JP3798145B2 - 二次元画像検出器およびその製造方法 - Google Patents

二次元画像検出器およびその製造方法 Download PDF

Info

Publication number
JP3798145B2
JP3798145B2 JP07027098A JP7027098A JP3798145B2 JP 3798145 B2 JP3798145 B2 JP 3798145B2 JP 07027098 A JP07027098 A JP 07027098A JP 7027098 A JP7027098 A JP 7027098A JP 3798145 B2 JP3798145 B2 JP 3798145B2
Authority
JP
Japan
Prior art keywords
dimensional image
image detector
substrate
electrode
active matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07027098A
Other languages
English (en)
Other versions
JPH11274452A (ja
Inventor
良弘 和泉
修 寺沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP07027098A priority Critical patent/JP3798145B2/ja
Publication of JPH11274452A publication Critical patent/JPH11274452A/ja
Application granted granted Critical
Publication of JP3798145B2 publication Critical patent/JP3798145B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、X線などの放射線、可視光、赤外光などの画像を検出できる二次元画像検出器と、その製造方法に関するものである。
【0002】
【従来の技術】
従来より、放射線の二次元画像検出器として、X線を感知して電荷(電子−正孔)を発生する半導体センサーを二次元状に配置し、これらのセンサーにそれぞれ電気スイッチを設けて、各行毎に電気スイッチを順次オンにして各列毎にセンサーの電荷を読み出すものが知られている。このような二次元画像検出器は、例えば、文献「D.L.Lee,et al.,"A New Digital Detector for Projection Radiography",SPIE,2432,pp.237-249,1995」、「L.S.Jeromin,et al.,"Application ofa-Si Active-Matrix Technology in a X-Ray Detector Panel",SID 97 DIGEST,pp.91-94,1997」、および特開平6−342098号公報などに具体的な構造や原理が記載されている。
【0003】
以下、前記従来の放射線二次元画像検出器の構成と原理について説明する。
【0004】
図7は、前記従来の放射線二次元画像検出器の構造を模式的に示した図である。また、図8は、1画素当たりの構成断面を模式的に示した図である。
【0005】
前記放射線二次元画像検出器は、図7および図8に示すように、ガラス基板51上にXYマトリクス状の電極配線(ゲート電極52とソース電極53)、薄膜トランジスタ(TFT)54、電荷蓄積容量(Cs)55などが形成されたアクティブマトリクス基板を備えている。また、このアクティブマトリクス基板上には、そのほぼ全面に、光導電膜56、誘電体層57および上部電極58が形成されている。
【0006】
前記電荷蓄積容量55は、Cs電極59と、前記薄膜トランジスタ54のドレイン電極に接続された画素電極60とが、絶縁層61を介して対向している構成である。
【0007】
前記光導電膜56は、X線などの放射線が照射されることで電荷(電子−正孔)が発生する半導体材料が用いられるが、前記文献によれば、暗抵抗が高く、X線照射に対して良好な光導電特性を示すアモルファスセレニウム(a−Se)が用いられている。この光導電膜(a−Se)56は、真空蒸着法によって300〜600μmの厚みで形成されている。
【0008】
また、前記アクティブマトリクス基板は、液晶表示装置を製造する過程で形成されるアクティブマトリクス基板を流用することが可能である。例えば、アクティブマトリクス型液晶表示装置(AMLCD)に用いられるアクティブマトリクス基板は、アモルファスシリコン(a−Si)やポリシリコン(p−Si)によって形成された薄膜トランジスタ(TFT)や、XYマトリクス電極、電荷蓄積容量(Cs)を備えた構造になっている。したがって、若干の設計変更を行うだけで、放射線二次元検出器用のアクティブマトリクス基板として利用することが容易である。
【0009】
次に、前記構造の放射線二次元画像検出器の動作原理について説明する。
【0010】
前記a−Se膜などの光導電膜56に放射線が照射されると、光導電膜56内に電荷(電子−正孔)が発生する。図7および図8に示すように、光導電膜56と電荷蓄積容量(Cs)55は電気的に直列に接続された構造になっているので、上部電極58とCs電極59間との間に電圧を印加しておくと、光導電膜56で発生した電荷(電子−正孔)がそれぞれ+電極側と−電極側に移動し、その結果、電荷蓄積容量(Cs)55に電荷が蓄積される仕組みになっている。なお、光導電膜56と電荷蓄積容量(Cs)55との間には、薄い絶縁層からなる電子阻止層62が形成されており、これが一方側からの電荷の注入を阻止する阻止型フォトダイオードの役割を果たしている。
【0011】
前記の作用で、電荷蓄積容量(Cs)55に蓄積された電荷は、ゲート電極G1、G2、G3、…、Gnの入力信号によって薄膜トランジスタ(TFT)54をオープン状態にすることでソース電極S1、S2、S3、…、Snより外部に取り出すことが可能である。電極配線(ゲート電極52とソース電極53)、薄膜トランジスタ(TFT)54、および電荷蓄積容量(Cs)55などは、すべてXYマトリクス状に設けられているため、ゲート電極G1、G2、G3、…、Gnに入力する信号を線順次に走査することで、二次元的にX線の画像情報を得ることが可能となる。
【0012】
なお、前記二次元画像検出器は、使用する光導電膜56がX線などの放射線に対する光導電性だけでなく、可視光や赤外光に対しても光導電性を示す場合は、可視光や赤外光の二次元画像検出器としても作用する。
【0013】
【発明が解決しようとする課題】
ところで、前記従来の放射線二次元検出器では、光導電膜56としてa−Seを用いており、このa−Seは、アモルファス材料特有の光電流の分散型伝導特性を有していることから応答性が悪く、また、a−SeのX線に対する感度(S/N比)が十分でないため、長時間X線を照射して電荷蓄積容量(Cs)55を十分に充電してからでないと情報を読み出すことができないといった欠点を持ち合わせている。
【0014】
また、X線の照射時に漏れ電流が原因で電荷が電荷蓄積容量に蓄積することの防止、およびリーク電流(暗電流)の低減や高電圧保護の目的で、光導電膜(a−Se)56と上部電極58との間に誘電体層57が設けられているが、この誘電体層57に残留する電荷を1フレーム毎に除去するシーケンスを付加する必要があるため、前記放射線二次元検出器は静止画の撮影にしか利用することができないといった問題を生じていた。
【0015】
これに対し、動画に対応した画像データを得るためには、a−Seの代わりに、結晶(もしくは多結晶)材料で、かつX線に対する感度(S/N比)の優れた光導電膜56を利用する必要がある。光導電膜56の感度が向上すれば、短時間のX線照射でも電荷蓄積容量(Cs)55を十分に充電できるようになり、また、光導電膜56に高電圧を印加する必要がなくなるため、誘電体層57自身も不要となる。
【0016】
このような、X線に対する感度が優れた光導電材料としては、CaTeやCdZnTeなどが知られている。一般に、X線の光電吸収は吸収物質の実効原子番号の5乗に比例するため、例えば、Seの原子番号が34、CdTeの実効原子番号が50とすると、約6.9倍の感度の向上が期待できる。ところが、前記放射線二次元検出器の光導電膜として、a−Seの代わりにCaTeやCdZnTeを利用しようとすると、以下のような問題が生じる。
【0017】
従来のa−Seの場合、成膜方法としては真空蒸着法を用いることができ、この時の成膜温度は常温で可能なため、上述のアクティブマトリクス基板上への成膜が容易であった。これに対して、CdTeやCdZnTeの場合は、MBE法やMOCVD法による成膜法が知られており、特に大面積基板への成膜を考慮するとMOCVDが適した方法と考えられる。
【0018】
しかしながら、MOCVD法でCdTeやCdZnTeを成膜する場合、原料である有機カドミウム(DMCd)の熱分解温度が約300℃、有機テルル(DETeやDiPTe)の熱分解温度が各々約400℃、約350℃であるため、成膜には約400℃の高温が要求される。
【0019】
一般に、アクティブマトリクス基板に形成されている前述の薄膜トランジスタ(TFT)54は、半導体層としてa−Si膜やp−Si膜を用いているが、半導体特性を向上させるために300〜350℃程度の成膜温度で水素(H2)を付加しながら成膜されている。このようにして形成されるTFT素子の耐熱温度は約300℃であり、TFT素子をこれ以上の高温に曝すとa−Si膜やp−Si膜から水素が抜け出し半導体特性が劣化してしまう。
【0020】
したがって、上述のアクティブマトリクス基板上に、MOCVD法を用いてCdTeやCdZnTeを成膜することは、成膜温度の観点から事実上困難であった。
【0021】
本発明は、上述したような問題点に臨みてなされたものであって、その目的とするところは、アクティブマトリクス基板上に300℃以下の低温でCdTeやCdZnTeなどの半導体材料を形成することで、応答性がよく、動画像にも対応できる二次元画像検出器およびその製造方法を提供することにある。
【0022】
【課題を解決するための手段】
本発明の二次元画像検出器は、格子状に配列された電極配線と、各格子点毎に設けられた複数のスイッチング素子と、該スイッチング素子を介して前記電極配線に接続される画素電極を含む電荷蓄積容量とからなる画素配列層と、前記画素配列層のほぼ全面に対向して形成される電極部と、前記画素配列層および電極部の間に形成され、光導電性を有する半導体層とを備えてなる二次元画像検出器において、前記画素配列層を含むアクティブマトリクス基板と、前記電極部および半導体層を含む対向基板とを備えており、前記アクティブマトリクス基板の画素電極と、前記対向基板の半導体層とが対向するように両基板が配置されるとともに、該両基板は、接着性を有する導電粒子である接着性導電粒子によって接続されていることを特徴としており、そのことにより、上記目的が達成される。
【0023】
また、前記二次元画像検出器において、前記半導体層が、放射線に対して感度を有することを特徴としている。
【0024】
また、前記二次元画像検出器において、前記半導体層が、CdTeもしくはCdZnTe化合物半導体であることを特徴としている。
【0025】
また、前記二次元画像検出器において、前記接着性導電粒子が、導電粒子の表面に熱硬化型接着剤をコートしたものであることを特徴としている。
【0026】
また、前記二次元画像検出器において、前記接着性導電粒子が、100〜1000個/mm2の密度で散布されていることを特徴としている。
【0027】
また、前記二次元画像検出器において、前記対向基板の半導体層表面に、前記アクティブマトリクス基板上に形成されている各画素電極に対応して、複数の接続電極が形成されていることを特徴としている。
【0028】
また、前記二次元画像検出器において、前記対向基板は、光導電性を有する半導体層自身が支持基板であることを特徴としている。
【0029】
また、前記二次元画像検出器において、前記対向基板は、検出する光や放射線を透過する基板を支持基板とし、該支持基板上に光導電性を有する半導体膜が形成されていることを特徴としている。
【0030】
本発明の二次元画像検出器の製造方法は、格子状に配列された電極配線と、各格子点毎に設けられた複数のスイッチング素子と、該スイッチング素子を介して前記電極配線に接続される画素電極を含む電荷蓄積容量とからなる画素配列層と、前記画素配列層のほぼ全面に対向して形成される電極部と、前記画素配列層および電極部の間に形成され、光導電性を有する半導体層とを備えてなる二次元画像検出器の製造方法において、前記画素配列層を含むアクティブマトリクス基板を作製する工程と、前記電極部および半導体層を含む対向基板を作製する工程と、前記アクティブマトリクス基板および対向基板のどちらか一方の表面に、接着性を有する導電粒子を散布した後、該両基板を貼り合わせて接続する工程と、を含むことを特徴としており、そのことにより、上記目的が達成される。
【0031】
また、前記二次元画像検出器の製造方法における前記アクティブマトリクス基板と対向基板とを貼り合わせて接続する工程において、前記接着性を有する導電粒子を散布した後、該両基板を減圧プレス方式でプレスしながら加熱処理を施して貼り合わせることを特徴としている。
【0032】
また、前記二次元画像検出器の製造方法における前記アクティブマトリクス基板と対向基板とを貼り合わせて接続する工程において、前記接着性を有する導電粒子を散布した後、該両基板を加圧プレス方式でプレスしながら加熱処理を施して貼り合わせることを特徴としている。
【0033】
以下、本発明の二次元画像検出器およびその製造方法による作用について説明する。
【0034】
本発明の二次元画像検出器によれば、格子状に配列された電極配線と、各格子点毎に設けられた複数のスイッチング素子と、該スイッチング素子を介して前記電極配線に接続される画素電極を含む電荷蓄積容量とからなる画素配列層とを含むアクティブマトリクス基板の画素電極と、光導電性を有する半導体層がほぼ全面に具備された対向基板の半導体層とが、接着性を有する導電粒子である接着性導電粒子によって、電気的および物理的に接続されていることにより、従来半導体層の成膜温度とアクティブマトリクス基板の耐熱性との関係で、アクティブマトリクス基板上に直接成膜することができなかった半導体材料を、前記半導体層として使用することが可能になる。
【0035】
この時、前記両基板を接着性を有する導電粒子によって接続していることにより、各画素電極毎に電気的絶縁性は確保され、隣り合う画素電極同士のクロストークも発生せず、なおかつアクティブマトリクス基板上の画素電極と半導体層とを電気的および物理的に接続することが可能になる。
【0036】
また、前記二次元画像検出器において、前記半導体層が放射線に対して感度を有していることにより、放射線に対する二次元画像検出器を実現することが可能になる。なお、このような構成により使用可能な半導体材料としては、例えば、CdTeもしくはCdZnTe化合物半導体が挙げられるが、これらの半導体材料は、従来用いられていたa−Seに比べて、X線などの放射線に対する感度が高く、前記半導体層にCdTeもしくはCdZnTe化合物半導体を用いる場合には、二次元画像検出器の応答性が向上し、動画の撮影も可能になる。
【0037】
また、前記二次元画像検出器において、前記接着性導電粒子が導電粒子の表面に熱硬化型接着剤をコートしたものであることにより、金属やITOなどの導電粒子であっても接着性を付加することにより、二次元画像検出器への使用が可能になる。
【0038】
また、前記二次元画像検出器において、前記接着性導電粒子が100〜1000個/mm2の密度で散布されていることにより、全画素電極への確実な粒子の配置と、画素電極毎の電気的絶縁性を同時に得ることが可能になる。
【0039】
また、前記二次元画像検出器において、前記対向基板の半導体層表面に、前記アクティブマトリクス基板上に形成されている各画素電極に対応して、複数の接続電極が形成されていることにより、対向基板上の半導体層における画素電極間が電気的に分離され、放射線や光線の入射によって半導体層内で発生した電荷が入射位置に対応した接続電極にのみ収集され、周囲の画素電極に回り込むことがなくなるため、電気的クロストークを抑制することが可能になる。
【0040】
なお、このとき、前記複数の画素電極の面積を前記複数の接続電極の面積よりも小さく構成しておくことにより、X線や光線の入射により半導体層内で発生した電荷を効率良く収集することができるとともに、アクティブマトリクス基板と対向基板との貼り合わせ時に位置ずれが生じたとしても、隣接画素との電気的クロストークを抑制することが可能になる。
【0041】
また、前記二次元画像検出器において、前記対向基板が光導電性を有する半導体層自身を支持基板にしていることにより、ブリッジマン法やグラディエントフリーズ法、トラベルヒーティング法などによって得られる結晶性半導体基板を利用することが可能になる。
【0042】
また、前記二次元画像検出器において、前記対向基板が検出する光や放射線を透過する基板を支持基板とし、該支持基板上に光導電性を有する半導体膜を形成していることにより、対向基板自身の強度を増すことが可能になる。
【0043】
本発明の二次元画像検出器の製造方法によれば、格子状に配列された電極配線と、各格子点毎に設けられた複数のスイッチング素子と、該スイッチング素子を介して前記電極配線に接続される画素電極を含む電荷蓄積容量とからなる画素配列層とを含むアクティブマトリクス基板と、光導電性を有する半導体層がほぼ全面に具備された対向基板とが、接着性を有する導電粒子を散布した後、両基板を貼り合わせて接着していることにより、大面積のアクティブマトリクス基板と対向基板との貼り合わせの際でも、接着性を有する導電粒子を簡便に均一な密度で散布することが可能になる。
【0044】
また、前記二次元画像検出器の製造方法における前記アクティブマトリクス基板と対向基板とを貼り合わせて接続する工程において、前記接着性を有する導電粒子を散布した後、該両基板を減圧プレス方式でプレスしながら加熱処理を施して貼り合わせていることにより、大面積のアクティブマトリクス基板と対向基板との貼り合わせの際でも、均一にプレスすることが可能になる。
【0045】
また、前記二次元画像検出器の製造方法における前記アクティブマトリクス基板と対向基板とを貼り合わせて接続する工程において、前記接着性を有する導電粒子を散布した後、該両基板を加圧プレス方式でプレスしながら加熱処理を施して貼り合わせていることにより、汎用的な熱プレス装置を使用することが可能になる。
【0046】
【発明の実施の形態】
以下、本発明の実施の形態について 図面を参照しながら詳細に説明する。
【0047】
(実施の形態1)図1は、本発明の実施の形態1に係る二次元画像検出器を示すものであり、該二次元画像検出器の全体構成の概略を示す断面図であり、図2は、その二次元画像検出器の1画素当たりの構成を示す断面図である。
【0048】
本実施の形態1における二次元画像検出器は、図1に示すように、スイッチング素子としての薄膜トランジスタ(TFT)5と画素電極14とが形成されたアクティブマトリクス基板1と、接続電極6が形成された対向基板2とが、接着性導電粒子3により貼り合わされた構成となっている。
【0049】
このアクティブマトリクス基板1は、液晶表示装置を製造する過程で形成されるアクティブマトリクス基板と同じプロセスで形成することが可能である。具体的に説明すれば、図2に示すように、ガラス基板7上に、XYマトリクス状の電極配線(ゲート電極8とソース電極9)、薄膜トランジスタ(TFT)5、電荷蓄積容量(Cs)4などにより画素配列層が構成されている。
【0050】
前記ガラス基板7には、無アルカリガラス基板(例えばコーニング社製#7059や#1737)を用い、その上にTaなどの金属膜からなるゲート電極8を形成する。ゲート電極8は、Taなどをスパッタ蒸着で約3000Å成膜した後、所望の形状にパターニングして得られる。この際、同時に電荷蓄積容量(Cs電極)4も形成する。次に、SiNxやSiOxからなる絶縁膜11を、CVD法で約3500Å成膜して形成する。この絶縁膜11は、前記薄膜トランジスタ(TFT)5のゲート絶縁膜および電荷蓄積容量(Cs)4の電極間の誘電層として作用する。なお、絶縁膜11として、SiNxやSiOxだけでなく、ゲート電極8とCs電極4とを陽極酸化した陽極酸化膜を併用してもよい。
【0051】
次に、薄膜トランジスタ(TFT)5のチャネル部となるa−Si膜(i層)12と、ソース・ドレイン電極とのコンタクトを図るa−Si膜(n+層)13とを、CVD法で各々約1000Å、約400Å成膜した後、所望の形状にパターニングする。次に、TaやAlなどの金属膜からなるソース電極9とドレイン電極(画素電極14にも兼用)とを形成する。このソース電極9と画素電極14とは、前記金属膜をスパッタ蒸着で約3000Å成膜した後、所望の形状にパターニングすることで得られる。
【0052】
その後、画素電極14の開口部以外の領域を絶縁保護する目的で、絶縁保護膜15を形成する。この絶縁保護膜15は、SiNxやSiOxからなる絶縁膜をCVD法で約6000Å成膜した後、所望の形状にパターニングすることで得られる。なお、この絶縁保護膜15には、無機の絶縁膜の他に、アクリルやポリイミドなどの有機膜を使用することも可能である。このようにして、アクティブマトリクス基板1が形成される。
【0053】
なお、ここでは、前記アクティブマトリクス基板1のTFT素子として、a−Siを用いた逆スタガ構造のTFT5を用いたが、これに限定されるものではなく、p−Siを用いても良いし、スタガ構造にしても良い。また、前記アクティブマトリクス基板1は、液晶表示装置を製造する過程で形成されるアクティブマトリクス基板と同じプロセスで形成することが可能である。
【0054】
一方、対向基板2は、X線などの放射線に対して光導電性を有する半導体基板(光導電体基板)16を支持基板としている。ここでは、CdTeもしくはCdZnTeといった化合物半導体を用いる。前記半導体基板16の厚みは約0.5mmである。この半導体基板16は、ブリッジマン法やグラディエントフリーズ法、トラベルヒーティング法などによって、容易に結晶基板を形成することが可能である。前記半導体基板16の一方の面のほぼ全面に、AlなどのX線を透過しやすい金属によって上部電極17を形成する。また、他方の面には、厚さ約1000ÅのAlOxからなる絶縁層である電子阻止層18をほぼ全面に形成した後、TaやAlなど金属膜をスパッタ蒸着で約2000Å成膜し、所望の形状にパターニングすることで接続電極6を形成する。前記接続電極6は、アクティブマトリクス基板に形成された画素電極14と対応する位置に形成される。
【0055】
次に、上述したようなプロセスによって形成された両基板(アクティブマトリクス基板1および対向基板2)のうち、少なくとも一方側の基板の表面(接続面)に接着性を有する導電粒子3を一定の密度で散布配置し、その後、画素電極14と接続電極6とが各々対向するように向かい合わせ、圧着することにより前記両基板が電気的および物理的に接続され、本実施の形態1における二次元画像検出器が形成される。
【0056】
なお、このとき、上述した接着性を有する導電粒子3としては、金属やITOなどからなる球状の導電粒子の表面にエポキシ系接着剤をコートしたものを用いている。なお、エポキシ系接着剤は、約160℃の加熱処理で硬化が促進するものを用いている。
【0057】
ここで、図2および図3を用いて、上述した二次元画像検出器の動作原理について説明する。図3は、本実施の形態1における二次元画像検出器の1画素当たりの等価回路を示す回路図である。
【0058】
CdTeやCdZnTeからなる半導体基板(光導電体基板)16にX線が入射すると、光導電効果によりこの半導体基板16に電荷(電子−正孔)が発生する。この時、電荷蓄積容量(Cs)4と半導体基板16とは、画素電極14/接着性導電粒子3/接続電極6を介して直列に接続された構造になっているので、上部電極17とCs電極4との間に電圧を印加しておくと、半導体基板16内で発生した電荷(電子−正孔)がそれぞれ+電極側と−電極側に移動し、その結果、電荷蓄積容量(Cs)4に電荷が蓄積される仕組みになっている。
【0059】
なお、半導体基板16と接続電極6との間には、薄い絶縁層からなる電子阻止層18が形成されており、これが一方側からの電荷の注入を阻止するMIS(Metal−Insulator−semiconductor)構造の阻止型フォトダイオードの役割を果たしており、X線が入射しない時の暗電流の低減に寄与している。すなわち、上部電極17側に正電圧を印加した場合、電子阻止層18は接続電極6から半導体基板(光導電体)16への電子の注入を阻止する働きをする。なお、半導体基板(光導電体)16と上部電極17との間にも絶縁層を設け、上部電極17から半導体基板(光導電体)16への正孔の注入も阻止し、更なる暗電流低減を図る場合もある。
【0060】
この阻止型フォトダイオードの構造としては、前記MIS構造の他にも、CdTe/CdSなどの積層膜を用いたヘテロ接合構造、PIN接合構造、ショットキー接合構造を用いることも、もちろん可能である。
【0061】
前記の作用により、電荷蓄積容量(Cs)4に蓄積された電荷は、ゲート電極8の入力信号によって薄膜トランジスタ(TFT)5をオープン状態にすることでソース電極9より外部に取り出すことが可能である。電極配線(ゲート電極8とソース電極9)、薄膜トランジスタ(TFT)5、電荷蓄積容量(Cs)4などは、従来例の図7にも示すように、すべてXYマトリクス状に設けられているため、ゲート電極G1、G2、G3、…、Gnに入力する信号を線順次に走査することで、二次元的にX線の画像情報を得ることが可能となる。このように、基本的な動作原理は、従来例に示した画像検出器と同様である。
【0062】
前記のごとく、本実施の形態1における二次元画像検出器は、格子状の電極配線と各格子点毎に設けられた複数の薄膜トランジスタ(TFT)5と複数の画素電極14とが具備されたアクティブマトリクス基板1と、光導電性を有する半導体基板16がほぼ全面に具備された対向基板とが、接着性を有する導電粒子3により電気的および物理的に接着されている構成である。
【0063】
したがって、従来の画像検出器のように、光導電半導体を直接アクティブマトリクス基板上に成膜する場合に問題となっていた、アクティブマトリクス基板の耐熱性に起因する光導電体の成膜温度の制限が、本実施の形態1の構成では緩和される。この結果、従来ではアクティブマトリクス基板上に直接成膜できなかった半導体材料を、容易に画像検出器に使用することが可能になる。
【0064】
この場合、アクティブマトリクス基板の耐熱性から、接着性導電粒子3にコートされている接着剤の硬化に要する温度が制限されることになる。しかしながら、通常アクティブマトリクス基板は250℃程度の耐熱性を有していることから、この温度以下で硬化が促進する接着剤を選びさえすればよく、前記半導体材料にCdTeやCdZnTeを使用するうえでは全く障害にはならない。
【0065】
また、前記理由により、半導体基板(光導電体基板)16としてCdTeやCdZnTeを用いることができるため、従来のa−Seを用いた二次元画像検出器に比べてX線に対する感度が向上するとともに、半導体基板16と上部電極17間に誘電体層を設ける必要がなくなり、動画に対応する画像データ、すなわち33msec/framのレートで画像データを得ることが可能になった。
【0066】
また、前記構造の二次元画像検出器は、半導体基板16の貼り合わせ面に、アクティブマトリクス基板1上に形成されている複数の画素電極14に対応して各画素毎に独立された接続電極6が形成されている。これにより、対向基板2の半導体基板16上の画素間が電気的に分離され、放射線や光線の入射により半導体基板16内で発生した電荷が、入射位置に対応した接続電極6にのみ収集され、周囲の画素に回り込むことなく電気的クロストークが抑制される。
【0067】
さらに、図に示すように、半導体基板側に、1画素内でできるだけ大きなサイズの接続電極6を形成し、各画素における画素電極14と接続電極6との面積の関係を、(画素電極面積)<(接続電極面積)と設定しておくことで、X線や光線の入射により半導体基板16内で発生した電荷を効率良く収集できるとともに、アクティブマトリクス基板1と対向基板2との貼り合わせ時に位置ずれが生じたとしても、隣接画素との電気的クロストークを抑制することが可能になる。本実施の形態1では、ピッチ150μmの画素配列に対し、画素電極14の形状を一辺が約80μmのほぼ正方形とし、接続電極6の形状を一辺が約120μmのほぼ正方形とすることで、アクティブマトリクス基板1および対向基板2の貼り合わせずれに対し、±20μmのマージンを確保することができた。
【0068】
次に、本実施の形態1で用いる接着性導電粒子3ついて、さらに詳細に説明する。上述したように、本実施の形態1では、金属やITOなどからなる球状の導電粒子の表面にエポキシ系接着剤をコートしたものを用いている。ここで用いているエポキシ系接着剤は、約160℃の加熱処理で硬化が促進するものである。球状の導電粒子としては、Niなどの金属粒子、Niなどの金属粒子にAuメッキを施した金属粒子、またはプラスチック粒子にAu/Niメッキを施したプラスチック粒子、ITOなどの透明導電粒子などがある。本実施の形態1においては、アクティブマトリクス基板1および対向基板2の厚みバラツキを吸収する為に、弾力性に優れたプラスチック粒子にAu/Niメッキを施したものを用いた。このプラスチック粒子としては、直径が約5μmのものを用い、また、使用できる接着剤としては、熱硬化型、熱可塑型、光硬化型のものがあるが、接着強度に優れるエポキシ系の熱硬化型接着剤を用いた。
【0069】
また、接着性導電粒子3の散布密度であるが、密度が高すぎると粒子同士の凝集が多くなり、画素間での電気的短絡の原因となる。また逆に、密度が小さすぎると粒子の存在しない画素の発生確率があがるといった問題が生じる。そこで、画素ピッチ150μmのアクティブマトリクス基板1上に、上述した直径約5μmの接着性導電粒子3を密度をパラメータにして散布したところ、散布密度を1000個/mm2以上にすると急激に画素間の電気的短絡が増加し、また、散布密度を100個/mm2以下にすると急激に粒子の存在しない画素の発生確率があがることが判明した。すなわち、散布密度を100〜1000個/mm2の割合で散布することが望ましい。そこで、本実施の形態1においては、約700個/mm2の密度で接着性導電粒子3を散布配置した。
【0070】
以下に、前記接着性導電粒子3を用いて、アクティブマトリクス基板1と対向基板を貼り合わせる際の具体的な方法について説明する。図4(a)〜(c)は、両者の基板の貼り合わせプロセスを示す図面である。
【0071】
先ず、図4に示すように、粒子散布装置によって、アクティブマトリクス基板1と対向基板2とのどちらか一方側の貼り合わせ面のほぼ全面に、接着性導電粒子3を適当な密度で散布する(図4ではアクティブマトリクス基板1を使用)。このときに用いる粒子散布装置としては、主に液晶表示装置(LCD)の製造過程で、液晶パネル間に介在させる間隔保持材(スペーサー)を散布配置させる際に使用するスペーサ散布装置を用いることができる。散布方法としては、主に図4(a)に示すような湿式散布方法と図4(b)に示すような乾式散布方法との2種類がある。
【0072】
ここで、湿式散布方法とは、図4(a)に示すように、容器21内に接着性導電粒子3が分散されたフロンガスやアルコールなどの揮発性の高い溶剤22を準備し、この分散溶液を塗布用スプレーノズル23を用いてチャンバー24内に霧状に噴射する方法である。この時、霧状に噴出された分散溶液は、チャンバー24の側壁に設けられたヒータ25の加熱により溶剤だけが蒸発して、接着性導電粒子3だけがアクティブマトリクス基板1上に降下する。
【0073】
また、乾式散布方法とは、図4(b)に示すように、2〜5kgf/cm2の圧力で接着性導電粒子3を圧送・噴出させる方法である。まず、秤量部26で秤量された接着性導電粒子3は、ブローによりマニホールド27を介して圧送配管内に送られる。次に、圧送用のガスでノズル28まで圧送され、ノズル28でガスタンク29内の攪拌用ガスと合流し、チャンバー30内に噴出してアクティブマトリクス基板1上に降下する。
【0074】
上述したようなどちらの方法を用いても、接着性導電粒子3のアクティブマトリクス基板1上への散布は可能であるが、接着性導電粒子3に用いているエポキシ系接着剤の溶剤への溶出を懸念し、本実施の形態1においては、乾式散布方法を採用した。なお、接着性導電粒子3は、上述したような理由により、約700個/mm2の密度になるよう散布した。
【0075】
その後、図4(c)に示すように、両基板1、2を僅かな間隔を設けた状態で対向配置させた状態で、減圧(真空)プレス装置を用いて加熱プレス処理を行う。減圧(真空)プレス方法とは、プレスすべき基板1、2間の隙間を減圧することで、外部からの大気圧を利用してプレスを行う方法であり、大面積基板同士を貼り合わせる際でも、均一にプレスすることが可能となる。
【0076】
具体的に説明すると、まず定盤として使用する土台(ステージ)31に、プレス対象となる両基板1、2を載せ、さらにその上にフィルムシート32を覆い被せる。次に、土台31に設けられた穴33から排気を行うことで、土台31とフィルムシート32との間を減圧する。本実施の形態1の場合には、両基板(アクティブマトリクス基板1と対向基板2)の間隙は、ほぼ接着性導電粒子3の径に相当する隙間が形成されているが、その隙間についても減圧されることになる。この結果、両基板1、2は、フィルムシート32を介して大気圧でプレスされることになる。例えば、前記接着性導電粒子3は0.8kgf/cm2程度の加圧力で接着が可能なため、前記減圧プレスが適用可能である。
【0077】
このようにして、減圧(真空)プレス装置を用いて両基板1、2をプレスした状態で、装置自身をオーブンなどを利用して約100℃で30分程度の予備加熱を行った後、160℃以上に加熱することにより、接着性導電粒子3の接着剤部分が熱硬化し、両基板1、2の接着が完了する。この予備加熱は、接着性導電粒子3表面にコートされているエポキシ系接着剤を溶かし、接着面と接着剤とをなじませる役割をもっている。なお、土台31の内部にヒーターを内臓しておき、そのヒーターで加熱する方法を利用してもよい。
【0078】
このような貼り合わせプロセスでは、アクティブマトリクス基板1と対向基板2との少なくとも一方側の表面に、接着性を有する導電粒子3を湿式または乾式の散布法によって散布した後、両基板1、2を貼り合わせて接着することを特徴としている。したがって、大面積のアクティブマトリクス基板1と対向基板2との貼り合わせの際でも、接着性を有する導電粒子3を簡便に均一な密度で散布することが可能となっている。
【0079】
また、減圧(真空)プレス装置を用いているので、大気圧を利用してプレスを行うことができ、大面積基板同士を貼り合わせる際でも、均一にプレスすることが可能となる。ちなみに、一般的な剛体を用いた加圧プレスの場合、プレスされる基板表面の平坦性と、プレスする剛体表面の平坦性とが合致しない場合、面内でのプレス圧にばらつきが生じる場合があり、このようなばらつきは、特に基板サイズが大きくなるほど顕著に表れる傾向がある。
【0080】
なお、接着に要求される加圧力が1kgf/cm2以上の時には、大気圧では加圧できないので、一般的な加圧(油圧)プレス装置でプレスし熱圧着することが可能である。また、貼り合わせる基板の面積が比較的小さい場合には、加圧プレスを用いても均一なプレス力を得ることができるので、汎用的な熱プレス装置を使用することも可能である。
【0081】
(実施の形態2)本発明に係る二次元画像検出器に用いられるアクティブマトリクス基板は、図2に示した構造に限定されるものではなく、上述した実施の形態1で示した二次元画像検出器の他の構成について以下に説明する。図5は、本発明の実施の形態2に係る二次元画像検出器を示すものであり、該二次元画像検出器の1画素当たりの構成を示す断面図である。
【0082】
なお、本実施の形態2に係る二次元画像検出器の構成は、図2に示した本実施の形態1に係る二次元画像検出器の構成と類似しているため、図2で用いた部材と同一の機能を有する部材については同一の部材番号を付記し、その説明を省略する。
【0083】
図5に示すように、本実施の形態2における二次元画像検出器は、本実施の形態1に係る二次元画像検出器と同様に、ガラス基板7上にXYマトリクス状の電極配線(ゲート電極8とソース電極9)、薄膜トランジスタ(TFT)5、電荷蓄積容量(Cs)4などが形成されている。
【0084】
このガラス基板7には、無アルカリガラス基板(例えばコーニング社製#7059や#1737)を用い、その上にTaなどの金属膜からなるゲート電極8を形成する。ゲート電極8は、Taなどをスパッタ蒸着で約3000Å成膜した後、所望の形状にパターニングして得られる。この際、同時に電荷蓄積容量電極(Cs電極)4も形成される。次に、SiNxやSiOxからなる絶縁膜11をCVD法で約3500Å成膜して形成する。この絶縁膜11は、前記薄膜トランジスタ(TFT)5のゲート絶縁膜および電荷蓄積容量(Cs)4の電極間の誘電層として作用する。なお、絶縁膜11として、SiNxやSiOxだけでなく、ゲート電極8とCs電極4とを陽極酸化した陽極酸化膜を併用してもよい。
【0085】
次に、薄膜トランジスタ(TFT)5のチャネル部となるa−Si膜(i層)12と、ソース・ドレイン電極とのコンタクトを図るa−Si膜(n+層)13とをCVD法で各々約1000Å、約400Å成膜した後、所望の形状にパターニングする。次に、TaやAlなどの金属膜からなるソース電極9とドレイン電極41とを形成する。このソース電極9とドレイン電極41とは、上記金属膜をスパッタ蒸着で約3000Å成膜した後、所望の形状にパターニングすることで得られる。
【0086】
その後、アクティブマトリクス基板40のほぼ全面を覆う形で、絶縁保護膜42を約3μmの厚みでコートする。この絶縁保護膜42には、感光性を有する有機絶縁膜、例えばアクリル樹脂などを用いる。その後、絶縁保護膜42をフォトリソグラフィ技術でパターニングし、所定の場所にスルーホール43を形成する。次に、絶縁保護膜42の上に、Al、Ti、ITOなどの導電膜からなる画素電極29をスパッタ蒸着法で約2000Å成膜し、所望の形状にパターニングする。この時、保護絶縁膜42に設けたスルーホール43を介して、画素電極44と薄膜トランジスタ(TFT)5のドレイン電極41とを電気的に接続する。
【0087】
上述したような構造のアクティブマトリクス基板40を、実施の形態1と同様に、X線に対して光導電性を有する半導体基板(光導電体基板)16を支持基板とする対向基板2と接着性導電粒子3で貼り合わせることで、本実施の形態2における二次元画像検出器は完成する。実施の形態1に記載の二次元画像検出器と比較すると、アクティブマトリクス基板の構造が若干異なるだけで、二次元画像検出器としての基本的な動作原理は同じである。
【0088】
以上のように、本実施の形態2に係る二次元画像検出器は、アクティブマトリクス基板40のほぼ全表面を有機絶縁膜からなる絶縁保護膜42で覆った構成となっているため、該絶縁保護膜42が下地基板(ガラス基板7上にXYマトリクス状の電極配線やTFT5が形成されている状態のもの)の平坦化効果をもたらす。すなわち、図2に示した本実施の形態1の構成では、TFT5やXYマトリクス状の電極配線によりアクティブマトリクス基板1の表面に1μm程度の凹凸が生じるが、本実施の形態2では、図5に示すように、絶縁保護膜42によって下地基板の表面が平坦化されるため、アクティブマトリクス基板40表面の凹凸は約0.2μmに抑えられる。
【0089】
また、本実施の形態2の構成では、画素電極44をTFT5や電極配線の上にオーバーラップさせた状態で形成させることができるため、画素電極44の設計マージンを大きくとることができる。
【0090】
(実施の形態3)本発明に係る二次元画像検出器に用いられる対向基板は、図2に示した構造に限定されるものではなく、上述した実施の形態1で示した二次元画像検出器の他の構成について以下に説明する。図6は、本発明の実施の形態3に係る二次元画像検出器を示すものであり、該二次元画像検出器の1画素当たりの構成を示す断面図である。
【0091】
なお、本実施の形態3に係る二次元画像検出器の構成は、図2に示した本実施の形態1に係る二次元画像検出器の構成と類似しているため、図2で用いた部材と同一の機能を有する部材については同一の部材番号を付記し、その説明を省略する。
【0092】
図6に示すように、ここで用いる対向基板45は、支持基板46と、該支持基板46上に成膜される半導体膜(半導体層)47とによって主に構成されている。具体的には、支持基板46としては、X線に対して透過性を有する基板を用いる必要があり、ガラス、セラミック、シリコン基板などを用いることができる。なお、ここでは、X線と可視光の両者に対して透過性の優れた、厚みが0.7〜1.1mmのガラス基板を用いている。このような基板であれば、40〜100keVのX線をほとんど透過する。
【0093】
まず、支持基板46の一方の面のほぼ全面に、Ti、Agなどの金属によって上部電極17を形成する。但し、この二次元画像検出器を可視光による像の検出に用いる場合には、前記上部電極17として可視光に対して透明なITO電極を用いる。
【0094】
次に、この上部電極17上に半導体膜47として、MOCVD法を用いてCdTeやCdZnTeの多結晶膜を約0.5mmの厚みで形成する。MOCVD法は、大面積基板への成膜に適しており、原料である有機カドミウム(ジメチルカドミウム[DMCd]など)、有機テルル(ジエチルテルル[DETe]やジイソプロピルテルル[DiPTe]など)、有機亜鉛(ジエチル亜鉛[DEZn]やジイソプロピル亜鉛[DiPZn]やジメチル亜鉛[DMZn]など)を用いて、400〜500℃の成膜温度で成膜が可能である。
【0095】
更にその上に、AlOxの薄い絶縁層からなる電子阻止層18を、ほぼ全面に形成した後、TaやAlなど金属膜を約2000Å成膜し所望の形状にパターニングすることで接続電極6を形成する。この接続電極6は、アクティブマトリクス基板1に形成された画素電極14と対応する位置に形成するとよい。
【0096】
前記構造の対向基板45を、実施の形態1と同様に、アクティブマトリクス基板1と接着性導電粒子3で貼り合わせることで、本実施の形態3における二次元画像検出器が完成する。これを実施の形態1に記載の二次元画像検出器と比較すると、対向基板の構造が若干異なるだけで、その基本的な動作原理は同じである。
【0097】
前記構造の対向基板45を用いると、支持基板46上に光導電性を有する半導体膜47を形成しているので、実施の形態1に記載の対向基板45に比べて、力学的強度を増すことが可能になる。したがって、対向基板45とアクティブマトリクス基板1とを貼り合わせる際に、対向基板45が割れにくくなり、プロセスマージンが増大する。
【0098】
また、この二次元画像検出器の使用目的をX線による像の検出に限定すれば、X線を透過しやすい金属基板を用いて、支持基板46と上部電極17とを兼用させることも可能である。
【0099】
なお、上述したような実施の形態1〜3では、主にX線(放射線)に対する二次元画像検出器の場合について説明してきたが、使用する半導体(光導電体)がX線などの放射線に対する光導電性だけでなく、可視光や赤外光に対しても光導電性を示す場合は、可視光や赤外光の二次元画像検出器として使用することも可能である。ただし、この場合は、半導体(光導電体)からみて光入射側に配置される上部電極17の材料としては、ITOなどの可視光や赤外光を透過する透明電極を材料として用いる必要がある。また、半導体(光導電体)の厚みも、可視光、赤外光の吸収効率に応じて最適化する必要がある。
【0100】
【発明の効果】
本発明の二次元画像検出器によれば、格子状に配列された電極配線と、各格子点毎に設けられた複数のスイッチング素子と、該スイッチング素子を介して前記電極配線に接続される画素電極を含む電荷蓄積容量とからなる画素配列層とを含むアクティブマトリクス基板の画素電極と、光導電性を有する半導体層がほぼ全面に具備された対向基板の半導体層とが、接着性を有する導電粒子である接着性導電粒子によって、電気的および物理的に接続されていることにより、従来半導体層の成膜温度とアクティブマトリクス基板の耐熱性との関係で、アクティブマトリクス基板上に直接成膜することができなかった半導体材料を、前記半導体層として使用することが可能になった。
【0101】
この時、前記両基板を接着性を有する導電粒子によって接続していることにより、各画素電極毎に電気的絶縁性は確保され、隣り合う画素電極同士のクロストークも発生せず、なおかつアクティブマトリクス基板上の画素電極と半導体層とを電気的および物理的に接続することが可能になった。
【0102】
また、前記二次元画像検出器において、前記半導体層が放射線に対して感度を有していることにより、放射線に対する二次元画像検出器を実現することが可能になった。なお、このような構成により使用可能な半導体材料としては、例えば、CdTeもしくはCdZnTe化合物半導体が挙げられるが、これらの半導体材料は、従来用いられていたa−Seに比べて、X線などの放射線に対する感度が高く、前記半導体層にCdTeもしくはCdZnTe化合物半導体を用いる場合には、二次元画像検出器の応答性が向上し、動画の撮影も可能になった。
【0103】
また、前記二次元画像検出器において、前記接着性導電粒子が導電粒子の表面に熱硬化型接着剤をコートしたものであることにより、金属やITOなどの導電粒子であっても接着性を付加することにより、二次元画像検出器への使用が可能になった。
【0104】
また、前記二次元画像検出器において、前記接着性導電粒子が100〜1000個/mm2の密度で散布されていることにより、全画素電極への確実な粒子の配置と、画素電極毎の電気的絶縁性を同時に得ることが可能になった。
【0105】
また、前記二次元画像検出器において、前記対向基板の半導体層表面に、前記アクティブマトリクス基板上に形成されている各画素電極に対応して、複数の接続電極が形成されていることにより、対向基板上の半導体層における画素電極間が電気的に分離され、放射線や光線の入射によって半導体層内で発生した電荷が入射位置に対応した接続電極にのみ収集され、周囲の画素電極に回り込むことがなくなるため、電気的クロストークを抑制することが可能になった。
【0106】
なお、このとき、前記複数の画素電極の面積を前記複数の接続電極の面積よりも小さく構成しておくことにより、X線や光線の入射により半導体層内で発生した電荷を効率良く収集することができるとともに、アクティブマトリクス基板と対向基板との貼り合わせ時に位置ずれが生じたとしても、隣接画素との電気的クロストークを抑制することが可能になった。
【0107】
また、前記二次元画像検出器において、前記対向基板が光導電性を有する半導体層自身を支持基板にしていることにより、ブリッジマン法やグラディエントフリーズ法、トラベルヒーティング法などによって得られる結晶性半導体基板を利用することが可能になった。
【0108】
また、前記二次元画像検出器において、前記対向基板が検出する光や放射線を透過する基板を支持基板とし、該支持基板上に光導電性を有する半導体膜を形成していることにより、対向基板自身の強度を増すことが可能になった。
【0109】
本発明の二次元画像検出器の製造方法によれば、格子状に配列された電極配線と、各格子点毎に設けられた複数のスイッチング素子と、該スイッチング素子を介して前記電極配線に接続される画素電極を含む電荷蓄積容量とからなる画素配列層とを含むアクティブマトリクス基板と、光導電性を有する半導体層がほぼ全面に具備された対向基板とが、接着性を有する導電粒子を散布した後、両基板を貼り合わせて接着していることにより、大面積のアクティブマトリクス基板と対向基板との貼り合わせの際でも、接着性を有する導電粒子を簡便に均一な密度で散布することが可能になった。
【0110】
また、前記二次元画像検出器の製造方法における前記アクティブマトリクス基板と対向基板とを貼り合わせて接続する工程において、前記接着性を有する導電粒子を散布した後、該両基板を減圧プレス方式でプレスしながら加熱処理を施して貼り合わせていることにより、大面積のアクティブマトリクス基板と対向基板との貼り合わせの際でも、均一にプレスすることが可能になった。
【0111】
また、前記二次元画像検出器の製造方法における前記アクティブマトリクス基板と対向基板とを貼り合わせて接続する工程において、前記接着性を有する導電粒子を散布した後、該両基板を加圧プレス方式でプレスしながら加熱処理を施して貼り合わせていることにより、汎用的な熱プレス装置を使用することが可能になった。
【図面の簡単な説明】
【図1】 図1は、本発明の実施の形態1に係る二次元画像検出器の全体構成の概略を示す断面図である。
【図2】 図2は、本発明の実施の形態1に係る二次元画像検出器の1画素当たりの構成の概略を示す断面図である。
【図3】 図3は、本発明の実施の形態1に係る二次元画像検出器の1画素当たりの等価回路を示す図面である。
【図4】 図4(a)〜(c)は、本発明の実施の形態1に係る二次元画像検出器におけるアクティブマトリクス基板と対向基板との貼り合わせを示したプロセス図である。
【図5】 図5は、本発明の実施の形態2に係る二次元画像検出器の1画素当たりの構成の概略を示す断面図である。
【図6】 図6は、本発明の実施の形態3に係る二次元画像検出器の1画素当たりの構成の概略を示す断面図である。
【図7】 図7は、従来の二次元画像検出器の構造の模式的に示した図面である。
【図8】 図8は、従来の二次元画像検出器の1画素当たりの構成の概略を示す断面図である。
【符号の説明】
1 アクティブマトリクス基板
2 対向基板
3 接着性導電粒子
4 電荷蓄積容量電極
5 薄膜トランジスタ(TFT)
6 接続電極
7 ガラス基板
8 ゲート電極
9 ソース電極
11 絶縁膜
12 a−Si膜(i層)
13 a−Si膜(n+層)
14 画素電極
15 絶縁保護膜
16 半導体基板
17 上部電極
18 電子阻止層
21 容器
22 溶剤
23 塗布用スプレーノズル
24 チャンバ
25 ヒータ
26 秤量部
27 マニホールド
28 ノズル
29 ガスタンク
30 チャンバ
31 土台(ステージ)
32 フィルムシート
33 排気穴
40 アクティブマトリクス基板
41 ドレイン電極
42 絶縁保護膜
43 コンタクトホール
44 画素電極
45 対向基板
46 支持基板
47 半導体膜(光導電膜)
51 ガラス基板
52 ゲート電極
53 ソース電極
54 薄膜トランジスタ(TFT)
55 電荷蓄積容量電極
56 光導電膜(Se)
57 誘電体層
58 上部電極
59 Cs電極
60 画素電極
61 絶縁膜
62 電子阻止層

Claims (12)

  1. 格子状に配列された電極配線と、各格子点毎に設けられた複数のスイッチング素子と、該スイッチング素子を介して前記電極配線に接続される画素電極を含む電荷蓄積容量とからなる画素配列層と、前記画素配列層のほぼ全面に対向して形成される電極部と、前記画素配列層および電極部の間に形成され、光導電性を有する半導体層とを備えてなる二次元画像検出器において、前記画素配列層を含むアクティブマトリクス基板と、前記電極部および半導体層を含む対向基板とを備えており、前記アクティブマトリクス基板の画素配列層と、前記対向基板の半導体層とが対向するように両基板が配置されるとともに、前記アクティブマトリクス基板の画素電極と前記対向基板の半導体層とは、接着性を有する導電粒子である接着性導電粒子によって接続されていることを特徴とする二次元画像検出器。
  2. 前記半導体層が、放射線に対して感度を有することを特徴とする請求項1に記載の二次元画像検出器。
  3. 前記半導体層が、CdTeもしくはCdZnTe化合物半導体であることを特徴とする請求項2に記載の二次元画像検出器。
  4. 前記接着性導電粒子が、導電粒子の表面に熱硬化型接着剤をコートしたものであることを特徴とする請求項1乃至3のいずれかに記載の二次元画像検出器。
  5. 前記導電粒子が、プラスチック粒子にAu/Niメッキを施したプラスチック粒子であることを特徴とする請求項4に記載の二次元画像検出器。
  6. 前記接着性導電粒子が、100〜1000個/mm 2 の密度で散布されていることを特徴とする請求項1乃至5のいずれかに記載の二次元画像検出器。
  7. 前記対向基板の半導体層表面に、前記アクティブマトリクス基板上に形成されている各画素電極に対応して、複数の接続電極が形成されていることを特徴とする請求項1乃至6のいずれかに記載の二次元画像検出器。
  8. 前記対向基板は、光導電性を有する半導体層自身が支持基板であることを特徴とする請求項1乃至7のいずれかに記載の二次元画像検出器。
  9. 前記対向基板は、検出する光や放射線を透過する基板を支持基板とし、該支持基板上に光導電性を有する半導体膜が形成されていることを特徴とする請求項1乃至7のいずれかに記載の二次元画像検出器。
  10. 格子状に配列された電極配線と、各格子点毎に設けられた複数のスイッチング素子と、該スイッチング素子を介して前記電極配線に接続される画素電極を含む電荷蓄積容量とからなる画素配列層と、前記画素配列層のほぼ全面に対向して形成される電極部と、前記画素配列層および電極部の間に形成され、光導電性を有する半導体層とを備えてなる二次元画像検出器の製造方法において、前記画素配列層を含むアクティブマトリクス基板を作製する工程と、前記電極部および半導体層を含む対向基板を作製する工程と、前記アクティブマトリクス基板および対向基板のどちらか一方の表面に、接着性を有する導電粒子を散布した後、該両基板を貼り合わせて接続する工程と、を含むことを特徴とする二次元画像検出器の製造方法。
  11. 前記アクティブマトリクス基板と対向基板とを貼り合わせて接続する工程において、前記接着性を有する導電粒子を散布した後、該両基板を減圧プレス方式でプレスしながら加熱処理を施して貼り合わせることを特徴とする請求項10に記載の二次元画像検出器の製造方法。
  12. 前記アクティブマトリクス基板と対向基板とを貼り合わせて接続する工程において、前記接着性を有する導電粒子を散布した後、該両基板を加圧プレス方式でプレスしながら加熱処理を施して貼り合わせることを特徴とする請求項10に記載の二次元画像検出器の製造方法。
JP07027098A 1998-03-19 1998-03-19 二次元画像検出器およびその製造方法 Expired - Lifetime JP3798145B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07027098A JP3798145B2 (ja) 1998-03-19 1998-03-19 二次元画像検出器およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07027098A JP3798145B2 (ja) 1998-03-19 1998-03-19 二次元画像検出器およびその製造方法

Publications (2)

Publication Number Publication Date
JPH11274452A JPH11274452A (ja) 1999-10-08
JP3798145B2 true JP3798145B2 (ja) 2006-07-19

Family

ID=13426675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07027098A Expired - Lifetime JP3798145B2 (ja) 1998-03-19 1998-03-19 二次元画像検出器およびその製造方法

Country Status (1)

Country Link
JP (1) JP3798145B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284562A (ja) * 2000-03-30 2001-10-12 Toshiba Corp X線検出装置用アレイ基板およびその検査方法
JP5774806B2 (ja) * 2008-08-11 2015-09-09 コニカミノルタ株式会社 放射線検出パネルの製造方法および放射線画像検出器の製造方法

Also Published As

Publication number Publication date
JPH11274452A (ja) 1999-10-08

Similar Documents

Publication Publication Date Title
JP3649907B2 (ja) 二次元画像検出器およびその製造方法
JP3976915B2 (ja) 二次元画像検出器およびその製造方法
JP3847494B2 (ja) 二次元画像検出器の製造方法
JP3430040B2 (ja) 二次元画像検出器およびその製造方法
US6342700B1 (en) Two-dimensional image detector
JP3549039B2 (ja) 二次元画像検出器
JP3597392B2 (ja) 二次元画像検出器
JP3432770B2 (ja) 二次元画像検出器の製造方法
US6825473B2 (en) Radiation detecting apparatus, methods of producing apparatus, and radiographic imaging system
JP2013142578A (ja) 放射線検出器
JP4205134B2 (ja) 二次元画像検出器
JP3798145B2 (ja) 二次元画像検出器およびその製造方法
JP4092825B2 (ja) アレイ型検出装置、およびその製造方法
JP3978971B2 (ja) 2次元画像検出器およびその製造方法
US6603106B2 (en) Two-dimensional image detector and fabrication method of the same
JP4202315B2 (ja) 二次元画像検出器
JP3594134B2 (ja) 電磁波検出器、アクティブマトリクス基板の製造方法
JPH11295144A (ja) 二次元画像検出器およびその製造方法
JP3670161B2 (ja) 二次元画像検出器
JP3587991B2 (ja) 二次元画像検出器およびその製造方法
JP2001091656A (ja) 二次元画像検出器
JP2006303070A (ja) 二次元画像検出器およびその製造方法
JP3437461B2 (ja) 二次元画像検出器
WO2006115099A1 (ja) 二次元画像検出器およびその製造方法
JPH11297977A (ja) 二次元画像検出器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

EXPY Cancellation because of completion of term