JP3757784B2 - 減圧装置およびそれを用いた冷凍サイクル装置 - Google Patents

減圧装置およびそれを用いた冷凍サイクル装置 Download PDF

Info

Publication number
JP3757784B2
JP3757784B2 JP2000337838A JP2000337838A JP3757784B2 JP 3757784 B2 JP3757784 B2 JP 3757784B2 JP 2000337838 A JP2000337838 A JP 2000337838A JP 2000337838 A JP2000337838 A JP 2000337838A JP 3757784 B2 JP3757784 B2 JP 3757784B2
Authority
JP
Japan
Prior art keywords
refrigerant
passage
variable throttle
flow rate
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000337838A
Other languages
English (en)
Other versions
JP2002081800A (ja
Inventor
庫人 山▲崎▼
繁樹 伊藤
照之 堀田
康司 山中
淳 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000337838A priority Critical patent/JP3757784B2/ja
Priority to US09/827,069 priority patent/US6397616B2/en
Priority to DE60108677T priority patent/DE60108677T2/de
Priority to EP01107823A priority patent/EP1143211B1/en
Publication of JP2002081800A publication Critical patent/JP2002081800A/ja
Application granted granted Critical
Publication of JP3757784B2 publication Critical patent/JP3757784B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Details Of Valves (AREA)
  • Pipe Accessories (AREA)
  • Valve Housings (AREA)
  • Safety Valves (AREA)
  • Temperature-Responsive Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に冷媒流れ方向に複数段の絞り手段を配置した減圧装置およびそれを用いた冷凍サイクル装置に関するもので、車両空調用冷凍サイクル装置に用いて好適である。
【0002】
【従来の技術】
従来、車両空調用冷凍サイクル装置においてはサイクル運転条件の変動幅が大きいので、通常は減圧装置として温度式膨張弁を用い、蒸発器出口冷媒の過熱度が所定値に維持されるように冷媒流量を自動調整するようにしている。しかし、温度式膨張弁は蒸発器出口冷媒の過熱度に応動する弁駆動機構が必要であるので、構成が複雑で、コストが高い。
【0003】
そこで、従来、過熱度に応動する弁駆動機構を廃止した構成の簡単な減圧装置が特開平11−257802号公報において提案されている。この従来技術では、蒸発器出口と圧縮機吸入側との間に冷媒の気液を分離して液冷媒を溜めるアキュムレータを配置する冷凍サイクル装置において、図22に示すように減圧装置前後の差圧(サイクル高低圧差)に応じて絞り径を変化させる弁機構を持つ減圧装置を構成している。
【0004】
この従来技術では、通常走行時のようにサイクル冷媒循環流量と凝縮器放熱能力とのバランスがとれて差圧が第1の所定値P1より小さいときは弁機構が絞り径を大きくする。そして、アイドル時のように凝縮器放熱能力が冷却風量減少により低下し、それにより、高圧圧力が上昇して差圧が第1の所定値P1より大きくなると弁機構が絞り径を小さくする。そして、高速走行時のように圧縮機の高速回転によりサイクル冷媒流量が大幅に上昇し、それにより、高圧圧力が更に上昇して差圧が第2の所定値P2より大きくなると、弁機構が再び絞り径を大きくする。
【0005】
このように、従来技術ではアイドル時には弁機構が絞り径を小さくすることにより、低圧圧力を下げて、アイドル時の冷房能力を確保し、また、高速走行時には弁機構が絞り径を大きくすることにより、高圧圧力の異常上昇を防止することを狙っている。
【0006】
【発明が解決しようとする課題】
ところが、実際の冷凍サイクル運転条件と減圧装置前後の差圧(サイクル高低圧差)との関係が図22のように一義的に決まるものではない。例えば、アイドル時でも高外気温時とか市街地渋滞時のように極端に凝縮器放熱能力が低下すると、高圧圧力が上昇して差圧が第2の所定値P2より大きくなる場合があり、このときは弁機構が高速走行時と同様に絞り径を大きくしてしまう。その結果、低圧圧力(冷媒蒸発温度)が上昇するとともに凝縮器出口冷媒の過冷却度(サブクール)が減少して冷房能力を低下させるという不具合が生じる。
【0007】
また、通常走行時でも登坂走行時であると、車両変速機ギヤが低速ギヤとなり、圧縮機の高速回転によりサイクル冷媒流量が大幅に上昇する。しかし、登坂走行のため車速が低いので、凝縮器の冷却風量が冷媒流量の上昇に見合った分だけ得られないことが多い。その結果、凝縮器放熱能力が不足して高圧圧力が上昇して差圧が第1の所定値P1より大きくなる場合があり、このときは弁機構がアイドル時と同様に絞り径を小さくしてしまう。これにより、高圧圧力が更に上昇して圧縮機駆動動力の増加を招き、サイクル効率を悪化させる。
【0008】
本発明は上記点に鑑みて、広範な運転条件の変動に対しても冷媒流量を小型簡素な構成で良好に調整できる減圧装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記特開平11−257802号公報のように蒸発器出口と圧縮機吸入側との間に冷媒に気液を分離して液冷媒を溜めるアキュムレータを配置するアキュムレータ式冷凍サイクル装置においては、アキュムレータから飽和ガス冷媒が吸入されて圧縮、吐出され、そして、サイクル運転条件の変動により、凝縮器出口冷媒の状態(過冷却度あるいは乾き度)が変化する。ここで、冷凍サイクルの効率化のためには、凝縮器出口冷媒の過冷却度を適切な範囲(7〜15℃程度)に維持することが有効である。
【0010】
すなわち、凝縮器出口冷媒の過冷却度が過大になると、高圧圧力の上昇による圧縮機駆動動力の増大を招く。また、凝縮器出口冷媒の過冷却度が過小になると、蒸発器出入口間のエンタルピ差の減少を招き、能力低下を生じる。
【0011】
そこで、本発明は凝縮器出口冷媒の過冷却度を適切な範囲に維持しながら、広範な運転条件の変動に対して冷媒流量を良好に調整できるようにして上記目的を達成するものである。
【0012】
具体的には、請求項1に記載の発明では、冷媒流れの上流側に配置された可変絞り手段(14)と、可変絞り手段(14)の下流側に配置され、可変絞り手段(14)を通過した冷媒が常に流入する固定絞り手段(15)と、可変絞り手段(14)と固定絞り手段(15)との間に設けられ、固定絞り手段(15)より通路断面積が大きい中間部空間(16)とを備え、中間部空間(16)の通路長さを、可変絞り手段(14)から噴出した冷媒流れが固定絞り手段(15)の通路断面積より拡大するに必要な所定長さ以上としたことを特徴とする。
【0013】
ところで、ノズル形状等の固定絞り手段(15)では後述の図3の1点鎖線▲1▼に示すように冷媒の乾き度の微小域B(例えば、乾き度x<0.1)において流量変化が大きい、すなわち、流量調整ゲインが大きいという特徴を持っている。
【0014】
そこで、この点に着目して請求項1に記載の発明では、冷媒流れの上流側に配置した可変絞り手段(14)により凝縮器出口の過冷却液冷媒を所定量減圧して微小乾き度域に変化させ、この微小乾き度域にある気液2相冷媒を固定絞り手段(15)に流入させ、再度減圧する。
【0015】
これによると、固定絞り手段(15)では、丁度、流量調整ゲインの大きい冷媒状態にて冷媒流量調整作用を行うことができるので、固定絞り手段(15)による流量調整作用を凝縮器出口冷媒の過冷却度との関係で見ると、図3、図5の▲2▼に示すように過冷却度の微小な変化幅Cによって大きな冷媒流量調整幅D(図5)を得ることができる。
【0016】
特に、冷媒流れの上流側の絞り手段を絞り開度を調整可能な可変絞り手段(14)としているから、凝縮器出口冷媒の状態変化に応じて可変絞り手段(14)の絞り開度を調整して、下流側の固定絞り手段(15)の流量調整作用にとって適切な乾き度状態を作り出すことができる。
【0017】
しかも、可変絞り手段(14)で減圧された微小乾き度域の冷媒を固定絞り手段(15)より通路断面積の大きい中間部空間(16)内へ噴出させ、この噴出した冷媒流れを中間部空間(16)内で固定絞り手段(15)の通路断面積より拡大することにより、冷媒流れの流速の高い部分と流速の低い部分とを中間部空間(16)内で混合できる。そのため、前段の可変絞り手段(14)からの噴出冷媒流れを比較的均一な流速の流れとし、この均一な冷媒流れを下流側の固定絞り手段(15)の流量特性に従って確実に絞ることができる。この下流側固定絞り手段(15)の絞り作用によって図3の▲1▼に示す流量特性を確実に発揮させることができる。
【0018】
以上の結果、冷凍サイクル運転条件の広範な変動に対しても、凝縮器出口冷媒の過冷却度の微小変化幅により冷媒流量を広範囲に調整できる。そのため、凝縮器出口冷媒の過冷却度をサイクル運転の高効率化のための適切な範囲に維持して、サイクル運転の高効率化と冷房性能の確保を達成できる。しかも、温度式膨張弁のような過熱度に応動する弁駆動機構を必要とせず、減圧装置を可変絞り手段(14)と固定絞り手段(15)との組み合わせからなる小型簡素な構成にできる。
【0019】
請求項2に記載の発明では、中間部空間(16)と、可変絞り手段(14)の上流側通路との間を可変絞り手段(14)の閉塞状態でも連通させる連通手段(17c、18d)を備えることを特徴とする。
【0020】
これにより、可変絞り手段(14)の閉塞状態でも連通手段(17c、18d)を通して冷媒を流すことができるので、冷媒流量が所定流量に増加するまでの小流量時には可変絞り手段(14)を閉塞状態に維持して、小流量時における可変絞り手段(14)のハンチングを防止できる。
【0023】
また、請求項に記載の発明では、可変絞り手段(14)は、固定弁座部(17)と、固定弁座部(17)に対して変位可能な弁体(18)とを有し、弁体(18)はその前後の圧力差に応じて変位するようになっていることを特徴とする。
【0024】
これにより、可変絞り手段(14)前後の圧力差を運転条件の変動にかかわらず一定値に保持して、可変絞り手段(14)により凝縮器出口の過冷却液冷媒を微小乾き度域に変化させ、下流側の固定絞り手段(15)の流量調整作用を常に良好な状態に維持できる。
【0025】
また、請求項1に記載の発明では、可変絞り手段(14)は、冷媒が通過する絞り通路(18a)を有し、絞り通路(18a)を、その入口部で急縮小した冷媒流れが通路壁面に再付着して管摩擦による減圧が生じる形状にしたことを特徴とする。
ところで、管摩擦力は流速の2乗に比例するという関係があるから、高流量時には管摩擦力が増加することを利用して、可変絞り手段(14)の開度を増加させ、これにより、可変絞り手段(14)前後の圧力差を流量変動にかかわらず、一定に保持する作用を一層高めることができ、冷媒流量特性(流量調整ゲイン)を良好に維持できる。
請求項3に記載の発明では、弁体(18)は円筒形状であり、弁体(18)の中心部に絞り通路(18a)が形成されていることを特徴とする。
請求項4に記載の発明では、弁体(18)は円筒形状であり、弁体(18)の中心部に絞り通路(18a)が形成されており、
固定弁座部(17)は弁体(18)の上流側に配置された円筒部(17b)を有し、
円筒部(17b)の中心部に絞り通路(18a)と連通する連通穴(17c)が形成され、連通穴(17c)により前記連通手段が構成されることを特徴とする。
請求項に記載の発明では、弁体(18)に圧力差に対抗する閉弁方向のばね力を作用させるばね手段(19)を有し、ばね手段(19)のばね力を調整可能としたことを特徴とする。
【0026】
これによると、ばね手段(19)のばね力調整により可変絞り手段(14)前後の圧力差を調整でき、この圧力差の調整により凝縮器出口冷媒の目標過冷却度を容易に調整できる。従って、凝縮器(3)、蒸発器(5)のサイズ変更に伴う熱交換能力の差異、凝縮器(3)の放熱条件変更等に際しても、ばね手段(19)のばね力調整により目標過冷却度を容易に調整できる。
【0027】
請求項10に記載の発明では、可変絞り手段(14)を内蔵するボディ部材(11)を有し、ボディ部材(11)に対して固定弁座部(17)を位置調整可能に組み付け、固定弁座部(17)の位置調整によりばね手段(19)のばね力を調整するようにしたことを特徴とする。
【0028】
これによると、ボディ部材(11)に対する固定弁座部(17)の位置調整により目標過冷却度の調整を容易に行うことができる。
【0029】
請求項11に記載の発明では、ばね手段(19)のばね力を圧力換算で表したばね設定圧を3〜5kg/cm2としたことを特徴とする。
【0030】
本発明者の実験検討によると、ばね設定圧を上記範囲に定めることにより、凝縮器出口冷媒の過冷却度をサイクル運転の高効率化および冷房性能確保のための最適範囲にすることができるとともに、過冷却度の小さな変化量で冷媒流量を大きく変化できる、良好な流量調整特性を得ることができることが分かった。
【0033】
請求項12に記載の発明のように、絞り通路(18a)の長さをL2とし、絞り通路(18a)の円形断面相当直径をd2としたときに、長さL2と円形断面相当直径d2との比L2/d2を5以上に設定することが好ましい。
【0034】
本発明者の検討によると、絞り通路(18a)の形状を、具体的には上記比L2/d2>5となるように設定することにより、絞り通路(18a)での管摩擦による減圧作用を良好に発揮して、請求項の作用効果を得ることができることが分かった。
【0035】
なお、円形断面相当直径とは、絞り通路(18a)の断面形状が通常通り円形の場合にはその円形の直径をそのまま適用し、楕円等の非円形状の場合は同一断面積の円形に置換して、その置換した円形の直径を適用することを意味している。
【0036】
請求項に記載の発明のように、可変絞り手段(14)の上流側にフィルタ部材(21)を配置すれば、可変絞り手段(14)の上流側にて冷媒中の異物を捕捉して、異物による減圧装置の微小通路部の閉塞を防止できる。
【0037】
請求項に記載の発明では、固定弁座部(17)を弁体(18)の上流側に配置し、固定弁座部(17)にフィルタ部材(21)を一体に組み付けることを特徴とする。
【0038】
これにより、可変絞り手段(14)の固定弁座部(17)にフィルタ部材(21)を一体化でき、部品点数を削減できる。
【0039】
請求項7に記載の発明では、冷媒配管(10)内に保持されるボディ部材(11)を有し、ボディ部材(11)内に可変絞り手段(14)と固定絞り手段(15)と中間部空間(16)とを備えることを特徴とする。
これにより、減圧装置全体を冷媒配管途中に容易に配置できる。
請求項に記載の発明のように、円筒状のボディ部材(11)内に、可変絞り手段(14)および固定絞り手段(15)を同一軸線上に直線的に内蔵すれば、減圧装置全体を細長の小径の円筒体として構成できる。従って、車両エンジンルーム内のような極めて狭隘な搭載スペースであっても、減圧装置を冷媒配管途中に容易に配置できる。
【0040】
請求項13に記載の発明では、冷媒を圧縮し、吐出する圧縮機(1)と、圧縮機(1)からの冷媒を凝縮させる凝縮器(3)と、凝縮器(3)からの冷媒を減圧する減圧装置(4)と、減圧装置(4)で減圧した後の冷媒を蒸発させる蒸発器(5)と、蒸発器(5)からの冷媒の気液を分離してガス冷媒を圧縮機(1)に吸入させるアキュムレータ(8)とを備え、減圧装置(4)を請求項1ないし12のいずれか1つに記載の減圧装置により構成することを特徴とする。
【0041】
このようなアキュムレータ式冷凍サイクル装置において、本発明は冷媒流量調整作用を効果的に発揮できる。
【0042】
請求項14に記載の発明では、圧縮機(1)は車両エンジンにより駆動され、凝縮器(3)は車両走行による走行風を受けて冷却される部位に配置され、蒸発器(5)は車室内への吹出空気を冷却するように構成されていることを特徴とする。
【0043】
請求項14に記載の発明のような車両用アキュムレータ式冷凍サイクル装置であると、圧縮機(1)の回転数変動、あるいは車速変動による凝縮器放熱能力変動、蒸発器(5)の冷房熱負荷変動等が生じて、凝縮器出口冷媒の状態(過冷却度)が大きく変化しようとするが、本発明によれば、上記のような運転条件の変動に対しても冷媒流量を良好に調整して、凝縮器出口冷媒の過冷却度を適切な範囲に維持できる。
【0044】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0045】
【発明の実施の形態】
(第1実施形態)
図1は第1実施形態による車両用空調装置の冷凍サイクルであり、圧縮機1は電磁クラッチ2を介して図示しない車両エンジンにより駆動される。圧縮機1から吐出された高圧のガス冷媒は凝縮器3に流入し、ここで、外気と熱交換して冷却され、凝縮される。なお、凝縮器3は車両走行による走行風を受けて冷却される部位、具体的には車両エンジンルーム内の最前部等に配置され、走行風および凝縮器用冷却ファンの送風空気により冷却される。
【0046】
そして、凝縮器3で凝縮した液冷媒は次に減圧装置4にて低圧に減圧されて霧状の気液2相状態となる。この減圧装置4は冷媒流れ方向に複数段の絞り手段を配置したもので、その詳細は後述する。減圧装置4を通過した低圧冷媒は蒸発器5において空調用送風機6の送風空気から吸熱して蒸発する。
【0047】
蒸発器5は空調ケース7内に配置され、蒸発器5で冷却された冷風は周知のごとく図示しないヒータコア部で温度調整された後に車室内へ吹き出す。蒸発器5を通過したガス冷媒はアキュムレータ8にて気液分離された後に圧縮機1に吸入される。
【0048】
アキュムレータ8は、蒸発器5出口からの冷媒の気液を分離し液冷媒を溜めてガス冷媒を圧縮機1に吸入させる役割と、タンク底部側に溜まる液冷媒中に溶け込んでいるオイルを圧縮機1に吸入させる役割とを果たす。
【0049】
図2は第1実施形態による減圧装置4の具体的構造を例示するもので、冷媒配管10は図1の凝縮器3出口側と蒸発器5の入口側との間に配置されるもので、通常、アルミニュウム等の金属から形成されている。冷媒配管10の内部に減圧装置4のボディ部材11が内蔵されている。このボディ部材11は例えば樹脂にて概略円筒状に成形され、冷媒配管10の内部のストッパー部12により位置決めされる。
【0050】
また、ボディ部材11の外周面の凹状溝11aにはシール用Oリング13が保持され、このOリング13を冷媒配管10の内壁面に圧入することにより、ボディ部材11はストッパー部12により位置決めされた位置にて保持される。
【0051】
減圧装置4はボディ部材11内に構成されるものであって、大別して次の3つの要素を備えている。第1は冷媒流れ方向Aの上流側に配置された可変絞り弁14であり、第2はこの可変絞り弁14の下流側に配置された固定絞り15であり、第3はこの可変絞り弁14と固定絞り15との間に設けられた中間部空間(助走空間)16である。
【0052】
可変絞り弁14は固定弁座部17とこの固定弁座部17対して変位可能な弁体18とこの弁体18に閉弁方向のばね力を作用させるばね手段としての圧縮コイルばね19を有している。固定弁座部17と弁体18は本例では樹脂により成形し、コイルばね19は金属ばね材により成形している。
【0053】
固定弁座部17は円板部17aと、この円板部17aの中心部に一体に形成された円筒部17bとを有している。円筒部17bの中心部には小径の連通穴(ブリードポート)17cが形成してある。この連通穴17cは可変絞り弁14が図2(a)のように閉弁状態にあるときでも上記中間部空間16と可変絞り弁14の上流通路部20との間を小開度で常時連通させる連通手段を構成するもので、連通穴17cの径d1は例えば、φ1.0mm程度の小径である。
【0054】
円板部17aは円筒部17bの周囲にバイパス穴17dを形成している。このバイパス穴17dは円筒部17bの周囲に複数に分割して、円弧状、円形等の形状に形成されている。この複数のバイパス穴17dは可変絞り弁14の開弁時(図2(b)参照)に連通穴17cをバイパスして十分な量の冷媒を流すためのものであり、そのため、複数のバイパス穴17dの合計開口断面積は連通穴17cの開口断面積に比較して数倍以上に十分大きくしてある。
【0055】
また、円板部17aの外周面にはねじ17eを形成し、このねじ17eによりボディ部材11の上流側端部の内周面に円板部17aを締め付け固定するようになっている。ここで、ねじ17eによる締め付け固定の代わりに、かしめ等の他の固定手段を用いて、円板部17aをボディ部材11に固定してもよい。
【0056】
弁体18は円筒形状であり、その中心部に小径の円形穴からなる絞り通路18aが形成されている。この絞り通路18aの径d2は連通穴17cの径d1より大であり、例えば、φ1.8mm程度である。弁体18の上流側端部(円筒形状の軸方向一端部)には円筒部17bの先端傾斜面17fに圧接する傾斜凹面(上流端部)18bが形成してある。
【0057】
従って、円筒部17bの先端傾斜面17fと弁体18の上流側端部の傾斜凹面18bとの間隔が変化することにより、絞り通路18aの入口部の開口面積が調整される。絞り通路18aの下流側端部には開口断面積を徐々に拡大する口拡部18cが形成してある。この口拡部18cにより絞り通路18aの出口部から流出する冷媒流れの急拡大損失を減少できる。
【0058】
コイルばね19の一端部は弁体18の下流側端面に当接し、他端部はボディ部材11の内周面に形成した段付き面11bに支持されている。なお、コイルばね19のばね力(設定荷重)は、固定弁座部17のボディ部材11に対する締め付け位置を調整することにより行うことができる。すなわち、固定弁座部17の締め付け位置を円板部17aのねじ17eにより調整して、弁体18の軸方向位置を調整することにより、コイルばね19のばね力を調整できる。
【0059】
弁体18の前後の圧力差が弁体18に対して開弁方向の力として作用し、コイルばね19のばね力が弁体18に対して閉弁方向の力として作用するので、弁体18の前後の圧力差がコイルばね19のばね力により決まる所定値に維持されるように弁体18が軸方向に変位して、絞り通路18aの入口部の開口面積を調整する。すなわち、可変絞り弁14は定差圧弁としての役割を果たすものであって、図2(b)は弁体18がコイルばね19側へ変位して開弁した状態を示す。
【0060】
固定絞り15は、ボディ部材11の最下流端部に形成されるもので、その絞り形状は断面円弧状の滑らかな通路縮小形状を持つノズル形状からなる。本例では、固定絞り15をボディ部材11の最下流端部に直接形成する例を図示しているが、固定絞り15を金属等によりボディ部材11と別体で形成した後に、ボディ部材11の最下流端部に、別体の固定絞り15をインサート成形等により一体化してもよい。固定絞り15の最小部の径d3は、本例では弁体18の絞り通路18aの径d2と同一(例えば、φ1.8mm)に設定してある。
【0061】
中間部空間16は、その上流側の可変絞り弁14の絞り通路18aから噴出した冷媒流れを下流側の固定絞り15の通路断面積より拡大することにより、噴出冷媒流れの流速の高い部分と流速の低い部分とを混合して冷媒流速を均一化し、それにより、固定絞り15本来の流量特性による絞り作用を確実に発揮させるためのものである。
【0062】
ここで、中間部空間16の径d4は、絞り通路18aの径d2および固定絞り15の径d3より十分大きく(例えば、φ4.8mm程度)してあり、且つ、長さLは絞り通路18aから噴出した冷媒流れが固定絞り15の通路断面積より拡大し、流速が均一化するに必要な所定長さ以上に設定してある。長さLは本例では40mm程度としている。
【0063】
なお、図2に示す構造例では、上記した寸法設定(径d4、長さL)および絞り通路18aの下流端部の口拡部18cにより絞り通路18aから噴出した冷媒流れが中間部空間16の内壁面に再付着した後に固定絞り15に流入する。
【0064】
また、ボディ部材11の最上流端部にはフィルタ部材21が配置されている。このフィルタ部材21は冷媒中に含まれる金属切り粉等の異物を捕捉して、減圧装置4における微小な絞り通路部の目詰まりを防止するものであり、具体的にはフィルタ部材21は、樹脂等により形成された網状体21aと、この網状体21aを支持固定するリング状の樹脂製枠部21bとを有し、枠部21bはボディ部材11の最上流端部に樹脂の弾性を利用したはめ込み係止構造等により固定されている。
【0065】
また、図2に示す構造例では、冷媒流れ方向Aに沿って、フィルタ部材21、可変絞り弁14、中間部空間16および固定絞り15を同一軸線上に直線的に配列した構成として、減圧装置4全体を細長の小径円筒形状としている。
【0066】
次に、上記構成において第1実施形態の作動を説明する。図1において、圧縮機1が車両エンジンにより駆動されると、冷凍サイクル内を冷媒が循環し、圧縮機1での冷媒の圧縮→凝縮器3での冷媒の凝縮→減圧装置4での冷媒の減圧→蒸発器5での冷媒の蒸発→アキュムレータ8での冷媒の気液分離→圧縮機1への冷媒吸入が繰り返される。
【0067】
ところで、車両空調用冷凍サイクルでは、車両エンジンの回転数変動による圧縮機1の吐出能力変動、車速の変動による凝縮器3の放熱能力変動、蒸発器5の冷房負荷変動(送風量変動、吸い込み空気の温度、湿度変動)等のように運転条件が広範に変化する。従って、冷房能力の確保、および冷凍サイクルの効率アップのためには、これらのサイクル運転条件に対応してサイクル冷媒流量および凝縮器出口冷媒の過冷却度を適切に調整することが重要である。
【0068】
図3は第1実施形態による減圧装置4の冷媒流量調整作用を説明するもので、減圧装置4の下流側の固定絞り15はノズル形状から形成され、その流量特性は図3の1点鎖線▲1▼に示すように冷媒の乾き度の微小域B(例えば、乾き度x<0.1)において流量変化が大きい(流量調整ゲインが大きい)という特徴を持っている。
【0069】
この点に着目して、第1実施形態では固定絞り15の上流側に定差圧弁の役割を果たす可変絞り弁14を配置して、この可変絞り弁14の減圧作用により凝縮器3の出口冷媒を所定値だけ減圧して、乾き度の微小域にある気液2相状態の冷媒を固定絞り15に流入させるようにしている。
【0070】
このことを図4のモリエル線図により説明すると、いま、凝縮器3の出口冷媒がa点の状態にあって、所定の過冷却度SCを持っている。この過冷却度SCを持った高圧液冷媒が減圧装置4内に流入すると、まず、可変絞り弁14の減圧作用により所定値ΔPだけ減圧され、これにより、高圧液冷媒は微小な乾き度x1を持った気液2相状態(b点)に移行する。ここで、可変絞り弁14は定差圧弁機能を果たすため、その減圧幅は常に所定値ΔPに維持される。
【0071】
次に、気液2相状態の冷媒は可変絞り弁14の弁体18の絞り通路18aから中間部空間16へ噴出し、この中間部空間16を通過して固定絞り15に流入する。ここで、中間部空間16は絞り通路18aからの噴出冷媒流れの流速の高い部分と低い部分とを混合して、比較的均一な流速分布の冷媒流れとすることができる。
【0072】
従って、この均一な流速分布の冷媒が固定絞り15に流入するため、固定絞り15の絞り作用によって図3の▲1▼に示す流量特性を確実に発揮させることができる。因みに、上流側の可変絞り弁14と下流側の固定絞り15とを近接配置すると、上流側の可変絞り弁14で減圧された冷媒がその減圧状態の影響を受けたまま、不均一な流速分布で冷媒が固定絞り15に流入する。それにより、固定絞り15本来の絞り作用に基づく冷媒流量特性を発揮できない結果を招く。
【0073】
以上により固定絞り15では、凝縮器3出口の過冷却液冷媒を微小乾き度域に変化させた状態(流量調整ゲインが大きい状態)で冷媒流量調整作用を行うことができ、この結果、固定絞り15による流量調整作用を凝縮器出口冷媒の過冷却度との関係で見ると、図3、図5の▲2▼に示すようになり、過冷却度の微小な変化幅Cによって大きな冷媒流量調整幅D(図5)を得ることができる。
【0074】
従って、例えば、蒸発器5の冷房熱負荷が大となり、大きな冷媒流量が必要なときには、凝縮器出口冷媒の過冷却度が小量増大するだけで必要な冷媒流量を得ることができる。このことは、高負荷時に過冷却度が過大となり、高圧圧力が異常上昇することを未然に防止できるので、圧縮機動力の上昇を抑制してサイクル運転を高効率化できる。
【0075】
逆に、蒸発器5の冷房熱負荷が小となり、小さな冷媒流量でよいときには、凝縮器出口冷媒の過冷却度が小量減少するだけで冷媒流量を熱負荷に見合ったレベルに減少できる。このことは、低負荷時にも凝縮器出口冷媒の過冷却度の大幅減少を抑制して、蒸発器5の入口出口間のエンタルピ差の縮小を抑え、サイクルの高効率運転を維持できる。
【0076】
なお、上記説明は蒸発器5の冷房熱負荷変動に例をとって減圧装置4による冷媒流量調整作用を説明したが、車両空調用冷凍サイクルでは、前述のように車両エンジンの回転数変動による圧縮機1の吐出能力変動、車速の変動による凝縮器3の放熱能力変動等の運転条件が大幅に変動するので、図1のアキュムレータ式冷凍サイクルではこれらの運転条件の変動に伴って凝縮器出口冷媒の状態(過冷却度あるいは乾き度)が大きく変化しようとするが、そのような運転条件変動に際しても、第1実施形態によると、過冷却度の小量変化により冷媒流量を大きく変化させて対応することができる。
【0077】
以上のことから、第1実施形態によると、運転条件の変動に対して過冷却度の変化幅をサイクル運転上、効率のよい所定範囲(例えば、7〜15℃程度)内に維持することが可能となり、サイクル運転の高効率化に貢献できる。
【0078】
図5において、破線▲3▼は減圧装置としてキャピラリチューブのみを用いた比較例の冷媒流量調整特性であり、キャピラリチューブによると、上記の冷媒流量調整幅Dを得るためには、上記の過冷却度変化幅Cに対して格段と大きい過冷却度変化幅Eが必要であり、サイクルの高効率運転を阻害する。
【0079】
また、以上の説明から理解されるように、可変絞り弁14が定差圧弁機能を果たすため、減圧幅は常に所定値ΔPに維持される。従って、この所定値ΔPの選択により通常負荷運転時に固定絞り15入口冷媒の乾き度が図3の乾き度微小域B内となるように予め設定しておくことにより、広範な運転条件の変動に対しても、常に過冷却度の小量変化により冷媒流量を大きく変化させることができる。
【0080】
これに反し、固定絞り15の上流側絞り手段としてキャピラリチューブのような固定絞りを用いると、この上流側固定絞りの流量特性に基づいて固定絞り前後の圧損量が変化して、下流側固定絞り15の入口冷媒の乾き度が大きく変動して下流側固定絞り15による流量特性を図3の破線▲4▼のように悪化させる。
【0081】
また、第1実施形態によると、可変絞り弁14の減圧幅ΔPは、固定弁座部17のねじ締め付け位置によりばね19のばね力を調整することにより容易に調整できるので、次のような利点が得られる。
【0082】
図6は図5に対応する冷媒流量調整特性を示す図で、図中の「ばね設定圧」という用語はばね19のばね力を圧力換算で表したもの(単位はkg/cm2)である。図6の▲2▼は図3、5の第1実施形態による冷媒流量調整特性である。これに対して、▲5▼は▲2▼の特性の場合よりも固定弁座部17のねじ締め付け位置を図2の左側、すなわち、ばね19のばね設定圧(ばね力)減少側に移動させたときの冷媒流量調整特性である。また、▲6▼は▲2▼の特性の場合よりも固定弁座部17のねじ締め付け位置を図2の右側、すなわち、ばね19のばね設定圧(ばね力)増加側に移動させたときの冷媒流量調整特性である。
【0083】
▲5▼の冷媒流量調整特性の場合はばね19のばね設定圧が減少することにより、可変絞り弁14が開弁しやすくなり、可変絞り弁14による減圧幅ΔPが▲2▼の特性より減少する。その結果、▲5▼の冷媒流量調整特性の場合はサイクル高圧圧力が▲2▼の特性より低めの圧力でバランスするので、凝縮器出口冷媒の過冷却度が▲2▼の特性におけるSC1より小さい値SC2となる。
【0084】
また、▲6▼の冷媒流量調整特性の場合はばね19のばね設定圧が増加することにより、可変絞り弁14が開弁しにくくなり、可変絞り弁14による減圧幅ΔPが▲2▼の特性より増加する。その結果、サイクル高圧圧力が▲2▼の特性より高めの圧力でバランスするので、凝縮器出口冷媒の過冷却度が▲2▼の特性におけるSC1より大きい値SC3となる。
【0085】
このように、可変絞り弁14のばね19のばね設定圧を調整することにより、凝縮器出口冷媒の過冷却度を容易に調整できるので、凝縮器3および蒸発器5のサイズの変更による熱交換能力の差異、凝縮器3の車両搭載構造の変更による放熱量の差異等が生じても、過冷却度をサイクル運転の高効率化のために最適な範囲(例えば、7〜15℃程度)に容易に調整でき、実用上極めて好都合である。
【0086】
次に、可変絞り弁14のばね19のばね設定圧の具体的数値例について説明すると、図7は本発明者の実験による実験データであり、凝縮器出口冷媒の過冷却度と可変絞り弁14のばね19のばね設定圧との関係を示す。この図7の主な実験条件は、凝縮器3および蒸発器5の入口空気温度=30〜40℃、圧縮機1の回転数=800〜3000rpmである。
【0087】
図7から分かるように、ばね設定圧=3〜5kg/cm2の範囲では、凝縮器出口冷媒の過冷却度=7〜15℃の範囲となる。
【0088】
この7〜15℃の過冷却度範囲は、次の理由から冷凍サイクル運転上の最適な範囲である。すなわち、過冷却度がおよそ15℃を超える状態ではサイクル高圧圧力が過度に上昇して圧縮機動力の増大を招く傾向にあり、サイクル効率を低下させる。また、過冷却度がおよそ7℃より低下する状態では蒸発器5の入口、出口間のエンタルピ差が減少して冷房能力を低下させる傾向にあり、好ましくない。このように、7〜15℃の過冷却度範囲は圧縮機動力の抑制と冷房能力の確保との両立の点から最適な範囲である。
【0089】
図8は可変絞り弁14を有する減圧装置4の流量調整ゲインと可変絞り弁14のばね19のばね設定圧との関係を示す。ここで、流量調整ゲインは具体的には、図9に示す冷媒流量の変化量Dと凝縮器出口冷媒の過冷却度変化量Cとの比(D/C)である。図10はばね設定圧による流量調整特性の変化を示すもので、過冷却度変化に対する流量変化量がばね設定圧の増加により次第に減少することを示している。このことは、ばね設定圧の増加により流量調整特性が悪化、すなわち、流量調整ゲインが減少することを意味している。
【0090】
図8において、破線Cは、固定絞り15のみからなる(可変絞り弁14を持たない)減圧装置4の流量調整ゲインであり、ばね設定圧が7kg/cm2を超えると、流量調整ゲインが破線Cと同等レベルまで減少してしまう。これに対し、ばね設定圧=3〜5kg/cm2の範囲では流量調整ゲインが最高値近傍の値(15付近)となり、良好な流量調整特性を発揮できることが分かった。
【0091】
次に、第1実施形態の別の特徴について説明すると、可変絞り弁14の固定弁座部17の円筒部17bに小径の連通穴(ブリードポート)17cを形成してあるため、可変絞り弁14が図2(a)のように閉弁状態にあるときでも連通穴17cと弁体18の絞り通路18aとにより中間部空間16と可変絞り弁14の上流通路部20との間を小開度で常時連通させることができる。
【0092】
ところが、小径の連通穴17cを通る連通路を設けない場合は、冷媒流量の小流量時から可変絞り弁14が開弁するため、図11の破線▲7▼に示すように小流量時にはばね19のリフト量(ばね圧縮量)が微小な状態で可変絞り弁14が開弁することになり、ばね19の挙動が不安定となり、可変絞り弁14の開閉動作のハンチングが生じやすい。
【0093】
これに対し、第1実施形態では小径の連通穴17cを通る連通路を常時形成するため、図11の実線▲8▼に示すように冷媒流量が所定量Q1(前述の所定値ΔPに相当する圧損が生じる流量)に増大するまでは連通穴17cを通る連通路を冷媒が流れて可変絞り弁14が閉弁状態を維持する。そして、冷媒流量が所定量Q1を超えると、ばね19のリフト量(ばね圧縮量)が急増して可変絞り弁14が開弁する特性となる。このため、ばね19のリフト量の微小状態に起因する弁開閉動作のハンチングを防止できる。
【0094】
(第2実施形態)
第1実施形態では、可変絞り弁14の上流側と下流側との間を常時連通させる小径の連通穴17cを可変絞り弁14の固定弁座部17の円筒部17bに形成しているが、第2実施形態では図12に示すように可変絞り弁14の弁体18に小径の連通穴18dを形成している。これに伴って、固定弁座部17の中心部は円柱部17b’となる。
【0095】
第2実施形態によると、連通穴18dは弁体18の絞り通路18aと並列に設けられているので、可変絞り弁14(弁体18)の閉弁状態においても、可変絞り弁14の前後の間を連通穴18dにより常時連通できる。従って、第2実施形態の連通手段であっても、第1実施形態と同様の効果を発揮できる。
【0096】
(第3実施形態)
第1、第2実施形態では、フィルタ部材21の枠部21bをボディ部材11の最上流端部に固定するようにしているが、第3実施形態では、図13に示すように、可変絞り弁14の固定弁座部17の円板部17aに冷媒流れ上流側(フィルタ部材21側)へ突き出すリング状の樹脂製枠部21bを樹脂により一体成形し、この枠部21bに網状体21aを支持固定するようにしている。
【0097】
これによると、固定弁座部17自身にフィルタ部材21の支持固定部を一体化でき、部品点数削減によりコスト低減を達成できる。
【0098】
(第4実施形態)
第4実施形態は、凝縮器出口冷媒の過冷却度変化に対する冷媒流量調整ゲイン(冷媒流量調整幅/過冷却度)を増大するための改良に関する。
【0099】
図14は減圧装置4の主要部の拡大断面図であり、可変絞り弁14は前述したように基本的には前後の差圧ΔPを一定に保持する定差圧弁として機能するものであるが、実際には流量増加により可変絞り弁14部分での圧損が増大して、前後差圧ΔPが増大する。
【0100】
図15は、可変絞り弁14前後の差圧ΔPと冷媒流量との関係を示すものであり、一般の定差圧弁構成では図15の破線Fに示すように流量増加により差圧ΔPが増大する傾向にある。ここで、一般の定差圧弁構成とは後述の図18(b)のオリフィスタイプのものである。また、差圧ΔP=弁上流の高圧Ph−中間部圧力Pmである。第4実施形態は図15の実線Gのように冷媒流量の変化にかかわらず差圧ΔPが略一定に保持される特性を狙う。
【0101】
図15の破線Fのように前後差圧ΔPが冷媒流量の増加により増大すると、図4のモリエル線図から分かるように高圧が上昇して凝縮器出口冷媒の過冷却度SCが大きくなる。図16は冷媒流量Grと凝縮器出口冷媒の過冷却度SCとの関係を示すものであり、一般の定差圧弁構成では図16の破線Hに示すように高流量になるほど凝縮器出口冷媒の過冷却度SCが大きくなってしまう。
【0102】
この結果、図16の破線Hの特性によると、冷媒流量調整ゲイン(冷媒流量調整幅D/過冷却度変化幅E)が減少(悪化)してしまう。
【0103】
そこで、第4実施形態では、可変絞り弁14における弁体18の絞り通路18aに着目して、この絞り通路18aにキャピラリチューブと同様の管摩擦による減圧作用を発揮させることにより、図15の実線Gの特性に示すように、冷媒流量の変化にかかわらず可変絞り弁14前後の差圧ΔPを略一定に維持できる弁特性を得るものである。それにより、図16の実線Iの特性のように冷媒流量調整ゲイン(冷媒流量調整幅D/過冷却度変化幅C)を増大させるものである。
【0104】
図17(a)は第4実施形態による可変絞り弁14の減圧作用を示すもので、図17(b)は第4実施形態の比較例(一般のオリフィスタイプの定差圧弁形状)である。第4実施形態では可変絞り弁14を構成するに際して、弁体18の絞り通路18aの径d2とし、長さをL2としたときに、この長さL2と径d2との比、すなわち、L2/d2>5とすることにより、絞り通路18aにキャピラリチューブと同様の管摩擦による減圧作用を発揮させる。
【0105】
ここで、絞りなどの管路系の損失では、急縮小、管摩擦、急拡大の損失がある。図17(b)の比較例のように絞り通路18aの径d2に対して長さL2が比較的短いオリフィス形状の場合には、絞り通路18aの入口部で急縮小した冷媒流れが絞り通路18aの壁面から剥離したまま(換言すると、冷媒流れが壁面に再付着する前に)、絞り通路18aの出口部から中間部空間16側へ流出してしまう。この結果、絞り通路18aにおいて管摩擦による減圧作用が発生しないので、管摩擦力が作用しない。
【0106】
これに対して、第4実施形態では図17(a)のように弁体18の絞り通路18aの長さL2と径d2との比を、(L2/d2)>5とすることにより、絞り通路18aの入口部で急縮小して絞り通路18aの壁面から剥離した冷媒流れが通路壁面に再付着するに必要な長さL3より大きい長さを絞り通路18aに設定できる。
【0107】
これにより、キャピラリチューブと同様の管摩擦による減圧作用を絞り通路18aに発揮させることができるので、絞り通路18aの壁面に管摩擦力が作用する。このため、第4実施形態では図18(a)のように、コイルばね19のばね力をFs、弁前後差圧ΔPによる力をF1、絞り通路18aの管摩擦力をF2としたとき、Fs=F1+F2の関係が成立する。一方、オリフィスタイプの比較例の場合には、図18(b)のように管摩擦力が作用しないので、Fs=F1となる。
【0108】
管摩擦力F2は流速の2乗に比例するから、高流量時には管摩擦力F2が大きくなり、コイルばね19が弁体18とともに押し込まれるので、絞り通路18aの入口部開度を増大させる。つまり、第4実施形態によると、図15において、高流量時には矢印aのように管摩擦力F2の増大により絞り通路18aの入口部開度を増大させて差圧ΔPを減少できるのである。
【0109】
これに反し、オリフィスタイプの比較例では、管摩擦力F2による絞り通路18aの入口部開度の増加が生じないので、図15の破線Fの特性のように冷媒流量の増加とともに差圧ΔPが増加してしまう。
【0110】
以上の結果、第4実施形態では図15の実線の特性Gに示すように、冷媒流量の増加にもかかわらず可変絞り弁14前後の差圧ΔPを略一定に維持できる弁特性を得ることができる。これにより、図16の実線Iの特性のように冷媒流量調整ゲイン(冷媒流量調整幅/過冷却度変化幅)を増大できる。
【0111】
図19は第4実施形態による冷媒流量調整ゲインの改善効果を検証した実験データであり、絞り通路18aの径d2=φ1.9mmに固定する一方、長さL2を1、2、4、6、8、10mmの6種類に変更して、流量特性を評価した結果である。なお、実験条件として、可変絞り弁14入口圧力(高圧)Ph=1.08MPa一定とし、また、固定絞り15出口圧力(低圧)Pl=0.36MPa一定とし、そして、可変絞り弁14入口冷媒の過冷却度SCをパラメータとして冷媒流量を測定している。
【0112】
冷媒流量は、入口冷媒の過冷却度SC=0の流量GrSC=0を1として無次元化し、冷媒流量比として縦軸にプロットしている。図19から分かるように、長さL2を10mmとして、L2/d2を5より大きくした場合(第4実施形態)には、過冷却度SC=0〜10℃の変化により冷媒流量を1.5倍付近まで変化させることができる。これに対し、他の比較例(L2/d2が4.2以下のもの)では、過冷却度SC=0〜10℃の変化により冷媒流量が1.25倍以下しか変化しない。
【0113】
つまり、第4実施形態のように(L2/d2)>5とすることにより、冷媒流量調整ゲインを大幅に増加できることが分かる。
【0114】
図20(a)は第4実施形態に基づいて実際に設計した評価品▲1▼を示し、図20(b)は比較例としての評価品▲2▼を示し、評価品▲1▼では、(L2/d2)=8.3とし、評価品▲2▼では、(L2/d2)=1.4としている。
【0115】
図21(a)は冷媒流量変化に対する可変絞り弁14前後の差圧ΔPの変化を示すものであり、冷媒流量Gr=100〜200kg/hの変化に対して評価品▲1▼では差圧ΔP=0.53〜0.54MPa付近の概略一定の範囲に維持できるという良好な結果が得られた。そのため、評価品▲1▼によると、図21(b)に示すように冷媒流量Gr=100〜200kg/hの変化に対して可変絞り弁14上流側冷媒の過冷却度SCの変化幅を10℃〜15℃という、比較的小さな範囲に抑えることができる。
【0116】
これに対し、評価品▲2▼では、図21(a)に示すように冷媒流量変化に対する差圧ΔPの変化幅が評価品▲1▼よりはるかに大きくなってしまい、その結果、図21(b)に示すように冷媒流量Gr=100〜200kg/hの変化に対して弁上流側冷媒の過冷却度SCの変化幅がを10℃〜20℃という範囲に拡大してしまい、冷媒流量調整ゲインを減少(悪化)させる。
【0117】
(他の実施形態)
なお、上記の各実施形態では、下流側の固定絞り手段としてノズル形状からなる固定絞り15を用いる場合について説明したが、固定絞り手段としてノズルの他に、オリフィス、ベンチュリ等を用いることもできる。
【0118】
また、上記の各実施形態では、可変絞り弁14前後の通路間を可変絞り弁14の閉塞状態でも連通させる連通穴17c、18dを備える場合について説明したが、冷房熱負荷の低負荷条件、例えば、低外気温時には自動的に停止状態となる車両用冷凍サイクル装置が実用化されている。このような冷凍サイクル装置では冷媒流量が小流量となる使用状態が少ないので、連通穴17c、18dを廃止してもよい。
【図面の簡単な説明】
【図1】本発明の第1実施形態における冷凍サイクル図である。
【図2】(a)は第1実施形態の減圧装置の縦断面図、(b)は(a)の開弁時の要部拡大図である。
【図3】第1実施形態の作動説明用の冷媒流量特性図である。
【図4】第1実施形態の作動説明用のモリエル図である
【図5】第1実施形態の作動説明用の冷媒流量特性図である。
【図6】第1実施形態のばね設定圧の調整による過冷却度変化を示す冷媒流量特性図である。
【図7】第1実施形態のばね設定圧と過冷却度との関係を示す実験データのグラフである。
【図8】第1実施形態のばね設定圧と流量調整ゲインとの関係を示す実験データのグラフである。
【図9】図8の流量調整ゲインの定義の説明図である。
【図10】第1実施形態のばね設定圧の調整による過冷却度変化を示す冷媒流量特性図である。
【図11】第1実施形態の作動説明用のばねリフト量−冷媒流量特性図である。
【図12】第2実施形態の減圧装置の縦断面図である。
【図13】第3実施形態の減圧装置の縦断面図である。
【図14】第4実施形態の減圧装置の要部縦断面図である。
【図15】冷媒流量と可変絞り弁前後差圧との関係を示す特性図である。
【図16】弁入口冷媒の過冷却度と冷媒流量との関係を示す特性図である。
【図17】可変絞り弁による減圧作用を説明する要部縦断面図である。
【図18】可変絞り弁に作用する力の釣り合い関係の説明図である。
【図19】弁入口冷媒の過冷却度と冷媒流量との関係を示す実験データのグラフである。
【図20】減圧装置の冷媒流量特性の評価に用いた評価品の縦断面図である。
【図21】図20の評価品における冷媒流量特性の評価結果を示す実験データのグラフである。
【図22】従来技術における減圧装置前後の差圧と絞り径との関係を示す特性図である。
【符号の説明】
11…ボディ部材、14…可変絞り弁、15…固定絞り、16…中間部空間、
17…固定弁座部、18…弁体、19…ばね。

Claims (14)

  1. 冷凍サイクルの高圧側冷媒を減圧する減圧装置であって、
    冷媒流れの上流側に配置された可変絞り手段(14)と、
    前記可変絞り手段(14)の下流側に配置され、前記可変絞り手段(14)を通過した冷媒が常に流入する固定絞り手段(15)と、
    前記可変絞り手段(14)と前記固定絞り手段(15)との間に設けられ、前記固定絞り手段(15)より通路断面積が大きい中間部空間(16)とを備え、
    前記可変絞り手段(14)は、固定弁座部(17)と、前記固定弁座部(17)に対して変位可能な弁体(18)とを有し、
    前記弁体(18)はその前後の圧力差に応じて変位するようになっており、
    また、前記可変絞り手段(14)は、冷媒が通過する絞り通路(18a)を有し、
    前記絞り通路(18a)を、その入口部で急縮小した冷媒流れが通路壁面に再付着して管摩擦による減圧が生じる形状にし、
    前記中間部空間(16)の通路長さを、前記可変絞り手段(14)から噴出した冷媒流れが前記固定絞り手段(15)の通路断面積より拡大するに必要な所定長さ以上としたことを特徴とする減圧装置。
  2. 前記中間部空間(16)と、前記可変絞り手段(14)の上流側通路(20)との間を前記可変絞り手段(14)の閉塞状態でも連通させる連通手段(17c、18d)を備えることを特徴とする請求項1に記載の減圧装置。
  3. 前記弁体(18)は円筒形状であり、前記弁体(18)の中心部に前記絞り通路(18a)が形成されていることを特徴とする請求項1または2に記載の減圧装置。
  4. 前記弁体(18)は円筒形状であり、前記弁体(18)の中心部に前記絞り通路(18a)が形成されており、
    前記固定弁座部(17)は前記弁体(18)の上流側に配置された円筒部(17b)を有し、
    前記円筒部(17b)の中心部に前記絞り通路(18a)と連通する連通穴(17c)が形成され、前記連通穴(17c)により前記連通手段が構成されることを特徴とする請求項に記載の減圧装置。
  5. 前記可変絞り手段(14)の上流側にフィルタ部材(21)を配置することを特徴とする請求項1ないし4のいずれか1つに記載の減圧装置。
  6. 前記固定弁座部(17)は前記弁体(18)の上流側に配置され、前記固定弁座部(17)にフィルタ部材(21)を一体に組み付けることを特徴とする請求項1ないし3のいずれか1つに記載の減圧装置。
  7. 冷媒配管(10)内に保持されるボディ部材(11)を有し、前記ボディ部材(11)内に前記可変絞り手段(14)と前記固定絞り手段(15)と前記中間部空間(16)とを備えることを特徴とする請求項1ないし6のいずれか1つに記載の減圧装置。
  8. 前記可変絞り手段(14)および前記固定絞り手段(15)を同一軸線上に直線的に内蔵する円筒状のボディ部材(11)を備えることを特徴とする請求項1ないし6のいずれか1つに記載の減圧装置。
  9. 前記弁体(18)に前記圧力差に対抗する閉弁方向のばね力を作用させるばね手段(19)を有し、
    前記ばね手段(19)のばね力を調整可能としたことを特徴とする請求項1ないし8のいずれか1つに記載の減圧装置。
  10. 前記弁体(18)に前記圧力差に対抗する閉弁方向のばね力を作用させるばね手段(19)を有し、
    前記ボディ部材(11)に対して前記固定弁座部(17)を位置調整可能に組み付け、
    前記固定弁座部(17)の位置調整により前記ばね手段(19)のばね力を調整するようにしたことを特徴とする請求項7または8に記載の減圧装置。
  11. 前記ばね手段(19)のばね力を圧力換算で表したばね設定圧を3〜5kg/cm2としたことを特徴とする請求項9たは10に記載の減圧装置。
  12. 前記絞り通路(18a)の長さをL2とし、前記絞り通路(18a)の円形断面相当直径をd2としたときに、前記長さL2と前記円形断面相当直径d2との比L2/d2を5以上に設定したことを特徴とする請求項1ないし11のいずれか1つに記載の減圧装置。
  13. 冷媒を圧縮し、吐出する圧縮機(1)と、前記圧縮機(1)からの冷媒を凝縮させる凝縮器(3)と、前記凝縮器(3)からの冷媒を減圧する減圧装置(4)と、前記減圧装置(4)で減圧した後の冷媒を蒸発させる蒸発器(5)と、前記蒸発器(5)からの冷媒の気液を分離してガス冷媒を前記圧縮機(1)に吸入させるアキュムレータ(8)とを備え、
    前記減圧装置(4)を請求項1ないし12のいずれか1つに記載の減圧装置により構成することを特徴とする冷凍サイクル装置。
  14. 前記圧縮機(1)は車両エンジンにより駆動され、前記凝縮器(3)は車両走行による走行風を受けて冷却される部位に配置され、前記蒸発器(5)は車室内への吹出空気を冷却するように構成されていることを特徴とする請求項13に記載の冷凍サイクル装置。
JP2000337838A 2000-04-06 2000-11-06 減圧装置およびそれを用いた冷凍サイクル装置 Expired - Fee Related JP3757784B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000337838A JP3757784B2 (ja) 2000-04-06 2000-11-06 減圧装置およびそれを用いた冷凍サイクル装置
US09/827,069 US6397616B2 (en) 2000-04-06 2001-04-05 Pressure reducer and refrigerating cycle unit using the same
DE60108677T DE60108677T2 (de) 2000-04-06 2001-04-06 Druckverminderer und Kältekreislauf zur Verwendung derselben
EP01107823A EP1143211B1 (en) 2000-04-06 2001-04-06 Pressure reducer and refrigerating cycle unit using the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000105276 2000-04-06
JP2000-105276 2000-04-06
JP2000-189600 2000-06-23
JP2000189600 2000-06-23
JP2000337838A JP3757784B2 (ja) 2000-04-06 2000-11-06 減圧装置およびそれを用いた冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JP2002081800A JP2002081800A (ja) 2002-03-22
JP3757784B2 true JP3757784B2 (ja) 2006-03-22

Family

ID=27343011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000337838A Expired - Fee Related JP3757784B2 (ja) 2000-04-06 2000-11-06 減圧装置およびそれを用いた冷凍サイクル装置

Country Status (4)

Country Link
US (1) US6397616B2 (ja)
EP (1) EP1143211B1 (ja)
JP (1) JP3757784B2 (ja)
DE (1) DE60108677T2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055388A1 (de) 2009-12-24 2011-07-07 DENSO CORPORATION, Aichi-pref. Dekompressionsvorrichtung

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3841039B2 (ja) * 2002-10-25 2006-11-01 株式会社デンソー 車両用空調装置
JP4262036B2 (ja) * 2003-09-11 2009-05-13 株式会社テージーケー 定流量膨張弁
US7455083B2 (en) * 2004-09-07 2008-11-25 Gerald Schlaf Accumulator for gaseous systems
DE102004053272B3 (de) * 2004-10-26 2006-04-27 Visteon Global Technologies, Inc. Intellectual Property Department, Van Buren Township Baugruppe für Kältemittel-Kreisläufe
US7178362B2 (en) * 2005-01-24 2007-02-20 Tecumseh Products Cormpany Expansion device arrangement for vapor compression system
JP5043496B2 (ja) * 2007-04-25 2012-10-10 サンデン株式会社 蒸気圧縮式冷凍サイクル
JP2010065914A (ja) * 2008-09-10 2010-03-25 Calsonic Kansei Corp 車両用空調システムに用いられる凝縮器および車両用空調システム
JP2011094810A (ja) * 2009-09-30 2011-05-12 Fujitsu General Ltd ヒートポンプサイクル装置
JP5572807B2 (ja) * 2010-03-18 2014-08-20 株式会社テージーケー 制御弁および車両用冷暖房装置
JP5607576B2 (ja) * 2011-05-23 2014-10-15 トヨタ自動車株式会社 車両用空調制御装置、車両用空調制御方法、及び車両用空調制御プログラム
CN102384610B (zh) * 2011-06-21 2013-08-28 珠海格力电器股份有限公司 一种孔板节流装置
JP5866600B2 (ja) * 2011-11-10 2016-02-17 株式会社テージーケー 車両用冷暖房装置、複合弁および制御弁
DE102012211519A1 (de) * 2012-07-03 2014-01-09 Behr Gmbh & Co. Kg Expansionsventil
US10107514B2 (en) * 2013-08-28 2018-10-23 Mitsubishi Electric Corporation Air-conditioning apparatus including multiple expansion devices
JP6374215B2 (ja) * 2014-05-16 2018-08-15 株式会社鷺宮製作所 絞り装置、それを備える冷凍サイクルシステム、および、絞り装置の製造方法
US10274235B2 (en) * 2017-03-10 2019-04-30 Lennox Industries Inc. System design for noise reduction of solenoid valve
CN107238238B (zh) * 2017-06-05 2023-07-04 珠海格力电器股份有限公司 节流装置和空调系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3311131A (en) * 1964-02-04 1967-03-28 Crawford Fitting Co Restricting orifice
JPS4714305Y1 (ja) * 1970-07-23 1972-05-23
US3741242A (en) 1971-12-10 1973-06-26 Refrigerating Specialties Co Refrigerant feed control and system
US4009592A (en) 1976-02-09 1977-03-01 Ford Motor Company Multiple stage expansion valve for an automotive air conditioning system
US4324112A (en) 1979-05-10 1982-04-13 Nippondenso Co., Ltd. Refrigeration system
JPS5828906B2 (ja) * 1980-09-05 1983-06-18 株式会社デンソー 冷凍装置
US4375228A (en) 1981-02-23 1983-03-01 General Motors Corporation Two-stage flow restrictor valve assembly
JPS5910590U (ja) * 1983-04-18 1984-01-23 株式会社デンソー 冷凍装置用消音器
JPS63129169U (ja) * 1987-02-16 1988-08-24
JPH0273569U (ja) * 1988-11-24 1990-06-05
JPH0752538Y2 (ja) * 1989-05-23 1995-11-29 株式会社テージーケー 膨張弁
JPH06300151A (ja) * 1993-04-13 1994-10-28 Sumitomo Electric Ind Ltd 流体用リリーフ弁
JP3164480B2 (ja) * 1994-11-11 2001-05-08 太平洋工業株式会社 電動膨張弁の構造
US5715704A (en) * 1996-07-08 1998-02-10 Ranco Incorporated Of Delaware Refrigeration system flow control expansion valve
JP3435626B2 (ja) * 1997-07-02 2003-08-11 株式会社日立製作所 空気調和機
JP3954718B2 (ja) * 1998-03-13 2007-08-08 カルソニックカンセイ株式会社 自動車用冷房装置
US5966960A (en) * 1998-06-26 1999-10-19 General Motors Corporation Bi-directional refrigerant expansion valve
JP3517369B2 (ja) * 1998-09-18 2004-04-12 株式会社テージーケー 過冷却度制御式膨張弁
US6182457B1 (en) * 1999-06-02 2001-02-06 Ranco Incorporated Of Delaware Electronic variable orifice tube and system for use therewith
JP4078812B2 (ja) 2000-04-26 2008-04-23 株式会社デンソー 冷凍サイクル装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055388A1 (de) 2009-12-24 2011-07-07 DENSO CORPORATION, Aichi-pref. Dekompressionsvorrichtung
DE102010055388B4 (de) 2009-12-24 2020-08-06 Denso Corporation Dekompressionsvorrichtung

Also Published As

Publication number Publication date
DE60108677T2 (de) 2005-12-29
JP2002081800A (ja) 2002-03-22
EP1143211B1 (en) 2005-02-02
US20010027657A1 (en) 2001-10-11
EP1143211A3 (en) 2002-01-16
US6397616B2 (en) 2002-06-04
DE60108677D1 (de) 2005-03-10
EP1143211A2 (en) 2001-10-10

Similar Documents

Publication Publication Date Title
JP3757784B2 (ja) 減圧装置およびそれを用いた冷凍サイクル装置
JP4078812B2 (ja) 冷凍サイクル装置
JPH05312421A (ja) 冷凍装置
US6651451B2 (en) Variable capacity refrigeration system with a single-frequency compressor
EP2674695B1 (en) Heat pump cycle
JP4075530B2 (ja) 冷凍サイクル
DE102008027608B4 (de) Zweistufiger Dekompressionsejektor und Kältekreislaufeinrichtung
US20140020424A1 (en) Decompression device and refrigeration cycle device
US6389818B2 (en) Method and apparatus for increasing the efficiency of a refrigeration system
CN107407507A (zh) 喷射器式制冷循环
US6328061B1 (en) Variable flow area refrigerant expansion device
JPH11278045A (ja) 冷凍サイクル装置
JP5083106B2 (ja) 膨張弁及びそれを備えた蒸気圧縮式冷凍サイクル
JP2009222255A (ja) 蒸気圧縮式冷凍サイクル
US6305414B1 (en) Variable flow area refrigerant expansion device
US6701745B1 (en) Air conditioning system utilizing at least one evaporator with continuous refridgerant flow through an auxiliary unit during shut off
JP3954718B2 (ja) 自動車用冷房装置
JP3644358B2 (ja) 冷凍サイクルの減圧装置
KR850000602B1 (ko) 냉동장치의 감압장치
JPH08244446A (ja) 車両用空調装置の冷凍サイクル
JP3949223B2 (ja) 自動車用冷房装置
JP7119785B2 (ja) エジェクタ式冷凍サイクル、およびエジェクタモジュール
WO2019155806A1 (ja) エジェクタ式冷凍サイクル、およびエジェクタモジュール
JP3845186B2 (ja) 自動車用冷房装置
JPS6346348B2 (ja)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees