JP3749321B2 - 自動分析装置 - Google Patents
自動分析装置 Download PDFInfo
- Publication number
- JP3749321B2 JP3749321B2 JP28560796A JP28560796A JP3749321B2 JP 3749321 B2 JP3749321 B2 JP 3749321B2 JP 28560796 A JP28560796 A JP 28560796A JP 28560796 A JP28560796 A JP 28560796A JP 3749321 B2 JP3749321 B2 JP 3749321B2
- Authority
- JP
- Japan
- Prior art keywords
- intensity
- monochromatic light
- cuvette
- component
- automatic analyzer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Description
【発明の属する技術分野】
本発明は、生体試料の成分分析等に使用される自動生化学分析装置に関する。
【0002】
【従来の技術】
臨床検査における血清や尿等の生体試料の成分分析の大部分は、分光光度計を発展させた形態の自動化学分析装置によって行われている。
【0003】
さて、一般に知られているように、試料溶液(試薬と試料の反応液)に含まれている各成分元素の濃度と各成分元素の吸光度とがランベルト・ベアーの法則に従うことから、この種の自動化学分析装置には、通常、数式1に示す対数変換処理を実行して、試料溶液を透過した光束に比例した光電流値Ifのレベル値Voを算出するLogアンプ回路が内蔵されている。
【0004】
Vo=K・log(If/Ip) ……(1)
ここで、Ipは、標準光束に比例したリファレンス電流値であり、Kは、回路の抵抗値等に応じて定まる比例定数(但し、K>0)である。
【0005】
即ち、従来の自動分析装置は、試料溶液を透過した光束に比例した光電流値を検出するための光学系と、検出された光電流値を用いて数式1で表す対数変換処理を実行するLogアンプ回路とを備える。そして、検査項目に応じた単色光成分を選択することができるように、試料溶液を透過した光をm個(通常、12個)の単色光成分に分光する分光素子(例えば、回折格子等)と、受光した各単色光成分の光束を光電変換するフォトダイオードアレイ(例えば、シリコンフォトセンサアレイ等)とから光学系が構成されており、各単色光成分に対応して複数のLogアンプ回路が設けられている。そして、各Logアンプ回路から出力された電圧Voは、それぞれ、マルチプレクサを介してAD変換器に入力された後、試料溶液に含まれている成分元素の吸光度としてCPUに入力される。そして、CPUは、適当な変換定数を用いた変換処理により、この成分元素の吸光度を、当該成分元素の濃度値に変換する。
【0006】
尚、生体試料等の成分分析では、近紫外線から近赤外線に至る迄の波長域で光電流Ipの検出を行う必要があるため、通常、この種の自動分析装置の光源には、約340nmから800nm程度の波長域の連続スペクトルを有するハロゲンランプが使用されている。
【0007】
【発明が解決しようとする課題】
さて、自動化学分析装置では、キュベットに充填させた試料溶液の成分分析を行う。このキュベットは、使用前に充分に清浄な状態にされていることが前提であるが、時として、部分的に汚れ等が付着している場合がある。また、厚さの不均一なキュベットを使用してしまい、液層の厚さが不均一となっている場合もある。従って、光がキュベットを透過する位置によって測定データが変動する可能性があった。
【0008】
また、近紫外線から近赤外線に至る迄の広範囲の波長域で光電流Ipの検出を行うため、上記従来の自動分析装置を使用する場合には、前準備として、全Logアンプ回路から出力される電圧がAD変換器の定格範囲内に収まるように各Logアンプ回路に与えるリファレンス電流Ipを個別に設定しなければならないという問題があった。即ち、測定を開始する前に、必ず、基準液として純水(吸光度:0 ABS)を用いて、各Logアンプ回路から出力される電圧Voをそれぞれ電圧計等で測定しながら、各Logアンプ回路に与えるリファレンス電流を調整するトリマを個々に操作し、全Logアンプ回路から、一律に、AD変換器の定格範囲の下限電圧が出力されてくる状態に初期設定しておく必要があった。このため測定をスムーズに開始することができなかった。
【0009】
尚、実際には、調整時と測定時とにおける光源の発光状態及びキュベットの状態等の違いを考慮して、全Logアンプ回路から出力されてくる電圧が、AD変換器の定格範囲の下限電圧よりもやや高い値(例えば、入力電圧の許容範囲が0V〜10VのAD変換器を使用している場合には、約2V)となるように初期設定されることが多い。
【0010】
また、装置に突発的な故障(例えば、光源や分光素子等の破損)が発生し、光電流IpのSN比が極度に低下しても、各LogAmp回路に与えるリファレンス電流値Ifの調整次第で一応の測定が完了してしまうため、その後に行われる診断において、誤差を含む不正な分析結果が参照され、誤診がなされる危険性があった。従って、こうした危険性を未然に阻止するためには、測定中に、常時、リファレンス電流が所定の範囲内に収まっているか否かを監視している必要があった。
【0011】
そこで、本発明は、より信頼性の高い成分分析を簡単に行うことができる自動分析装置を提供することを第一の目的とする。また、故障診断機能を備えた自動分析装置を提供することを第二の目的とする。
【0012】
【課題を解決するための手段】
本発明は、
キュベット内の試料溶液に含まれている成分元素の吸光度から前記成分元素の濃度を算出する濃度算出手段を備えた自動分析装置であって、
複数の単色光成分を含む光を前記キュベットに照射する光源と、
前記キュベットと前記光源とを相対的に運動させる移動機構と、
前記光源から前記キュベットに光が照射されている間、前記キュベットを介して前記キュベット内の試料溶液を透過した光に含まれている各単色光成分の強度を検出する光検出器と、
前記光検出器が検出した各単色光成分の強度のレベル値として、それぞれ、前記光検出器が検出した各単色光成分の強度と基準値との比の対数を算出する対数変換器と、
前記対数変換器が算出した各単色光成分の強度のレベル値をそれぞれ時間積分し、当該各単色光成分の強度のレベル値の時間積分値に比例した時間を、前記試料溶液に含まれている成分元素の吸光度として前記濃度算出手段に与える積分型AD変換器と、
を備え、
当該積分型AD変換器は、
各単色光成分毎に当該単色光成分の強度のレベル値を時間積分する複数の積分回路を備え、
当該自動分析装置は、
予め定められた基準となる吸光度を有する基準液を透過した光に含まれている各単色光成分の強度のレベル値の時間積分値に比例した基準時間を記憶する記憶手段と、
前記試料溶液の成分分析に先立ち、前記記憶手段が記憶している各基準時間を用いて、前記対数変換器が前記各単色光成分の強度のレベル値の算出に用いる基準値をそれぞれ補正する基準値補正手段と、
を備える、
ことを特徴とする自動分析装置を提供する。
【0013】
このような構成とすれば、キュベットに光を走査照射している間に検出される各単色光成分の強度のレベル値が積分型AD変換器でデジタル変換されるため、光検出器により検出された各単色光成分の強度に含まれている誤差(特に、キュベットの部分的な汚れ等の影響による誤差)が積分型AD変換器が有している積分特性によって除去される。従って、試料溶液に含まれている成分元素の吸光度として上記時間を用いることにより、変動のない測定データ(即ち、安定な測定データ)を得ることができる。即ち、本自動分析装置によれば、より信頼性の高い成分分析を行うことができる。
【0014】
また、試料溶液に含まれている成分元素の濃度の算出に先立って、予め、基準液を透過する光に含まれている各単色光成分の強度のレベル値に比例した基準時間を算出しておき、この基準時間を用いて、前記対数変換器が各単色光成分の強度のレベル値の算出に用いる各基準値を自動的に補正するようにすれば、ユーザが面倒な初期設定(即ち、各Logアンプ回路に与えるリファレンス電流の調整に相当)を行う必要がなくなる。従って、スムーズに測定を開始することができるようになる。
【0015】
更に、測定中に、前記対数変換器が算出した各単色光成分の強度のレベル値と、このレベル値を算出する際に基準値として用いた基準時間とから各単色光成分の強度を逆算し、この強度が所定の範囲を超えて変動した場合に、測定を停止するようにすれば、誤診の原因となる不正な測定データの出力を未然に防止することができる。また、このとき、アラーム等で警告を発すると共に、各単色光成分の強度の変動具合に応じて定まる故障の種別を表示する故障診断機能を付加すれば、ユーザが、迅速に、装置の故障に対して妥当な措置をとるができるようになる。
【0016】
【発明の実施の形態】
以下、添付の図面を参照しながら、本発明に係る実施の一形態について説明する。
【0017】
最初に、図1により、本実施の形態に係る自動分析装置の基本構成について説明する。
【0018】
本自動分析装置は、キュベット1内の試料溶液25(試料と試薬の反応液)に含まれている成分元素の吸光度を測定する測定部Aと、後述の成分分析処理や本装置全体の制御処理等を実行する処理部Bとを備える。
【0019】
測定部Aは、試料を充填させた試料カップ7が載置された試料ディスク6と、試薬を充填させた試薬ボトル9が載置された試薬ディスク8と、キュベット1が載置された反応ディスク2と、ポンプ11の吸引を利用して試薬ディスク8上の試薬ボトル9から反応ディスク2上のキュベット1へ試薬を分注する試薬分注機構5と、ポンプ10の吸引を利用して試料ディスク6上の試料カップ7から反応ディスク2上のキュベット1へ試料を分注する試料分注機構4と、キュベット1に分注された試薬と試料を撹拌する撹袢機構12と、試料と試薬の化学反応を促進するためにキュベット1を保温する加温機構3(例えば、循環式の恒温水槽等)と、キュベット1内の試料溶液(試料と試薬の反応液)に含まれている成分元素の吸光度を測定する検出機構と、検出機構による成分検出終了後にポンプ14から供給される純水によってキュベット1を洗浄する洗浄機構13とを備える。
【0020】
また、処理部Bは、CPU19と、後述の成分分析処理等が定義されたプログラムや各種データを記憶したメモリ20と、ユーザからの入力を受け付ける入力装置(例えば、キーボード23等)と、キュベット1内の試料溶液25の成分検出結果等を出力する出力装置(例えば、プリンタ21、CRT22、スピーカ等)とを備え、これらはインターフェースバス18により相互に接続されている。
【0021】
そして、処理部BのCPU19の制御により、各ディスク2,6,8の回転に伴って、試薬分注機構5によるキュベット1への試薬の分注処理、試料分注機構4によるキュベット1への試料の分注処理、撹袢機構12によるキュベット1内の試料と試薬の撹拌処理、検出機構によるキュベット1内の試料溶液25に含まれる成分元素の吸光度の測定処理、洗浄機構13によるキュベット1の洗浄処理が連続的に行われるようになっている。
【0022】
さて、本自動分析装置の測定原理を明確にしておくため、図2に示すように、検出機構の基本構成について説明しておく。
【0023】
本検出機構は、反応ディスクの回転により通過してゆくキュベット1に連続スペクトルを有する光を照射する光源15(例えば、ハロゲンランプ等)と、キュベット1に充填された試料溶液25を透過してくる光を分光する分光素子16(例えば、回折格子やプリズム等)と、分光素子16により形成されるスペクトル線像の強度分布を検出するフォトダイオードアレイ17(例えば、シリコンフォトセンサアレイ等)と、フォトダイオードアレイ17が同時に検出した各スペクトル線像の強度のレベル値を算出する変換ユニット24とを備える。
【0024】
そして、変換ユニット24は、図3に示すように、CPU19との間のデータ入出力等を制御するマイクロプロセッサ32と、フォトダイオードアレイ17から出力された各光電流If1,...,Ifnのレベル値Vo1,...,Von(アナログデータ)を算出するLogアンプ回路26a1,...,26anと、マイクロプロセッサ32からの制御信号に従って各Logアンプ回路26a1,...,26anにリファレンス電流Ip1,...,Ipnを与えるDA変換器33a1,...,33anと、各Logアンプ回路26a1,...,26anから出力されるアナログデータVo1,...,Vonをデジタル変換するAD変換器36とから構成されている。
【0025】
このように検出機構を構成することにより、測定部BのCPU19には、キュベット1に充填されている試料溶液25を透過してくる光に含まれている各単色光成分の強度のレベル値のデジタルデータ(即ち、キュベット1に充填された試料溶液25に含まれている成分元素の吸光度に相当するデータ)が入力される。
【0026】
尚、本実施の形態では、AD変換器として、入力信号を積分する機能を有する積分型AD変換器を採用している。この積分型AD変換器とは、マイクロプロセッサ32からの制御信号に従って各Logアンプ回路26a1,...,26anの出力信号Vo1,...,Vonを時間積分する積分回路28a1,...,28anと、マイクロプロセッサ32からの制御信号に従って各積分回路28a1,...,28anからの出力信号を時系列に転送するマルチプレクサ29と、マルチプレクサ29から転送されてくる信号に比例した時間だけクロックパルスを出力するゲート回路30と、ゲート回路30から出力されるクロックパルス数を測定するカウンタ31とから構成されたAD変換器である。
【0027】
こうした積分型AD変換器を採用することにより、キュベットに光が走査照射されている間に各Logアンプ回路26a1,...,26anから出力されてくるアナログデータVo1,...,Vonに含まれている不規則雑音を除去することができる。従って、キュベット1に局所的な汚れ等の光の吸収によってフォトダイオードアレイ17の出力信号が変動しても、その影響を除去することができる。
【0028】
また、従来技術の欄で説明した対数変換処理(数式1参照)を実行すべき各Logアンプ回路26a1,...,26anとしては、何れも、通常の分光光度計に内蔵されているLogアンプ回路の同様な周知の回路構成を備えたLogアンプ回路、即ち、2つのLogアンプと2つのトランジスタとから構成されたLogアンプ回路(図4参照)を採用している。
【0029】
次に、この自動分析装置を用いた成分分析処理について説明する。
【0030】
成分分析処理の開始を指示する命令が入力装置23から入力されると、本自動測定装置は、成分分析処理に先立って、各Logアンプ回路26a1,...,26anに与えるリファレンス電流Ip1,...,Ipnの補正処理を実行する。即ち、CPU19は、反応ディスク2を回転させながら、洗浄機構13によるキュベット1への純水の分注処理、検出機構によるキュベット1内の純水の吸光度の測定処理を連続的に行う。この間、検出機構の変換ユニット24のマイクロプロセッサ32は、各DA変換器33a1,...,33anを制御し、カウンタ31に積分型AD変換器36の定格範囲の下限値と等しい値がラッチされるように、各Logアンプ回路26a1,...,26anに与えられているリファレンス電流Ip1,...,Ipnを予め定められた範囲内でそれぞれ補正する。その結果、光源の明るさ等の測定条件の変化によって生じるオフセットが相殺されるため、常に、積分型AD変換器36の定格範囲を最大限に活用することができるようになる。尚、補正後の各リファレンス電流Ip1,...,Ipnの値は、成分分析処理中の装置状態を判定する際の基準データとしてメモリ20に格納される。
【0031】
以上の補正処理が終了したら、本自動測定装置は、CPU19の制御に従って、以下に示す成分分析処理を実行する。即ち、各ディスク2,6,8を回転させながら、試薬分注機構5によるキュベット1への試薬分注処理、試料分注機構4によるキュベット1への試料分注処理、撹袢機構12によるキュベット1内の試料と試薬の撹拌処理、検出機構によるキュベット1内の試料溶液25に含まれる成分元素の吸光度の測定処理、洗浄機構13によるキュベット1の洗浄処理を連続的に実行する。
【0032】
具体的には、試薬分注機構5が、試薬ディスク8の回転により送られてくる試薬ボトル9内の試薬を、反応ディスク2の回転により送られてくるキュベット1に順次分注しており、一方では、試料分注機構4が、試料ディスク6の回転により送られてくる試料カップ7内の試薬を、反応ディスク2の回転により送られてくるキュベット1に順次分注している。その後、撹袢機構12が、反応ディスク2の回転により送られてくるキュベット1内に充填されている試薬と試料を充分に撹袢する。尚、キュベット1内の試料と試薬の呈色反応を速やかに進行させるために、この間、キュベット1は、加温機構3によって適当な温度に保温されている。
【0033】
そして、検出機構は、反応ディスク2の回転によりキュベット1が光源15の前を通過してゆく過程で(即ち、光源15からの光がキュベット1に走査照射されている過程で)逐次算出される各単色光成分の強度のレベル値を、それぞれ、不規則雑音に対する積分特性を有する積分型AD変換器36によってデジタル変換した後、キュベット1内の試料溶液25に含まれている成分元素の吸光度データとしてCPU19に入力する。
【0034】
そして、CPU19は、入力された吸光度データを単色光成分毎にメモリ20に格納しておき、オペレータが検査項目を入力した場合に、メモリ20から、オペレータが入力した検査項目に応じて定まる単色光成分の吸光度データを読み出し、この吸光度データを、適当な変換定数を用いた変換処理によって濃度値に変換する。
【0035】
そして、洗浄機構13は、反応ディスク2の回転により送られてくるキュベット1を洗浄する。尚、洗浄されたキュベット1は、反応ディスク2の回転により送られて再度の使用に供される。
【0036】
このように、本自動分析装置は、各Logアンプ回路に与えるリファレンス電流の初期設定からキュベットの洗浄処理までの一連の処理を全て自動的に実行する機能を有しているため、本自動分析装置を実際の臨床検査に導入すれば、従来オペレータに課されていた作業負担を大幅に削減することができる。
【0037】
ところで、このような成分分析処理を実行している間、CPU19は、更に、メモリ20に記憶されている基準データ(現在、各Logアンプ回路26a1,...,26anに与えられているリファレンス電流Ip1,...,Ipnの値)を用いて、以下に示す装置状態の判定処理を絶えず実行している。即ち、CPU19は、成分分析処理中に、各Logアンプ回路26a1,...,26anが算出した各スペクトル線像の強度のレベル値と、上記メモリ20に記憶されている基準データと、従来技術の欄で説明した数式1とを用いて、フォトダイオードアレイ17から出力される各光電流値If1,...,Ifnを逐次逆算し、各光電流値If1,...,Ifnの変動ΔIf1,...,ΔIfnが許容範囲を超えた場合に、装置が故障したと判定する。そして、現在行っている成分分析処理を停止すると共に、出力装置から判定結果を出力して(例えば、スピーカからアラーム音等を発して)、オペレータに警告を与える。従って、装置の故障によって、後の誤診の原因となる可能性のある不正な測定データが出力される事態を回避することができる。また、光電流は故障の種別に応じて固有の変動を示すことから、装置の故障の種別と光電流の変動データとを対応付けた故障情報を予めメモリ20にしておけば、この故障情報と上記逆算した各光電流値If1,...,Ifnとを用いて、装置の故障の種別を判定することも可能である。そして、装置の故障の種別を上記警告と共に出力装置から出力するようにすれば、オペレータが装置の故障に対して迅速かつ的確な対応をすることができるようになる。尚、各Logアンプ回路26a1,...,26anに与えるリファレンス電流Ip1,...,Ipnの補正処理によって、何れか一のLogアンプ回路26a1,...,26anに上記予め定められた範囲を超えるリファレンス電流Ip1,...,Ipnが与えられることとなった場合にも、CPU19は、装置が故障したと判定して同様な処理を実行する。
【0038】
以上で、本自動分析装置を用いた成分分析処理の説明を終わる。
【0039】
尚、本自動分析装置は、以上に示したような独立した形態で使用する必要はない。例えば、各所に設置された自動分析装置と、センターに設置された情報処理装置とをモデムを用いて回線で相互に接続し、適当なタイミングで、上記判定処理により得られる装置状態に関する情報を各自動分析装置から情報処理装置に転送するようにすれば、センターにおいて複数の自動分析装置の稼働状態を一元管理することもできる。
【0040】
また、本実施の形態では、変換ユニット24の小型化を図るために、マルチプレクサ29を用いて、複数の積分回路28a1,...,28anからの出力信号を1台のゲート回路30と1台のカウンタ31とによって時系列に処理するようにしているが、変換ユニット24の設置空間に比較的余裕があるならば、マルチプレクサを用いることなく各積分回路28a1,...,28anにそれぞれゲート回路とカウンタを接続し、複数の積分回路28a1,...,28anからの出力信号を同時に処理するようにしても構わない。
【0041】
また、各積分回路28a1,...,28anのスタートトリガとストップトリガをマイクロプロセッサのIRQとして、各積分回路28a1,...,28anのスタートパルスが発生した時点からストップパルスが発生した時点まで間にゲート回路が発生するクロックパルスを、マイクロプロセッサに内蔵されているカウンタで並列に計数するようにすれば、積分型AD変換器36の回路構成を更に簡略化することができると共に、積分型AD変換器36の処理の高速化を図ることができる。
【0042】
【発明の効果】
本発明に係る自動分析装置によれば、簡単な操作で、より信頼性の高い成分分析を行うことができる。また、故障診断機能を付加したことにより、各種故障を早期に発見し、誤診の原因となる不正な測定データの混入を回避することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る自動分析装置の基本構成を示した図である。
【図2】図1のLogアンプ回路の基本構成を示した図である。
【図3】図1の変換ユニットの基本構成を示した図である。
【図4】図2のLogアンプの基本構成を示した図である。
【符号の説明】
1…キュベット1
2…反応ディスク
3…加温機構
4…試料分注機構
5…試薬分注機構
6…試料ディスク
7…試料カップ
8…試薬ディスク
9…試薬ボトル
10,11,14…ポンプ
12…撹拌機構
13…洗浄機構
15…光源
16…分光素子
17…フォトダイオードアレイ
18…インターフェースバス
19…CPU
20…メモリ
21…プリンタ
22…CRT
23…キーボード
24…変換ユニット
26a1,...,26an…Logアンプ
28a1,...,28an…積分回路
29…マルチプレクサ
30…ゲート回路
31…カウンタ
32…マイクロプロセッサ
33a1,...,33an…DA変換器
Claims (3)
- キュベット内の試料溶液に含まれている成分元素の吸光度から前記成分元素の濃度を算出する濃度算出手段を備えた自動分析装置であって、
複数の単色光成分を含む光を前記キュベットに照射する光源と、
前記キュベットと前記光源とを相対的に運動させる移動機構と、
前記光源から前記キュベットに光が照射されている間、前記キュベットを介して前記キュベット内の試料溶液を透過した光に含まれている各単色光成分の強度を検出する光検出器と、
前記光検出器が検出した各単色光成分の強度のレベル値として、それぞれ、前記光検出器が検出した各単色光成分の強度と基準値との比の対数を算出する対数変換器と、
前記対数変換器が算出した各単色光成分の強度のレベル値をそれぞれ時間積分し、当該各単色光成分の強度のレベル値の時間積分値に比例した時間を、前記試料溶液に含まれている成分元素の吸光度として前記濃度算出手段に与える積分型AD変換器と、
を備え、
当該積分型AD変換器は、
各単色光成分毎に当該単色光成分の強度のレベル値を時間積分する複数の積分回路を備え、
当該自動分析装置は、
予め定められた基準となる吸光度を有する基準液を透過した光に含まれている各単色光成分の強度のレベル値の時間積分値に比例した基準時間を記憶する記憶手段と、
前記試料溶液の成分分析に先立ち、前記記憶手段が記憶している各基準時間を用いて、前記対数変換器が前記各単色光成分の強度のレベル値の算出に用いる基準値をそれぞれ補正する基準値補正手段と、
を備える、
ことを特徴とする自動分析装置。 - 請求項1記載の自動分析装置であって、
前記積分型AD変換器は、更に、
前記各積分回路が算出した前記各単色光成分の強度のレベル値の時間積分値を時系列に転送するマルチプレクサと、
前記マルチプレクサから時系列に転送されてくる前記各単色光成分の強度のレベル値の時間積分値に比例する時間を順次算出する逆積分回路と、
を備える、
ことを特徴とする自動分析装置。 - 請求項1または2記載の自動分析装置であって、
前記対数変換器が算出した各単色光成分の強度のレベル値と前記記憶手段が記憶している各基準時間とを用いて、前記各単色光成分の強度を算出する光量算出手段と、
前記光量算出手段が算出した各単色光成分の強度値の変動を検出する変動検出手段と、
前記変動検出手段が検出した変動が所定の範囲を超えた場合に、当該自動分析装置の故障を判定する判定手段と、
前記判定手段の判定結果を出力する警告手段と、
を備え、
前記濃度算出手段は、前記判定手段の判定結果に応じて前記試料溶液に含まれている成分元素の濃度の算出を停止する、
ことを特徴とする自動分析装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28560796A JP3749321B2 (ja) | 1996-10-28 | 1996-10-28 | 自動分析装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28560796A JP3749321B2 (ja) | 1996-10-28 | 1996-10-28 | 自動分析装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10132735A JPH10132735A (ja) | 1998-05-22 |
JP3749321B2 true JP3749321B2 (ja) | 2006-02-22 |
Family
ID=17693724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28560796A Expired - Lifetime JP3749321B2 (ja) | 1996-10-28 | 1996-10-28 | 自動分析装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3749321B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8675187B2 (en) | 2008-12-24 | 2014-03-18 | Hitachi High-Technologies Corporation | Photometer and analyzing system provided with photometer |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3900719B2 (ja) * | 1998-12-02 | 2007-04-04 | 松下電器産業株式会社 | 水中溶存物質検出器及び水中溶存物質測定方法 |
JP4897308B2 (ja) * | 2006-02-20 | 2012-03-14 | ベックマン コールター, インコーポレイテッド | 分析装置 |
WO2013045695A2 (en) | 2011-09-30 | 2013-04-04 | Pz Cormay S.A. | Method for delivering a sample of body fluid to an analysing system, a syringe designed for use therein and a kit comprising such a syringe |
PL396830A1 (pl) | 2011-10-31 | 2013-05-13 | Pz Cormay Spólka Akcyjna | Sposób walidacji próbek w analizatorze biochemicznym i analizator biochemiczny realizujacy ten sposób |
PL396829A1 (pl) | 2011-10-31 | 2013-05-13 | Pz Cormay Spólka Akcyjna | Sposób przemieszczania próbki w analizatorze biochemicznym i analizator biochemiczny realizujacy ten sposób |
PL400953A1 (pl) | 2012-09-27 | 2014-03-31 | Scope Fluidics Spółka Z Ograniczoną Odpowiedzialnością | Układ mikroprzepływowy i sposób dostarczania próbki płynu ustrojowego do układu analizującego z zastosowaniem układu mikroprzepływowego |
PL401491A1 (pl) | 2012-11-07 | 2014-05-12 | Scope Fluidics Spółka Z Ograniczoną Odpowiedzialnością | Mikrokuwetka do oznaczeń biochemicznych |
CN108624490B (zh) * | 2017-03-21 | 2022-03-15 | 南京凯熙医学科技有限公司 | 一种硫氧还蛋白还原酶活性的协同检测设备及其方法 |
CN108627659A (zh) * | 2017-03-21 | 2018-10-09 | 武汉尚宜康健科技有限公司 | 硫氧还蛋白还原酶检测的生化检测设备及其操作方法 |
KR102264336B1 (ko) * | 2019-05-20 | 2021-06-14 | 정유한 | 광학식 체외진단기기와 이를 이용한 체외진단 방법 |
JP2020201174A (ja) * | 2019-06-12 | 2020-12-17 | 国立研究開発法人物質・材料研究機構 | スペクトル解析装置用の成分同定装置及びその方法、コンピュータプログラム |
-
1996
- 1996-10-28 JP JP28560796A patent/JP3749321B2/ja not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8675187B2 (en) | 2008-12-24 | 2014-03-18 | Hitachi High-Technologies Corporation | Photometer and analyzing system provided with photometer |
Also Published As
Publication number | Publication date |
---|---|
JPH10132735A (ja) | 1998-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3749321B2 (ja) | 自動分析装置 | |
US5478750A (en) | Methods for photometric analysis | |
US7876442B2 (en) | Analyzer | |
JP4006203B2 (ja) | 自動分析装置及び化学分析方法の精度管理方法 | |
EP0743513B1 (en) | Spectrometry and Optical Measuring Method and Apparatus | |
EP0355738A2 (en) | Fluorophotometer for use in automatic equipment of chemical analysis for measuring the intensity of fluorescence in the automatic equipment | |
JP6692361B2 (ja) | 自動分析装置、自動分析システム及び自動分析方法 | |
EP1023583B1 (en) | Method for measurement of blood substitutes | |
JP2825331B2 (ja) | 自動分析装置 | |
JP2011237384A (ja) | 分析用光学系及びその光学系を用いた分析装置 | |
JP2009281941A (ja) | 分析方法及び分析装置 | |
JP2003090794A (ja) | 比色吸光度測定装置 | |
JP2000039400A (ja) | 自動分析装置 | |
CN113777334A (zh) | 自动分析仪及其光源监测方法、校准方法和存储介质 | |
JPH06308131A (ja) | データ処理装置 | |
JPH10281978A (ja) | 自動分析装置 | |
JP3694754B2 (ja) | 基準反射体の汚れ検出方法、反射率測定装置、および記憶媒体 | |
CN113777333A (zh) | 自动分析仪及其反应杯污染的判定方法和存储介质 | |
US7198955B1 (en) | Method and apparatus for measurement of blood substitutes | |
JPH01284758A (ja) | 自動化学分析装置 | |
JPH08271519A (ja) | 自動化学分析装置における測光系の精度確認方法 | |
JP2005164375A (ja) | 赤外分光光度計のためのバリデーション用付属装置、及び該装置を利用した赤外分光光度計 | |
JP3712098B2 (ja) | 分光光度計 | |
JP7109967B2 (ja) | 自動分析装置 | |
WO2023026810A1 (ja) | 自動分析装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031225 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040224 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20040702 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051028 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051201 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081209 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111209 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111209 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121209 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131209 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |