JP3830248B2 - ウェハ一括型プローブカードによる検査に適した半導体ウェハおよび半導体装置の検査方法ならびに半導体装置の製造方法 - Google Patents

ウェハ一括型プローブカードによる検査に適した半導体ウェハおよび半導体装置の検査方法ならびに半導体装置の製造方法 Download PDF

Info

Publication number
JP3830248B2
JP3830248B2 JP29809497A JP29809497A JP3830248B2 JP 3830248 B2 JP3830248 B2 JP 3830248B2 JP 29809497 A JP29809497 A JP 29809497A JP 29809497 A JP29809497 A JP 29809497A JP 3830248 B2 JP3830248 B2 JP 3830248B2
Authority
JP
Japan
Prior art keywords
wafer
semiconductor device
electrode
inspection
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29809497A
Other languages
English (en)
Other versions
JPH11135580A (ja
Inventor
健 荒川
智之 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP29809497A priority Critical patent/JP3830248B2/ja
Publication of JPH11135580A publication Critical patent/JPH11135580A/ja
Application granted granted Critical
Publication of JP3830248B2 publication Critical patent/JP3830248B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ウェハ一括型プローブカードによる検査に適した半導体ウェハおよびその検査方法ならびに半導体装置の製造方法に関する。
【0002】
【従来の技術】
近年、半導体集積回路装置(以後、「半導体装置」と称する。)を搭載した電子機器の小形化及び低価格化の進展は目ざましく、これに伴って、半導体装置に対する小形化及び低価格化の要求が強くなっている。
【0003】
通常、半導体装置は、半導体チップとリードフレームとがボンディングワイヤによって電気的に接続された後、半導体チップ及びリードフレームが樹脂又はセラミクスにより封止された状態で供給され、プリント基板に実装される。ところが、電子機器の小形化の要求から、半導体装置を半導体ウエハから切り出したままの状態(以後、この状態の半導体装置をベアチップと称する。)で回路基板に直接実装する方法が開発され、品質が保証されたベアチップを低価格で供給することが望まれている。
【0004】
ベアチップに対して品質保証を行なうためには、半導体装置に対してウェハ状態でバーンイン等の検査をする必要がある。ところが、半導体ウェハ上に形成されている複数のベアチップに対して1個又は数個づつ何度にも分けて検査を行なうことは多くの時間を要するので、時間的にもコスト的にも現実的ではない。そこで、全てのベアチップに対してウェハ状態で一括してバーンイン等の検査を行なうことが要求される。
【0005】
ベアチップに対してウェハ状態で一括して検査を行なうには、半導体ウェハ上に形成された複数の半導体チップの電極に電源電圧や信号を同時に印加し、該複数の半導体チップを動作させる必要がある。このためには、非常に多く(通常、数千個以上)のプローブ針を持つプローブカードを用意する必要があるが、このようにするには、従来のニードル形プローブカードではピン数の点からも価格の点からも対応できない。
【0006】
そこで、ウェハ上の多数のパッド電極に対してプローブ電極を一括的にコンタクトできるプローブカードが提案されている(特開平7−231019号公報)。この技術によれば、プローブカードに多数のバンプを形成し、これらのバンプをプローブ電極として用いる。
【0007】
【発明が解決しようとする課題】
上記プローブカードによるウェハ一括型測定検査において、ウェハに含まれる多数のチップは、隣接するチップと基板を介して電気的に接触した状態にある。このため、あるチップに対する測定検査の影響が他のチップに及びやすい。また、バーンイン検査時のように、高い電源電圧を印加しながら各チップ内の半導体装置を動作させると、大きな基板電流が流れやすくなり、基板の電位が変動する。その影響は、ウェハ一括型検査の場合、共通の基板を介して他のチップ内の半導体装置にも及んでしまう。また、基板電位を制御するための構成を各チップの表面に設けたとしても、あるチップ内で生じた基板電流が他のチップに流れ込むことを防止するのは困難である。このため、ウェハ一括型バーンイン検査では基板電位の変動を防止することが強く求められる。
【0008】
本発明は斯かる問題に鑑みてなされたものであり、その目的は、基板電位の変動が生じにくい、ウェハ一括型プローブカードによる検査に適した半導体ウェハおよびその検査方法ならびに半導体装置の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の半導体ウェハは、各々に集積回路が形成された複数のチップを含むp型半導体ウェハであって、前記複数チップのそれぞれを分離する高濃度p型不純物領域を備え、前記高濃度p型不純物領域は、ウェハ裏面に形成された部分と、前記複数のチップの間を前記ウェハ裏面からウェハ表面まで延びる部分とを有する。
【0010】
前記ウェハ表面において、前記高濃度p型不純物領域に電気的に接触する導電性部材と、前記チップ上に設けられた基板電位検知用電極とを備えていることが好ましい。
【0011】
本発明の半導体装置の検査方法は、請求項1記載の半導体ウェハの前記ウェハ裏面に対向する位置に設けた電極に負電位を与える工程と、前記半導体ウェハ内で基板電流が発生した場合、前記基板電流の少なくとも一部を前記高濃度p型不純物領域を介してウェハ外部へ引き抜く基板電位制御工程とを包含する。
【0012】
本発明の他の半導体装置の検査方法は、請求項2記載の半導体ウェハの前記ウェハ裏面に対向する位置に設けた電極に負電位を与える工程と、基板電位検知用電極を用いて基板電位の変動を検出し、それによって前記半導体ウェハ内で基板電流が発生したことを検知した場合、前記導電性部材から前記高濃度p型不純物領域に少数キャリアを注入し、基板電流の少なくとも一部を前記高濃度p型不純物領域を介してウェハ外部へ引き抜く基板電位制御工程とを包含する。
【0013】
前記基板電位制御工程は、ウェハ一括型プローブカードを用いたウェハ一括型測定検査時に行うことが好ましい。
【0014】
前記プローブカードは、二次元的に配列された複数のプローブ電極と、前記複数のプローブ電極に電気的に接続された多層配線基板とを備えていることが好ましい。
【0015】
前記プローブ電極はバンプ電極であることが好ましい。
【0016】
前記プローブ電極と前記多層配線基板との間において、前記プローブ電極を前記多層配線基板に電気的に接続するための導電性ゴムを備えていることが好ましい。
【0017】
前記プローブ電極は剛性リングに張力を持った状態で張られた薄膜上に形成されていることが好ましい。
【0018】
前記プローブ電極は前記多層配線基板の配線層の少なくとも一部から形成されていてもよい。
【0019】
本発明の半導体装置の製造方法は、前記半導体ウェハを形成する工程と、前記半導体ウェハに対してウェハ一括型の測定検査を行う工程と、前記半導体ウェハから各チップを分離する工程とを備えている。
【0020】
本発明の半導体装置の検査方法は、二次元的に配列された複数のプローブ電極と、前記複数のプローブ電極に電気的に接続された多層配線基板とを備えたウェハ一括測定検査型プローブカードを用いて行う半導体装置の検査方法であって、検査対象のウェハの裏面に導電性プレートを接触させ、それによって前記ウェハの基板電位を所定範囲内に制御する。
【0021】
前記導電性プレートは、前記ウェハを搭載するためのウェハトレイ内に設けられていることが好ましい。
【0022】
前記プローブ電極はバンプ電極であることが好ましい。
【0023】
前記プローブ電極と前記多層配線基板との間において、前記プローブ電極を前記多層配線基板に電気的に接続するための導電性ゴムを備えていることが好ましい。
【0024】
前記プローブ電極は剛性リングに張力を持った状態で張られた薄膜上に形成されていることが好ましい。
【0025】
前記プローブ電極は前記多層配線基板の配線層の少なくとも一部から形成されていてもよい。
【0026】
【発明の実施の形態】
まず、本発明の理解を容易にするため、本発明が適用されるウェハ一括型測定・検査技術を説明する。
【0027】
図1には、ウェハ上の多数のパッド電極に対してプローブ電極を一括的にコンタクトできるプローブカード1が示されている。測定・検査の対象となる素子・回路が形成されたウェハ(例えば直径200mmのシリコンウェハ)2は、チップ状に分割されることなく、そのままの状態でウェハトレイ3上に載置される。測定・検査に際して、ウェハ2はプローブカード1とウェハトレイ3との間に挟まれる。プローブカード1とウェハトレイ3との間にできる僅かな空間は、シールリング4によって大気からシールされる。その空間を真空バルブ5を介して減圧する(例えば大気圧に比べて200ミリトール程度減圧する)ことにより、プローブカード1は大気圧の力をかりて均等にウェハ2を押圧する。その結果、プローブカード1のプローブ電極は、広いウェハ2の全面にわたって均等な力でウェハ2上のパッド電極を押圧することができる。プローブカード1上の多数のバンプがウェハ2上の所定のパッド電極と確実に接触するためには、接触の前に、プローブカード1とウェハ2との間のアライメントを高精度で実行する必要がある。
【0028】
このようなウェハ一括型の測定・検査技術によれば、ウェハ2の全面に形成された数千から数万個以上の多数のパッド電極に対して、プローブカード1に形成した多数のプローブ電極を同時にしかも確実にコンタクトさせることができる。
【0029】
図2は、本発明が適用されるプローブカード20の断面構成例を示している。
【0030】
このプローブカード20は、測定・検査装置に電気的に接続されることになる多層配線基板21と、バンプ付きポリイミド薄膜22と、これらの間に設けられた局在形異方導電性ゴム23とを少なくとも備えている。局在形異方導電性ゴム23は、多層配線基板21の電極配線21bとバンプ付きポリイミド薄膜22のバンプ22bとを電気的に接続する弾性部材である。図2では、上記3つの部材21〜23が縦方向に分離された状態が示されているが、これらの部材21〜23を密着固定することにより、一枚のプローブカード20が形成される。
【0031】
