JP3744211B2 - 窒化物半導体素子 - Google Patents

窒化物半導体素子 Download PDF

Info

Publication number
JP3744211B2
JP3744211B2 JP19982998A JP19982998A JP3744211B2 JP 3744211 B2 JP3744211 B2 JP 3744211B2 JP 19982998 A JP19982998 A JP 19982998A JP 19982998 A JP19982998 A JP 19982998A JP 3744211 B2 JP3744211 B2 JP 3744211B2
Authority
JP
Japan
Prior art keywords
layer
nitride semiconductor
doped
type
superlattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19982998A
Other languages
English (en)
Other versions
JP2000068594A (ja
Inventor
宏充 丸居
友次 三谷
公二 谷沢
孝志 向井
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP19982998A priority Critical patent/JP3744211B2/ja
Priority to KR10-1998-0030067A priority patent/KR100511530B1/ko
Priority to PCT/JP1998/003336 priority patent/WO1999005728A1/ja
Priority to DE69835216T priority patent/DE69835216T2/de
Priority to EP98933944A priority patent/EP1014455B1/en
Priority to CNB988075199A priority patent/CN1142598C/zh
Priority to US09/463,643 priority patent/US7365369B2/en
Priority to AU83584/98A priority patent/AU747260B2/en
Priority to CA002298491A priority patent/CA2298491C/en
Publication of JP2000068594A publication Critical patent/JP2000068594A/ja
Application granted granted Critical
Publication of JP3744211B2 publication Critical patent/JP3744211B2/ja
Priority to US12/068,063 priority patent/US8592841B2/en
Priority to US14/087,081 priority patent/US20140077157A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は発光ダイオード素子、レーザダイオード素子等の発光素子、太陽電池、光センサ等の受光素子、あるいはトランジスタ、パワーデバイス等の電子デバイスに用いられる窒化物半導体(InXAlYGa1XYN、0≦X、0≦Y、X+Y≦1)よりなる素子に関する。
【0002】
【従来の技術】
窒化物半導体は高輝度純緑色発光LED、青色LEDとして、既にフルカラーLEDディスプレイ、交通信号灯、イメージスキャナー光源等の各種光源で実用化されている。これらのLED素子は基本的に、サファイア基板上にGaNよりなるバッファ層と、SiドープGaNよりなるn側コンタクト層と、単一量子井戸構造のInGaN、あるいはInGaNを有する多重量子井戸構造の活性層と、MgドープAlGaNよりなるp側クラッド層と、MgドープGaNよりなるp側コンタクト層とが順に積層された構造を有しており、20mAにおいて、発光波長450nmの青色LEDで5mW、外部量子効率9.1%、520nmの緑色LEDで3mW、外部量子効率6.3%と非常に優れた特性を示す。
【0003】
また、本出願人はこの材料を用いてパルス電流下、室温での410nmの発振を世界で初めて発表した(例えば、Jpn.J.Appl.Phys.35(1996)L74、Jpn.J.Appl.Phys.35(1996)Lz17等)。このレーザ素子は、InGaNを用いた多重量子井戸構造(MQW:Multi‐Quantum‐Well)の活性層を有するダブルヘテロ構造を有し、パルス幅2μs、パルス周期2msの条件で、閾値電流610mA、閾値電流密度8.7kA/cm2、410nmの発振を示す。また、本出願人は室温での連続発振にも初めて成功し、発表した。(例えば、日経エレクトロニクス1996年12月2日号技術速報、Appl.Phys.Lett.69(1996)8034−、Appl.Phys.Lett.69(1996)4056‐等)、このレーザ素子は20℃において、閾値電流密度3.6kA/cm2、閾値電圧5.5V、1.5mW出力において、27時間の連続発振を示す。
【0004】
【発明が解決しようとする課題】
このように窒化物半導体はLEDで既に実用化され、LDでは数十時間ながら連続発振にまで至っているが、LEDを例えば照明用光源、直射日光の当たる屋外ディスプレイ等に使用するためにはさらに出力の向上が求められている。しかしながら、高出力を得ようとすれば、静電耐圧が悪化する等十分な信頼性を確保することが困難であった。またLDでは閾値を低下させて長寿命にし、光ピックアップ、DVD等の光源に実用化するためには、よりいっそうの改良が必要である。また前記LED素子は20mAにおいてVfが3.6V近くある。Vfをさらに下げることにより、素子の発熱量が少なくなって、信頼性が向上する。またレーザ素子では閾値における電圧を低下させることは、素子の寿命を向上させる上で非常に重要である。本発明はこのような事情を鑑みて成されたものであって、その目的とするところは、主としてLED、LD等の窒化物半導体素子の出力を向上させると共に、Vf、閾値電圧を低下させかつ静電耐圧特性を向上させてて素子の信頼性を向上させることにある。
【0005】
【課題を解決するための手段】
以上の目的を達成するために、本発明に係る第1の窒化物半導体素子は、基板と活性層の間に、少なくとも一方にはn型不純物がドープされた第1と第2の窒化物半導体層を含む複数の層が積層された超格子層を備え、前記第1と第2の窒化物半導体層は互いに同一組成の窒化物半導体からなり互いに不純物濃度が異なることを特徴とする。
また、本発明に係る第2の窒化物半導体素子は、基板と量子井戸構造を有する活性層の間に、少なくとも一方にはn型不純物がドープされた第1と第2の窒化物半導体層を含む複数の層が積層された超格子層を備え、その超格子層は、n電極が形成されるn電極形成層と前記活性層の間にあって前記活性層に接していて、かつ前記第1と第2の窒化物半導体層は互いに同一組成の窒化物半導体からなり互いに不純物濃度が異なることを特徴とする。
このようにすると、前記超格子層を結晶欠陥の少ない結晶性の良好な層とでき、これによって上方に成長される活性層の結晶性を良好にできる。尚、前記本発明に係る第2の窒化物半導体素子では、結晶性の良い活性層を成長させる機能を効果的に発揮させるために、前記超格子層は前記活性層と接するように形成されている。
ここで、本明細書において、超格子層又は超格子構造とは、互いに組成が異なる少なくとも2種類の窒化物半導体層が積層されてなる多層膜、及び互いに同一組成を有しかつn型不純物が互いに異なる濃度でドープされた2種類の層が積層された多層膜の双方を含むものとする。また、超格子構造とは膜厚100オングストローム以下、さらに好ましくは70オングストローム以下、最も好ましくは50オングストローム以下の窒化物半導体層を多層膜構造に積層した構造を指すものとする。
【0007】
前記本発明に係る第1と第2の窒化物半導体素子において、記第1と第2の窒化物半導体層をそれぞれ、GaNとし、前記n型不純物をSiとすることができ、このようにするとInを含む活性層を結晶性よく成長させることができる。
【0010】
前記本発明の第1と第2の窒化物半導体素子においては、前記超格子層をさらに結晶欠陥の少ない層としかつ上方に成長される活性層の結晶性をさらに良好にするために、前記第1と第2の窒化物半導体層のうちの一方にはn型不純物がドープされ他方にはn型不純物がドープされていないことが好ましい。
【0011】
ここで、n型不純物がドープされていない層とは、意図的にn型不純物をドープしないで形成した層を指し、例えば、原料に含まれる不純物の混入、反応装置内のコンタミネーションによる不純物の混入、および意図的に不純物をドープした他の層からの意図しない拡散により不純物が混入した層も含まれる。
【0012】
前記本発明の第1と第2の窒化物半導体素子においては、静電耐圧特性を良好にするために、前記n型不純物がドープされた一方の層の厚さを、前記n型不純物がドープされていない層より薄くすることが好ましい。
【0018】
また、本発明の第1と第2の窒化物半導体素子において、前記活性層は、多重量子井戸構造であってもよい。
また、前記活性層において、井戸層がInGaNからなっていてもよい。
【0019】
【発明の実施の形態】
以下、図面を参照して本発明に係る実施の形態の窒化物半導体発光素子について説明する。
(実施の形態1)
図1は実施の形態1に係る一窒化物半導体発光素子の模式的断面図であり、該窒化物半導体発光素子は、活性層と基板との間に形成される、n電極が形成されるn電極形成層4を、第1の窒化物半導体層4aと第2の窒化物半導体層4bが交互に積層された超格子構造としたことを特徴とする。これによって、本実施の形態1の窒化物半導体発光素子は、n電極形成層を極めて欠陥の少ない結晶性の良い層とすることができ、しかもその抵抗値を低くできるので、発光素子の順方向電圧Vfを低くできるという優れた特性を有する。また、本実施の形態1では、基板1とn電極形成層4との間にアンドープ窒化物半導体層3を形成することによりn電極形成層の結晶性をさらに良好なものとし、n電極形成層4の上にアンドープ窒化物半導体層5を形成しその層5の上に活性層6を形成することにより、活性層6の結晶性を良好なものにしている。尚、アンドープ窒化物半導体層3,5は本発明において必須の要件ではない。
【0020】
本実施の形態1において、n電極形成層はn型不純物を含む超格子構造のn型窒化物半導体としている。n型不純物としては第4族元素が挙げられるが、好ましくはSi若しくはGe、さらに好ましくはSiを用いる。このように超格子構造とすると、その超格子層を構成する第1と第2の窒化物半導体層の各膜厚が弾性臨界膜厚以下となるために、結晶欠陥の非常に少ない窒化物半導体を成長させることができる。さらに、この超格子構造のn電極形成層により下の層(例えば、アンドープ窒化物半導体層3)で発生している結晶欠陥をある程度止めることができるため、n電極形成層の上に成長させる活性層の結晶性を良くすることができる。さらに、n電極形成層には特筆すべき作用としてはHEMTに類似した効果がある。
【0021】
このn電極形成層4は、互いにバンドギャップエネルギーの異なる第1の窒化物半導体層4aと第2の窒化物半導体層4bとを積層して構成することができ、この場合、第1の窒化物半導体層4aと第2の窒化物半導体層4bとは互いに不純物濃度が異なることが好ましい。第1の窒化物半導体層及び第2の窒化物半導体層の各膜厚は、好ましくは100オングストローム以下、さらに好ましくは70オングストローム以下、最も好ましくは10〜40オングストロームの膜厚に調整する。100オングストロームよりも厚いと、第1と第2の窒化物半導体層が弾性歪み限界に近い又はそれ以上の膜厚となり、膜中に微少なクラック、あるいは結晶欠陥が入りやすい傾向にある。また、本発明は第1と第2の窒化物半導体層の膜厚の下限値によって限定されるものではなく1原子層以上であればよいが、前記のように10オングストローム以上が最も好ましい。
【0022】
さらに第1と第2の窒化物半導体層のうちバンドギャップエネルギーの大きい方の窒化物半導体層(以下、実施の形態1の説明においては、第1の窒化物半導体層のバンドキャップエネルギーの方が、第2の窒化物半導体層より大きいものとして説明する。)は、少なくともAlを含む窒化物半導体、好ましくはAlXGa1-XN(0<X≦1)若しくはGaNを成長させて形成することが望ましい。一方、バンドギャップエネルギーの小さい方の第2の窒化物半導体層は、第1の窒化物半導体層よりもバンドギャップエネルギーが小さい窒化物半導体であればどのようなものでも良いが、好ましくはAlYGa1-YN(0≦Y<1、X>Y)、InZGa1-ZN(0≦Z<1)のような2元混晶、3元混晶の窒化物半導体が成長させやすく、また結晶性の良いものが得られやすい。またさらに好ましくは、バンドギャップエネルギーの大きな第1の窒化物半導体層は実質的にInを含まないAlXGa1-XN(0<X<1)とし、バンドギャップエネルギーの小さな第2の窒化物半導体層は実質的にAlを含まないInZGa1-ZN(0≦Z<1)とする。その中でも結晶性に優れた超格子を得る目的で、第1の窒化物半導体層としてAl混晶比(Y値)0.3以下のAlXGa1-XN(0<X≦0.3)を用い、第2の窒化物半導体層としてGaNを用いる組み合わせ、又は高不純物濃度のGaNと低不純物濃度若しくはアンドープのGaNの組み合わせが最も好ましい。
【0023】
n電極形成層を、光閉じ込め層、及びキャリア閉じ込め層としてクラッド層として機能させる場合、n電極形成層として活性層の井戸層よりもバンドギャップエネルギーの大きい窒化物半導体を成長させる必要があり、バンドギャップエネルギーの大きな窒化物半導体層としてAl混晶比の高い窒化物半導体が使用される。このAl混晶比の高い窒化物半導体を、光閉じ込め層、及びキャリア閉じ込め層として機能させることができる比較的厚く成長させると、成長させた層にクラックが入りやすくなるため、結晶性の良好な層を形成することが非常に難しかった。しかしながら本発明のように超格子層にすると、超格子層を構成する単一層(第1の窒化物半導体層)をAl混晶比の多少高い層としても、弾性臨界膜厚以下の膜厚で成長させているのでクラックが入りにくい。そのため、本発明によれば全体としてAl混晶比の高い層を結晶性良く成長することができるので、光閉じ込め、キャリア閉じ込め効果が高い層とでき、レーザ素子では閾値電圧、LED素子ではVf(順方向電圧)を低下させることができる。
【0024】
さらに、上述したように、このn電極形成層のバンドギャップエネルギーの大きな第1の窒化物半導体層とバンドギャップエネルギーの小さな第2の窒化物半導体層とのn型不純物濃度が異なることが好ましいが、これはいわゆる変調ドープと呼ばれるもので、一方の層のn型不純物濃度を小さく、好ましくは不純物をドープしない状態(アンドープ)として、もう一方を高濃度にドープすると、閾値電圧、Vf等を低下させることができるからである。すなわち、超格子層中の不純物濃度の低い層では移動度を大きくでき、また不純物濃度の高い層ではキャリア濃度を高くできることにより、超格子層全体として、キャリア濃度を高くかつ移動度を大きくできる。つまり、不純物濃度が低い移動度の高い層と、不純物濃度が高いキャリア濃度が大きい層とが同時に存在することにより、キャリア濃度が大きく、移動度も大きいn電極形成層をクラッド層として用いることにより、閾値電圧、Vfを低下させることができるものと推察される。尚,本明細書において、アンドープ(undope)の窒化物半導体層とは意図的に不純物をドープしない窒化物半導体層を指し、例えば、原料に含まれる不純物の混入、反応装置内のコンタミネーションによる不純物の混入、および意図的に不純物をドープした他の層からの意図しない拡散により不純物が混入した層も本発明ではアンドープと定義する(実質的なアンドープ)。
【0025】
また、バンドギャップエネルギーの大きな第1の窒化物半導体層に高濃度に不純物をドープした場合、この変調ドープにより高不純物濃度層(第1の窒化物半導体層)と、低不純物濃度層(第2の窒化物半導体層)との間に2次元電子ガスができ、この2次元電子ガスの影響により抵抗率が低下すると推察される。例えば、n型不純物がドープされたバンドギャップの大きい第1の窒化物半導体層と、バンドギャップが小さいアンドープの第2の窒化物半導体層とを積層した超格子層では、n型不純物を添加した層と、アンドープの層とのへテロ接合界面で、障壁層(第1の窒化物半導体層)側が空乏化し、バンドギャップの小さい層側の厚さ前後の界面に電子(2次元電子ガス)が蓄積する。この2次元電子ガスがバンドギャップの小さい側にできるので、電子が走行するときに不純物による散乱を受けないため、超格子の電子の移動度が高くなり、抵抗率が低下する。なおp側の窒化物半導体層を超格子構造とし変調ドープしても同様に2次元正孔ガスによる効果が期待できるものと推察される。またp層の場合、AlGaNはGaNに比較して抵抗率が高い。そこでAlGaNの方にp型不純物を多くドープすることにより抵抗率を低下させることができると考えられ、より効果的に順方向電圧又は閾値電圧電流を低下させることができると推察される。
【0026】
また、p側の窒化物半導体層を超格子構造とし、バンドギャップエネルギーの小さな窒化物半導体層に高濃度に不純物をドープした場合、以下のような作用があると推察される。例えばAlGaN層とGaN層にMgを同量でドープした場合、AlGaN層ではMgのアクセプタ準位の深さが大きく、活性化率が小さい。一方、GaN層のアクセプタ準位の深さはAlGaN層に比べて浅く、Mgの活性化率は高い。例えばMgを1×1020/cm3ドープしてもGaNでは1×1018/cm3程度のキャリア濃度であるのに対し、AlGaNでは1×1017/cm3程度のキャリア濃度しか得られない。そこで、本発明ではAlGaN/GaNとで超格子とし、高キャリア濃度が得られるGaN層の方に多く不純物をドープすることにより、高キャリア濃度の超格子が得られるものである。しかも超格子としているため、トンネル効果でキャリアは不純物濃度の少ないAlGaN層を移動するため、実質的にキャリアはAlGaN層の作用は受けず、AlGaN層はバンドギャップエネルギーの高いクラッド層として作用する。従って、バンドギャップエネルギーの小さな方の窒化物半導体層に不純物を多くドープしても、レーザ素子、LED素子の閾値を低下させる上で非常に効果的である。なおこの説明はp型層側に超格子を形成する例について説明したが、n層側に超格子を形成する場合においても、同様の作用効果がある。
【0027】
バンドギャップエネルギーが大きい第1の窒化物半導体層にn型不純物を多くドープする場合、バンドギャップエネルギーの大きな第1の窒化物半導体層への好ましいドープ量としては、1×1017/cm3〜1×1020/cm3、さらに好ましくは1×1018/cm3〜5×1019/cm3の範囲に調整する。1×1017/cm3よりも少ないと、バンドギャップエネルギーの小さな第2の窒化物半導体層との差が少なくなって、キャリア濃度の大きい層が得られにくい傾向にあり、また1×1020/cm3よりも多いと、素子自体のリーク電流が多くなりやすい傾向にある。一方、バンドギャップエネルギーの小さな第2の窒化物半導体層のn型不純物濃度はバンドギャップエネルギーの大きな第1の窒化物半導体層よりも少なければ良く、好ましくは1/10以上少ない方が望ましい。最も好ましくはアンドープとすると最も移動度の高い層が得られるが、膜厚が薄いため、バンドギャップエネルギーの大きな第1の窒化物半導体側から拡散してくるn型不純物があり、その量は1×1019/cm3以下が望ましい。n型不純物としてはSi、Ge、Se、S、O等の周期律表第IVB族、VIB族元素を選択し、好ましくはSi、Ge、Sをn型不純物とする。この作用は、バンドギャップエネルギーが大きい第1の窒化物半導体層にn型不純物を少なくドープして、バンドギャップエネルギーが小さい第2の窒化物半導体層にn型不純物を多くドープする場合も同様である。以上、超格子層に不純物を好ましく変調ドープする場合について述べたが、バンドギャップエネルギーが大きい第1の窒化物半導体層とバンドギャップエネルギーが小さい第2の窒化物半導体層との不純物濃度を等しくすることもできる。また、第1と第2の窒化物半導体層のうち、n型不純物を多く含む層のn型不純物濃度は3×1018/cm3以上に設定されていることが好ましく、これによって、n電極形成層4のキャリア濃度を高くでき、n電極と良好なオーミック接触をさせることができる。
【0028】
本実施の形態1において、アンドープ窒化物半導体層3は、n型不純物を含むn電極形成層4をさらに結晶性よく成長させるためにアンドープとしている。この窒化物半導体層3はアンドープであることが最も好ましいが、n電極形成層4を超格子構造とすることにより結晶性の良好な層としているので、n型不純物がn電極形成層よりも少なくなるようにドープした層を用いてもよい。尚、n型不純物としては第4族元素が挙げられるが、好ましくはSi若しくはGe、さらに好ましくはSiを用いる。
【0029】
また、本実施の形態1の発光素子では、n電極形成層4上にアンドープ窒化物半導体層5を形成し、該層5の上に活性層6を形成している。このアンドープ窒化物半導体層5は、その上に成長させる活性層6のバッファ層として作用して、活性層を成長させやすくする。すなわち、超格子層の上に直接不純物を多く含む窒化物半導体層を成長させると、成長させる層の結晶性が悪くなる傾向があるので、層5を結晶性良く成長させるためにはn型不純物濃度を少なくすることが好ましく、最も好ましくはアンドープとするのである。さらに抵抗率の比較的高いアンドープ窒化物半導体層5を活性層6とn電極形成層4との間に介在させることにより、素子のリーク電流を防止し、逆方向の耐圧を高くすることができる。このアンドープ窒化物半導体層5の上述の機能を効果的に発揮させるためには、この層5はアンドープであることが最も好ましいが、n型不純濃度がn電極形成層4よりも少ない層であれば、上述の機能は発揮し得る。また、アンドープ窒化物半導体層5の組成は特に問うものではないが、InXGa1-XN(0≦X≦1)、好ましくは、InXGa1-XN(0<X≦0.5)を成長させることにより、その窒化物半導体層5の上に成長させる層に対してより有効なバッファ層として作用して、さらに層5から上の層を容易にかつ結晶性よく成長させることができる。
【0030】
さらにまた、本実施の形態1の窒化物半導体発光素子において、アンドープ窒化物半導体層5は、0.5μm以下の厚さに形成することが好ましく、より好ましくは2000オングストローム以下、さらに好ましくは1500オングストローム以下になるように形成する。また、層5の下限は特に限定しないが10オングストローム以上に調整することが望ましい。アンドープ窒化物半導体層は、抵抗率が通常1×10-1Ω・cm以上と高いため、この層を0.1μmよりも厚い膜厚で成長させると、逆に順方向電圧Vfが低下しにくくなる。
【0031】
また本実施の形態1の窒化物半導体発光素子では、基板とアンドープ窒化物半導体層3との間に、アンドープ窒化物半導体層3よりも低温で成長されるバッファ層を有していても良い。バッファ層は例えばAlN、GaN、AlGaN等を400℃〜900℃において、0.5μm以下の膜厚で成長させることができ、基板と窒化物半導体との格子不整合を緩和、あるいはアンドープ窒化物半導体層を結晶性よく成長させるための下地層として作用する。
【0032】
(実施の形態2)
本発明に係る実施の形態2の窒化物半導体発光素子は、図3に示すように活性層44の直下に接して超格子構造のn型超格子層43を形成したことを特徴とし、これによって、結晶性の優れた活性層44を形成することができ、高出力特性と優れた静電耐圧特性が実現できる。すなわち、上述の実施の形態1は窒化物半導体からなるn型の超格子層が優れたn型電極形成層として機能することに着目したものであるのに対し、実施の形態2の窒化物半導体発光素子は、n型超格子層43上に結晶性の優れた活性層44を成長させることができることに着目して利用したものである。
【0033】
詳細に説明すると、実施の形態2の窒化物半導体発光素子において、基板1上にバッファ層2及び例えばアンドープのGaNからなるアンドープ窒化物半導体層41を介して、例えばn型のGaNからなるn電極形成層42を形成する。そして、n電極形成層42上に、n型超格子層43を介して活性層44を形成する。さらに、活性層44上に、例えば、Mgドープのp側クラッド層(p型AlGaN層)45、Mgドープのp型GaNからなるp側コンタクト層46を介して透光性p電極9及びpパッド電極を形成する。
【0034】
ここで、n型超格子層43は、第1の窒化物半導体層43aと第2の窒化物半導体層43bとが交互に積層された超格子構造を有し、全体としてn型の導電性を有しかつ極めて良好な結晶性を有する。尚、本実施の形態2において、n型不純物としては第4族元素が挙げられるが、好ましくはSi若しくはGe、さらに好ましくはSiを用いる。このn型超格子層43は、その超格子層を構成する第1と第2の窒化物半導体層の各膜厚が弾性臨界膜厚以下となるために、結晶欠陥の非常に少ない層とできる。すなわち、本実施の形態2では、この結晶性の良好なn型超格子層43によって、そのn型超格子層43より下のn電極形成層42で発生した結晶欠陥をある程度止めることができ、この機能によって、n型超格子層43上に成長させる活性層44の結晶性を良くすることができる。一般にn電極形成層42は、低抵抗とするためにn型不純物を多くドープするために、比較的多くの結晶欠陥を含む。従って、n電極形成層42と活性層44との間にn型超格子層43を形成することは、結晶性の良好な活性層44を形成する上で極めて効果的である。
【0035】
この第1の窒化物半導体層43a及び第2の窒化物半導体層43bの各膜厚は、好ましくは100オングストローム以下に調整する。100オングストロームよりも厚いと、第1と第2の窒化物半導体層が弾性歪み限界に近い又はそれ以上の膜厚となり、膜中に微少なクラック、あるいは結晶欠陥が入りやすくなるからである。このn型超格子層43は、互いに組成の異なる第1の窒化物半導体層43aと第2の窒化物半導体層43bを用いて構成してもよいが、互いに同一組成を有しかつ一方をアンドープ又は低いn型不純物濃度とし他方を高いn型不純物濃度とした第1と第2の窒化物半導体層を用いて構成することが好ましく、さらに好ましくは、第1と第2の窒化物半導体層を互いに同一組成とし、一方をアンドープとし他方にn型不純物をドープしたものを用いる。さらに、第1と第2の窒化物半導体層を、一方をアンドープとし他方にn型不純物をドープして用いる場合、n型不純物をドープした他方の層は、アンドープの一方の層より薄くすることが好ましく、これによりさらに超格子層自身の結晶性を良好にできかつその上に成長させる活性層の結晶性をさらに良好にできる。また、発光層としてInGaNとGaNとの多重量子井戸構造の活性層44を用いる場合、n型不純物がドープされたGaNとアンドープのGaNとの組み合わせたn型超格子層43を用いることが最も好ましい。尚、本明細書において、超格子層とは互いに同一組成を有しかつ互いに不純物濃度が異なる第1と第2の窒化物半導体層とを交互に積層した層も含むものとする。
【0036】
さらに本発明において、第1と第2の窒化物半導体層とは、互いにバンドギャップエネルギーが異なっていてもよく、第1と第2の窒化物半導体層として互いにAlの含有量が異なる窒化物半導体、又は一方をAlXGa1-XN(0<X≦1)とし他方をGaNとする組み合わせ等、実施の形態1におけるn型電極形成層4と同様、種々組み合わせて用いることができる。
【0037】
以上のように構成された実施の形態2の窒化物半導体発光素子は、高濃度にn型不純物がドープされているため比較的多くの結晶欠陥を含むn型電極形成層42上に、結晶性のよいn型超格子層43を介して活性層44を形成している。これによって、実施の形態2の窒化物半導体発光素子では、n型電極形成層42の結晶欠陥の影響を受けることなく、層数が多くかつ結晶性のよい量子井戸構造の活性層44を形成することができるので、静電耐圧を悪化させることなく高出力を得ることができる。
【0038】
以上説明した実施の形態2の窒化物半導体発光素子では、n型電極形成層42に接してn型超格子層43を形成し、n型超格子層43に接して活性層44を形成した。しかしながら、本発明はこれに限らず、n型電極形成層42との間及びn型超格子層43と活性層44との間のいずれか一方又は双方に1又は2以上の窒化物半導体層を有していてもよい。以上のように構成しても、実施の形態2と同様の作用効果を有する。
【0039】
(実施の形態3)
本発明に係る実施の形態3の窒化物半導体発光素子は、図4に示すように実施の形態2のn電極形成層42及びn型超格子層43とに代えて、n型超格子層53を形成した以外は実施の形態2と同様に構成される。すなわち、実施の形態3の窒化物半導体発光素子において、n型超格子層53は、実施の形態1における超格子構造のn電極形成層4の機能と実施の形態2におけるn型超格子層43の機能とを併せ持つ超格子層である。ここで、本実施の形態3において、n型超格子層53を構成する第1の窒化物半導体層53a及び第2の窒化物半導体層53bとはそれぞれ、実施の形態1、2の第1及び第2の窒化物半導体層と同様に構成される。
【0040】
以上のように構成された実施の形態3の窒化物半導体発光素子は、低抵抗でかつn型電極と良好なオーミック接触が可能で、しかも結晶性がよく層数の多い量子井戸構造の活性層を成長させることができるn型超格子層53を備えている。従って、実施の形態3の窒化物半導体発光素子は、比較的低い順方向電圧で静電耐圧を悪化させることなく高出力を得ることができる。
【0041】
以上の実施の形態1〜3では、LED素子を例に挙げて説明したが、本発明はレーザダイオードにも適用することができることは言うまでもなく、その場合においても、実施の形態1〜3と同様の効果を有する。
【0042】
【実施例】
[実施例1]
図1は本発明の一実施例に係るLED素子の構造を示す模式的な断面図であり、以下この図を元に、本発明の素子の製造方法について述べる。
【0043】
サファイア(C面)よりなる基板1を反応容器内にセットし、容器内を水素で十分置換した後、水素を流しながら、基板の温度を1050℃まで上昇させ、基板のクリーニングを行う。基板1にはサファイアC面の他、R面、A面を主面とするサファイア、その他、スピネル(MgAl24)のような絶縁性の基板の他、SiC(6H、4H、3Cを含む)、Si、ZnO、GaAs、GaN等の半導体基板を用いることができる。
【0044】
(バッファ層2)
続いて、温度を510℃まで下げ、キャリアガスに水素、原料ガスにアンモニアとTMG(トリメチルガリウム)とを用い、基板1上にGaNよりなるバッファ層2を約200オングストロームの膜厚で成長させる。
【0045】
(アンドープ窒化物半導体(GaN)層3)
バッファ層2成長後、TMGのみ止めて、温度を1050℃まで上昇させる。1050℃になったら、同じく原料ガスにTMG、アンモニアガスを用い、アンドープGaN層3を5μmの膜厚で成長させる。アンドープGaN層3はバッファ層よりも高温、例えば900℃〜1100℃で成長させる。このアンドープGaN層3の膜厚は特に問うものではなく、バッファ層よりも厚膜で成長させ、通常0.1μm以上の膜厚で成長させる。この層はアンドープ層としたため真性半導体に近く、抵抗率は0.2Ω・cmよりも大きいが、Si、Ge等のn型不純物をn電極形成層よりも少なくドープして抵抗率を低下させた層としても良い。
【0046】
(n電極形成層4)
続いて1050℃で、TMG、アンモニアガスを用い、アンドープGaN層を60オングストローム成長させ、続いて同濃度にてシランガスを追加しSiを1×1019/cm3ドープしたGaN層を20オングストロームの膜厚で成長させ、そしてSiを止めてアンドープGaN層を60オングストロームの膜厚で成長させる。このようにして、60オングストロームのアンドープGaN層からなる第1の窒化物半導体層と、SiドープGaNからなる20オングストロームの第2の窒化物半導体層とからなるペアを成長させる。そしてペアを250層積層して2μm厚として、超格子構造よりなるn電極形成層4を成長させる。
【0047】
(活性層6)
次に、温度を800℃にして、キャリアガスを窒素に切り替え、TMG、TMI(トリメチルインジウム)、アンモニアを用いアンドープIn0.4Ga0.6N層を30オングストロームの膜厚で成長させて単一量子井戸構造を有する活性層6を成長させる。なおこの層はInGaNよりなる井戸層を有する多重量子井戸構造としても良い。
【0048】
(p側クラッド層7)
次に、温度を1050℃に上げ、TMG、TMA、アンモニア、Cp2Mg(シクロベンタジエニルマグネシウム)を用い、Mgを1×1020/cm3ドープしたp型Al0.1Ga0.9Nよりなるp側クラッド層7を0.1μmの膜厚で成長させる。この層はキャリア閉じ込め層として作用し、Alを含む窒化物半導体、好ましくはAlYGa1-YN(0<Y<1)を成長させることが望ましく、結晶性の良い層を成長させるためにはY値が0.3以下のAlYGa1-YN層を0.5μm以下の膜厚で成長させることが望ましい。また、p側クラッド層7が超格子層であってもよく、p側層に超格子層があると、レーザ素子を作製した場合は閾値を低くでき、発光ダイオードでは発光開始電圧を低くできるので好ましい。p側層において超格子層となりうる層は特に限定されない。
【0049】
(p側コンタクト層8)
続いて1050℃で、TMG、アンモニア、Cp2Mgを用い、Mgを1×1020/cm3ドープしたp型GaNよりなるp側コンタクト層8を0.1μmの膜厚で成長させる。p側コンタクト層8もInXAlYGal-X-YN(0≦X、0≦Y、X+Y≦1)で構成でき、その組成は特に問うものではないが、好ましくはGaNとすると結晶欠陥の少ない窒化物半導体層が得られやすく、またp電極材料と好ましいオーミック接触が得られやすい。
【0050】
反応終了後、温度を室温まで下げ、さらに窒素雰囲気中、ウェーハを反応容器内において、700℃でアニーリングを行い、p型層をさらに低抵抗化する。
【0051】
アニーリング後、ウェーハを反応容器から取り出し、最上層のp側コンタクト層8の表面に所定の形状のマスクを形成し、RIE(反応性イオンエッチング)装置でp側コンタクト層側からエッチングを行い、図1に示すようにn電極形成層4の表面を露出させる。
【0052】
エッチング後、最上層にあるp側コンタクト層のほぼ全面に膜厚200オングストロームのNiとAuを含む透光性のp電極9と、そのp電極9の上にボンディング用のAuよりなるpパッド電極10を0.5μmの膜厚で形成する。一方エッチングにより露出させたn電極形成層4の表面にはWとAlを含むn電極11を形成する。最後にp電極9の表面を保護するためにSiO2よりなる絶縁膜12を図1に示すように形成した後、ウェーハをスクライブにより分離して350μm角のLED素子とする。
【0053】
このLED素子は順方向電圧20mAにおいて、520nmの純緑色発光を示し、サファイア基板上にGaNよりなるバッファ層と、SiドープGaNよりなるn側コンタクト層と、単一量子井戸構造のInGaNよりなる活性層と、MgドープAlGaNよりなるp側クラッド層と、MgドープGaNよりなるp側コンタクト層とが順に積層された従来の緑色発光LEDに比較して、20mAにおけるVfを0.2〜0.4V低下させ、出力を40%〜50%向上させることができた。また、静電耐圧も従来のLED素子に比較して5倍以上であった。
【0054】
[実施例2]
実施例1の発光素子において、n電極形成層4と活性層6との間に、アンドープ窒化物半導体(GaN)層5を500オングストロームの膜厚で形成した以外は、実施例1と同様に作成した。すなわち、実施例2ではn電極形成層4を形成した後、シランガスのみを止め、1050℃で同様にしてアンドープGaN層を500オングストロームの膜厚で成長させ、次いで活性層6を成長させる。以上のように形成した発光素子は、超格子層であるn電極形成層4の上に直接活性層を成長させたものに比較して、アンドープGaN層がバッファ層として作用するので、活性層の結晶性を良くすることができ、実施例1に比較して出力を20%向上させることができた。
【0055】
[実施例3]
実施例1においてn電極形成層4を成長させる際に、アンドープGaN層よりなる第1の窒化物半導体層を40オングストロームと、Siを3×1018/cm3ドープしたAl0.1Ga0.9N層からなる第2の窒化物半導体層を60オングストロームとを300層ずつ交互に積層して、総膜厚3μmの超格子構造とする他は実施例1と同様にしてLED素子を得たところ、実施例1とほぼ同等の特性を有するLED素子が得られた。
【0056】
[実施例4]
図2は本発明の他の実施例に係るレーザ素子の構造を示す模式的な断面図であり、レーザの共振面に平行な方向で素子を切断した際の図を示している。以下、この図を元に実施例4について説明する。
【0057】
実施例1と同様にして、サファイア(C面)よりなる基板20の上に、200オングストロームのGaNよりなるバッファ層21、5μmのアンドープGaN層22、20オングストロームのアンドープGaNからなる第1の窒化物半導体層と、20オングストロームのSiドープのAl0.1Ga0.9Nよりなる第2の窒化物半導体層とが積層されてなり総膜厚3μmの超格子構造のn電極形成層23を成長させる。
【0058】
なお、サファイア基板の他、基板にはサファイアのような窒化物半導体と異なる材料よりなる基板の上に第1のGaN層を成長させ、その第1のGaN層の上に、SiO2等、窒化物半導体が表面に成長しにくい保護膜を部分的に形成し、さらにその保護膜を介して、前記第1のGaN層の上に第2のGaNを成長させ、SiO2の上に第2のGaN層を横方向に成長させて、横方向で第2のGaN層が繋がって第2のGaN層を基板とした窒化物半導体基板を用いることが窒化物半導体の結晶性を良くする上で非常に好ましい。この窒化物半導体基板を基板とする場合にはバッファ層を特に成長させる必要はない。
【0059】
(アンドープ窒化物半導体層24)
次に温度を800℃にしてTMI、TMG、アンモニアを用いアンドープIn0.05Ga0.95Nよりなるアンドープ窒化物半導体層を500オングストロームの膜厚で成長させる。
【0060】
(n側クラッド層25)
次に、1050℃にして、Siを1×10l9/cm3ドープしたn型Al0.2Ga0.8N層、20オングストロームと、アンドープ(undope)GaN層、20オングストロームとを交互に200層積層してなる総膜厚0.8μmの超格子構造とする。n側クラッド層25はキャリア閉じ込め層、及び光閉じ込め層として作用し、Alを含む窒化物半導体、好ましくはAlGaNを含む超格子層とすることが望ましく、超格子層全体の膜厚を100オングストローム以上、2μm以下、さらに好ましくは500オングストローム以上、2μm以下で成長させることが望ましい。さらにまた、このn側クラッド層の中央部の不純物濃度を大きくして、両端部の不純物濃度を小さくすることもできる。
【0061】
(n側光ガイド層26)
続いて、Siを5×1017/cm3ドープしたn型GaNよりなるn側光ガイド層26を0.1μmの膜厚で成長させる。このn側光ガイド層26は、活性層の光ガイド層として作用し、GaN、InGaNを成長させることが望ましく、通常100オングストローム〜5μm、さらに好ましくは200オングストローム〜1μmの膜厚で成長させることが望ましい。このn側光ガイド層26は通常はSi、Ge等のn型不純物をドープしてn型の導電型とするが、特にアンドープにすることもできる。
【0062】
(活性層27)
次に、800℃で、25オングストロームの厚さのアンドープIn0.2Ga0.8Nよりなる井戸層と、50オングストロームの厚さのアンドープIn0.01Ga0.99Nよりなる障壁層とを交互に積層してなる総膜厚200オングストロームの多重量子井戸構造(MQW)の活性層27を成長させる。すなわち、この活性層27は、障壁層3層と井戸層2層とを、障壁層+井戸層+障壁層+井戸層+障壁層となるように積層して構成した。
【0063】
(p側キャップ層28)
次に、1050℃でバンドギャップエネルギーがp側光ガイド層29よりも大きく、かつ活性層27よりも大きい、Mgを1×1020/cm3ドープしたp型Al0.3Ga0.7Nよりなるp側キャップ層28を300オングストロームの膜厚で成長させる。このp側キャップ層28はp型不純物をドープした層としたが、膜厚が薄いため、n型不純物をドープしてキャリアが補償されたi型、若しくはアンドープとしても良く、最も好ましくはp型不純物をドープした層とする。p側キャップ層28の膜厚は0.1μm以下、さらに好ましくは500オングストローム以下、最も好ましくは300オングストローム以下に調整する。0.1μmより厚い膜厚で成長させると、p型キャップ層28中にクラックが入りやすくなり、結晶性の良い窒化物半導体層が成長しにくいからである。Alの組成比が大きいAlGaN程薄く形成するとLD素子は発振しやすくなる。例えば、Y値が0.2以上のAlYGal-YNであれば500オングストローム以下に調整することが望ましい。p側キャップ層28の膜厚の下限は特に限定しないが、10オングストローム以上の膜厚で形成することが望ましい。
【0064】
(p側光ガイド層29)
次に、バンドギャップエネルギーがp側キャップ層28より小さい、Mgを1×1019/cm3ドープしたp型GaNよりなるp側光ガイド層29を0.1μmの膜厚で成長させる。この層は、活性層の光ガイド層として作用し、n側光ガイド層26と同じくGaN、InGaNで成長させることが望ましい。また、この層はp側クラッド層30を成長させる際のバッファ層としても作用し、100オングストローム〜5μm、さらに好ましくは200オングストローム〜1μmの膜厚で成長させることにより、好ましい光ガイド層として作用する。このp側光ガイド層は通常はMg等のp型不純物をドープしてp型の導電型とするが、特に不純物をドープしなくても良い。
【0065】
(p側クラッド層30)
次に、Mgを1×1020/cm3ドープしたp型Al0.2Ga0.8N層、20オングストロームと、Mgを1×1019/cm3ドープしたp型GaN層、20オングストロームとを交互に積層してなる総膜厚0.8μmの超格子層よりなるp側クラッド層30を成長させる。この層はn側クラッド層25と同じくキャリア閉じ込め層として作用し、超格子構造とすることによりp型層側の抵抗率を低下させるための層として作用する。このp側クラッド層30の膜厚も特に限定しないが、100オングストローム以上、2μm以下、さらに好ましくは500オングストローム以上、1μm以下で成長させることが望ましい。このp側クラッド層の中央部の不純物濃度を大きくして、両端部の不純物濃度を小さくすることもできる。
【0066】
(p側コンタクト層31)
最後に、Mgを2×1020/cm3ドープしたp型GaNよりなるp側コンタクト層10を150オングストロームの膜厚で成長させる。p側コンタクト層は500オングストローム以下、さらに好ましくは400オングストローム以下、20オングストローム以上に膜厚を調整すると、p層抵抗が小さくなるため閾値における電圧を低下させる上で有利である。
【0067】
反応終了後、反応容器内において、ウェーハを窒素雰囲気中、700℃でアニーリングを行い、p層をさらに低抵抗化する。アニーリング後、ウェーハを反応容器から取り出し、図2に示すように、RIE装置により最上層のp側コンタクト層31と、p側クラッド層30とをエッチングして、4μmのストライプ幅を有するリッジ形状とする。
【0068】
リッジ形成後、図2に示すように、リッジストライプを中心として、そのリッジストライプの両側に露出したp側クラッド層30をエッチングして、n電極11を形成する第2の窒化物半導体層23の表面を露出させる。
【0069】
次にリッジ表面の全面にNi/Auよりなるp電極32を形成する。次に、図2に示すようにp電極32を除くp側クラッド層30、p側コンタクト層31の表面にSiO2よりなる絶縁膜35を形成し、この絶縁膜35を介してp電極32と電気的に接続したpパッド電極33を形成する。一方先ほど露出させたn側コンタクト層4の表面にはWとAlよりなるn電極34を形成する。
【0070】
電極形成後、ウェーハのサファイア基板の裏面を研磨して50μm程度の厚さにした後、サファイアのM面でウェーハを劈開して、その劈開面を共振面としたバーを作製する。一方、ストライプ状の電極と平行な位置でバーをスクライブで分離してレーザ素子を作製する。そのレーザ素子形状が図2である。なおこのレーザ素子を室温でレーザ発振させたところ、従来の37時間連続発振した窒化物半導体レーザ素子に比較して、閾値電流密度は2.0kA/cm2近くにまで低下し、閾値電圧も4V近くになり、寿命は500時間以上に向上した。
【0071】
[実施例5]
実施例1において、n電極形成層4成長時に、Siを1×1019/cm3ドープしたGaN層を20オングストローム成長させてなる第1の窒化物半導体層と、アンドープのAl0.10Ga0.90N層を20オングストローム成長させてなる第2の窒化物半導体層とのペアを250回成長させ、総膜厚1.0μm(10000オングストローム)の超格子構造よりなるn電極形成層4を成長させる他は実施例1と同様にして行ったところ、実施例1とほぼ同様に良好な結果が得られた。
【0072】
[実施例6]
実施例6は実施の形態2に基づく一実施例に係るLED素子であって、以下のように作製される。
【0073】
まず、実施例1と同様にして、サファイア(C面)よりなる基板1上にGaNよりなるバッファ層2を約200オングストロームの膜厚で成長させる。次に、TMGのみ止めて、温度を1050℃まで上昇させ、同じく原料ガスにTMG、アンモニアガスを用い、アンドープGaN層41を1.5μmの膜厚で成長させ、続いて1050℃で、TMG、アンモニアガス及びシランガスを用い、Siを5×1018/cm3ドープしたn型GaN層42を2.35μmの厚さに成長させる。
【0074】
続いて1050℃で、TMG、アンモニアガス及びシランガスを用い、第2の窒化物半導体層43bとしてSiを5×1018/cm3ドープしたGaN層を25オングストロームの膜厚で成長させ、続いて同濃度にてシランガスを止め第1の窒化物半導体層43aとしてアンドープGaN層を75オングストロームの膜厚で成長させる。これを1周期として15周期繰り返し、75オングストロームのアンドープGaN層からなる第1の窒化物半導体層と、SiドープGaNからなる25オングストロームの第2の窒化物半導体層とからなる1500オングストロームの厚さのn型超格子層43を形成する。
【0075】
次に、温度を880℃にして、N2キャリアガスとし、TEG及びNH3を用いてGaNからなる200オングストロームの障壁層を成長させ、続いて温度を800℃にして、N2キャリアガスとし、TEG、TMI及びNH3を用いてIn0.4Ga0.6N層を30オングストロームの膜厚で成長させ、以下同様の成長を交互に繰り返すことにより、多重量子井戸構造を有する活性層44を成長させる。尚、この多重量子井戸構造を有する活性層44は、最外層を障壁層とする6層の井戸層と7層の障壁層からなり、合わせて1600オングストロームの厚さを有する。このGaNからなる障壁層の厚さは、好ましくは100〜300オングストロームに設定され、さらに好ましくは200〜300オングストロームに設定される。障壁層の厚さが100オングストローム以下では、発光出力が低下し、300オングストローム以上では、順方向動作電圧が上昇するからである。
【0076】
次に、温度を1050℃に上げ、TMG、TMA、アンモニア、Cp2Mg(シクロベンタジエニルマグネシウム)を用い、Mgを1×1020/cm3ドープしたp型Al0.1Ga0.9Nよりなるp側クラッド層(p型AlGaN層)45を300オングストロームの膜厚で成長させる。続いて1050℃で、TMG、アンモニア、Cp2Mgを用い、Mgを1×1020/cm3ドープしたp型GaNよりなるp側コンタクト層46を1500オングストロームの膜厚で成長させる。
【0077】
反応終了後、温度を室温まで下げ、さらに窒素雰囲気中、ウェーハを反応容器内において、700℃でアニーリングを行い、p型層をさらに低抵抗化する。
【0078】
アニーリング後、実施例1と同様にして、p電極9と、そのp電極9の上にボンディング用のAuよりなるpパッド電極10及びn電極11を形成する。最後にp電極9の表面を保護するためにSiO2よりなる絶縁膜12を図1に示すように形成した後、ウェーハをスクライブにより分離して350μm角のLED素子とする。
【0079】
このLED素子は順方向電流20mAにおいて、順方向電圧Vf3.2Vで520nmの緑色の発光を示し、静電耐圧も従来のLED素子に比較して4倍以上であった。
【0080】
[実施例7]
実施例7は実施の形態3に基づく一実施例に係るLED素子であって、以下の点で実施例6と異なる他は、実施例6と同様に作製される。すなわち、実施例7では実施例6と同様の条件で、アンドープGaN層41を0.5μmの膜厚で成長させた後、実施例6の第2の窒化物半導体層43bと同一条件で第2の窒化物半導体層53bを25オングストロームの膜厚で成長させ、続いて実施例6の第1の窒化物半導体層43aと同一条件でアンドープGaN層を75オングストロームの膜厚で成長させる。これを1周期として350周期繰り返し、75オングストロームのアンドープGaN層からなる第1の窒化物半導体層と、SiドープGaNからなる25オングストロームの第2の窒化物半導体層とからなる3.5μmの厚さのn型超格子層53を形成する。
【0081】
以下、実施例6と同様にして、多重量子井戸構造を有する活性層44、p側クラッド層(p型AlGaN層)45及びp側コンタクト層46を成長させて、アニーリングによりp型層をさらに低抵抗化し、さらに、p電極9と、pパッド電極10、n電極11及び絶縁膜12を形成して、ウェーハをスクライブにより分離して350μm角のLED素子とした。
【0082】
以上のように作製した実施例7のLED素子は順方向電流20mA,順方向電圧Vf3.4Vにて、520nmの緑色発光を示し、静電耐圧も従来のLED素子に比較して5倍以上であった。
【0083】
【発明の効果】
以上説明したように、本発明の窒化物半導体素子では、基板と活性層の間に、複数の層が積層された超格子構造の前記n電極形成層を備えているので、LED、LD等の窒化物半導体素子の出力を向上させると共に、Vf、閾値電圧を低下させかつ素子の信頼性を向上させることができる。また本明細書ではLED、レーザ素子について説明したが、本発明は受光素子、太陽電池の他、窒化物半導体の出力を用いたパワーデバイス等、窒化物半導体を用いたあらゆる素子に適用することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る一実施例のLED素子の構造を示す模式断面図。
【図2】本発明の実施の形態1に係る他の実施例のLD素子の構造を示す模式断面図。
【図3】本発明の実施の形態2に係るLED素子の構造を示す模式断面図。
【図4】本発明の実施の形態3に係るLED素子の構造を示す模式断面図。
【符号の説明】
1 基板
2 バッファ層
3、5、22、24、41 アンドープ窒化物半導体層
4、23 超格子層からなるn電極形成層
6、44 活性層
7、45 p側クラッド層
8、46 p側コンタクト層
9 透光性p電極
10 pパッド電極
11 n電極
12 絶縁膜
42 超格子構造でないn電極形成層
43 n型超格子層

Claims (7)

  1. 基板と活性層の間に、少なくとも一方にはn型不純物がドープされた第1と第2の窒化物半導体層を含む複数の層が積層された超格子層を備え、前記第1と第2の窒化物半導体層は互いに同一組成の窒化物半導体からなり互いに不純物濃度が異なることを特徴とする窒化物半導体素子。
  2. 基板と量子井戸構造を有する活性層の間に、少なくとも一方にはn型不純物がドープされた第1と第2の窒化物半導体層を含む複数の層が積層された超格子層を備え、その超格子層は、n電極が形成されるn電極形成層と前記活性層の間にあって前記活性層に接していて、かつ前記第1と第2の窒化物半導体層は互いに同一組成の窒化物半導体からなり互いに不純物濃度が異なることを特徴とする窒化物半導体素子。
  3. 前記第1と第2の窒化物半導体層はそれぞれ、GaNからなり、前記n型不純物がSiである請求項1又は2に記載の窒化物半導体素子。
  4. 前記第1と第2の窒化物半導体層のうちの一方にはn型不純物がドープされ他方にはn型不純物がドープされていない請求項1〜のうちのいずれか1つに記載の窒化物半導体素子。
  5. 前記n型不純物がドープされた一方の層の厚さを、前記n型不純物がドープされていない層より薄くした請求項記載の窒化物半導体素子。
  6. 前記活性層は、多重量子井戸構造であることを特徴とする請求項1〜のうちいずれか1つに記載の窒化物半導体素子。
  7. 前記活性層は、井戸層がInGaNからなることを特徴とする請求項に記載の窒化物半導体素子。
JP19982998A 1997-07-25 1998-06-29 窒化物半導体素子 Expired - Lifetime JP3744211B2 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP19982998A JP3744211B2 (ja) 1997-09-01 1998-06-29 窒化物半導体素子
KR10-1998-0030067A KR100511530B1 (ko) 1997-07-25 1998-07-25 질화물반도체소자
AU83584/98A AU747260B2 (en) 1997-07-25 1998-07-27 Nitride semiconductor device
EP98933944A EP1014455B1 (en) 1997-07-25 1998-07-27 Nitride semiconductor device
CNB988075199A CN1142598C (zh) 1997-07-25 1998-07-27 氮化物半导体发光器件
US09/463,643 US7365369B2 (en) 1997-07-25 1998-07-27 Nitride semiconductor device
PCT/JP1998/003336 WO1999005728A1 (en) 1997-07-25 1998-07-27 Nitride semiconductor device
CA002298491A CA2298491C (en) 1997-07-25 1998-07-27 Nitride semiconductor device
DE69835216T DE69835216T2 (de) 1997-07-25 1998-07-27 Halbleitervorrichtung aus einer nitridverbindung
US12/068,063 US8592841B2 (en) 1997-07-25 2008-02-01 Nitride semiconductor device
US14/087,081 US20140077157A1 (en) 1997-07-25 2013-11-22 Nitride semiconductor device

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP23552497 1997-09-01
JP9-235524 1997-09-01
JP9-286304 1997-10-20
JP28630497 1997-10-20
JP17663498 1998-06-08
JP10-176634 1998-06-08
JP19982998A JP3744211B2 (ja) 1997-09-01 1998-06-29 窒化物半導体素子

Publications (2)

Publication Number Publication Date
JP2000068594A JP2000068594A (ja) 2000-03-03
JP3744211B2 true JP3744211B2 (ja) 2006-02-08

Family

ID=27474713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19982998A Expired - Lifetime JP3744211B2 (ja) 1997-07-25 1998-06-29 窒化物半導体素子

Country Status (1)

Country Link
JP (1) JP3744211B2 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168385A (ja) * 1999-12-06 2001-06-22 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子及びiii族窒化物系化合物半導体発光素子
JP5145617B2 (ja) * 2000-07-03 2013-02-20 日亜化学工業株式会社 n型窒化物半導体積層体およびそれを用いる半導体素子
JP2002100803A (ja) * 2000-09-22 2002-04-05 Shiro Sakai 窒化ガリウム系化合物半導体素子及び電極形成方法
US7692182B2 (en) 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US6958497B2 (en) 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
KR101386192B1 (ko) * 2004-01-26 2014-04-17 오스람 옵토 세미컨덕터스 게엠베하 전류 분산 구조물을 갖는 박막 led
US7534633B2 (en) 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
KR100765004B1 (ko) * 2004-12-23 2007-10-09 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR100638818B1 (ko) * 2005-05-19 2006-10-27 삼성전기주식회사 질화물 반도체 발광소자
DE102005025416A1 (de) 2005-06-02 2006-12-14 Osram Opto Semiconductors Gmbh Lumineszenzdiodenchip mit einer Kontaktstruktur
KR100706952B1 (ko) * 2005-07-22 2007-04-12 삼성전기주식회사 수직 구조 질화갈륨계 발광다이오드 소자 및 그 제조방법
JP4913375B2 (ja) 2005-08-08 2012-04-11 昭和電工株式会社 半導体素子の製造方法
KR100674862B1 (ko) * 2005-08-25 2007-01-29 삼성전기주식회사 질화물 반도체 발광 소자
JP2007149791A (ja) * 2005-11-24 2007-06-14 Univ Meijo 半導体発光素子および半導体発光素子の作成方法
KR101241477B1 (ko) 2006-01-27 2013-03-08 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조 방법
KR101239856B1 (ko) * 2006-02-02 2013-03-06 서울옵토디바이스주식회사 발광 다이오드 및 이의 제조 방법
JP2007214384A (ja) 2006-02-09 2007-08-23 Rohm Co Ltd 窒化物半導体素子
KR100782433B1 (ko) 2006-09-22 2007-12-06 서울옵토디바이스주식회사 질화물 반도체 발광 다이오드를 제조하는 방법 및 그것에의해 제조된 발광 다이오드
KR100869962B1 (ko) * 2006-12-07 2008-11-24 한국전자통신연구원 전류 확산층을 포함하는 발광소자의 제조방법
US7834367B2 (en) 2007-01-19 2010-11-16 Cree, Inc. Low voltage diode with reduced parasitic resistance and method for fabricating
US8519437B2 (en) 2007-09-14 2013-08-27 Cree, Inc. Polarization doping in nitride based diodes
JP2010045308A (ja) * 2008-08-18 2010-02-25 Sharp Corp 半導体装置およびその製造方法、並びにmos型電界効果トランジスタおよびその製造方法
JP5229048B2 (ja) * 2009-03-27 2013-07-03 豊田合成株式会社 Iii族窒化物半導体発光素子およびその製造方法
US8536615B1 (en) 2009-12-16 2013-09-17 Cree, Inc. Semiconductor device structures with modulated and delta doping and related methods
US8604461B2 (en) 2009-12-16 2013-12-10 Cree, Inc. Semiconductor device structures with modulated doping and related methods
US8575592B2 (en) 2010-02-03 2013-11-05 Cree, Inc. Group III nitride based light emitting diode structures with multiple quantum well structures having varying well thicknesses
JP5533744B2 (ja) * 2010-03-31 2014-06-25 豊田合成株式会社 Iii族窒化物半導体発光素子
JP5023230B1 (ja) 2011-05-16 2012-09-12 株式会社東芝 窒化物半導体素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法
KR101175183B1 (ko) * 2011-08-08 2012-08-17 일진머티리얼즈 주식회사 전류 확산 효과가 우수한 질화물 반도체 발광소자 및 그 제조 방법
JP5337272B2 (ja) * 2012-04-16 2013-11-06 株式会社東芝 窒化物半導体素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法

Also Published As

Publication number Publication date
JP2000068594A (ja) 2000-03-03

Similar Documents

Publication Publication Date Title
JP3744211B2 (ja) 窒化物半導体素子
JP3835384B2 (ja) 窒化物半導体素子
US7365369B2 (en) Nitride semiconductor device
JP3622562B2 (ja) 窒化物半導体発光ダイオード
JP4947035B2 (ja) 窒化物半導体素子
JP3868136B2 (ja) 窒化ガリウム系化合物半導体発光素子
JP4629178B2 (ja) 窒化物半導体素子
JP3680558B2 (ja) 窒化物半導体素子
JP3660446B2 (ja) 窒化物半導体素子及びその製造方法
JP3620292B2 (ja) 窒化物半導体素子
JP3651260B2 (ja) 窒化物半導体素子
JP4356555B2 (ja) 窒化物半導体素子
JP3275810B2 (ja) 窒化物半導体発光素子
JPH1065213A (ja) 窒化物半導体素子
KR100625835B1 (ko) 질화물반도체소자
JP3951973B2 (ja) 窒化物半導体素子
JP3448196B2 (ja) 窒化物半導体発光素子
JP4622466B2 (ja) 窒化物半導体素子
KR100511530B1 (ko) 질화물반도체소자
JP3857417B2 (ja) 窒化物半導体素子
JP4954407B2 (ja) 窒化物半導体発光素子
JPH11307812A (ja) 窒化物半導体発光素子
JP2002151798A5 (ja)
JP2002164572A (ja) 窒化物半導体発光素子
JP2005167282A (ja) 窒化物半導体素子及びその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050905

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050905

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term