JP3801273B2 - 電磁弁駆動回路 - Google Patents

電磁弁駆動回路 Download PDF

Info

Publication number
JP3801273B2
JP3801273B2 JP25042796A JP25042796A JP3801273B2 JP 3801273 B2 JP3801273 B2 JP 3801273B2 JP 25042796 A JP25042796 A JP 25042796A JP 25042796 A JP25042796 A JP 25042796A JP 3801273 B2 JP3801273 B2 JP 3801273B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
drive circuit
current
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25042796A
Other languages
English (en)
Other versions
JPH1096480A (ja
Inventor
清孝 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP25042796A priority Critical patent/JP3801273B2/ja
Publication of JPH1096480A publication Critical patent/JPH1096480A/ja
Application granted granted Critical
Publication of JP3801273B2 publication Critical patent/JP3801273B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油圧回路に使用される電磁弁駆動回路の改良に関する。
【0002】
【従来の技術】
油圧アクチュエータ等の制御に使用される比例電磁切換弁、高速比例電磁切換弁、サーボソレノイド弁等の電磁弁(以下、単に電磁弁とする)を、直流電源によって駆動する駆動回路では、電磁弁のソレノイドコイルと電源の+側との間にスイッチング手段としてのスイッチを介装したハイサイド・スイッチ回路と、ソレノイドコイルと電源の0Vラインとの間にスイッチを介装したローサイド・スイッチ回路が知られている。
【0003】
また、電磁弁の応答性を向上させる回路としては、ハーフブリッジ駆動回路が知られており、このハーフブリッジ駆動回路は、上記ハイサイド・スイッチ回路とローサイドスイッチを併せた回路により構成され、ソレノイドコイルと二本の電源ライン間に2つのスイッチを直列に配設した回路となっている。
【0004】
このハーフブリッジ駆動回路は、フルブリッジ駆動回路を原形として構成されたもので、まず、フルブリッジ駆動回路について説明する。
【0005】
フルブリッジ駆動回路は、直流モータの駆動回路として一般的に知られており、直流モー夕の回転方向は巻線に流れる電流の方向に応じて決まるので、直流電源によって直流モータを正転/逆転駆動したい場合にフルブリッジ駆動回路が採用されている。
【0006】
この、フルブリッジ駆動回路は、図3に示すように、スイッチsw1とsw2及びスイッチsw3とsw4の2組のスイッチが、交互にオン/オフするスイッチペアを構成し、これら2組のスイッチペアは同時にオンになることはない。
【0007】
スイッチsw1とsw2の1組のスイッチペアが同時にオンになると、直流モータMへスイッチsw1とsw2を通って電流iaが流れ、逆に、スイッチsw3とsw4のスイッチペアが同時にオンになると、直流モータMには逆方向へ電流ibが流れるので、直流電源で直流モータMを正/逆回転駆動することができる。
【0008】
尚、スイッチsw1〜sw4と並列に配設されたダイオードD1〜D4は、双方のスイッチペアがオフとなった時に、直流モータMのコイルから発生する逆起電圧を抑制するフライホイールダイオードである。
【0009】
直流モータMに対して電磁弁は、ソレノイドコイルに流れる電流の方向には無関係であり、電流量に応じて図示しない可動欽芯(プランジャ)を吸引する力を発生することができるので、高応答化を要するものはハーフブリッジ駆動回路が用いられる。
【0010】
ハーフブリッジ駆動回路は、図4に示すように、上記フルブリッジ駆動回路からどちらか一方のスイッチペアとフライホイールダイオードを削除したものである。
【0011】
図4において、スイッチsw1とsw2のスイッチペアが同時にオンになると、ソレノイドコイル1にはスイッチsw1とsw2を通って電流iaが通電される一方、スイッチsw1、sw2が同時にオフになると、フライホイールダイオードD1とD2を通って電流ibが急速に回生される。したがって、コイル電流の挙動を速くすることで電磁弁の高応答化を図るものである。
【0012】
次に、電磁弁の最も一般的な駆動回路であるハイサイド・スイッチ及びローサイド・スイッチは、図5、図6に示すように、一つのスイッチsw1とフライホイールダイオードD1から構成されており、図5にハイサイド・スイッチ駆動回路を、図6にローサイド・スイッチ駆動回路をそれぞれ示す。
【0013】
図5のハイサイド・スイッチ駆動回路において、スイッチsw1がオンになるとソレノイドコイル1にはスイッチsw1を通って電流iaが通電され、逆にスイッチsw1がオフになると、図中破線のように、フライホイールダイオードD1を通って電流ibが緩やかに回生される。
【0014】
また、図6のローサイド・スイッチ駆動回路においても、上記と同様にスイッチsw1がオンになると、ソレノイドコイル1にはスイッチsw1を通って電流iaが通電され、スイッチsw1がオフになるとフライホイールダイオードD1を通って電流ibが緩やかに回生される。
【0015】
【発明が解決しようとする課題】
しかしながら、上記従来のハーフブリッジ駆動回路によって応答性の高い電磁弁駆動回路を構成した場合、ハーフブリッジ駆動回路はソレノイドコイルと電源ライン間に2つのスイッチが直列に入った構成であるため、どちらか一方のスイッチが短絡故障しても、他方のスイッチが正常であれば見かけ上はコイル電流の制御が可能であることから、駆動回路の異常状態を容易に検知することができないという問題があり、どちらか一方のスイッチが短絡故障すると、スイッチがオフになったときのソレノイドコイル電流の急速回生ができなくなり高応答化が損なわれ、また、ディザ電流の挙動(振幅)が小さくなって電磁弁のヒステリシスが大きくなり、さらに、ソレノイドコイルに対して2つのスイッチが直列に入る構成により安全に対する冗長設計となっているが、駆動回路の故障を検知してフィードバックできないという問題があった。
【0016】
そこで、本発明は上記問題点に鑑みてなされたもので、ハーフブリッジ駆動回路によって電磁弁の駆動を高い応答性を持って行いながらも、駆動回路の異常を確実に検知可能な電磁弁駆動回路を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明は、コイルへ供給される電流に応じて開閉駆動される電磁弁と、複数のスイッチング手段と及びこれらスイッチング手段と並列的に配設されたフライホイールダイオードとを有し、指令信号に応じたデューティ比で前記コイルへ電流を供給するハーフブリッジ駆動回路とを備えた電磁弁駆動回路において、前記コイルの両端電圧を検出し、電流がオフのときのクランプ電圧の検出値をレベル化する保持手段を備える電圧検知手段と、この電圧の検出値と予め設定された電圧とを比較して、検出値が設定値よりも大きいときに異常を判定する異常判定手段とを備える。
【0019】
【作用】
したがって、本発明は、複数のスイッチング手段とフライホイールダイオードから構成されたハーフブリッジ駆動回路では、複数のスイッチング手段のオン、オフによるデューティ制御によりコイルへの供給電流を制御して電磁弁を駆動しており、複数のスイッチング素子が正常に動作しているときには、オフ時のコイルの両端電圧は所定の設定値よりも大きいが、複数のスイッチング手段のうちのひとつが短絡故障すると、コイル両端電圧は減少して設定値より小さくなるため、ハーフブリッジ駆動回路の異常を確実に検出することができる。
【0020】
また、本発明は、電圧の検出値を平滑化することにより、デューティ制御により変動するコイル両端電圧と所定の設定値との比較を容易に行い、異常の判定を精度良く行うことができる。
【0021】
【発明の実施の形態】
以下、本発明の一実施形態を添付図面に基づいて説明する。
【0022】
図1は比例電磁切換弁等の電磁弁を高応答性をもって駆動するため、ハーフブリッジ駆動回路3を備えた駆動回路2に本発明を適用した場合を示す。
【0023】
駆動回路2は、入力端子21へ入力された指令入力電圧を、PWM変換回路7によってソレノイドコイル1へ流す電流に応じたデューティ比のパルス信号へ変換しており、PWM変換回路7からの電流はスイッチング手段としてのトランジスタTR1、TR2及びフライホイールダイオードD1、D2を主体に構成されたハーフブリッジ駆動回路3へ入力され、このハーフブリッジ駆動回路3は前記従来例と同様に電磁弁のソレノイドコイル1を駆動する。フライホイールダイオードD1、D2は、半導体スイッチとしてのトランジスタTR1、TR2がオフのとき、ソレノイドコイル1の回生電流を流す。
【0024】
ソレノイドコイル1に流れる電流iは、電流検出回路8によって検出されてPWM変換回路7へフィードバックされる。なお、図中基本波発振回路6はPWM変換回路7に基準周波数信号を供給し、ディザ回路5は電磁弁の膠着を抑制するためのディザ信号を電流iに加算する。
【0025】
そして、駆動回路2にはソレノイドコイル1の両端電圧の測定値に基づいて、ハーフブリッジ駆動回路3の異常を検知する異常検知回路4が設けられる。
【0026】
この異常検知回路4は、ソレノイドコイル1の両端電圧を検出する差動増幅回路4cと、差動増幅回路4cで検出された電流がオフのときの電圧波形をレベル化するクランプ電圧保持回路4bと、このレベル化されたクランプ電圧と所定の異常検知レベル設定電圧とを比較する比較器4aから構成される。
【0027】
まず、差動増幅回路4cはOPアンプIC1及び抵抗R2〜R6から構成され、検出電圧レベルが大きい(電源電圧以上となる)ので抵抗R2〜R6で減衰して適正なゲインに調整する。
【0028】
クランプ電圧保持回路4bは、ダイオードD3、抵抗R7、R8及びコンデンサC1より、充放電の時定数が違う平滑回路を構成しており、抵抗値はR7≫R8に設定される。すなわち、PWM周波数と同期した電流オフ時の検出電圧波形は、クランプ電圧保持回路4bでレベル化される。
【0029】
そして、比較器4aはOPアンプIC2、抵抗R9、R10から構成されて、レベル化されたクランプ保持電圧と異常検知レベルとを比較して異常状態であれば、出力端子22から異常検知信号を出力する。
【0030】
したがって、指令入力信号はソレノイドコイル1に流す電流に応じて、PWM変換回路7でオン/オフ時間のduty比を制御したPWM電流指令信号に変換され、図中(イ)では、図2の(イ)に示すようなパルスとなる。
【0031】
ソレノイドコイル1に供給される電流は図1の(ロ)において、図2の(ロ)に示す脈流の電流波形となり平均電流制御となる。
【0032】
ハーフブリッジ駆動回路3が正常に動作していると、差動増幅回路4cが検出した ソレノイドコイル1の端子電圧Vの波形は、図1の(ハ)において、図2の(ハ)に示すような矩形波となる。
【0033】
ここで、図2の(ハ)に示した正常時のソレノイドコイル1の端子電圧の検出値は、オン時にV×α、オフ時に−(V+2VF)×αとなり、このαは差動増幅回路4cのゲインであり、回路電圧に応じた適正値に予め設定される。なお、VFはダイオードD1、D2の順方向電圧降下である。
【0034】
いま、図2において、ハーフブリッジ駆動回路3が正常動作時のオフ時のコイル端子電圧波形(ハ)と短絡故障時の波形(ハ)’を比較すると、クランプ電圧保持値は正常時の(ニ)に対して短絡故障時には(ニ)’に示すようにその絶対値が減少する。なお、クランプ電圧保持値は、PWM周波数と同期して間欠的に出力されたものを、クランプ電圧保持回路4bでレベル化したものである。
【0035】
こうして、比較器4aでは、所定の異常検知レベルと、上記クランプ電圧とを比較して、クランプ電圧の方が小さいときに異常検知信号を出力し、この異常検知信号を図示しない上位制御装置や表示装置で処理することにより、どちらか一方のスイッチング手段が短絡故障したことを、確実に検知することができ、保守、修理を容易に行うことが可能となり、電磁弁駆動回路の信頼性を向上させる。
【0036】
ところで、ソレノイドコイル1に流れる電流iは、ソレノイドコイル1の端子間電圧をE、ソレノイドコイルのインダクタンスをL、抵抗をR、図示しないプランジャの位置をxとすると、次式より求めることができる。
【0037】
E=L di/dt+ix dL/dx+Ri
上式において、右辺の第1項は、自己誘導による逆起電力、第二項はプランジャの運動による逆起電力、第三項がソレノイドコイル1における電圧降下を表している。
【0038】
ここで、電流がオフのときのソレノイドコイル1の端子間電圧(E)はLdi/dtの微分項から、過渡的に非常に大きな逆起電圧が生じるため、通常はサージ電圧抑制回路を設けて抑制(クランプ)する。
【0039】
いま、電源電圧をV、ダイオードD1、D2の順方向電圧降下をVFとすると、ハーフブリッジ駆動回路3の2つのスイッチングトランジスタTR1、TR2が正常に動作していると、オフ時のクランプ電圧(E)はE=V+2VFとなるが、どちらか一方のスイッチングトランジスタが短絡故障しているとE=VFとなる。
【0040】
すなわち、正常時のクランプ電圧がV+2VF≫VFであることより、ハーフブリッジ駆動回路3では、電流がオフのときの回生電流の挙動が速くなり、高応答化が図れるが、どちらか一方のスイッチングトランジスタが短絡故障した状態では、電流の制御は可能であるが、回生電流の挙動が緩やかになって応答性は悪くなることが判る。
【0041】
これより、ソレノイドコイル1両端の電圧を検出して所定の異常検知レベルと比較することで、ソレノイドコイル1の駆動回路2の異常検知が可能となるのである。
【0042】
また、一般的に用いられている前記従来例のようなハイサイド・スイッチ、およびローサイド・スイッチ駆動回路では、クランプ電圧(E)はE=VFであり、ハーフブリッジ駆動回路3のどちらか一方のスイッチングトランジスタが短絡故障するとクランプ電圧(E)はE=VFとなり、回生電流の挙動が上記駆動回路2と同じとなることが判る。
【0043】
電磁弁の高応答化を図る回路としては、上記のようなハーフブリッジ駆動回路3の他、ハイサイド・スイッチ回路、およびローサイド・スイッチ回路とフライホイールダイオードの替わりにツェナーダイオードを用いた回路があるが、この回路においても上記と同様にして、短絡故障による異常の検知が可能であることが判る。すなわち、ツェナーダイオードのツェナー電圧をVzとすると、電流がオフのときの自己誘導による逆起電圧のクランプ電圧(E)をE=Vz、Vz≫VFとすれば高応答化が図れる。
【0044】
一般的に、比例電磁切換弁等の電磁弁のソレノイドコイル電流は、PWM駆動による平均制御であるが、ソレノイドコイル自身が過熱状態となるとコイル抵抗が大きくなるため、ソレノイドコイルへ供給する電流の制御領域が狭まり、大きな電流域では連続駆動となる。したがって、ソレノイドコイルの過熱に対しても上記異常検知回路4によって、異常の検知が可能である。
【0045】
【発明の効果】
したがって、本発明は、複数のスイッチング手段のうちのひとつが短絡故障すると、検出したオフ時のコイル両端電圧は減少して設定値を超えるため、ハーフブリッジ駆動回路の異常を確実に検出することができ、スイッチング手段のうちのひとつが短絡故障したことを確実に検知することで、保守、修理を容易に行うことが可能となり、電磁弁駆動回路の信頼性を向上させることができるのである。
【0046】
また、本発明は、オフ時の電圧の検出値を平滑化することにより、異常の判定を精度良く行うことができ、異常の検出精度を向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す電磁弁駆動回路のブロック図である。
【図2】同じく、作用を示すグラフで、PWM電流、コイル電流、正常時のコイル端子電圧(ハ)、短絡故障時のコイル端子電圧(ハ)’、正常時のクランプ電圧(ニ)及び短絡故障時のクランプ電圧(ニ)’と時間の関係を示す。
【図3】従来例を示し、フルブリッジ駆動回路の原理図である。
【図4】同じく、ハーフブリッジ駆動回路の原理図である。
【図5】同じく、ハイサイドスイッチ駆動回路の原理図である。
【図6】同じく、ローサイドスイッチ駆動回路の原理図である。
【符号の説明】
1 ソレノイドコイル
2 駆動回路
3 ハーフブリッジ駆動回路
4 異常検知回路
4a 比較器
4b クランプ電圧保持回路
4c 差動増幅回路
5 ディザ回路
6 基本波発振回路
7 PWM変換回路
8 電流検出回路

Claims (1)

  1. コイルへ供給される電流に応じて開閉駆動される電磁弁と、複数のスイッチング手段と及びこれらスイッチング手段と並列的に配設されたフライホイールダイオードとを有し、指令信号に応じたデューティ比で前記コイルへ電流を供給するハーフブリッジ駆動回路とを備えた電磁弁駆動回路において、前記コイルの両端電圧を検出し、電流がオフのときのクランプ電圧の検出値をレベル化する保持手段を備える電圧検知手段と、この電圧の検出値と予め設定された電圧とを比較して、検出値が設定値よりも小さいときに異常を判定する異常判定手段とを備えたことを特徴とする電磁弁駆動回路。
JP25042796A 1996-09-20 1996-09-20 電磁弁駆動回路 Expired - Fee Related JP3801273B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25042796A JP3801273B2 (ja) 1996-09-20 1996-09-20 電磁弁駆動回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25042796A JP3801273B2 (ja) 1996-09-20 1996-09-20 電磁弁駆動回路

Publications (2)

Publication Number Publication Date
JPH1096480A JPH1096480A (ja) 1998-04-14
JP3801273B2 true JP3801273B2 (ja) 2006-07-26

Family

ID=17207730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25042796A Expired - Fee Related JP3801273B2 (ja) 1996-09-20 1996-09-20 電磁弁駆動回路

Country Status (1)

Country Link
JP (1) JP3801273B2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0200024D0 (en) 2002-01-02 2002-02-13 Bae Systems Plc A switching circuit and a method of operation thereof
GB0200027D0 (en) * 2002-01-02 2002-02-13 Bae Systems Plc Improvements relating to operation of a current controller
GB0200030D0 (en) 2002-01-02 2002-02-13 Bae Systems Plc A switching circuit and a method of operation thereof
KR100784364B1 (ko) * 2002-02-08 2007-12-10 주식회사 만도 솔레노이드 구동 장치
US6889121B1 (en) * 2004-03-05 2005-05-03 Woodward Governor Company Method to adaptively control and derive the control voltage of solenoid operated valves based on the valve closure point
TWI314388B (en) * 2005-12-23 2009-09-01 Delta Electronics Inc Fan system and real-time stopping device thereof
JP2008078680A (ja) * 2007-11-05 2008-04-03 Komatsu Ltd ソレノイド駆動装置
JP5362241B2 (ja) * 2008-03-24 2013-12-11 株式会社小松製作所 比例電磁弁の駆動装置
JP5907412B2 (ja) * 2012-02-02 2016-04-26 株式会社デンソー 電磁弁駆動装置
CN103344807B (zh) * 2013-06-06 2015-04-08 杭州和利时自动化有限公司 电磁阀驱动电流监测电路
JP6254029B2 (ja) * 2014-03-27 2017-12-27 新電元工業株式会社 駆動制御装置及び故障検知方法
JP6929155B2 (ja) 2017-07-26 2021-09-01 Kyb株式会社 駆動回路の異常診断装置
JP2019044432A (ja) * 2017-08-31 2019-03-22 川崎重工業株式会社 電磁弁識別装置、及びそれを備える制御ユニット
DE102017122492A1 (de) 2017-09-27 2019-03-28 Dürr Systems Ag Applikator mit einer integrierten Steuerschaltung
CN110206637B (zh) * 2019-05-07 2021-07-09 一汽解放汽车有限公司 一种发动机气动执行器电磁阀驱动电路及控制方法
CN113639081B (zh) * 2021-06-28 2024-02-13 江苏汇智高端工程机械创新中心有限公司 一种比例电磁阀驱动装置及控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297881A (ja) * 1987-05-29 1988-12-05 Nachi Fujikoshi Corp 電磁弁の制御装置
JP2526379B2 (ja) * 1987-10-07 1996-08-21 工業技術院長 能動的磁気探査法
JPH03177669A (ja) * 1989-12-05 1991-08-01 Mitsubishi Electric Corp デューティソレノイドバルブ駆動装置
JPH0562826A (ja) * 1991-09-04 1993-03-12 Fuji Electric Co Ltd バルブ駆動用ソレノイドの電流制御回路
JP3375020B2 (ja) * 1994-07-12 2003-02-10 株式会社デンソー 双方向性流量制御弁の駆動回路
JP3167876B2 (ja) * 1995-02-02 2001-05-21 東京瓦斯株式会社 ソレノイドの動作状態検出装置

Also Published As

Publication number Publication date
JPH1096480A (ja) 1998-04-14

Similar Documents

Publication Publication Date Title
JP3801273B2 (ja) 電磁弁駆動回路
US5111378A (en) DC chopper converter
KR100306980B1 (ko) 전류제한솔레노이드드라이버
US4035708A (en) Stepping motor control circuit
JPH08207802A (ja) 電気アシスト・モータの制御方法及び装置
EP3432472B1 (en) Solenoid diagnostics digital interface
US20030222713A1 (en) Modulation scheme for switching amplifiers to reduce filtering requirements and crossover distortion
US5541806A (en) Dual current sensing driver circuit with switching energization andflyback current paths
JP2018536353A (ja) 消費装置の安全制御
US7701738B2 (en) Supply unit for a driver circuit and method for operating same
JP2012117589A (ja) 電磁比例弁駆動回路
US6291954B1 (en) Method and circuit arrangement for monitoring the operating state of a load
KR101867845B1 (ko) 자기부상 열차의 전력 이중화 시스템
JPH09196991A (ja) 故障検出回路及びその検出方法
JP3596415B2 (ja) 誘導性負荷駆動回路
JP4214948B2 (ja) 負荷駆動回路
JPH08191503A (ja) 電気自動車用制御装置
JP3517733B2 (ja) 同期発電機の自動電圧調整器
JP4103677B2 (ja) ソレノイドのディザー電流制御回路
JP3063407B2 (ja) 誘導性負荷の駆動回路
JP4234266B2 (ja) ステッピングモータの駆動回路
JPH07298402A (ja) インバータ回路の安全装置
WO2024057504A1 (ja) 電力変換装置
EP4407851A1 (en) Overcurrent protection method and device
JPH09233888A (ja) 車両用電動モータ制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060425

LAPS Cancellation because of no payment of annual fees