多層配線基板21としては、ガラス基板21a上に多層配線21bが形成されたものを使用できる。ガラス基板21aは、広い面積にわたって高い平坦性を持つものが比較的容易に作製され得るので好ましい。また、ガラスの熱膨張係数はシリコンウェハの熱膨張係数に近いため、ガラスは、特にバーンイン用プローブカードの多層配線基板の材料として好適である。
【0032】
多層配線21bの形成は、公知の薄膜堆積技術とパターニング技術を用いて行える。たとえば、銅(Cu)などの導電性薄膜をスパッタリング法等によりガラス基板21a上に堆積した後、フォトリソグラフィおよびエッチング工程で導電性薄膜をパターニングすれば、任意のパターンを持った配線21bを形成することができる。異なるレベルの配線21bは、層間絶縁膜21cにより分離される。層間絶縁膜21cは、たとえばポリイミド薄膜をスピンコート等の方法でガラス基板21a上に形成することで得られる。多層配線21bは、面内に二次元的に配列される多数のバンプ(プローブ電極)22bをプローブカード20の周辺領域に設けられた不図示の接続電極やコネクタに電気的に接続し、外部の検査装置や検査回路とプローブ電極22bとの電気的接続を可能にするものである。
【0033】
バンプ付きポリイミド薄膜22は、たとえば次のようにして得られる。まず、厚さ18μm程度のポリイミド薄膜22aと厚さ35μm程度の銅薄膜とが二層になった基材に多数の開口部(内径20〜30μm程度)を設ける。電解メッキなどの方法を用いて各開口部をNi等の金属材料で埋め込み、バンプ22bを形成する。ポリイミド薄膜22aから銅薄膜の不要部分をエッチングで除去すれば、図示されるようなバンプ付きポリイミド薄膜22が得られる。バンプ22bの高さは、一例としては、約20μm程度である。バンプの横方向サイズは、40μm程度である。ポリイミド薄膜22aのどの位置にバンプ22bを形成するかは、測定対象のウェハ25のどの位置にパッド電極26が形成されているかに依存して決定される。
【0034】
局在形異方導電性ゴム23は、シリコーン製ゴムのシート(厚さ200μm程度)23a内の特定箇所に導電性粒子23bが配置されており、その箇所で導通方向(膜厚方向)に鎖状につなげたものである。多層配線基板21とバンプ22bとの間に、弾力性を持ったゴムを介在させることにより、ウェハ25上の段差やウェハ25のそりの影響を受けることなく、プローブカード20のバンプ22bとウェハ25上の電極26との間のコンタクトを確実に実現することができる。
【0035】
このようなプローブカード20をバーンイン検査に使用する場合、ポリイミド薄膜22aの熱膨張係数(約16×10-6/℃)とウェハ25の熱膨張係数(約3×10-6/℃)とが異なるため、バーンインのための加熱時に、ポリイミド薄膜22a上のバンプ22bの位置がウェハ25上のパッド電極26の位置に対して横方向にずれてしまう。この位置ズレは、ウェハ25の中央部よりも周辺部で大きくなり、ウェハ25とプローブカード20との間で正常な電気的コンタクトがとれなくなる。このような問題を解決するには、特開平7−231019号公報に開示されているように、熱膨張係数がシリコンウェハに近いセラミックリングなどの剛性リング(不図示)にポリイミド薄膜22aを張りつけ、そのポリイミド薄膜22aにあらかじめ張力を与えておくことが有効である。この場合、ポリイミド薄膜22aを剛性リングに張りつけてから、バンプ22bを形成する方がよい。バンプ22bの位置がずれにくいからである。
【0036】
ウェハ25は、ウェハトレイ28に配置される。ウェハ25を搭載したウェハトレイ28がプローブカード20に対して適切な位置に配置された後、プローブカード20とウェハトレイ28との間隔が縮小される。その結果、ウェハ25上のパッド電極26とプローブカード20のバンプ22bとが物理的にコンタクトする。前述のように、プローブカード20とウェハトレイ28との間のシールされた空間を減圧することにより、各バンプ22bがほぼ均等な力をもってウェハ25上のパッド電極26を押圧することなる。その後、不図示の駆動回路や検査回路からの電気信号および電源電圧が、プローブカード20のバンプ22を介してウェハ25上のパッド電極26に供給される。バーンイン検査の場合、プローブカード20、ウェハ25およびウェハトレイ28は、図3に示されるような状態で、一体的にバーンイン装置に挿入され、加熱される。
【0037】
検査・測定の間、および、その前後において、プローブカード20、ウェハ25およびウェハトレイ28は、図3に示されるような状態に維持される。前述の密閉空間が減圧状態にあるウェハトレイ28は、プローブカード20から離脱することなく、これらの部材は一体的にウェハを狭持している。
【0038】
ウェハ一括型の検査・測定が終了すると、プローブカード20とトレイ28との間にできた密閉空間の圧力を上昇させ、大気圧程度に回復させる。その結果、トレイ28はプローブカード20から分離され、中からウェハ25が取り出される。
【0039】
以下に、図4から図7を参照しながら本発明の実施形態を説明する。
【0040】
図4は、本実施形態にかかる半導体ウェハの主要部断面を模式的に示している。この図では、ウェハに含まれる複数のチップのうち、ある一つのチップと、それに隣接する二つのチップの各々の一部分とが示されている。
【0041】
本実施形態にかかる半導体ウェハ49は、各チップの間のスクライブレーン48およびウェハ裏面51に形成された高濃度p型不純物領域(p+型不純物領域)41を有している。各チップは高濃度p型不純物領域41によって分離されている。高濃度p型不純物領域41は、ウェハ表面50のスクライブレーン48上に設けられた配線電極43と電気的に接続されており、高濃度p型不純物領域の電位(V bs )は、配線電極43ならびに不図示のプローブカード上のプローブ電極および配線を介して外部装置によって制御される。
【0042】
半導体ウェハ49内において、高濃度p型不純物領域41によって囲まれた領域の各々(各チップに対応)には半導体集積回路装置が形成されている。図4に示される半導体集積回路装置は、p型基板42内に形成されたp型ウェル領域31およびn型ウェル領域32と、p型ウェル領域31に形成されたNMOSトランジスタと、n型ウェル領域32に形成されたPMOSトランジスタとを少なくとも具備している。図4では、簡単化のため、二つのトランジスタのみが記載されているが、現実には、多数のトランジスタおよびその他の集積回路素子が形成されている。
【0043】
NMOSトランジスタは、p型ウェル領域31の表面近傍に形成され、ソース/ドレイン領域として機能する一対のn+型不純物拡散領域33と、一対のn+型不純物拡散領域33に挟まれた領域(チャネル領域)上に形成されたゲート絶縁膜35と、ゲート絶縁膜35上に形成されたゲート電極36とを備えている。
【0044】
PMOSトランジスタは、n型ウェル領域32の表面近傍に形成され、ソース/ドレイン領域として機能する一対のp+型不純物拡散領域37と、一対のp+型不純物拡散領域37に挟まれた領域(チャネル領域)上に形成されたゲート絶縁膜38と、ゲート絶縁膜38上に形成されたゲート電極39とを備えている。
【0045】
p型ウェル領域31の表面には、p型基板42(p型ウェル31)の電位を検出するためのn+型不純物拡散領域34が形成されており、このn+型不純物拡散領域34は基板電位検出用パッド電極44に接続される。
【0046】
図4の実施形態では、NMOSトランジスタのソース領域には接地電位が与えられ、PMOSトランジスタのドレイン領域には電源電位(Vdd)が与えられる。プローブカードから与えられる電源電位(Vdd)が所定の大きさ以上に上昇することによって、各チップ内の半導体装置の回路動作が開始する。バーンインモードでは、通常モードでの電源電位(例えば5ボルト)よりも高い電源電位(例えば8ボルト)が各チップに供給され、電圧ストレスのもとで加速試験が実行される。
【0047】
上記トランジスタを含む半導体集積回路は、公知の半導体製造プロセスによって形成される。高濃度p型不純物領域41は、ウェハ表面50の側からの不純物ドーピングに加えて、ウェハ裏面51の側からの不純物ドーピングによって形成される。ウェハの表面50から裏面51に至る不純物領域を形成するためには、例えば、高エネルギーイオン注入と高温長時間アニールとを行うことが好ましい。そのため、高濃度p型不純物領域41の形成は、上記トランジスタの形成に先だって行うことが好ましい。高濃度p型不純物領域41のウェハ表面50に表れたパターンを図5(a)に示し、ウェハ裏面51に表れたパターンを図5(b)に示す。
【0048】
図5(a)の例では、各チップ40の間に位置するスクライブレーンを含む領域に高濃度p型不純物領域41が形成されている。高濃度p型不純物領域41は、ウェハ裏面51においてはウェハ全面に実質的に拡がっている。高濃度p型不純物領域41の不純物濃度は、ウェハ裏面51において、1×1018cm-3以上に設定されることが好ましく、また、ウェハ表面50においては、1×1020cm-3以上に設定されることが好ましい。ウェハ表面50およびウェハ裏面51から離れた位置(ウェハ内部)においても、高濃度p型不純物領域41の不純物濃度は、1×1019cm-3以上に設定されることが好ましい。スクライブレーンにおける高濃度p型不純物領域41の幅は、好ましくは約60μmから約100μmであり、ウェハ裏面51における高濃度p型不純物領域41の厚さは、好ましくは3から300μmである。
【0049】
ウェハ表面50の側で高濃度p型不純物領域41にコンタクトする配線電極43は、図5(a)の各チップの間を延長するように引き回された配線であっても良く、また、複数の孤立したアイランド状電極であってもよい。
【0050】
バーンイン検査に際して、上記半導体ウェハ47は、図4に示すように、絶縁性シート46を介して導電性プレート47上に配置される。導電性プレート47は外部装置に電気的に接続され、絶縁性シート46上のウェハ49内に所望の電界を形成する機能を持つ。導電性プレート47は、好ましくは、前述のウェハトレイ28から絶縁されながらウェハトレイ28の上部に組み込まれる。導電性プレート47の電位(Vbm)は上記外部装置によって制御される。
【0051】
以下、図6および図7を参照しながら、本実施形態にかかる半導体装置の検査方法を説明する。
【0052】
まず、導電性プレート47の電位(Vbm)を0ボルトから、例えば−8ボルトに変化させ、それによってストレス電圧の印加を開始する。導電性プレート47の電位(Vbm)は、−6ボルトから−12ボルトまでの範囲内の一定電位に変化させることが好ましい。導電性プレート47の電位(Vbm)が負電位になると、p型基板42内では、高濃度p型不純物領域41に向かって正孔電流が流れ出す。その結果、p型基板42内の正孔濃度が低下する。このとき、ゲート絶縁膜(図4おいて参照番号「35」および「38」で示す。)の近傍の空乏層領域が拡大され、一様な強度の電界が形成される。
【0053】
次に、各チップ内の半導体装置に供給する電源電位(Vdd)を所定値以上に上昇させ、バーインモードでの回路動作を開始させる。
【0054】
こうして回路に含まれる各トランジスタの動作が開始した後、例えば、NMOSトランジスタのドレイン領域近傍で電子・正孔対が大量に生成されるなどの現象が生じると、それによって、そのトランジスタから基板内部に向かって基板電流(IBB)が発生する。バーンインモードでは、電源電位(Vdd)が通常モードにおける値よりも大きくなるため、トランジスタのドレイン領域近傍での電界強度が通常モード時よりも増大する。その結果、電子・正孔対の発生レートが大きくなり、基板電流が発生しやすくなる。NMOSトランジスタのドレイン領域近傍で生じた電子・正孔対のうち、生成した電子は主にドレイン領域に流入するが、正孔はp型基板42に流れて基板電流(IBB)を形成する。なお、基板電流(IBB)は、PMOSトランジスタからよりもNMOSトランジスタから格段に発生しやすい。
【0055】
正孔により形成される基板電流(IBB)がp型基板42内に流れ出すと、基板電位(Vbb)が正方向に変動する。この基板電位(Vbb)の変動をそのまま放置すると、ラッチアップなどが生じるため、本実施形態では、以下に述べる方法で、基板電位(Vbb)をもとのレベルに復帰させる。すなわち、まず、基板電位(Vbb)を基板電位(Vbb)レベルモニター回路61によって測定し、基板電位(Vbb)の正方向への変動を検知した場合は、配線電極43の電位(Vbs)をウェハ裏面に位置する高濃度p型不純物領域41の電位よりも低下させる。それによって、配線電極43から高濃度p型不純物領域41に電子を注入し、高濃度p型不純物領域41から配線電極43に電流I1を流す。トランジスタからp型基板42内に流れ出した基板電流(IBB)を構成する正孔(p型基板42では「多数キャリア」)は、p型基板42内に蓄積されることなく、高濃度p型不純物領域41に拡散する。こうして、基板電流(IBB)の全部または少なくともその一部を、ウェハ裏面に位置する高濃度p型不純物領域41を介してウェハ外部へ引き抜くことができる。配線電極43から高濃度p型不純物領域41への電子注入は、引き抜き電流(I1)制御回路62によって制御される。前述の基板電位レベルモニター回路61および引き抜き電流制御回路62によって基板電位制御回路60が構成される。基板電位制御回路60は、典形的には、バーンイン検査装置などの測定検査装置内に設けられる。この基板電位制御回路60と、ウェハ49上の電極配線などとの電気的接続は、ウェハ一括型プローブカード上の配線およびプローブ電極を介して達成される。
【0056】
このように電流I1をウェハ外部へ抜き出すことによって、基板電位(Vbb)を再び負電位側の所定レベルに復帰させることができる。基板電位(Vbb)が許容範囲内に復帰したことを基板電位レベルモニター回路61によって検知したら、引き抜き電流制御回路62によって配線電極43の電位(Vbs)を元の電位に戻す。こうすることによって、前述の電子注入を停止し、電流I1をゼロにすることができる。
【0057】
このように本実施形態では、基板電流(IBB)の発生を基板電位(Vbb)の変化として検知し、ウェハ裏面に設けた高濃度p型不純物領域41を介して基板電流(IBB)をウェハ外部へ引く抜くようにしている。その結果、基板電位の時間的変動を抑制することができる。また、基板電流が基板内を縦方向に流れるため、ウェハ表面において一様な電界を維持することができ、各トランジスタに電圧ストレスを均等に印加できる。更に、各チップは高濃度p型不純物領域41によって囲まれているため、あるチップの基板内に生じた基板電流が他のチップの基板に流れ込むようなこともない。
【0058】
本実施形態では、電源電位の供給はもちろんのこと、基板電位(Vbb)の検知および高濃度p型不純物領域への電子注入を、プローブカードに設けたプローブ電極(バンプ)とウェハ上のパッド電極とのコンタクトによって実行している。また、ゲート絶縁膜へのストレス電圧印加は、ウェハ裏面に絶縁性シートを介して配置した導電性プレートを用いて与えている。従って、上記半導体装置の検査は、一つのウェハ内の複数の半導体装置に対して同時に行われ得る。
【0059】
本実施形態では、チップごとに基板電位(Vbb)を測定し、チップごとに基板電位を制御することができる。すなわち、本実施形態では、一枚のウェハに含まれる複数のチップのうち、あるチップ内の基板電位(Vbb)が正側に変動したことを検知するたびに、配線電極43から高濃度p型不純物領域41への電子注入を行う。この電子注入は、基板電流の生じていないチップに対してはなんら影響を及ぼすことなく、基板電位の変動が生じつつあるチップから基板電流を引き抜くように機能し、それによって、そのチップの基板電位を的確に制御することができる。
【0060】
ウェハ一括型測定検査が終了すると、各チップはウェハから分離され、必要な工程を経て、所望の半導体装置が完成する。
【0061】
次に、図8を参照しながら、本発明の他の実施形態を説明する。
【0062】
図8は、本実施形態にかかる半導体装置の検査に使用するウェハトレイ30を示している。このウェハトレイ30は、ウェハ25に接触する位置に配置された導電性プレート80と、導電性プレート80からは絶縁シート81によって電気的に絶縁されたウェハトレイ本体28とを備えている。導電性プレート80は、好ましくはアルミニウム等の低抵抗金属から形成され、少なくとも測定時において、外部装置と電気的に接続される。
【0063】
導電性プレート80のサイズは、測定対象のウェハ25に等しいか、それよも大きく形成されることが好ましい。ただし、導電性プレート80の形状は、必ずしもウェハ25の形状に等しいものである必要はなく、リング状や格子状であってもよい。また、ウェハ25内の各チップの電位を直接的に制御するためには、ウェハ25内の各チップの裏面に対して少なくとも一部が接触し得る形状を持つことが好ましい。導電性プレート80の表面は、典形的には平坦であるが、必ずしも平坦である必要はない。表面に複数の突起電極が二次元的に配列されたものであってもよいし、メッシュ状のものであっても良い。重要な点は、ウェハ25の裏面と確実にコンタクトし、それによって基板電位が所望の範囲内に維持されるようにウェハ裏面の電位を制御できることにある。また、プローブカード20のプローブ電極22bがウェハ25上のパッド電極26を押圧するときに、不均一な応力がウェハ25内に生じないような形状を持つことが好ましい。
【0064】
このような導電性プレート80を用いることによって、ウェハ一括型測定検査の際に、ウェハ25の裏面の電位を所定範囲内に維持し、それによって、基板電位の変動を抑制することができる。図4を参照しながら説明した前述の実施形態では、ウェハ裏面に設けた高濃度p型不純物領域41を介して基板電流をウェハ外部へ引き抜いているが、本実施形態では、ウェハ裏面に接触する導電性プレート80を介して、基板電流をウェハ外部に引き抜くことになる。
【0065】
本実施形態によれば、半導体ウェハ25内に特別の構造を設けなくても、基板電位を安定化することができる。
【0066】
なお、図2および図8に示す実施形態では、局在形異方導電性ゴム23を用いて、多層配線基板上とバンプとを電気的に接続しているが、局在形異方導電性ゴム23を用いることなく、直接に、多層配線基板とバンプとを接触させても良い。また、逆に、測定対象のウェハ上にバンプを形成しておけば、プローブカードの側にバンプを形成する必要もなくなる。その場合は、プローブカードの局在形異方導電性ゴム23の先端部分を、ウェハ上のバンプに押圧するようにすれば、ウェハ一括型測定・検査が実行できる。また、局在形異方導電性ゴム23を用いることなく、多層配線基板の配線層を直接にウェハ上のバンプにコンタクトさせても良い。
【0067】
【発明の効果】
本発明の半導体ウェハによれば、p型半導体ウェハ内に設けた高濃度p型不純物領域が各チップを分離しているため、各チップ内で生じた基板電流を他のチップに影響を与えることなく高濃度p型不純物領域を介してウェハ外部へ引き抜くことが可能になる。その結果、基板電位の変動を抑制した状態でのウェハ一括型測定検査を可能ならしめる。特に、高電圧を付加しながら行うバーンイン検査に際して、顕著な効果を発揮し、半導体ウェハ内の複数チップの検査を速やかに完了させることを可能として、それによって、半導体装置の製造コストを低減する。
【0068】
半導体ウェハが前記ウェハ表面において、前記高濃度p型不純物領域に電気的に接触する導電性部材と、前記チップ上に設けられた基板電位検知用電極とを備えていると、高濃度p型不純物領域を介した電流の制御が容易になり、また、基板電位の測定によって基板電流の発生を速やかに検出することができる。
【0069】
本発明の半導体装置の検査方法によれば、請求項1記載の半導体ウェハのウェハ裏面に対向する位置に設けた電極に負電位を与える工程と、半導体ウェハ内で基板電流が発生した場合、基板電流の少なくとも一部を高濃度p型不純物領域を介してウェハ外部へ引き抜く基板電位制御工程とを包含するため、基板電流が基板電位を大きく変化する前に、基板電流を構成するキャリアがウェハ外部に抜き取られる結果、基板電位をもとのレベルに復帰させることができる。
【0070】
本発明の他の半導体装置の検査方法によれば、請求項2記載の半導体ウェハのウェハ裏面に対向する位置に設けた電極に負電位を与える工程と、基板電位検知用電極を用いて基板電位の変動を検出し、それによって半導体ウェハ内で基板電流が発生したことを検知した場合、導電性部材から高濃度p型不純物領域に少数キャリアを注入し、基板電流の少なくとも一部を高濃度p型不純物領域を介してウェハ外部へ引き抜く基板電位制御工程とを包含するため、基板電流が基板電位を大きく変化する前に、基板電流を構成するキャリアがウェハ外部に抜き取られる結果、基板電位をもとのレベルに復帰させることができる。
【0071】
基板電位制御工程を、ウェハ一括型プローブカードを用いたウェハ一括型測定検査時に行うと、複数のチップに対して、一括的な測定検査を実行できるため、検査効率が著しく向上する。また、ウェハ内の各チップは高濃度p型不純物領域によって分離されているため、一括的な測定検査を行っても、あるチップの影響が他のチップに及ばない。
【0072】
本発明の半導体装置の製造方法によれば、検査工程をウェハ内のチップに対して一括的に行うため、測定検査に要する時間および労力が著しく短縮され、半導体装置の製造コストを低減することができる。
【0073】
本発明の更に他の半導体装置の検査方法によれば、ウェハ一括型測定検査に際して、ウェハの裏面の電位を直接的に制御することができるため、基板電位を安定に維持することができる。また、ウェハ内に特別の構造を設けなくとも、基板電位の制御が可能になる点で実施が容易である。
【図面の簡単な説明】
【図1】 ウェハ一括型の測定・検査技術を説明するための斜視図。
【図2】 本発明のプローブカード等を示す断面図。
【図3】 測定時におけるプローブカード、ウェハおよびウェハトレイの関係を示す断面図。
【図4】 本発明の実施形態にかかる半導体ウェハの主要部を示す断面図。
【図5】 (a)は、図4の半導体ウェハの表面における高濃度p型不純物領域を示す平面図、(b)は、その半導体ウェハの裏面における高濃度p型不純物領域を示す平面図。
【図6】 図4の半導体ウェハと本実施形態にかかる基板電位制御装置の等価回路図。
【図7】 本発明の実施形態にかかる半導体装置の検査方法を実施しているときに各部の電位や電流がどのように変化するかを示すタイミングチャート。
【図8】 本発明の他の実施形態にかかる半導体装置の検査方法を説明するための断面図。
【符号の説明】
1 プローブカード
2 ウェハ(例えば直径200mmのシリコンウェハ)
3 ウェハトレイ
4 シールリング
5 真空バルブ
20 プローブカード
21 多層配線基板
21a ガラス基板
21b 電極配線
21c 層間絶縁膜
22 バンプ付きポリイミド薄膜
22a ポリイミド薄膜
22b バンプ
23 局在形異方導電性ゴム
25 ウェハ
26 パッド電極
28 ウェハトレイ
30 ウェハトレイ
31 p型ウェル
32 n型ウェル
33 n+型不純物拡散領域(ソース/ドレイン領域)
34 n+型不純物拡散領域
35 ゲート絶縁膜
36 ゲート電極
37 p+型不純物拡散領域(ソース/ドレイン領域)
38 ゲート絶縁膜
39 ゲート電極
40 チップ
41 高濃度p型不純物領域
42 p型基板
43 配線電極
44 基板電位検知用端子
45 導電性プレート用端子
46 絶縁性シート
47 導電性プレート
48 スクライブレーン
49 半導体ウェハ
50 ウェハ表面
51 ウェハ裏面
60 基板電位制御回路
61 基板電位レベルモニター回路
62 引き抜き電流制御回路
80 導電性プレート
81 絶縁性シート

Claims (17)

  1. 各々に集積回路が形成された複数のチップを含むp型半導体ウェハであって、
    前記複数チップのそれぞれを分離する高濃度p型不純物領域を備え、
    前記高濃度p型不純物領域は、ウェハ裏面に形成された部分と、前記複数のチップの間を前記ウェハ裏面からウェハ表面まで延びる部分とを有することを特徴とする半導体ウェハ。
  2. 前記ウェハ表面において、前記高濃度p型不純物領域に電気的に接触する導電性部材と、
    前記チップ上に設けられた基板電位検知用電極と、
    を備えたことを特徴とする請求項1記載の半導体ウェハ。
  3. 請求項1記載の半導体ウェハの前記ウェハ裏面に対向する位置に設けた電極に負電位を与える工程と、
    前記半導体ウェハ内で基板電流が発生した場合、前記基板電流の少なくとも一部を前記高濃度p型不純物領域を介してウェハ外部へ引き抜く基板電位制御工程と、
    を包含することを特徴とする半導体装置の検査方法。
  4. 請求項2記載の半導体ウェハの前記ウェハ裏面に対向する位置に設けた電極に負電位を与える工程と、
    基板電位検知用電極を用いて基板電位の変動を検出し、それによって前記半導体ウェハ内で基板電流が発生したことを検知した場合、前記導電性部材から前記高濃度p型不純物領域に少数キャリアを注入し、基板電流の少なくとも一部を前記高濃度p型不純物領域を介してウェハ外部へ引き抜く基板電位制御工程と、
    を包含することを特徴とする半導体装置の検査方法。
  5. 前記基板電位制御工程は、ウェハ一括型プローブカードを用いたウェハ一括型測定検査時に行うことを特徴とする請求項4記載の半導体装置の検査方法。
  6. 前記プローブカードは、二次元的に配列された複数のプローブ電極と、前記複数のプローブ電極に電気的に接続された多層配線基板とを備えていることを特徴とする請求項5記載の半導体装置の検査方法。
  7. 前記プローブ電極がバンプ電極であることを特徴とする請求項6記載の半導体装置の検査方法。
  8. 前記プローブ電極と前記多層配線基板との間において、前記プローブ電極を前記多層配線基板に電気的に接続するための導電性ゴムを備えていることを特徴とする請求項7記載の半導体装置の検査方法。
  9. 前記プローブ電極が剛性リングに張力を持った状態で張られた薄膜上に形成されていることを特徴とする請求項7記載の半導体装置の検査方法。
  10. 前記プローブ電極は前記多層配線基板の配線層の少なくとも一部から形成されていることを特徴とする請求項6記載の半導体装置の検査方法。
  11. 請求項1または2記載の半導体ウェハを形成する工程と、
    前記半導体ウェハに対してウェハ一括型の測定検査を行う工程と、
    前記半導体ウェハから各チップを分離する工程と、
    を包含することを特徴とする半導体装置の製造方法。
  12. 二次元的に配列された複数のプローブ電極と、前記複数のプローブ電極に電気的に接続された多層配線基板とを備えたウェハ一括測定検査型プローブカードを用いて行う半導体装置の検査方法であって、
    検査対象のウェハの裏面に導電性プレートを接触させ、それによって前記ウェハの基板電位を所定範囲内に制御することを特徴とする半導体装置の検査方法。
  13. 前記導電性プレートは、前記ウェハを搭載するためのウェハトレイ内に設けられていることを特徴とする請求項12に記載の半導体装置の検査方法。
  14. 前記プローブ電極がバンプ電極であることを特徴とする請求項13記載の半導体装置の検査方法。
  15. 前記プローブ電極と前記多層配線基板との間において、前記プローブ電極を前記多層配線基板に電気的に接続するための導電性ゴムを備えていることを特徴とする請求項14記載の半導体装置の検査方法。
  16. 前記プローブ電極が剛性リングに張力を持った状態で張られた薄膜上に形成されていることを特徴とする請求項14記載の半導体装置の検査方法。
  17. 前記プローブ電極は前記多層配線基板の配線層の少なくとも一部から形成されていることを特徴とする請求項13記載の半導体装置の検査方法。
JP29809497A 1997-10-30 1997-10-30 ウェハ一括型プローブカードによる検査に適した半導体ウェハおよび半導体装置の検査方法ならびに半導体装置の製造方法 Expired - Fee Related JP3830248B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29809497A JP3830248B2 (ja) 1997-10-30 1997-10-30 ウェハ一括型プローブカードによる検査に適した半導体ウェハおよび半導体装置の検査方法ならびに半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29809497A JP3830248B2 (ja) 1997-10-30 1997-10-30 ウェハ一括型プローブカードによる検査に適した半導体ウェハおよび半導体装置の検査方法ならびに半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JPH11135580A JPH11135580A (ja) 1999-05-21
JP3830248B2 true JP3830248B2 (ja) 2006-10-04

Family

ID=17855092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29809497A Expired - Fee Related JP3830248B2 (ja) 1997-10-30 1997-10-30 ウェハ一括型プローブカードによる検査に適した半導体ウェハおよび半導体装置の検査方法ならびに半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP3830248B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1568539A (zh) 2001-08-13 2005-01-19 霍尼韦尔国际公司 对晶片承载的半导体器件提供光子控制

Also Published As

Publication number Publication date
JPH11135580A (ja) 1999-05-21

Similar Documents

Publication Publication Date Title
US5843844A (en) Probe sheet and method of manufacturing the same
US6215321B1 (en) Probe card for wafer-level measurement, multilayer ceramic wiring board, and fabricating methods therefor
US20160020310A1 (en) Semiconductor device and manufacturing method for the same
US20120194210A1 (en) Probe card wiring structure
TWI508240B (zh) Laminated wiring board
KR20090074206A (ko) 반도체 웨이퍼의 평가방법
KR20000024688A (ko) 수직형미세탐침카드
US7375371B2 (en) Structure and method for thermally stressing or testing a semiconductor device
JP3830248B2 (ja) ウェハ一括型プローブカードによる検査に適した半導体ウェハおよび半導体装置の検査方法ならびに半導体装置の製造方法
JP2011049337A (ja) 半導体装置の製造方法
US9117880B2 (en) Method for manufacturing semiconductor device
US8519733B2 (en) Method of measuring characteristics of a semiconductor element and method of manufacturing a semiconductor device
CN113889421A (zh) 用于检测深沟槽隔离和soi缺陷的筛检方法和设备
JP3771016B2 (ja) ウェハ一括型プローブカードによる検査に適した半導体装置およびその検査方法ならびにプローブカード
JP3842879B2 (ja) ウェハ一括型プローブカードおよび半導体装置の検査方法
JP4192156B2 (ja) 半導体装置の検査方法
JP3792026B2 (ja) 半導体装置およびその検査方法
JPH11121553A (ja) ウェハ一括型測定検査のためプローブカードおよびそのプローブカードを用いた半導体装置の検査方法
US7947514B2 (en) Semiconductor device production process
JP4877465B2 (ja) 半導体装置、半導体装置の検査方法、半導体ウェハ
JP5487680B2 (ja) 半導体装置の評価方法、半導体装置の製造方法、及びプローブ
JPH06230030A (ja) シリコンウェハを利用したプローブカード
JPH11121563A (ja) バンプ検査方法およびバンプ検査用基板
JP3784334B2 (ja) 半導体素子検査装置
JP2004071887A (ja) 縦型パワー半導体装置の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees