JP3782328B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP3782328B2
JP3782328B2 JP2001263610A JP2001263610A JP3782328B2 JP 3782328 B2 JP3782328 B2 JP 3782328B2 JP 2001263610 A JP2001263610 A JP 2001263610A JP 2001263610 A JP2001263610 A JP 2001263610A JP 3782328 B2 JP3782328 B2 JP 3782328B2
Authority
JP
Japan
Prior art keywords
layer
iii
semiconductor
gap
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001263610A
Other languages
English (en)
Other versions
JP2003077840A (ja
JP2003077840A5 (ja
Inventor
宏雄 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001263610A priority Critical patent/JP3782328B2/ja
Publication of JP2003077840A publication Critical patent/JP2003077840A/ja
Publication of JP2003077840A5 publication Critical patent/JP2003077840A5/ja
Application granted granted Critical
Publication of JP3782328B2 publication Critical patent/JP3782328B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置関し、特に、シリコン単結晶基板上に完全に転位をなくした(無欠陥の)III −V族化合物半導体層とその上のシリコン半導体層とを形成した半導体装置関する。
【0002】
【従来の技術】
従来から、シリコン(Si)単結晶基板上に、GaAs、InP等のIII −V族化合物半導体層を形成することが行われている。これは、大型で安価なシリコン単結晶を基板とすることにより、Siでは形成不可能な発光素子、高速素子、MMIC(Monolithic Microwave Integrated Circuit )等を安価に形成しようとするものである。また、Si上に形成した集積回路(LSI)と、III −V族化合物半導体により形成した発光素子、高速素子、マイクロ波素子等とを組み合わせて、相互の特徴を活かしたOEIC(光電子集積回路)等を得ようとするものである。
【0003】
【発明が解決しようとする課題】
Siの格子定数(5.431オングストローム)とIII −V族化合物半導体の格子定数とは、周知のように、本来その違いが大きい(格子が不整合である)。また、SiとIII −V族化合物半導体とでは、熱膨張係数が異なる。更に、IV族に属するSiとIII −V族化合物半導体とでは、相互の界面における電子数が異なる。特に、最初の格子不整合の問題は致命的である。
【0004】
このため、シリコン単結晶基板上に形成したIII −V族化合物半導体層には、高密度の結晶欠陥(正確にはミスフィットによる転位)が生じてしまう。例えば、当該III −V族化合物半導体層を用いて発光素子を形成した場合、この欠陥領域は発光しないか、又は、多くの場合動作中に欠陥が増殖して発光強度が低下してしまう。即ち、経時劣化を生じてしまう。
【0005】
このような本来的な問題から、現在では(正確には1990年代後半以降)、シリコン単結晶基板上に無欠陥の(又は、半導体素子の形成において実用に耐えうる程度の)III −V族化合物半導体層を形成することは、事実上できないと認識されるに到っている。即ち、シリコン単結晶基板上のIII −V族化合物半導体層の無転位化は絶望視されている。
【0006】
本発明は、シリコン単結晶基板上に完全に転位をなくした(無欠陥の)III −V族化合物半導体層とその上のシリコン半導体層とを形成した半導体装置提供することを目的としている。
【0008】
【課題を解決するための手段】
発明の半導体装置は、シリコン単結晶基板と、前記シリコン単結晶基板上に、その臨界膜厚以下の厚さに形成されたGaPバッファ層と、前記GaPバッファ層上に形成され、シリコン単結晶に実質的に格子整合するように窒素(N)を添加したIII −V族化合物半導体からなる複数の半導体層と、前記複数の半導体層の上に形成されたシリコン半導体層を有する。
【0010】
本発明の半導体装置よれば、シリコン単結晶基板上に、GaPバッファ層をその臨界膜厚以下の厚さに形成する。これにより、GaPバッファ層を無欠陥化(無転位化)するとともに、III −V−N半導体層中のNがシリコン単結晶基板の表面まで到達することを防止できる。また、III −V族化合物半導体に、シリコン単結晶に実質的に格子整合するようにNをV族原子として添加する。添加の割合は、例えばV族原子における組成比で1〜10%である。これにより、その格子定数をSiに近い値とすることができる。近い値とは、例えばシリコン単結晶と当該III −V族化合物半導体との間の格子定数差が0.2%以下の場合を言う。そこで、この格子定数をSiに近くしたIII −V族化合物半導体からなるIII −V−N半導体層(III −V−N混晶層)を、無欠陥のGaPバッファ層を介して、シリコン単結晶基板上に形成することにより、これらの間の僅かな格子定数の相違に起因する欠陥(転位)の発生を抑えることができる。一方、III −V−N半導体層の電子的な特性は、III −V族化合物半導体層の電子的な特性を損なうことはない。従って、III −V−N半導体層を無欠陥化(無転位化)し、これを用いて所望の電子(又は光)デバイスを形成することができる。更に、無欠陥化したIII −V−N半導体層の上に、更に、シリコン半導体層を形成する。これにより、 III −V−N半導体層により光デバイスを形成し、シリコン半導体層に集積回路を形成して、1チップに光電子集積回路を形成することができる。
【0011】
【発明の実施の形態】
最初に、本発明によるシリコン単結晶基板上のIII −V族化合物半導体層の無欠陥化の原理について、より詳細に説明する。
【0012】
SiとGaPの格子定数の相違は、Siと他のIII −V族化合物半導体の格子定数の相違と比べると小さい。このため、シリコン単結晶基板上に貫通転位の少ないGaP層を形成できることが知られている。
【0013】
一方、III −V族化合物半導体に、より原子半径の小さい窒素(N)を添加すると、V族原子が(それ自体がV族である)Nに置き換わる。これにより、添加後の格子定数は、当該III −V族化合物半導体の格子定数より小さくなる(Siのそれに近い値になる)ことが知られている。
【0014】
また、本発明者等は、GaAs基板上にNを添加したGaAs−N混晶を形成し、組成分離の生じることのない、かつ、結晶欠陥(貫通転位及びミスフィット転位)のない均質な混晶が形成できることを確認している(藤本他、2000年春季応用物理学会予稿集、Oa-P13-17 )。
【0015】
そこで、本発明者は、以上に基づいて、シリコン単結晶基板上に、Ga−N混晶等のIII −V−N半導体層を形成すれば、これを完全に転位のない(無欠陥の)III −V族化合物半導体層とすることができると考えた。本発明は、このような本発明者による新たな知見に基づいてなされたものである。即ち、シリコン単結晶基板上に、Siに格子定数が一致(格子整合)したIII −V−N半導体層を形成することにより、III −V族化合物半導体層を無転位化するものである。
【0016】
ところで、高温で成長すると、成長後の冷却過程でSiとIII −V−N半導体層との熱膨張係数差により、III −V−N半導体層に引っ張り応力が加わる。その結果、III −V−N半導体層の表面から転位が層内に入ってくる。この問題は、III −V−N半導体層の上にSi層を形成することによって解決される。それは、表面のSi層は厚いSi基板と格子定数及び熱膨張係数が同じであるために、応力が加わらないためである。これも本発明者による新たな知見である。
【0017】
図1は、本発明の半導体装置構成図であり、本発明の半導体装置の基本的な構成を示す。
【0018】
基板としては、シリコン単結晶基板(以下、基板という)1が用いられる。基板1は、これには限られないが、例えば[011]方向に4°傾斜した(100)面を有するシリコン(Si)の単結晶からなる。基板1の厚さは、例えば400μm〜500μm程度である。
【0019】
基板1上には、直接III −V−N半導体層3を形成することなく、基板1とIII −V−N半導体層3との間に位置するように、バッファ層2が形成される。バッファ層2は、例えばGaPからなる。Nを添加しないIII −V族化合物半導体の中では、GaPの格子定数がSiに近い値であるので、バッファ層としてはGaPが好ましい。
【0020】
GaPバッファ層2を形成する必要性は、本発明者によって初めて見出されたものであって、以下の通りである。Nを含むIII −V−N半導体層3をSi上に直接形成すると、Nの原子半径が小さいので、Siに優先的にNが付着してしまう。このため、基板1の表面の性質が変化してしまう。このような変成した状態の表面に対しては、Nを添加して格子定数をSiのそれに近づけた意味が失われ、結晶欠陥を生じてしまう。従って、III −V−N半導体層3に含まれるNが基板1に作用しないように、GaPバッファ層2を形成することが必要となる。
【0021】
GaPバッファ層2の厚さは、例えば20nm(ナノメートル)とされる。GaPバッファ層2の厚さは、当該組成物(例えばGaP)が基板1のSiの表面を覆う厚さ以上で臨界膜厚以下の範囲とされる。
【0022】
「当該組成物が基板1のSiの表面を完全に覆う厚さ」は以下のように定まる。例えば当該組成物がGaPである場合、GaPの単分子層の厚さは約0.2nmであるので、理論的には単分子層でもSiの表面を覆うことはできる。しかし、実際には、単分子層のGaPをSi表面に形成しただけでは、GaPバッファ層2の表面の性質はSiに強く影響され、GaP(III −V族化合物)の性質とはならない(Nが付着する可能性が残る)。また、単分子層の制御は難しい。従って、当該厚さは、バッファ層2の表面の性質がIII −V族化合物の性質となるのに必要なだけの厚さである。実際には、数nmあれば十分である。しかし、この例では、余裕をみて例えば20nmとしている。
【0023】
一方、「臨界膜厚」は以下のように定まる。GaPバッファ層2の厚さが一定の厚さ以下であると、GaPバッファ層2にミスフィットによる転位を生じることなく、Siとの格子定数の相違をGaPバッファ層2の内部応力の蓄積として吸収することができる。この転位を生じない境界の厚さを「臨界膜厚」という。しかし、僅かではあってもGaPとSiの格子定数は相違するので、GaPバッファ層2の厚さが臨界膜厚を超えると、両者の格子定数の相違を吸収することができなくなり、転位を生じてしまう。実際には、バッファ層2としてGaPを用いる場合には50nm程度までは転位を生じないので、その膜厚は50nmでもよい。しかし、この例では、余裕をみて例えば20nmとしている。
【0024】
GaPバッファ層2上には、格子定数がSiにほぼ等しいIII −V−N半導体層3が形成される。この例では、III −V−N半導体層3は、シリコン単結晶に実質的に格子整合するようにNを添加したGaP1-X X からなる。実際には、後述するように、複数のIII −V−N半導体層3が形成される。なお、後述の例から判るように、複数とは、化合物の組成の相違する場合の他に、同一の化合物において導伝型(p型とn型)の相違する場合をも含む。III −V−N半導体層3は、GaPバッファ層2と同一の族の化合物であるので、界面が変質して新たな結晶欠陥が発生する原因はない。従って、この例ではGaPバッファ層2に転位がないので、III −V−N半導体層3は無転位の層として形成される。
【0025】
複数のIII −V−N半導体層3の厚さは、例えば全体で数100nm〜1500nm程度に形成される。このように厚く形成しても、III −V−N半導体層3は、GaPバッファ層2によりSiである基板1から分離され、かつ、Siに近い格子定数であるので、組成分離の生じない均質な混晶(III −V−N混晶、この場合はGaPN混晶)となっており、かつ、結晶欠陥(貫通転位及びミスフィット転位)のない完全結晶となっている。
【0026】
このように、本発明のIII −V−N半導体層3は、Siとの界面における結晶欠陥からフリーであるので、GaP1-X X の構成に限られることなく、種々の構成のIII −V族化合物半導体とすることができる。即ち、所望のデバイスに合わせて、その組成や膜厚等の構成を自由に選択することができる。例えば、後述するように、Aly Ga1-y 1-z z (zは例えば0.01〜0.03)、Ga(Asy 1-y 1-z z (zは例えば0.01〜0.03)のいずれであってもよい。周知のように、III 族原子は、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)から1又は複数選択される。V族原子は、窒素(N)、燐(P)、砒素(As)、アンチモン(Sb)から1又は複数選択される。
【0027】
III −V−N半導体層3におけるNの添加量は、この例では、例えばV族原子(この場合は燐(P))における組成比で2%とされる。即ち、xは0.02とされ、GaP0.980.02層を形成している。
【0028】
Nの添加量は、本発明者の研究によれば、前記組成比で例えば1〜3%(x=0.01〜0.03)とすることが、典型的なMBE法による成長では好ましい。その特性はNを含まない既知のIII −V族化合物半導体装置の特性に近い特性を示すと予測することができる。特に、GaP層の場合、Nの添加量が2%であれば、Siとの格子定数の相違を意識する必要を全くなくすことができる。Nの添加量が1%未満であると、Nを添加した効果があまり現れない。即ち、III −V−N半導体層3の格子定数がSiのそれにあまり近づかない。従って、III −V−N半導体層3の臨界膜厚が薄くなり、これを越えた厚さになると転位が入る。Nの添加量が増えると、光デバイスを形成した場合の発光特性が悪くなる傾向があり、また、結晶性も悪化する(結晶が歪む)傾向がある。
【0029】
但し、Nの添加量は、形成した(複数の)III −V−N半導体層3を用いてどのようなデバイスを形成するかに依存し、また、III −V族化合物半導体の(N以外の)組成が何であるかにも依存する。例えば、III −V族化合物半導体がGaPである場合には10%(xが0.10)程度のNを添加することが可能である。従って、発光特性や結晶性を一応のレベルに維持できるとも考えられる。しかし、一方で、Nの添加量が少ないほど、発光特性や結晶性がよいことは明らかである。従って、形成するデバイス及びIII −V族化合物半導体の組成に応じて、Nの添加量を適切な値とする必要がある。
【0030】
例えば、デバイス形成に実績のあるAlAsの格子定数は5.660オングストローム、GaAs格子定数は5.65325オングストロームである。両者の差をGaAsの格子定数で割り100倍した値を格子定数差といい、0.12%である。このことから、格子定数差が0.12%より小さい状態は、「格子整合に近い状態」即ち「実質的に格子整合している状態」と理解されている。換言すれば、通常の発光デバイスや高速電子デバイスの形成に必要な1〜3μmの厚さの層を転位なしで形成できる。格子定数差が0.12%より大きければ直ちに「格子が不整合」かというとそうではなく、経験的には、0.2%以下の格子定数差であれば、実用上デバイス形成に必要な1μmの厚さの層を転位なしで形成できると考えてよい。即ち、シリコン単結晶に実質的に格子整合することが可能なNの添加量は、格子定数差を0.2%以下とすることができる量と考えてよい。ちなみに、GaPとSiとの格子定数差は約0.4%である(明らかに格子不整合である)。
【0031】
図3は、本発明の半導体装置の説明図であり、本発明の半導体装置における結晶欠陥(転位)が無い様子を模式的に示す。
【0032】
図3(A)の右側の図は、本発明の図1の半導体装置の断面を傾斜させたとき(傾斜断面)の透過型電子顕微鏡による写真を模式的に示した図である。Siの基板1とIII −V−N半導体層3である(n型)GaP0.980.02層との界面及びIII −V−N半導体層3内部には、全く転位が発生していないことが判る。なお、図3(A)の右側の図においては、GaPバッファ層2の図示を省略している(図3(B)及び図3(C)において同じ)。
【0033】
図3(A)の右側の図との対比のために、その左側に、従来のSiの基板上に直接Nを含まないGaP層を厚く(数100nm)形成した場合における傾斜断面の透過型電子顕微鏡による写真を模式的な図として示す。Siの基板と厚いGaP層との界面において、転位(黒い線)が相当数発生していることが判る。
【0034】
図3(B)の右側の図は、本発明の他の(後述する図5の)半導体装置の断面の透過型電子顕微鏡による写真を模式的に示した図である。Siの基板1とIII −V−N半導体層3であるGaP0.980.02光閉込層との界面及びIII −V−N半導体層3内部には、全く転位が発生していないことが判る。なお、III −V−N半導体層3は複数の化合物半導体層からなるが、そのいずれにおいても各界面を含めて転位は発生していないことが判る。
【0035】
図3(B)の右側の図との対比のために、その左側に、従来のSiの基板上に直接Nを含まないGaAs層を厚く(数μm)形成した場合における断面の透過型電子顕微鏡による写真を模式的な図として示す。Siの基板と厚いGaAs層との界面からGaAs層の厚さ方向のほぼ全域にわたって、転位(黒い線)が発生していることが判る。
【0036】
図3(C)は、本発明の他の(後述する図7の)半導体装置の断面の透過型電子顕微鏡による写真を模式的に示した図である。即ち、図1の半導体装置において、III −V−N半導体層3であるGaP0.980.02層の上に、更にSi層を例えばMBE法により形成して、SOI(Silicon On Insulator)構造としている。なお、この場合のIII −V−N半導体層3は高抵抗(又はイントリンシック)とされる。Siの基板1とIII −V−N半導体層3であるGaP0.980.02高抵抗層との界面、III −V−N半導体層3内部及び最上層のSi層内部には、全く転位が発生していないことが判る。
【0037】
図2は、本発明の半導体装置の製造方法説明図であり、本発明の半導体装置の製造方法を示す。
【0038】
最初に、図2(A)に示すように、前述の基板1を用意する。実際の基板1は、例えば不純物としてPを添加することにより、n型(n−Si基板)とされている。
【0039】
基板1上に、図2(B)に示すように、基板1を第1の基板温度に加熱しながら、周知のMEE(Migration Enhanced Epitaxy)法により、GaPバッファ層2を薄く(例えば20nmに)形成する。第1の基板温度は、後述の第2の基板温度よりも低い温度、例えば450°である。GaPバッファ層2を、このような低温で(かつ薄く、即ち、臨界膜厚以下に)形成することにより、III −V−N半導体層3よりもSiとの間のミスフィットの大きいGaPの層を形成しても、結晶欠陥が生じることを抑えることができる。GaPバッファ層2は、例えば不純物としてSiを添加することにより、n型(n−GaP)とされる。
【0040】
なお、GaPバッファ層2を、周知のMBE(Molecular Beam Epitaxy)法MOMBE(Metal Organic MBE )法、MOCVD(Metal Organic Chemical Vapor Deposition )法によって形成してもよい。但し、MBE法によると成膜時の基板温度が590°とやや高くなる。またMOMBE法、MOCVD法によると成膜時の基板温度が700〜800°と高くなる。本発明者の研究によれば、成膜時の温度が高いほど転位が生じやすくなり、臨界膜厚が薄くなる傾向にある。従って、高温の成膜方法による程、GaPバッファ層2の膜厚を薄くする必要がある。
【0041】
GaPバッファ層2上に、図2(C)に示すように、基板1を第2の基板温度に加熱しながら、高周波プラズマ装置によって活性窒素原子を供給する周知の固体ソースMBE法により、Nを添加したGaP1-X X (xは0.01〜0.03)からなるIII −V−N半導体層3を形成する。第2の基板温度は、第1の基板温度よりは高いが比較的低い温度、例えば590°である。III −V−N半導体層3の厚さは、例えば数100nm(全体で数100nm〜1500nm)程度とされる。
【0042】
また、後述するように、実際には、複数のIII −V−N半導体層3が形成される。即ち、同一のMBE装置(図示せず)を用いて、基板1を引き続き第2の基板温度に加熱しながら、MBE法により、ソースを選択して種々のIII −V−N半導体層3を連続した工程で形成する。従って、複数のIII −V−N半導体層3の各々の導伝型は、所望の電子(又は光)デバイスの構造及び特性に応じて、適切に不純物を選択することにより制御される。
【0043】
なお、III −V−N半導体層3を周知のOMBE法、MOCVD法によって形成してもよい。この場合でも、GaPバッファ層2が高い温度を経験することになるので、これを考慮してその膜厚を臨界膜厚以下とする必要がある。
【0044】
以下、図1に示した本発明の半導体装置を利用して形成されるより具体的な構成の半導体装置について、詳細に説明する。
【0045】
図4は本発明の実施例構成図であり、ダブルヘテロ発光ダイオード用の薄膜構造を有する半導体装置を示す。
【0046】
この実施例においては、前述のように、n−Siからなる基板1上にn−GaPからなるGaPバッファ層2を形成する。そして、この上に、III −V−N半導体層3として、順に、n−Aly Ga1-y 1-z z 層311、p−GaP1-X X 層312、p−Aly Ga1-y 1-z z 層313を形成する。例えば、Al0.3 Ga0.7 0.980.02層311及び313、GaP0.980.02層312である。これにより、GaP1-X X 層312と、n−Aly Ga1-y 1-z z 層311及びp−Aly Ga1-y 1-z z 層313との間で、ダブルヘテロ構造を形成する。即ち、III −V−N半導体層3は、無欠陥であるので、光デバイスの一部を構成してもなんら問題がない。なお、ダブルヘテロ構造は、この例に限られるものではなく、Iny Ga1-y 1-z z /GaP1-x x ダブルヘテロ構造等のように、周知のダブルヘテロ構造において、そのV族原子をNで置換した構造であってもよい。
【0047】
図5は本発明の実施例構成図であり、量子井戸(QW)レーザ用の薄膜構造を有する半導体装置を示す。
【0048】
この実施例においては、n−Si基板1及びn−GaPバッファ層2の上に、III −V−N半導体層3として、順に、n−GaP1-X X 層321、n−Ga(Asy 1-y 1-z z 層322、p−Ga(Asy'1-y'1-z'z'層323、p−Ga(Asy 1-y 1-z z 層324、p−GaP1-X X 層325を形成する。例えば、GaP0.980.02層321及び325、GaAs0.050. 920.03層322及び324、GaAs0.660.920.03層323である。これにより、n−GaP1-X X 層321とp−GaP1-X X 層325とでGaPNクラッド層(光閉込層)を形成し、n−Ga(Asy 1-y 1-z z 層322とp−Ga(Asy 1-y 1-z z 層324とでGaAsPN光導波層を形成し、p−Ga(Asy'1-y'1-z'z'層323でGaAsPN歪量子井戸層を形成する。なお、量子井戸構造は、この例に限られるものではなく、周知の量子井戸構造において、そのV族原子をNで置換した構造であってもよい。また、GaAsPN光導波層322及び324のない量子井戸構造にしても、レーザあるいは発光ダイオードに用いることができる。
【0049】
図6は本発明の実施例構成図であり、光電子集積回路用の薄膜構造を有する半導体装置を示す。
【0050】
この実施例においては、n−Si基板1及びn−GaPバッファ層2の上に、III −V−N半導体層3として、順に、n−GaP1-X X 層331、p−Ga(Asy 1-y 1-z z 層332、p−GaP1-X X 層333を形成する。例えば、GaP0.980.02層331及び333、GaAs0.050.920.03層332である。そして、更に、最上層にp−Si層43を例えばCVD法により形成する。これにより、III −V−N半導体層3によりレーザ素子等の光デバイスを形成し、p−Si層43にMOSFET等からなる集積回路を形成して、1チップに光電子集積回路を形成することができる。なお、III −V−N半導体層3による光デバイス用の構造は、この例に限られるものではなく、周知の光デバイス構造において、そのV族原子をNで置換した構造であってもよい。なお、この実施例では、前述のように、高温で成長しても、成長後の冷却過程で転位が表面から導入されることを、Si層43が防ぐ作用がある。
【0051】
即ち、III −V族化合物半導体の熱膨張係数はSiのそれよりも大きいので前記冷却過程でより大きく縮もうとする。しかし、本発明では、III −V−N半導体層3の格子定数がSiのそれにほぼ合わせられているので、Siより大きく収縮することができない。このため、III −V−N半導体層3の表面が、欠陥(転位)が導入されやすい状態となっている。そこで、最上層に、基板1と熱膨張係数の等しい層としてSi層43を形成することにより、III −V−N半導体層3を上下から挟み込んで更にIII −V−N半導体層3の収縮を抑えるとともに、表面を保護して欠陥の発生を抑えている。
【0052】
この実施例では、最上層のSi層43をMOSFET等のデバイス形成のために使用する。しかし、前述のように、III −V−N半導体層3を無欠陥(無転位)に保つのに有効であるので、最上層のSi層43を、図4、図5及び図8のようなデバイス形成の後に、その最上層に形成してもよい。
【0053】
図7は本発明の実施例構成図であり、Si/絶縁体/Si(SOI)の薄膜構造を有する半導体装置を示す。
【0054】
この実施例においては、n−Si基板1及びn−GaPバッファ層2の上に、III −V−N半導体層3として、i−Aly Ga1-y 1-z z 層341を形成し、その上にn−Si層44を例えばCVD法により形成する。例えば、Al0.3 Ga0.7 0.980.02層341である。これにより、高品質で高抵抗(半絶縁性)のi−Aly Ga1-y 1-z z 層341の上に良質のSi層を形成し、高速のMOSFETからなる集積回路や高電圧での動作が可能な高耐圧素子等を形成することができる。なお、SOI構造におけるIII −V−N半導体層3は、この例に限られるものではなく、周知の高抵抗のIII −V族化合物半導体において、そのV族原子をNで置換した構造であってもよい。この実施例においても、高温成長後の冷却過程で、転位が表面から導入されることが、Si層44によって防がれる。
【0055】
図8は本発明の実施例構成図であり、高電子易動度トランジスタ(HEMT)用の薄膜構造を有する半導体装置を示す。
【0056】
この実施例においては、n−Si基板1及びn−GaPバッファ層2の上に、III −V−N半導体層3として、順に、Ga(Asy 1-y 1-z z 層351、n−GaP1-x x 層352を形成する。例えば、GaAs0.050.920.03層351、n−GaP0.980.02層352である。これにより、Ga(Asy 1-y 1-z z 層351とGaP1-x x 層352との界面に形成した2次元電子雲を制御する高電子易動度トランジスタを形成することができる。なお、高電子易動度トランジスタ構造は、この例に限られるものではなく、周知の高電子易動度トランジスタ構造において、そのV族原子をNで置換した構造であってもよい。
【0057】
以上、本発明をその実施の形態に従って説明したが、本発明はその主旨の範囲において種々の変形が可能である。
【0058】
例えば、III −V−N半導体層3を構成するIII −V族化合物半導体は、III 族原子としてAl、Ga、Inから1又は複数を選択し、V族原子としてN、P、As、Sb1又は複数を選択して形成される化合物半導体であってよい。従って、また、III −V−N半導体層3に形成する電子(又は光)素子は、ヘテロ接合バイポーラトランジスタ、多重量子井戸レーザデバイス、量子井戸レーザ以外の種々の超格子デバイス、共鳴トンネル効果デバイス、量子干渉効果や単一電子トンネル効果等を利用するデバイス等の化合物半導体デバイスであってよい。このようなデバイスは周辺回路との接続が困難であると予想されるが、本発明によれば、同一チップのSiの基板1上等にLSIを形成できるので、前記デバイスの利用に大きく寄与することができる。
【0059】
【発明の効果】
本発明によれば、半導体装置おいて、Nを添加することにより格子定数をSiに近い値としたIII −V−N半導体層をシリコン単結晶基板上に形成する。これにより、III −V−N半導体とSiとの間の僅かな格子定数の相違に起因する欠陥(転位)の発生を抑え、Siにほぼ格子整合したIII −V−N半導体層を形成することができる。従って、このIII −V−N半導体層を無欠陥化(無転位化)したIII −V族化合物半導体層として形成することができる。更に、III −V−N半導体層の上にSi層を形成して、高温成長後の冷却過程で熱膨張係数差に基づく応力によって転位が導入されることを防ぐとともに、無欠陥(無転位)のIII −V族化合物半導体層とSi層とを形成することができる。
【図面の簡単な説明】
【図1】本発明の半導体装置構成図であり、本発明の半導体装置の基本的な構成を示す。
【図2】本発明の半導体装置の製造方法説明図であり、本発明の半導体装置の製造方法を示す。
【図3】本発明の半導体装置の説明図であり、本発明の半導体装置における結晶欠陥(転位)が無い様子を模式的に示す。
【図4】本発明の実施例構成図であり、ダブルヘテロ発光ダイオード用の薄膜構造を有する半導体装置を示す。
【図5】本発明の実施例構成図であり、量子井戸(QW)レーザ用の薄膜構造を有する半導体装置を示す。
【図6】本発明の実施例構成図であり、光電子集積回路用の薄膜構造を有する半導体装置を示す。
【図7】本発明の実施例構成図であり、Si/絶縁体/Si(SOI)の薄膜構造を有する半導体装置を示す。
【図8】本発明の実施例構成図であり、高電子易動度トランジスタ用の薄膜構造を有する半導体装置を示す。
【符号の説明】
1:シリコン単結晶基板
2:GaPバッファ層
3:III −V−N半導体層
43、44:シリコン半導体層

Claims (3)

  1. シリコン単結晶基板と、
    前記シリコン単結晶基板上に、その臨界膜厚以下の厚さに形成されたGaPバッファ層と、
    前記GaPバッファ層上に形成され、シリコン単結晶に実質的に格子整合するように窒素(N)を添加したIII −V族化合物半導体からなる複数の半導体層と、
    前記複数の半導体層の上に形成されたシリコン半導体層を有する
    ことを特徴とする半導体装置。
  2. 前記複数の半導体層において、窒素(N)がV族元素に対して1%〜10%添加された
    ことを特徴とする請求項1記載の半導体装置。
  3. 前記複数の半導体層において、窒素(N)がシリコン単結晶と当該 III −V族化合物半導体との間の格子定数差を0.2%以下とするように添加された
    ことを特徴とする請求項1記載の半導体装置。
JP2001263610A 2001-08-31 2001-08-31 半導体装置 Expired - Lifetime JP3782328B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001263610A JP3782328B2 (ja) 2001-08-31 2001-08-31 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001263610A JP3782328B2 (ja) 2001-08-31 2001-08-31 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006033273A Division JP4769094B2 (ja) 2006-02-10 2006-02-10 半導体装置及びその製造方法

Publications (3)

Publication Number Publication Date
JP2003077840A JP2003077840A (ja) 2003-03-14
JP2003077840A5 JP2003077840A5 (ja) 2005-04-07
JP3782328B2 true JP3782328B2 (ja) 2006-06-07

Family

ID=19090338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001263610A Expired - Lifetime JP3782328B2 (ja) 2001-08-31 2001-08-31 半導体装置

Country Status (1)

Country Link
JP (1) JP3782328B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9524869B2 (en) 2004-03-11 2016-12-20 Epistar Corporation Nitride-based semiconductor light-emitting device
US8562738B2 (en) 2004-03-11 2013-10-22 Epistar Corporation Nitride-based light-emitting device
US7928424B2 (en) * 2004-03-11 2011-04-19 Epistar Corporation Nitride-based light-emitting device
US8334155B2 (en) * 2005-09-27 2012-12-18 Philips Lumileds Lighting Company Llc Substrate for growing a III-V light emitting device
JP2012054424A (ja) * 2010-09-01 2012-03-15 Koji Tomita 太陽電池及びその製造方法
JP2016515991A (ja) * 2013-03-14 2016-06-02 キング アブドラ ユニバーシティ オブ サイエンス アンド テクノロジー 無欠陥単結晶薄層
JP6923900B2 (ja) * 2017-02-24 2021-08-25 国立大学法人豊橋技術科学大学 希薄窒化物犠牲層を用いた化合物半導体薄膜の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005281B2 (ja) * 1990-11-24 2000-01-31 京セラ株式会社 半導体素子の製造方法
JP3474917B2 (ja) * 1994-04-08 2003-12-08 日本オプネクスト株式会社 半導体装置の製造方法
JPH10326749A (ja) * 1997-03-28 1998-12-08 Sharp Corp 化合物半導体の製造方法
JP2000049104A (ja) * 1998-05-29 2000-02-18 Sharp Corp 化合物半導体の結晶成長方法及び化合物半導体装置
JP2000031591A (ja) * 1998-07-08 2000-01-28 Toshiba Corp 半導体発光素子

Also Published As

Publication number Publication date
JP2003077840A (ja) 2003-03-14

Similar Documents

Publication Publication Date Title
US6784074B2 (en) Defect-free semiconductor templates for epitaxial growth and method of making same
US7339255B2 (en) Semiconductor device having bidirectionally inclined toward <1-100> and <11-20> relative to {0001} crystal planes
JP3645233B2 (ja) 半導体素子
JP4332720B2 (ja) 半導体素子形成用板状基体の製造方法
US20070008998A1 (en) Semiconductor light emitting device
US5508554A (en) Semicoductor device having defect type compound layer between single crystal substrate and single crystal growth layer
US20200235263A1 (en) Reducing Or Eliminating Nanopipe Defects In III-Nitride Structures
JPH09139543A (ja) 半導体レーザ素子
JP3782328B2 (ja) 半導体装置
JP2004088054A (ja) Iii−v族化合物半導体装置及びその製造方法
JP4769094B2 (ja) 半導体装置及びその製造方法
US6324200B1 (en) Semiconductor laser device
US7015515B2 (en) Group III nitride compound semiconductor device having a superlattice structure
JPH09148556A (ja) 半導体装置,及びその製造方法
JPH11274563A (ja) 半導体装置および半導体発光素子
JP3898786B2 (ja) 半導体デバイス
JP2003077840A5 (ja)
JP2780333B2 (ja) 半導体積層構造及びこれを有する半導体素子
JP3279308B2 (ja) 窒化物半導体発光素子
JPH0851251A (ja) 光半導体装置
JP2560601B2 (ja) 元素半導体基板上の金属膜/化合物半導体積層構造の製造方法
JP2689919B2 (ja) 半導体発光素子
JPH1093194A (ja) 窒化物半導体発光素子
JP3780984B2 (ja) 窒化物半導体の製造方法
KR100808202B1 (ko) 공명 터널링 다이오드 및 그 제조방법

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060309

R150 Certificate of patent or registration of utility model

Ref document number: 3782328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term