JP3722963B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP3722963B2
JP3722963B2 JP27177597A JP27177597A JP3722963B2 JP 3722963 B2 JP3722963 B2 JP 3722963B2 JP 27177597 A JP27177597 A JP 27177597A JP 27177597 A JP27177597 A JP 27177597A JP 3722963 B2 JP3722963 B2 JP 3722963B2
Authority
JP
Japan
Prior art keywords
power
voltage
power converter
value
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27177597A
Other languages
English (en)
Other versions
JPH11113175A (ja
Inventor
俊行 藤井
伸三 玉井
惠 森田
愁佳夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kansai Electric Power Co Inc
Priority to JP27177597A priority Critical patent/JP3722963B2/ja
Priority to US09/054,405 priority patent/US5991181A/en
Priority to CN98116844A priority patent/CN1074864C/zh
Priority to DE19835857A priority patent/DE19835857B4/de
Priority to SE9803335A priority patent/SE521468C3/sv
Publication of JPH11113175A publication Critical patent/JPH11113175A/ja
Application granted granted Critical
Publication of JP3722963B2 publication Critical patent/JP3722963B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、直流線路に複数の電圧形電力変換器が接続された直流多端子送電系統の安定性を向上すると共に電圧形電力変換器または系統故障による端子脱落時も残りの端子で運転を継続することができる電力変換装置に関するものである。
【0002】
【従来の技術】
図9は例えば特開平1−238430号公報に示された従来の電力変換装置を示す構成図であり、この図9は直流線路に複数台接続された電力変換装置のうちの1つの電力変換装置を示したものである。図において、10は交流から直流または直流から交流に電力を変換する電力変換装置、20は交流系統、30は直流系統である。101は電圧形電力変換器、102は交流リアクトル又は変圧器、103はコンデンサ、104は交流系統20の電圧を検出する電圧検出器、105は交流系統20の電流を検出する交流電流検出器、106は直流系統30の電圧を検出する直流電圧検出器、107は電圧検出器104及び交流電流検出器105により検出された電圧及び電流に基づいて電力を検出する電力検出回路、108はゲート制御回路、110は直流電圧制御回路、120は電力制御回路である。111,121は減算器、112,122は補償器、130は選択器である。
【0003】
次に動作について説明する。
電力検出回路107では電圧検出器104で検出された各相交流電圧Vu,Vv,Vwと電流検出器105で検出された各相交流電流Iu,Iv,Iwから交流有効電力P=Vu*Iu+Vv*Iv+Vw*Iwを出力する(ここで、*は乗算を示す)。ここでの交流有効電力Pは電圧形電力変換器101が交流−直流変換している電力にほぼ等しい。検出された交流有効電力Pは電力制御回路120に入力され、減算器121により電力指令値Prefとの電力偏差を演算し、補償器122がその電力偏差に応じて電圧形電力変換器101の電力を調節する。この補償器122は電力検出回路107により検出された交流有効電力Pがその電力指令値Prefよりも小さいときは電圧形電力変換器101で変換する電力を大きく、逆に交流有効電力Pが電力指令値Prefよりも大きいときは電圧形電力変換器101で変換する電力を小さくするようにして、交流有効電力Pと電力指令値Prefが一致するように動作する。
【0004】
一方、直流電圧検出器106で検出された直流電圧Vdは減算器111により直流電圧指令値Vdrefとの偏差を演算し、補償器112がその偏差に応じて電圧形電力変換器101の電力を調節する。電圧形電力変換器101の電力は双方向に調節できるので、補償器112は直流電圧が低下した場合には交流から直流方向の電力を増加してコンデンサ103を充電し、直流電圧が上昇した場合には逆に直流から交流方向の電力を増加することでコンデンサ103を放電して直流電圧Vdがその直流電圧指令値Vdrefに一致するように動作する。このように補償器112,122は共に電圧形電力変換器101の電力を調節するが、それら補償器112,122の出力は選択器130により両者の最小値が選択され、直流電圧制御回路110か、または電力制御回路120のどちらか一方が動作するように構成されている。
【0005】
ゲート制御回路108は電圧形電力変換器101の有効電力指令Pac及び無効電力指令Qacに応じて電圧形電力変換器101の素子を点弧する。図10は電圧形電力変換器が交流リアクトルを介して交流電源に接続されている場合の構成図である。このとき、交流電源電圧をVs、電力変換器の変調度をk、交流リアクトルのリアクタンスをX、電圧形電力変換器の交流電圧と交流電源電圧の位相差をφとすると有効電力、無効電力はそれぞれ、
P=k*sinφ*Vs2 /X (1)
Q=(k*cosφ−1)*Vs2 /X (2)
となることが知られている。
【0006】
ゲート制御回路108では(1)式および(2)式に従って、変調度k、位相差φに応じて電圧形電力変換器101の素子をオン−オフするタイミングを決定し、素子を点弧する。この動作により、選択器130が選択した補償器112または補償器122の出力に応じて電圧形電力変換器101の電力が調節される。(1)式および(2)式の関係及び素子の点弧方式及び電圧形電力変換器の構成は、例えば、電気学会半導体電力変換方式調査専門委員会編「半導体電力変換回路」(1987年3月31日初版発行)の216〜220頁に開示されているので詳細は省略する。
【0007】
図11は図9の動作を示す説明図である。横軸は電圧形電力変換器101の交流有効電力Pで交流から直流へ電力を変換するときを正方向としている。縦軸は電圧形電力変換器101の直流電圧Vdである。図11のP<Prefの領域における電圧一定の直線の特性は、電力検出回路107で検出された交流有効電力Pが電力指令値Prefよりも小さく、補償器122の増幅効果によりその補償器122の出力は大きな値となり、出力制限値に至る。直流電圧Vdは直流電圧指令値Vdref付近にあり補償器112は出力制限値の範囲内の値を出力するので、信号の最小値を選ぶ選択器130では補償器112の出力が選択されて直流電圧制御が動作し、電圧形電力変換器101の直流電圧は直流電圧指令値Vdrefに制御される。交流有効電力Pが電力指令値Pref付近より大きくなった場合、補償器122は逆に小さな値を出力して、一方、補償器112は直流電圧Vdが直流電圧指令値Vdrefよりも小さいので大きな値を出力し、選択器130は補償器122の出力を選択して電力制御回路120が動作する。図11のVd<Vdrefの領域でPref一定の直線はこの特性を示している。従って、図9の従来例では電力と、直流電圧の関係において、ある領域では直流電圧制御回路110が、また、ある領域では電力制御回路120が動作するように構成されている。
【0008】
図12は従来の3つの電力変換装置が直流系統に接続された場合の構成図である。ここで、11,12は電力変換装置であり、電力変換装置10と同様の構成である。201,211,221は交流電源であり、それぞれ交流系統20,21,22を介して電力変換装置10,11,12に接続されている。図13は図11と同様に、このときの動作を示す説明図である。実線aは電力変換装置10、破線bは電力変換装置11、一点鎖線cは電力変換装置12の特性を示している。ここでは、電力変換装置10,11,12の直流電圧指令値Vdref1,Vdref2,Vdref3がVdref1>Vdref2>Vdref3となるように設定され、電力指令値Pref1,Pref2,Pref3は交流から直流に変換される電力で、Pref1<Pref2<Pref3となるように設定されている。図12に示したように3つの電力変換装置10,11,12は直流系統30で接続されており、電力の総和が零になるよう動作しなければならない。例えば、直流電圧が直流電圧指令値Vdref1付近にあるとすると、電力変換装置11,12では電圧を低下させようと動作し、交流から直流への電力を小さくする。これにより、直流電圧は低下し、電力変換装置10は電力制御回路120が動作するようになる。同様に、直流電圧が直流電圧指令値Vdref2付近にあるとすると、今度は電力変換装置12が交流から直流への電力を低下させて、直流電圧を下げるように動作し、電力変換装置11が電力制御回路120で動作するようになる。
【0009】
このように、図12の構成で図13の特性を持つ場合、電力変換装置12が直流電圧を直流電圧指令値Vdref3に保つように動作し、残りの電力変換装置10,11はそれぞれの電力指令値Pref1,Pref2を保つように電力制御回路120が動作する。従って、電力変換装置10,11は交流から直流に電力を変換し、電力変換装置12では電力変換装置10,11の電力の総和(Pref1+Pref2)と等しい電力を直流から交流に変換する。電力変換装置10,11,12の動作点は図13において、それぞれa′,b′,c′である。
【0010】
図12の構成で図13の特性のとき、電力変換装置12が停止したとすると、直流から交流への変換ができなくなるため、直流電圧が上昇して電力変換装置11が直流電圧を直流電圧指令値Vdref2に保つように動作する。このとき、電力変換装置10,11の動作点はそれぞれ、a″,b″である。電力変換装置10は電力制御回路120が動作し、電力変換装置11は直流電圧制御回路110が動作して電力変換装置10の電力指令値Pref1に等しい電力を直流から交流へ変換して運転を継続する。
【0011】
このように従来では直流系統30に複数の電力変換装置が接続されたときに、ある一つの電力変換装置は直流電圧制御回路110が動作し、残りの電力変換装置は電力制御回路120が動作する。このとき、直流から交流へ電力を変換している電力変換装置が電力制御回路120で動作している場合を考える。直流系統30の電圧が低下すると、電力を一定に保つためにさらに直流電圧を低下する方向に電流を流し、逆に直流系統30の電圧が上昇すると、さらに直流電圧を上昇させるように動作する。
【0012】
図14にこの動作を説明する回路図を示す。図14において、電力変換装置A,B,Cのうち、Bは直流電圧制御回路110が動作して電圧源となり、A,Cは電力制御回路120が動作して電流源となる。電力変換装置Aの交流有効電力P<0が一定とすると、その直流電流はP/Vdである。直流系統30の電圧Edが電力変換装置Cの停止などで低下したとすると、電力変換装置Bはそれを補うように電力を調節して電圧を一定に保つように動作するが、電力変換装置Aでは直流電圧の低下に対してさらにコンデンサCを放電する方向(P<0なので直流から交流の方向)へ電流を流すように動作するため、電力変換装置BはコンデンサCの充電電流を供給しなければならない。
【0013】
しかし、直流系統が長い場合などは電力変換装置Bは電力変換装置Aのコンデンサ電圧とは異なる電圧(Bのコンデンサ電圧)で調節することになり、直流電圧の制御性能が劣化する場合がある。特に、直流系統のインダクタンス成分と各電力変換装置のコンデンサCによる共振は位相遅れが大きくなりやすくダンピングの悪い電圧制御特性を持つ場合がある。この現象は直流系統の距離が長くなるに従い、充電が必要なコンデンサCの電圧と直流電圧制御回路110が調節している電圧の差が大きくなりこの制御系の安定性が損なわれる。また、コンデンサCの容量が小さくなるに従い放電時間が短くなるため、それに応じて直流電圧制御回路110が充電電流を供給しなければならないが、さらに充電が必要なコンデンサCの電圧と直流電圧制御回路110が調節している電圧の差が大きくなり同様に制御特性が悪化し安定性が低下する。
【0014】
【発明が解決しようとする課題】
従来の電力変換装置は以上のように構成されているので、複数の電力変換装置のうちの1つが直流電圧を制御し、残りの電力変換装置がそれぞれの電力を制御する。このため、直流系統30から交流系統20へ電力を変換している電力変換装置では、直流系統30の電圧が低下すると、さらに直流電圧を低下するように電流を流し、逆に直流系統30の電圧が上昇すると、さらに直流電圧を上昇させるように動作する。この結果、直流系統30の長距離化、電圧形電力変換器101のコンデンサ容量の低減に伴い、直流電圧制御特性が劣化し、特に直流系統30の共振による直流電圧の振動を十分に抑制することができず、交流系統20に対しても悪影響を及ぼすなどの課題があった。
【0015】
この発明は上記のような課題を解決するためになされたもので、複数の電圧形電力変換器が接続された電力変換装置の特性を改善し、直流系統の共振を抑制して安定に電力を送受電できる電力変換装置を得ることを目的とする。
【0016】
また、この発明は、一つまたは複数の電力変換装置が停止しても残りの電力変換装置で運転を継続できる電力変換装置を得ることを目的とする。
【0017】
さらに、この発明は、一つまたは複数の電力変換装置が停止して残りの電力変換装置で運転を継続する場合に各電力変換装置の電力の融通度合いを設定できる電力変換装置を得ることを目的とする。
【0018】
さらに、この発明は、一つまたは複数の電力制御装置が停止した直後の電力変動を小さくすることができる電力変換装置を得ることを目的とする。
【0019】
さらに、この発明は、一つまたは複数の電力制御装置が停止した直後の過渡的な電力の融通度合いを各電力変換装置で設定できる電力変換装置を得ることを目的とする。
【0020】
さらに、この発明は、一つまたは複数の電力制御装置が停止した場合の電力の融通度合いを各電力変換装置に接続された交流系統の能力に応じて設定できる電力変換装置を得ることを目的とする。
【0021】
さらに、この発明は、一つまたは複数の電力制御装置が停止した場合の過渡的な電力の融通度合いを各電力変換装置に接続された交流系統の能力に応じて設定できる電力変換装置を得ることを目的とする。
【0022】
さらに、この発明は、一つまたは複数の電力制御装置が停止して残りの電力変装置で運転を継続する場合に各電力変換装置の電力の融通度合いを設定できる電力変換装置を得ることを目的とする。
【0023】
【課題を解決するための手段】
この発明に係る電力変換装置は、各電圧形電力変換器に対応して、電力の指令値と電力検出手段の検出値とに基づいて電圧形電力変換器の第一の有効電力指令を出力する電力制御手段と、直流電圧の指令値と直流電圧検出手段の検出値とに基づいて電圧形電力変換器の第二の有効電力指令を出力する直流電圧制御手段と、第一の有効電力指令と第二の有効電力指令との加算値に基づいて電圧形電力変換器の素子を点弧するゲート制御手段とを備えたものである。
【0024】
この発明に係る電力変換装置は、電力制御手段から出力される第一の有効電力指令に出力制限値を設定するようにしたものである。
【0025】
この発明に係る電力変換装置は、出力制限値を、各電圧形電力変換器で異なる値に設定するようにしたものである。
【0026】
この発明に係る電力変換装置は、各電圧形電力変換器の直流電圧制御手段に変化率抑制手段を設けたものである。
【0027】
この発明に係る電力変換装置は、変化率抑制手段の設定値を、各電圧形電力変換器で異なる値に設定するようにしたものである。
【0028】
この発明に係る電力変換装置は、出力制限値を、各電圧形電力変換器に接続された交流系の融通能力に応じて設定するようにしたものである。
【0029】
この発明に係る電力変換装置は、変化率抑制手段の設定値を、各電圧形電力変換器に接続された交流系の融通能力に応じて設定するようにしたものである。
【0030】
この発明に係る電力変換装置は、直流電圧制御手段の直流増幅率を、各電圧形電力変換器で異なる値に設定するようにしたものである。
【0031】
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。
実施の形態1.
以下の実施の形態では、制御回路で実現する場合を例に説明するが、プロセッサを用いたソフトウェアでも同様に実現することができる。
図1はこの発明の実施の形態1による電力変換装置を示す構成図であり、この図1は直流線路に複数台接続された電力変換装置のうちの1つの電力変換装置を示したものである。図において、10は交流から直流または直流から交流に電力を変換する電力変換装置、20は交流系統、30は直流系統(直流線路)である。101は電圧形電力変換器、102は交流リアクトル又は変圧器、103はコンデンサ、104は交流系統20の電圧を検出する電圧検出器、105は交流系統20の電流を検出する交流電流検出器、106は直流系統30の電圧を検出する直流電圧検出器(直流電圧検出手段)、107は電圧検出器104及び交流電流検出器105により検出された電圧及び電流に基づいて電力を検出する電力検出回路(電力検出手段)、108は電圧形電力変換器101の素子を点弧するゲート制御回路(ゲート制御手段)、110は直流電圧の指令値Vdrefと直流電圧検出器106の検出値とに基づいて電圧形電力変換器101の第二の有効電力指令を出力する直流電圧制御回路(直流電圧制御手段)、120は電力の指令値Prefと電力検出回路107の検出値とに基づいて電圧形電力変換器101の第一の有効電力指令を出力する電力制御回路(電力制御手段)である。111,121は減算器、112,122は補償器、131は加算器である。
【0032】
次に動作について説明する。
電力検出回路107では電圧検出器104で検出された各相交流電圧Vu,Vv,Vwと電流検出器105で検出された各相交流電流Iu,Iv,Iwから交流有効電力P=Vu*Iu+Vv*Iv+Vw*Iwを出力する(ここで、*は乗算を示す)。ここでの交流有効電力Pは電圧形電力変換器101が交流−直流変換している電力にほぼ等しい。検出された交流有効電力Pは電力制御回路120に入力され、減算器121により電力指令値Prefとの電力偏差を演算し、増幅して電圧形電力変換器101の有効電力指令値(第一の有効電力指令)Pacを出力する。この動作により、交流有効電力Pは電力指令値Prefに一致するように調節される。次に、電圧形電力変換器101の直流電圧を調節する動作を説明する。電圧形電力変換器101の交流有効電力Pと直流電力はほぼ等しい(一般に電力変換器はロスが小さくこの仮定は妥当である)ので、電圧形電力変換器101からコンデンサ103へ流れる電流はPac/Vd(ここで、Vdは直流系統の電圧)となる。従って、有効電力指令値Pacを正の方向で増加すればコンデンサ103ヘは充電電流が流れ電圧が上昇する、逆に有効電力指令値Pacを負の方向に増加すればコンデンサ103は放電して電圧が低下する。補償器112では、直流電圧指令値Vdrefに従って、直流電圧検出器106で検出した直流電圧Vdがその直流電圧指令値Vdrefよりも小さいときは電圧形電力変換器101の有効電力指令値Pacを大きくするように、また、逆に直流電圧Vdがその直流電圧指令値Vdrefよりも大きいときは有効電力指令値Pacを小さくするように動作して直流電圧Vdが直流電圧指令値Vdrefに一致するように動作する(第二の有効電力指令)。
【0033】
図2は電圧形電力変換器の動作を示す等価回路図、図3はその等価ブロック線図を示す。図3(a)は電圧形電力変換器の有効電力指令値Pacから直流線路の電流Idまでのブロック線図である。有効電力指令値Pacは電圧形電力変換器101の交流側の入力電力であり、交流から直流へ変換(順変換動作)するときは正、直流から交流へ変換(逆変換動作)するときは負の値を持つ。電圧形電力変換器101のロスを無視すると電圧形電力変換器101の交流側と直流側の電力が等しいので、電圧形電力変換器101の直流電流はIc=Pac/Vdの関係がある(図3(a)の割り算ブロック)。ブロック1/Csは電圧形電力変換器101の直流電流Icと直流系統30の電流Idの差でコンデンサ103が充放電されてその電圧Vdが変化することを表している。その次のブロック1/Lds,Rdはコンデンサ103の電圧Vdと他の端子の電圧Edとの差が直流系統30のインダクタンスと抵抗に印加されて直流電流Idが流れることを表している。
【0034】
図3(a)の安定性を評価するために割り算のテーラー展開を用い、動作点近傍で線形化すると図3(b)となる。ただし、動作点を(Vd0,Ic0,Id0,Ed0,Pac0)、微小変化分を(ΔVd,ΔIc,ΔId,ΔEd,ΔPac)としてVd=Vd0+ΔVd,Ic=Ic0+ΔIc,Id=Id0+ΔId,Ed=Ed0+ΔEd,Pac=Pac0+ΔPacである。図3(b)からわかるように、コンデンサ電圧ΔVdからコンデンサ103の電流(1/C)sブロックの入力)へIc0/Vd0を係数とするループが存在する。電圧形電力変換器101のロスを無視した条件ではIc0=Pac0/Vdc0なので、Ic0/Vd0=Pac0/(Vd0*Vd0)の関係がある。従って、この係数は電圧形電力変換器101が変換する電力の方向で符号が変わり、順変換動作のときは正の値、逆に逆変換動作のときは負の値を持つ。
【0035】
例えば、直流電圧が正Vd0>0で電圧形電力変換器101が逆変換動作のとき(Ic0/Vd0)<0である。電圧形電力変換器101の直流電圧(コンデンサ電圧に等しい)が低下すると変化が負でΔVd<0となるので(Ic0/Vd0)*ΔVd>0となってコンデンサ電流を低下するように働き、さらに電圧を低下させる。反対に電圧が上昇するとΔVd>0であるから、(Ic0/Vd0)*ΔVd<0でありコンデンサ電流を大きくするように働き、さらに電圧を上昇させる。つまり、電圧形電力変換器101が逆変換動作のときには系の中に正帰還が存在するということであり、これをどのように補償するかによって図2の系の安定性が決定されるということになる。
【0036】
図9の従来例の場合、電力制御回路120が動作しているときにはこの系に対して補償器Gp(s)が図3(c)のように構成されることと等価である。他の端子では電圧Edが一定になるように電圧制御回路120が動作する。電力制御回路120は正帰還となり得るループとは独立に構成されるため、系の安定性には関与しない。従って、系の安定化に寄与するのは他の端子の直流電圧制御回路110である。しかし、他の端子の直流電圧制御回路110は自端の電圧(図3ではEd)を検出してそれを調節するように動作しているだけである。このため、ΔVdの変化が直流線路電流ΔIdを変化させ、さらに他の端子の電圧が変化してからそのΔEdの変化を抑制するように直流電圧制御回路110が働くという過程が必要であり動作が遅れる。逆に他の端子の直流電圧制御回路110が働きその端子のコンデンサ103を充放電しても、直流線路電流が変化してからΔVdが変化するというように遅れが生じる。特に直流系統30が長くなり、インダクタンスLdが大きくなると遅れが顕著になる。このように、従来例では正帰還ループの補償は間接的に行われるため、十分な安定性を確保することが難しい。
【0037】
これに対して、図1の実施の形態1によるブロック線図は図3(d)である。電力を一定に調節する端子であっても、直流電圧制御回路110が構成されて電圧Vdを指令値に一致するように動作する。定常状態では電圧指令Vd* が一定なのでΔVd* =0となる。このとき電圧Vdが低下したとするとΔVd<0であるからΔVd* −ΔVd>0であり、補償器Gv(s)で増幅されてΔIc>0の電流を流すように動作してコンデンサ103を充電する。これにより、逆変換動作のときにΔVdから(Ic0/Vd0)を介して帰還して放電する正帰還ループの電流を直接補償することができる。電圧Vdが上昇した場合はΔVd* −ΔVd<0でありΔIcは放電するように流れ、同様に正帰還ループの電流を直接補償することができる。従って、図1のように構成すれば、正帰還ループを直接補償でき系の安定性を確保することができる。
【0038】
以上のように、この実施の形態1によれば、直流系統30に接続された複数の電力変換装置10でそれぞれ直流電圧が一定になるように直流電圧制御回路110が動作しており、直流から交流へ変換している電力変換装置10の特性に起因する不安定性を抑制して安定に電力を送電することができる。
【0039】
実施の形態2.
図4はこの発明の実施の形態2による電力変換装置を示す構成図であり、図において、電力制御回路120では補償器122に出力制限が構成されており、上限値がPmax、下限値がPminに設定されるものである。
なお、実施の形態1と同一符号は同一または相当部分を示すので説明を省略する。
【0040】
次に動作について説明する。
図4の電力制御回路120の補償器122は出力制限が構成されているので、電力指令値Prefと交流有効電力Pに偏差が生じた場合、制限値内の有効電力で調節される。補償器122が出力制限を越える信号を出力しようとすると、上限値Pmaxまたは下限値Pminに制限されて直流電圧制御回路110の動作が優先されて交流有効電力Pと電力指令値Prefは偏差を持つ。特に、Pmax=Pminのときにはその電力変換装置10は常に電圧を一定に保つよう動作する。
【0041】
次に複数の端子が接続された場合にある端子が故障や事故により脱落したときの動作について説明する。今、n個の端子が接続され、それぞれの有効電力をPiとすると、各端子以外からの電力はないので、
ΣPi=0 (3)
が成り立つ。ここで、n番目の端子が脱落したとすると直流電圧、電力に偏差を生じる。
【0042】
端子脱落前は直流電圧の偏差が零で、電力が一定に調節されているものとし、端子脱落後の直流電圧の偏差をΔVd、電力制御回路120の出力の端子脱落前の値Piに対する偏差をΔPiとすれば端子脱落後の有効電力Pi′は定常状態において、
Pi′=(Pi+ΔPi)十Kvi*ΔVd (4)
となる。ここで、Kviは直流電圧制御回路110の補償器112の直流増幅率でありKvi*ΔVdは直流電圧制御回路110の出力である。
【0043】
端子脱落後の電力もバランスしなければならないので、Pi′についても残りの(n−1)個の端子の総和が零であり、
ΣPi′=−Pn+ΣΔPi+ΔVd*ΣKvi=0 (5)
が成り立つ。これよりΔVdを求め(4)式に代入すると、
Pi′=Pi+ΔPi+Kvi*(Pn−ΣΔPk)/(ΣKvk)(6)
となる。
【0044】
例えば、各端子の直流電圧制御回路110の補償器112の直流増幅率が等しいとしてKvi*Kv、また直流電圧制御回路110の補償器112の出力偏差も端子脱落前の値に対して増加、減少方向で等しくΔPimax=±ΔPmaxとなるようにそのリミッタが設定されているものとする。
【0045】
即ち、図1の電力制御回路120の制限値はPmax=Pi+ΔPmax及びPmin=Pi−ΔPmaxである。順変換端子が脱落し直流電圧が端子脱落前に比べて低下したとすると、直流電圧制御回路110が偏差ΔVdに比例して電力を正方向(順変換方向)に大きくする。従って、直流電圧制御回路110は逆に電力を小さくするように動作するが、リミッタにより制限されてΔPi=−ΔPmaxとなる。逆に、逆変換端子が脱落して直流電圧が上昇したとすると、直流電圧制御回路110が電力を小さくするように動作し、電力制御回路120がリミッタに制限されてΔPi=+ΔPmaxとなる。
【0046】
このため、
Pi′=Pi+Pn/(n−1) (7)
となる。従って、ある端子が脱落しても各端子で分担して電力を融通し自動的に新たな動作点へ移行して運転を継続することができる。ここでは簡単にするためにKviとΔPiの大きさが等しい場合について説明したが、これらの値が異なっても同様に新たな動作点へ移行することができる。また、複数の端子が脱落しても同様である。
【0047】
以上のように、この実施の形態2によれば、電力制御回路120の出力制限値を設定しているので、ある電力変換装置10が停止しても残りの電力変換装置10で運転を継続して自動的に新たな動作点へ移行することができる。
【0048】
実施の形態3.
この実施の形態3では図4の電力制御回路120の制限値が各端子毎に異なる値に設定されている。直流電圧の安定性については実施の形態1と同様であるので説明を省略する。複数の端子が接続された場合にある端子が故障や事故により脱落したときの動作について説明する。電力制御回路120は交流有効電力Pが電力指令値Prefに一致するように動作するが、その能力は制限値Pmax,Pminにより制限されている。このため、制限値が大きい端子は電力制御回路120の能力が大きく、制限値が小さい端子に比較して交流有効電力Pと電力指令値Prefの偏差が小さい。従って、制限値が大きい端子は端子脱落が発生した後の電力がその前の電力に対して変化が小さくなり交流系統20への影響を小さくすることができる。
【0049】
例えば、(6)式において各端子の直流増幅率Kvkが等しいとすると、ΣKvk=(n−1)Kv,Kvi=Kvなので、
Pi′=Pi+ΔPi+(Pn−ΣΔPk)・1/(n−1)
ΔPの平均値をΔPav=ΣΔPk/(n−1)として、ΔPi=ΔPav+ΔPdiと定義すると、これより、
Figure 0003722963
である。逆変換端子が脱落したとするとPn<0であり、直流電圧が上昇するため直流電圧制御回路110が電力を小さくし、電力制御回路120は電力を増加するように動作するのでΔPiは正方向である。
【0050】
従って、電力制御回路のリミット値が、
ΔPdi>−Pn/(n−1) (9)
となるように設定されていると、電力制御回路120が飽和せずにその端子の電力は端子が脱落する前と等しく制御される。電力制御回路120が飽和してリミットされる場合でもΔPdiが大きく上限のリミット値が大きい端子は融通する電力が小さくなる。電力制御回路120の上限のリミット値が小さい端子は逆に融通する電力が大きくなる動作点へ移行する。
【0051】
順変換端子が脱落した場合はPn>0であり、直流電圧が低下するため直流電圧制御回路110が電力を増加するように動作して電力制御回路120は電力を低下するように動作するのでΔPiは負の方向である。従って、各端子の電力制御回路120のリミット値が、
ΔPdi<−Pn/(n−1) (10)
となるように設定されていると、電力制御回路120が飽和せずに脱落前の電力が保たれる。電力制御回路120が飽和する場合でも下限のリミット値が小さい(負方向に大きい)端子は融通する電力が小さく、下限のリミット値が大きい端子は電力融通が大きい動作点へ移行する。
【0052】
以上により、この実施の形態3によれば、電力制御回路120の出力制限値を各電力変換装置10で異なる値を設定しているので、一つまたは複数の電力変換装置10が停止して残りの電力変換装置10で運転を継続する場合に、電力の変化を小さくする端子と、電力融通の大きい端子を設定することができる。
【0053】
実施の形態4.
図5はこの発明の実施の形態4による電力変換装置を示す構成図であり、図において、113は直流電圧制御回路110に設けられた、入力信号の時間に関する変化率を抑制する変化率抑制回路(変化率抑制手段)である。
なお、実施の形態1および実施の形態2と同一符号は同一または相当部分を示すので説明を省略する。
【0054】
次に動作について説明する。
直流系の共振による変動を抑制している直流電圧制御回路110は端子が脱落した場合などの急激な直流電圧変動にも応答するように設定される。直流電圧制御回路110の補償器112では直流電圧指令値Vdrefと直流電圧Vdの偏差を増幅するが、直流電圧Vdが急峻に変化するとその出力もそれに応じて変化する。変化率抑制回路113では補償器112の出力の変化率が予め設定された最大変化率を越える場合、その変化を最大変化率に抑制するように動作する。補償器112の出力の変化率が設定された最大変化率よりも小さい場合はそのまま出力されて、補償器112の出力に等しい信号が有効電力指令となる。このため、定常状態においては直流電圧制御回路110の直流電圧変動抑制効果を低下することなく、過渡的な変動を抑えることができる。これに対して、補償器112をフィルタ効果を持つように構成しても過渡的な変動を抑制することができるが、直流制御系の定常的な安定性を損ねる恐れがある。図6に変化率抑制回路の動作を示す信号波形の例を示す。横軸が時間、縦軸が信号の振幅である。
【0055】
図6(a)は入力信号(実線)が最大変化率を越える変化率を持つ場合であり、出力は破線のように変化率が抑制される。図6(b)は入力信号の変化率が最大変化率よりも小さい場合であり、出力信号は入力信号に一致する。従って、有効電力の急峻な変化が抑制され、直流系統30の過渡的な変動の交流系統20に対する影響を小さくすることができる。なお、電力制御回路120は電圧制御系の安定性に関係がないので、電力制御回路120による有効電力の急峻な変化は、その補償器122にフィルタ効果を持たせるように構成することで問題がない。
【0056】
以上のように、この実施の形態4によれば、直流電圧制御回路110に設けられた、変化率抑制回路113により、有効電力の過渡的な変化を抑制することができる。
【0057】
実施の形態5.
この実施の形態5では図5の直流電圧制御回路110の変化率抑制回路113の設定値が各端子毎に異なる値に設定されている。従って、ある端子が脱落して直流電圧が急峻に変化した場合、変化率抑制回路113の最大変化率の設定値が大きい電力変換装置10が優先的に働き、過渡的な直流電圧の変動を抑制するように動作する。逆に最大変化率の設定値が小さい電力変換装置10は過渡的な電圧変化に対しての応答が抑制されており、直流電圧を維持するために必要な過渡的な電力融通が少なく交流系への影響が小さい。
【0058】
以上のように、この実施の形態5によれば、変化率抑制回路113の設定値を各端子毎に異なる値に設定することにより、一つまたは複数の端子が脱落した場合などに発生する直流電圧変動に対して、その電圧変動を優先的に抑制する端子を設定することができる。
【0059】
実施の形態6.
図7はこの発明の実施の形態6による電力変換装置を示す構成図であり、図において、10,11,12は電力変換装置であり、例えば図4に示した構成を有するものである。20,21,22は交流系統、40は各電力変換装置10,11,12の電力制御回路120の補償器122の制限値を設定する制限値設定回路、201,211,221は交流電源である。
【0060】
次に動作について説明する。
図4に示した電力制御回路120の補償器122には出力制限値が設定されている。この実施の形態6による制限値設定回路40では各電力変換装置10,11,12に接続された交流系統20,21,22が許容できる電力範囲PACmax,PACminを得て、各電力変換装置10,11,12の電力制御回路120の補償器122の制限値PmaxとPminを出力する。図4の構成では電力制御回路120の補償器122の出力制限が小さい方が電力制御回路120の動作が制限されて、直流電圧を維持するために電力を融通するように動作する。従って、制限値PmaxとPminはその電力変換装置10,11,12が接続された交流系統20,21,22の電力許容範囲PACmaxとPACminが大きいものは制限値を小さく設定して、ある電力変換装置が停止したときの電力融通ができるように動作する。逆に電力許容範囲が小さいものは制限値を大きく設定して電力制御回路120が働くように設定し、交流有効電力Pが電力指令値Prefに一致するようにして電力融通を少なくするように動作する。
【0061】
以上のように、この実施の形態6によれば、一つまたは複数の電力変換装置が停止した場合の電力融通を交流系統の能力に応じて設定することができ、交流系統への影響を小さくすることができる。図7では3つの電力変換装置10,11,12が直流系統30に接続された場合を示しているが、2つ以上の構成について同様の効果がある。
【0062】
実施の形態7.
図8はこの発明の実施の形態7による電力変換装置を示す構成図であり、図において、50は各電力変換装置10,11,12の電圧制御回路120の最大変化率を設定する最大変化率設定回路である。
なお、実施の形態6と同一符号は同一または相当部分を示すので説明を省略する。
【0063】
次に動作について説明する。
電力変換装置10,11,12は例えば図5に示したように構成されている。図5に示した直流電圧制御回路110には変化率抑制回路113が構成されている。最大変化率設定回路50では各電力変換装置10,11,12に接続された交流系統20,21,22が許容できる電力範囲PACmax,PACminを得て、各電力変換装置10,11,12の直流電圧制御回路110の最大変化率DPDTを出力する。図5の構成では最大変化率が小さい電力変換装置ほど過渡的な電力融通が抑えられ、大きいものが電力融通を行う。従って、最大変化率DPDTはその電力変換装置が接続された交流系統の電力許容範囲PACmaxとPACminが大きいものは大きく設定され、一つまたは複数の電力変換装置が停止したときの過渡的な電力融通ができるように動作する。逆に電力許容範囲が小さいものは最大変化率を小さくして過渡的な電力融通を抑制する。
【0064】
以上のように、この実施の形態7によれば、一つまたは複数の電力変換装置が停止した場合の過渡的な電力融通を交流系統の能力に応じて設定することができ、交流系統への影響を小さくすることができる。図8では3つの電力変換装置10,11,12が直流系統30に接続された場合を示しているが、2つ以上の構成についても同様の効果がある。
【0065】
実施の形態8.
この実施の形態8では図4の直流電圧制御回路110の補償器直流増幅率Kviが各端子で異なる値に設定されている。簡単にするために直流電圧制御回路110のΔPiはすべての端子で同一とする。各端子の直流増幅率Kviの平均値をKvavとして、Kvav=ΣKvk/(n−1),Kvi=Kvav*Kvdiと定義すると(6)式は、
Figure 0003722963
である。順変換端子が脱落した場合(Pn>0)はΔPi<0であるから、補償器112の直流増幅率が平均値よりも大きい場合(Kvdi>1)はより多くの電力を融通するように動作する。逆に直流増幅率が平均値よりも小さい場合(Kvdi<1)は融通電力が小さい動作点へ移行する。逆変換端子(Pn<0)が脱落した場合はΔPi>0であり同様の動作となる。
【0066】
以上のように、この実施の形態8によれば、直流電圧制御回路110の補償器112の直流増幅率を各電力変換装置10,11,12で異なる値に設定しているので、一つまたは複数の電力変換装置が停止して残りの電力変換装置で運転を継続する場合に、電力融通を小さくする端子と、大きくする端子を設定することができる。なお、この実施の形態8では、直流電圧制御回路110の余裕(ΔPi)がすべての端子で同一としたが、値が異なっても同様の効果がある。
【0067】
【発明の効果】
以上のように、この発明によれば、常に直流電圧制御手段が動作するように構成したので、各電力変換装置の直流電圧の変動を抑制して一定に保つことができ、直流線路の長距離化やコンデンサ容量の低減に対しても各電力変換装置の相互に送受電する電力を安定に送ることができる効果がある。
【0068】
この発明によれば、電力制御手段に出力制限値を設定するように構成したので、一つまたは複数の電力変換装置が停止しても自動的に動作点を移行し残りの電力変換装置で運転を継続することができる効果がある。
【0069】
この発明によれば、各電力変換装置の電力制御手段の出力制限値を異なる値に設定するように構成したので、一つまたは複数の電力変換装置が停止して動作点を移行し残りの電力変換装置で運転を継続する場合に電力の融通度合を各電力変換装置で設定できる効果がある。
【0070】
この発明によれば、各電圧形電力変換器の直流電圧制御手段に変化率抑制手段を設けるように構成したので、一つまたは複数の電力変換装置が停止した直後、残りの電力変換装置の交流電力の変動を抑制できる効果がある。
【0071】
この発明によれば、各電力変換装置の直流電圧制御手段の変化率抑制手段を異なる設定とするように構成したので、一つまたは複数の電力変換装置が停止した直後、過渡的な電力融通度合いを各電力変換装置で設定できる効果がある。
【0072】
この発明によれば、各電力変換装置の電力制御手段の出力制限値を交流系統の融通能力に応じて設定するように構成したので、一つまたは複数の電力変換装置が停止して残りの電力変換装置で運転を継続する場合に交流系統への影響を小さくできる効果がある。
【0073】
この発明によれば、各電力変換装置の直流電圧制御手段の変化率抑制手段を交流系統の融通能力に応じて設定するように構成したので、一つまたは複数の電力変換装置が停止した直後の過渡的な電力融通の際に交流系統への影響を小さくできる効果がある。
【0074】
この発明によれば、各電力変換装置の直流電圧制御手段の直流増幅率を異なる値に設定するように構成したので、一つまたは複数の電力変換装置が停止して動作点を移行し残りの電力変換装置で運転を継続する場合に電力の融通度合を各電力変換装置で設定できる効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による電力変換装置を示す構成図である。
【図2】 電圧形電力変換器の動作を示す等価回路図である。
【図3】 図2の等価ブロック線図である。
【図4】 この発明の実施の形態2による電力変換装置を示す構成図である。
【図5】 この発明の実施の形態4による電力変換装置を示す構成図である。
【図6】 実施の形態4の特性の一例を示す説明図である。
【図7】 この発明の実施の形態6による電力変換装置を示す構成図である。
【図8】 この発明の実施の形態7による電力変換装置を示す構成図である。
【図9】 従来の電力変換装置を示す構成図である。
【図10】 従来の電力変換装置の動作を示す説明図である。
【図11】 従来の電力変換装置の特性を示す説明図である。
【図12】 従来の3つの電力変換装置が直流系統に接続された場合の構成図である。
【図13】 従来の電力変換装置の特性を示す説明図である。
【図14】 従来の電力変換装置の動作を示す説明図である。
【符号の説明】
10,11,12 電力変換装置、30 直流系統(直流線路)、101 電圧形電力変換器、106 直流電圧検出器(直流電圧検出手段)、107 電力検出回路(電力検出手段)、108 ゲート制御回路(ゲート制御手段)、110 直流電圧制御回路(直流電圧制御手段)、113 変化率抑制回路(変化率抑制手段)、120 電力制御回路(電力制御手段)。

Claims (8)

  1. 交流電力から直流電力または直流電力から交流電力に変換する電圧形電力変換器が直流線路に複数台接続されて相互に電力を送受電する電力変換装置において、前記各電圧形電力変換器に対応して、前記電圧形電力変換器の直流電圧を検出する直流電圧検出手段と、前記電圧形電力変換器が交流から直流または直流から交流に変換している電力を検出する電力検出手段と、電力の指令値と前記電力検出手段の検出値とに基づいて前記電圧形電力変換器の第一の有効電力指令を出力する電力制御手段と、直流電圧の指令値と前記直流電圧検出手段の検出値とに基づいて前記電圧形電力変換器の第二の有効電力指令を出力する直流電圧制御手段と、前記第一の有効電力指令と前記第二の有効電力指令との加算値に基づいて前記電圧形電力変換器の素子を点弧するゲート制御手段とを備えたことを特徴とする電力変換装置。
  2. 電力制御手段から出力される第一の有効電力指令に出力制限値を設定することを特徴とする請求項1記載の電力変換装置。
  3. 出力制限値は、各電圧形電力変換器で異なる値を設定することを特徴とする請求項2記載の電力変換装置。
  4. 各電圧形電力変換器には、直流電圧制御手段に変化率抑制手段を設けたことを特徴とする請求項1から請求項3のうちのいずれか1項記載の電力変換装置。
  5. 変化率抑制手段の設定値は、各電圧形電力変換器で異なる値を設定することを特徴とする請求項4記載の電力変換装置。
  6. 出力制限値は、各電圧形電力変換器に接続された交流系の融通能力に応じて設定することを特徴とする請求項3記載の電力変換装置。
  7. 変化率抑制手段の設定値は、各電圧形電力変換器に接続された交流系の融通能力に応じて設定することを特徴とする請求項5記載の電力変換装置。
  8. 直流電圧制御手段の直流増幅率は、各電圧形電力変換器で異なる値を設定することを特徴とする請求項2記載の電力変換装置。
JP27177597A 1997-10-03 1997-10-03 電力変換装置 Expired - Lifetime JP3722963B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP27177597A JP3722963B2 (ja) 1997-10-03 1997-10-03 電力変換装置
US09/054,405 US5991181A (en) 1997-10-03 1998-04-03 Power conversion apparatus
CN98116844A CN1074864C (zh) 1997-10-03 1998-07-31 电力变换装置
DE19835857A DE19835857B4 (de) 1997-10-03 1998-08-07 Stromwandlervorrichtung
SE9803335A SE521468C3 (sv) 1997-10-03 1998-10-02 Effektomvandlingsanordning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27177597A JP3722963B2 (ja) 1997-10-03 1997-10-03 電力変換装置

Publications (2)

Publication Number Publication Date
JPH11113175A JPH11113175A (ja) 1999-04-23
JP3722963B2 true JP3722963B2 (ja) 2005-11-30

Family

ID=17504686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27177597A Expired - Lifetime JP3722963B2 (ja) 1997-10-03 1997-10-03 電力変換装置

Country Status (5)

Country Link
US (1) US5991181A (ja)
JP (1) JP3722963B2 (ja)
CN (1) CN1074864C (ja)
DE (1) DE19835857B4 (ja)
SE (1) SE521468C3 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3992679B2 (ja) * 2003-12-25 2007-10-17 三菱電機株式会社 電力変換装置
GB0710057D0 (en) * 2007-05-25 2007-07-04 Splashpower Power system
CN101795006B (zh) * 2010-03-11 2012-12-12 中国科学院电工研究所 400Hz 大功率逆变电源的无线并联控制方法及其控制系统
WO2012044369A1 (en) 2010-09-30 2012-04-05 Abb Research Ltd. Coordinated control of multi-terminal hvdc systems
JP5648129B2 (ja) * 2011-09-02 2015-01-07 株式会社日立製作所 系統電圧安定化装置および安定化方法
CN102545208B (zh) * 2011-12-26 2014-09-10 东北电网有限公司 一种基于频率响应的电网运行方式求取方法
JP2013135509A (ja) * 2011-12-26 2013-07-08 Minebea Co Ltd スイッチング電源装置および発光ダイオード照明装置
US8742778B2 (en) 2012-01-18 2014-06-03 International Business Machines Corporation Testing protection schemes of a power converter
TWI514735B (zh) * 2012-10-05 2015-12-21 Leadtrend Tech Corp 控制電源轉換器輸出固定功率的控制器及其相關的方法
JP6225672B2 (ja) * 2013-11-29 2017-11-08 住友電気工業株式会社 給電設備及びその運転方法
US9590528B2 (en) 2014-04-11 2017-03-07 Kripya LLC Dual mode DC-AC inverter system and operation
WO2015156901A1 (en) * 2014-04-11 2015-10-15 Kripya LLC Dual mode micro-inverter system and operation
US20230072540A1 (en) * 2020-04-21 2023-03-09 Mitsubishi Electric Corporation Power supply system
FR3120166B1 (fr) * 2021-02-23 2024-04-05 Centralesupelec Procédé de commande d’un convertisseur alternatif/continu pour réseau haute tension continue à nœuds multiples

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3832620A (en) * 1973-07-26 1974-08-27 Gen Electric Regulating mode selector scheme for an electric power converter
JPS5594583A (en) * 1979-01-10 1980-07-18 Hitachi Ltd Frequency converter and its controlling method
JPS61102172A (ja) * 1984-10-23 1986-05-20 Hitachi Ltd 自己消弧素子利用電流形コンバ−タ装置
JP2635660B2 (ja) * 1988-03-16 1997-07-30 東京電力株式会社 系統直流連系装置の制御装置
US4876637A (en) * 1988-03-22 1989-10-24 Kabushiki Kaisha Toshiba Power converter and method of controlling the same
JP2635725B2 (ja) * 1988-11-02 1997-07-30 東京電力株式会社 系統直流連系装置の制御装置
JP2856743B2 (ja) * 1988-11-02 1999-02-10 東京電力株式会社 系統直流連系装置の制御装置
JP2686135B2 (ja) * 1989-03-28 1997-12-08 松下電工株式会社 定電流電源回路

Also Published As

Publication number Publication date
JPH11113175A (ja) 1999-04-23
DE19835857A1 (de) 1999-04-08
SE9803335L (sv) 1999-04-04
CN1074864C (zh) 2001-11-14
SE9803335D0 (sv) 1998-10-02
DE19835857B4 (de) 2009-12-10
CN1213880A (zh) 1999-04-14
US5991181A (en) 1999-11-23
SE521468C2 (sv) 2003-11-04
SE521468C3 (sv) 2004-04-28

Similar Documents

Publication Publication Date Title
JP3722963B2 (ja) 電力変換装置
JP4672525B2 (ja) 電力品質維持制御装置
CA2820130A1 (en) Power distribution systems
JP6455661B2 (ja) 自立運転システム
JP2012161163A (ja) 直流送電システム
JP6877640B2 (ja) 電力変換装置および電力変換システム
JP4568111B2 (ja) 電力変換制御装置
JPH1167253A (ja) 燃料電池出力変動補償方法及びシステム
JP4488846B2 (ja) 静止形無効電力補償装置の制御方法
JPH09312934A (ja) 電力系統システムの電力系統安定化装置
JP2006014445A (ja) 配電線電圧変動補償装置
JP3343711B2 (ja) 静止型無効電力補償装置
JP2006067673A (ja) 電源装置
JP4569552B2 (ja) 瞬時電圧低下補償装置
JP2006067672A (ja) 電源装置
JP3143067B2 (ja) 電力変換器の制御装置
JP3744831B2 (ja) 電力貯蔵システム
JP2005086946A (ja) 分散型電源装置
JP2004320860A (ja) 無効電力補償装置
JP2708246B2 (ja) 自励式電力変換装置の制御装置
WO2022180781A1 (ja) 直流給配電システム
JP2005051868A (ja) 電力変換器とその制御方法
JP3228033B2 (ja) 無効電力補償装置の直流中間電圧の制御方法
JPS63299780A (ja) インバ−タ装置
JP2001224183A (ja) 直流電力制限機能付き連系インバータ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term