターンに従って覆うように前記マスク用絶縁膜を残存させるべく前記マスク用絶縁膜に第2の選択エッチング処理を施すことにより前記マスク用絶縁膜の残存部分からなるハードマスクを形成する工程と、
    前記磁気トンネル接合積層の残存部に前記ハードマスクを選択マスクとする第3の選択エッチング処理を施して前記磁気トンネル接合積層の残存部を前記反強磁性層に達するまでエッチングすることにより前記第1の磁性層、前記トンネルバリア層及び前記第2の磁性層の各々の残存部分からなる磁気トンネル接合部を形成すると共にこの磁気トンネル接合部の下に前記導電材層及び前記反強磁性層の各々の残存部分からなる電極層を残存させる工程と、
    前記磁気トンネル接合部において前記トンネルバリア層の端部に前記第3の選択エッチングの際に堆積した堆積物を除去する工程と
    を含む磁気トンネル接合素子の製法。
  9. 基板の絶縁性の一主面に導電材層を介して磁気トンネル接合積層を形成する工程であって、前記導電材層の上に下から順に反強磁性層、第1の磁性層、トンネルバリア層及び第2の磁性層を重ねるか又は前記導電材層の上に下から順に第1の磁性層、トンネルバリア層、第2の磁性層及び反強磁性層を重ねて前記磁気トンネル接合積層を形成するものと、
    前記磁気トンネル接合積層を所望の電極パターンに従って残存させるように前記磁気トンネル接合積層に第1の選択エッチング処理を施す工程と、
    前記磁気トンネル接合積層の残存部を覆ってマスク用絶縁膜を形成する工程と、
    前記磁気トンネル接合積層の残存部を所望の素子パターンに従って覆うように前記マスク用絶縁膜を残存させるべく前記マスク用絶縁膜に第2の選択エッチング処理を施すことにより前記マスク用絶縁膜の残存部分からなるハードマスクを形成する工程と、
    前記磁気トンネル接合積層の残存部に前記ハードマスクを選択マスクとする第3の選択エッチング処理を施して前記磁気トンネル接合積層の残存部を前記導電材層に達するまでエッチングすることにより前記反強磁性層、前記第1の磁性層、前記トンネルバリア層及び前記第2の磁性層の各々の残存部分又は前記第1の磁性層、前記トンネルバリア層、前記第2の磁性層及び前記反強磁性層の各々の残存部分からなる磁気トンネル接合部を形成すると共にこの磁気トンネル接合部の下に前記導電材層の残存部分からなる電極層を残存させる工程と、
    前記磁気トンネル接合部において前記トンネルバリア層の端部に前記第3の選択エッチングの際に堆積した堆積物を除去する工程と
    を含む磁気トンネル接合素子の製法。
  10. 基板の絶縁性の一主面に導電材層を介して磁気トンネル接合積層を形成する工程であって、前記導電材層の上に下から順に反強磁性層、第1の磁性層、トンネルバリア層及び第2の磁性層を重ねて前記磁気トンネル接合積層を形成するものと、
    前記磁気トンネル接合積層を覆って第1のマスク用絶縁膜を形成する工程と、
    前記磁気トンネル接合積層を所望の電極パターンに従って覆うように前記第1のマスク用絶縁膜を残存させるべく前記第1のマスク用絶縁膜に第1の選択エッチング処理を施すことにより前記第1のマスク用絶縁膜の残存部部分からなる第1のハードマスクを形成する工程と、
    前記磁気トンネル接合積層に前記第1のハードマスクを選択マスクとする第2の選択エッチング処理を施すことにより前記電極パターンに従って前記磁気トンネル接合積層を残存させる工程と、
    前記磁気トンネル接合積層の残存部を覆って第2のマスク用絶縁膜を形成する工程と、
    前記磁気トンネル接合積層の残存部を所望の素子パターンに従って覆うように前記第2のマスク用絶縁膜を残存させるべく前記第2のマスク用絶縁膜に第3の選択エッチング処理を施すことにより前記第2のマスク用絶縁膜の残存部分からなる第2のハードマスクを形成する工程と、
    前記磁気トンネル接合積層の残存部に前記第2のハードマスクを選択マスクとする第4の選択エッチング処理を施して前記磁気トンネル接合積層の残存部を前記反強磁性層に達するまでエッチングすることにより前記第1の磁性層、前記トンネルバリア層及び前記第2の磁性層の各々の残存部分からなる磁気トンネル接合部を形成すると共にこの磁気トンネル接合部の下に前記導電材層及び前記反強磁性層の各々の残存部分からなる電極層を残存させる工程と、
    前記磁気トンネル接合部において前記トンネルバリア層の端部に前記第4の選択エッチング処理の際に堆積した堆積物を除去する工程と
    を含む磁気トンネル接合素子の製法。
  11. 基板の絶縁性の一主面に導電材層を介して磁気トンネル接合積層を形成する工程であって、前記導電材層の上に下から順に反強磁性層、第1の磁性層、トンネルバリア層及び第2の磁性層を重ねるか又は前記導電材層の上に下から順に第1の磁性層、トンネルバリア層、第2の磁性層及び反強磁性層を重ねて前記磁気トンネル接合積層を形成するものと、
    前記磁気トンネル接合積層を覆って第1のマスク用絶縁膜を形成する工程と、
    前記磁気トンネル接合積層を所望の電極パターンに従って覆うように前記第1のマスク用絶縁膜を残存させるべく前記第1のマスク用絶縁膜に第1の選択エッチング処理を施すことにより前記第1のマスク用絶縁膜の残存部部分からなる第1のハードマスクを形成する工程と、
    前記磁気トンネル接合積層に前記第1のハードマスクを選択マスクとする第2の選択エッチング処理を施すことにより前記電極パターンに従って前記磁気トンネル接合積層を残存させる工程と、
    前記磁気トンネル接合積層の残存部を覆って第2のマスク用絶縁膜を形成する工程と、
    前記磁気トンネル接合積層の残存部を所望の素子パターンに従って覆うように前記第2のマスク用絶縁膜を残存させるべく前記第2のマスク用絶縁膜に第3の選択エッチング処理を施すことにより前記第2のマスク用絶縁膜の残存部分からなる第2のハードマスクを形成する工程と、
    前記磁気トンネル接合積層の残存部に前記第2のハードマスクを選択マスクとする第4の選択エッチング処理を施して前記磁気トンネル接合積層の残存部を前記導電材層に達するまでエッチングすることにより前記反強磁性層、前記第1の磁性層、前記トンネルバリア層及び前記第2の磁性層の各々の残存部分又は前記第1の磁性層、前記トンネルバリア層、前記第2の磁性層及び前記反強磁性層の各々の残存部分からなる磁気トンネル接合部を形成すると共にこの磁気トンネル接合部の下に前記導電材層の残存部分からなる電極層を残存させる工程と、
    前記磁気トンネル接合部において前記トンネルバリア層の端部に前記第4の選択エッチング処理の際に堆積した堆積物を除去する工程と
    を含む磁気トンネル接合素子の製法。
JP2001374435A 2001-12-07 2001-12-07 磁気トンネル接合素子とその製法 Expired - Fee Related JP3843827B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001374435A JP3843827B2 (ja) 2001-12-07 2001-12-07 磁気トンネル接合素子とその製法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001374435A JP3843827B2 (ja) 2001-12-07 2001-12-07 磁気トンネル接合素子とその製法

Publications (2)

Publication Number Publication Date
JP2003174215A JP2003174215A (ja) 2003-06-20
JP3843827B2 true JP3843827B2 (ja) 2006-11-08

Family

ID=19182993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001374435A Expired - Fee Related JP3843827B2 (ja) 2001-12-07 2001-12-07 磁気トンネル接合素子とその製法

Country Status (1)

Country Link
JP (1) JP3843827B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4142993B2 (ja) 2003-07-23 2008-09-03 株式会社東芝 磁気メモリ装置の製造方法
JP2006086322A (ja) * 2004-09-16 2006-03-30 Renesas Technology Corp 磁気抵抗記憶素子およびその製造方法
JP5072012B2 (ja) 2005-11-14 2012-11-14 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP2011134977A (ja) 2009-12-25 2011-07-07 Renesas Electronics Corp 半導体装置および半導体装置の製造方法
CN102376651B (zh) * 2010-08-24 2014-04-16 中芯国际集成电路制造(北京)有限公司 提高mram中的mtj金属间电介质的填充能力的方法
KR101566863B1 (ko) 2011-08-25 2015-11-06 캐논 아네르바 가부시키가이샤 자기저항 소자의 제조 방법 및 자기저항 필름의 가공 방법
CN110534642B (zh) * 2018-05-25 2023-03-24 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
CN116247069B (zh) * 2023-05-09 2023-07-25 合肥新晶集成电路有限公司 半导体结构及其制备方法、背照式图像传感器

Also Published As

Publication number Publication date
JP2003174215A (ja) 2003-06-20

Similar Documents

Publication Publication Date Title
JP3951902B2 (ja) 磁気トンネル接合素子の製法と磁気トンネル接合装置
JP3918612B2 (ja) 磁気トンネル接合素子の製法と磁気トンネル接合装置
TWI235893B (en) Photoresist removing agent composition and method for manufacturing semiconductor device
JPH09246242A (ja) 半導体装置及びその製造方法
US20100062224A1 (en) Method for manufacturing a micromachined device
JP2020509608A (ja) 超伝導集積回路の製造のためのシステム及び方法
JP2010508167A5 (ja)
KR20190052108A (ko) 조셉슨 접합 기반 초전도 장치의 제조 방법
US6764960B2 (en) Manufacture of composite oxide film and magnetic tunneling junction element having thin composite oxide film
US6670283B2 (en) Backside protection films
JP3843827B2 (ja) 磁気トンネル接合素子とその製法
US5970373A (en) Method for preventing oxidation in the formation of a via in an integrated circuit
JP4614212B2 (ja) 磁気トンネル接合素子の製造方法
JP5465897B2 (ja) 半導体集積回路装置の製造方法
JP3888168B2 (ja) 磁気トンネル接合素子の製法
JP3781175B2 (ja) コンタクトホールの形成方法
JP2007158361A (ja) 磁気トンネル接合素子の製法
JP3918484B2 (ja) 磁気トンネル接合素子の製法
JP3667493B2 (ja) 半導体装置の製造方法
US6710421B2 (en) Semiconductor devices and methods for manufacturing the same
JPH0590417A (ja) 半導体素子の多層配線の形成方法
JP5659059B2 (ja) シリコン基板のエッチング方法
JPH05121378A (ja) 半導体装置の製造方法
JP2003198007A (ja) トンネル接合の作製方法及びトンネル接合素子
JPH06177255A (ja) 半導体集積回路装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees