WO2022180781A1 - 直流給配電システム - Google Patents

直流給配電システム Download PDF

Info

Publication number
WO2022180781A1
WO2022180781A1 PCT/JP2021/007333 JP2021007333W WO2022180781A1 WO 2022180781 A1 WO2022180781 A1 WO 2022180781A1 JP 2021007333 W JP2021007333 W JP 2021007333W WO 2022180781 A1 WO2022180781 A1 WO 2022180781A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
voltage
acdc
power supply
Prior art date
Application number
PCT/JP2021/007333
Other languages
English (en)
French (fr)
Inventor
優典 加藤
拓也 片岡
知之 川上
喜久夫 泉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/007333 priority Critical patent/WO2022180781A1/ja
Priority to JP2023501949A priority patent/JP7536172B2/ja
Priority to US18/276,045 priority patent/US20240106316A1/en
Publication of WO2022180781A1 publication Critical patent/WO2022180781A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/08Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present disclosure relates to a DC power supply and distribution system that supplies and distributes DC power to a load.
  • DC power supplies In recent years, in order to utilize natural energy and deal with blackouts in the power system, solar power generators, storage batteries, etc. (hereinafter simply referred to as "DC power supplies") have been installed in ordinary homes, office buildings, factories, station buildings, etc. is in progress.
  • DC power supply/distribution system AC power from an AC system is converted into DC power by an ACDC converter, and the DC power output from the DC power supply is supplied to a load without being converted into AC power.
  • a DC power supply/distribution system can reduce the number of power conversions when charging a DC power supply or supplying power to a load, and thus can reduce power loss associated with power conversion.
  • the configuration of the device since it is not necessary to provide an ACDC converter for each load, the configuration of the device is simplified and the economic efficiency is improved.
  • a plurality of ACDC converters are connected in parallel to a load to ensure variability of the output capacity and high reliability (for example, See Patent Document 1). That is, the above system is configured to have N+1 (N is an integer equal to or greater than 1) ACDC converters.
  • the power conversion efficiency is low and extra power loss may occur in power conversion within the ACDC converter.
  • the total current of the ACDC converters of the same capacity connected in parallel is measured, and the number of ACDC converters to be operated is controlled to be the minimum.
  • the load factor of the ACDC converter is increased, thereby improving the power conversion efficiency of the entire system.
  • Patent Document 2 if a system is configured by connecting only the minimum number of large-capacity ACDC converters in parallel, even if the number of ACDC converters that are operated at a low load factor is reduced, the number of ACDC converters to be operated can be reduced. The amount of improvement in the load factor of the device is small, and the effect of improving the power conversion efficiency is small.
  • the present disclosure has been made to solve the above-described problems, and aims to obtain a DC power supply and distribution system that can improve power distribution efficiency at a low load factor while suppressing an increase in the size of the entire DC power supply and distribution system. purpose.
  • a DC power distribution system includes a main ACDC converter and an auxiliary ACDC converter connected in parallel to the main ACDC converter and having a rated power capacity smaller than that of the main ACDC converter. a power conversion unit that converts the supplied AC power into DC power and outputs it to a DC system; and a switching command generation unit that controls the power conversion unit based on the DC output power output by the power conversion unit, the main ACDC If the first operation mode is the case where the converter is in operation and the auxiliary ACDC converter is in the stopped state, and the second operation mode is the case in which the main ACDC converter is in the stopped state and the auxiliary ACDC converter is in the operation state.
  • the switching command generating unit sets the absolute value of the DC output power of the power converting unit to be smaller than the rated power capacity of the auxiliary ACDC converter when the power converting unit is in the first operation mode.
  • a first switching command from the first operation mode to the second operation mode is generated for the power conversion unit.
  • the true DC power supply/distribution system it is possible to improve the power distribution efficiency at a low load factor while suppressing an increase in the size of the entire DC power supply/distribution system.
  • FIG. 1 is a schematic configuration diagram of a DC power supply/distribution system according to Embodiment 1 of the present disclosure
  • FIG. 1 is a schematic configuration diagram of an ACDC converter and a distribution voltage command generator of a DC power supply/distribution system according to Embodiment 1 of the present disclosure
  • FIG. 1 is a schematic configuration diagram of a DCDC converter and a charge/discharge power command generator of a DC power supply/distribution system according to Embodiment 1 of the present disclosure
  • FIG. 4 is a characteristic diagram for explaining self-sustained operation control of the DCDC converter according to Embodiment 1 of the present disclosure
  • 4 is a power conversion efficiency characteristic diagram of the main ACDC converter and the auxiliary ACDC converter according to Embodiment 1 of the present disclosure
  • FIG. 4 is a flowchart for explaining control of the DC power supply/distribution system according to Embodiment 1 of the present disclosure
  • FIG. 4 is an explanatory diagram for explaining switching thresholds of the main ACDC converter and the auxiliary ACDC converter according to Embodiment 1 of the present disclosure
  • FIG. 2 is an explanatory diagram for explaining control of the DC power supply/distribution system according to Embodiment 1 of the present disclosure
  • FIG. 7 is a flow chart for explaining in detail "processing for switching to operation mode 2" in step S5 of FIG. 6.
  • FIG. 7 is a flow chart for explaining in detail "processing for switching to operation mode 1" in step S7 of FIG. 6.
  • FIG. FIG. 4 is a schematic configuration diagram of a DC power supply/distribution system according to Embodiment 2 of the present disclosure
  • FIG. 9 is an explanatory diagram for explaining switching thresholds of the main ACDC converter and the auxiliary ACDC converter according to Embodiment 2 of the present disclosure
  • FIG. 4 is a schematic configuration diagram of a DC power supply/distribution system according to Embodiment 3 of the present disclosure;
  • FIG. 11 is a characteristic diagram for explaining self-sustaining control of a DCDC converter according to Embodiment 3 of the present disclosure
  • FIG. 11 is a schematic configuration diagram according to a modification of the DC power supply/distribution system according to Embodiment 3 of the present disclosure
  • 1 is a hardware schematic configuration diagram of a DC power supply/distribution system according to an embodiment of the present disclosure
  • FIG. 1 is a schematic configuration diagram of a DC power supply/distribution system 100 according to Embodiment 1 of the present disclosure.
  • the DC power supply/distribution system 100 includes a DCDC converter 7 , a switching command generator 8 , a detector 12 and a power converter 50 .
  • the DC power supply/distribution system 100 is applied, for example, to ordinary homes, office buildings, factories, station buildings, and the like.
  • the DC power supply/distribution system 100 performs a power running operation in which power is purchased from the AC system 1 to be supplied to the load 5 and the DC power supply 6, and a regenerative operation in which the power generated by the load 5 and the DC power supply 6 is sold to the AC system 1.
  • the AC system 1 is, for example, an AC power supply supplied to the DC power supply/distribution system 100 from a commercial power system for supplying commercial power from an electric power company via an AC power receiving facility.
  • the load 5 consists of single or multiple loads.
  • the DC power supply 6 is configured by a solar power generation device, a storage battery, or the like, and can discharge to the DC system 4 and charge from the DC system 4 .
  • the storage battery is not limited to a stationary storage battery, and may be a storage battery provided in a mobile object such as a car, bus, or truck, as long as it is in a state where it can be charged and discharged with the DC system 4 .
  • a DC power supply/distribution system 100 is a system that supplies electric power output from an AC system 1 and a DC power supply 6 to a plurality of loads 5 .
  • the AC electric line from the AC system 1 to the power converter 50 is configured by, for example, a single-phase three-wire system or a three-phase three-wire system, which is represented by one straight line in FIG.
  • the DC system 4 is composed of, for example, a pair of electric lines including a positive electrode side wire and a negative electrode side wire, which are represented by a single straight line in FIG. 1 .
  • the power conversion unit 50 includes a main ACDC converter 2 and an auxiliary ACDC converter connected in parallel with the main ACDC converter 2 and having a rated power capacity smaller than that of the main ACDC converter.
  • the power converter 50 converts the AC power from the AC system 1 into DC power and outputs the DC power to the DC system 4 .
  • the main ACDC converter 2 and the auxiliary ACDC converter 3 are connected at a connection point A on the DC system 4 .
  • the DCDC converter 7 is connected to a connection point B on the DC system 4 .
  • the power output to the DC system 4 is supplied to the load 5 and to the DC power source 6 via the DCDC converter 7 .
  • the detection unit 12 detects the voltage of the DC system 4 and detects the current and power output by the power conversion unit 50 . More specifically, the detection unit 12 includes a voltage sensor unit that detects the voltage of the DC system 4 (hereinafter sometimes referred to as “DC system voltage”), and a current sensor unit that measures the output current of the power conversion unit 50. , a power calculation unit that calculates the DC output power of the power conversion unit 50 using the DC system voltage and the output current.
  • DC system voltage a voltage sensor unit that detects the voltage of the DC system 4
  • a current sensor unit that measures the output current of the power conversion unit 50.
  • a power calculation unit that calculates the DC output power of the power conversion unit 50 using the DC system voltage and the output current.
  • the switching command generation unit 8 determines whether or not a switching command for the operation mode of the power conversion unit 50 is required. Generates at 50. Although the details will be described later, the switching command generation unit 8 instructs to change a parameter (voltage threshold value) for controlling the DCDC converter 7 according to the switching command of the operation mode.
  • the operation modes of the power conversion unit 50 include "operation mode 1 (first operation mode)" and “operation mode 2 (second operation mode)".
  • “Operating mode 1” means an operating mode in which the main ACDC converter 2 is in an operating state and the auxiliary ACDC converter 3 is in a stopped state.
  • “Operating mode 2” means an operating mode in which the main ACDC converter 2 is in a stopped state and the auxiliary ACDC converter 3 is in an operating state.
  • the switching command generation unit 8 generates a second switching command from the operation mode 2 to the operation mode 1 when the DC output power is equal to or higher than the threshold power and the power conversion unit 50 is in the operation mode 2. do.
  • the DC power supply/distribution system 100 has two ACDC converters with different rated power capacities, and when the DC output power is smaller than the threshold power (in the low load region of the power conversion unit 50), the switching command generation unit 8 switches the power conversion unit 50 to " A command for switching from operation mode 1 to operation mode 2 is generated.
  • the auxiliary ACDC converter 3 is used instead of the main ACDC converter 2 in the low load region, the load factor for the rated power can be improved compared to the case where the main ACDC converter 2 is used. improves the conversion efficiency.
  • the detection unit 12 exemplifies a configuration in which the detection unit 12 is provided between the connection point A and the connection point B, the detection unit 12 detects the output current and output power of the power conversion unit 50 and the DC system 4. It may be provided at any position as long as the voltage can be measured. Further, in the above description, an example in which each part (current sensor part, voltage sensor part, power calculation part) of the detection unit 12 is arranged in a common block has been described. may be placed.
  • the voltage sensor unit and the voltage sensor unit are integrated with the sensor unit provided in the DCDC converter 7 (or the sensor units provided in the main ACDC converter 2 and the auxiliary ACDC converter 3),
  • the power calculation unit may be integrated with a control device (not shown) that controls the power distribution system 100 .
  • each of the main ACDC converter 2 and the auxiliary ACDC converter 3 is provided with a current sensor unit, and each of them is provided with a current sensor unit.
  • the output current of the power conversion unit 50 may be measured by summing the output currents from the current sensor units.
  • the voltage applied to the DC system 4 is set to the normal voltage of the DC system 4. may be adjusted to vary from As a result, the power consumption of the load 5 can be reduced compared to before the voltage of the DC system 4 is adjusted.
  • the switching command generation unit 8 may be implemented as part of the functions of a control device that controls the entire configuration of the DC power supply/distribution system 100 or a control unit of each converter.
  • FIG. 2 is a schematic configuration diagram of an ACDC converter and a distribution voltage command generation unit 200 of the DC power supply/distribution system 100 according to Embodiment 1 of the present disclosure.
  • the main ACDC converter 2 and the auxiliary ACDC converter 3 have some functions in common. Sometimes referred to as a "vessel".
  • the ACDC converter includes an AC/DC converter unit 22 that converts AC power from the AC system 1 into DC power, a sensor unit 23A that measures current and voltage between the AC system 1 and the ACDC converter, Between the DC system 4 and the ACDC converter, a sensor unit 23B that detects voltage and current, and control of the ACDC converter based on the measurement results of the sensor units 23A and 23B and the command of the distribution voltage command generation unit 200 and an ACDC conversion control unit 21 that performs
  • ACDC conversion control unit 21 based on the output current command Iref output from DC voltage control unit 212 and the power information (voltage/current of AC system 1 and DC system 4, etc.) detected by sensor units 23A and 23B, An operation command for the AC/DC converter section 22 is determined.
  • AC/DC conversion control section 21 includes AC/DC output control section 211 , DC voltage control section 212 , and command value filter 213 .
  • AC/DC output control section 211 controls the operation of AC/DC converter section 22 based on the values measured by sensor sections 23A and 23B and output current command Iref.
  • the command value filter 213 performs filtering (for example, low-pass filtering) on the distribution voltage command Vref* output from the distribution voltage command generation unit 200 .
  • filtering for example, low-pass filtering
  • distribution voltage commands before filtering and after filtering may be described separately as “Vref*” and “Vref”, respectively.
  • the voltage of the DC system 4 may overshoot due to the operation of the ACDC converter.
  • the command value filter 213 may be omitted if the control response of the AC/DC converter unit 22 is small and there is no concern about overshoot.
  • the time constant of the low-pass filter included in command value filter 213 is adjusted and set in advance according to the control characteristics (specifications) of the ACDC converter.
  • the DC voltage control unit 212 generates a current command value Iref for the AC/DC converter unit 22 based on the voltage of the DC system 4 acquired via the sensor unit 23B and the distribution voltage command Vref.
  • the power command or current command output by the DC voltage control unit 212 may be configured to have a drooping characteristic. By configuring in this way, it is possible to suppress measurement errors of current, voltage, etc. in the operation of a plurality of ACDC converters connected in parallel. In addition, it is possible to suppress output imbalance caused by variations in line impedance among a plurality of ACDC converters.
  • FIG. 2 illustrates an example in which the distribution voltage command generation unit 200 is provided outside the ACDC converter
  • the distribution voltage command generation unit 200 may be provided inside the ACDC converter.
  • FIG. 3 is a schematic configuration diagram of DCDC converter 7 and charge/discharge power command generator 700 of DC power supply/distribution system 100 according to Embodiment 1 of the present disclosure.
  • FIG. 4 is a characteristic diagram for explaining self-sustained operation control of the DCDC converter 7 according to Embodiment 1 of the present disclosure.
  • the vertical axis is the voltage measurement value of the DC system 4 (hereinafter sometimes referred to as “DC system voltage Vdc”)
  • the horizontal axis is the output power of the DCDC converter 7 .
  • the direction of output to the DC system 4 is indicated as the positive direction.
  • the DCDC converter 7 includes a DC/DC converter unit 72 (corresponding to a “first DC/DC converter unit”) that performs power conversion and is connected to the DC system 4 and the DC power supply 6. , sensor units 73 A and 73 B, and a DC/DC conversion control unit 71 .
  • Sensor section 73A detects voltage and current between DC system 4 and DC/DC converter section 72 .
  • Sensor section 73B detects voltage and current between DC power supply 6 and DC/DC converter section 72 .
  • the DC/DC conversion control section 71 generates a power command for the DC/DC converter section 72 and controls the DC/DC converter section 72 .
  • the DC/DC conversion control unit 71 controls that the voltage of the DC system 4 falls within the first voltage range ("heteronomous operation operating range" in FIG. ), the DC/DC converter unit 72 converts the DC power supply 6 to the DC system 4 so that the voltage of the DC system 4 falls within the first voltage range (heteronomous operation range). Control to supply charge/discharge power
  • the DC/DC conversion control section 71 includes a DC/DC output control section 711 , a charge/discharge power control section 712 , a command value filter 713 and an independent operation control section 714 .
  • the command value filter 713 performs low-pass filter processing on the command value in the same manner as the command value filter 213 (FIG. 2). Specifically, command value filter 713 performs low-pass filter processing on charge/discharge power command Pbat_ref* output from charge/discharge power command generation unit 700 to generate charge/discharge power command Pbat_ref. Note that the command value filter 713, like the command value filter 213, is provided for the purpose of preventing overshoot of the DC system 4 due to a sudden command change, but if there is no concern about overshoot, it is omitted. good too.
  • the charge/discharge power command Pbat_ref depends on the state of the DC power supply 6 (charge/discharge capability, remaining power, healthy state), the operating state of the load 5, and the state of the power conversion unit 50. Based on this, the charge/discharge power command generation unit 700 generates the command.
  • the state of charge SOC State Of Charge
  • SOH State Of Health
  • Charge/discharge power control unit 712 generates output current command value Idc_ref based on the measured values of sensor units 73A and 73B and charge power command Pbat_ref (or self-sustained operation charge/discharge power command Pbat_ind described later).
  • DC/DC output control unit 711 determines an operation command for DC/DC converter unit 72 based on the output current command value Idc_ref from charge/discharge power control unit 712 and the measured values of sensor units 73A and 73B.
  • the islanded operation control unit 714 (1) determines whether islanded operation is necessary based on the islanded operation characteristic diagram shown in FIG. 4 and the voltage of the DC system 4, and (2) determines that islanded operation is necessary. In this case, the self-sustained operation charge/discharge power command Pbat_ind is calculated and output to the charge/discharge power control unit 712 .
  • the self-sustained operation control unit 714 determines whether self-sustained operation is necessary, as described in detail below. This determination of the need for self-sustained operation is made by determining whether or not the DC system voltage Vdc is within the heteronomous operation range (Vd ⁇ Vdc ⁇ Vc).
  • the heteronomous operation range is a voltage range in which the DC system voltage Vdc is higher than the self-sustaining operation threshold voltage Vd and lower than the self-sustaining operation threshold voltage Vc.
  • the DC system voltage Vdc is outside the heteronomous operation operating range (Vd ⁇ Vdc ⁇ Vc) in the above determination, that is, if the isolated operation control unit 714 is within the isolated operation operating range (FIG. 4) If there is, the self-sustaining operation charge/discharge power command Pbat_ind is calculated. This self-sustained operation charging/discharging power command Pbat_ind is used to generate a control command for the charging/discharging power control section 712 . As a result, the DCDC converter 7 is controlled in the "self-sustaining mode" so that the DC system voltage Vdc is within the heteronomous operation range (Vd ⁇ Vdc ⁇ Vc). As a result, charging/discharging power is supplied from the DC power supply 6 to the DC system 1 via the DCDC converter 7, thereby controlling the DC system voltage Vdc.
  • the charge/discharge power control unit 712 uses the charge/discharge power command Pbat_ref generated by the charge/discharge power command generation unit 700 .
  • the threshold voltages Vc and Vd may have hysteresis. This can prevent mode hunting in which the DCDC converter 7 frequently switches between the "heteronomous operation mode” and the "independent operation mode".
  • the self-sustaining operation charge/discharge power command Pbat_ind becomes equal to the charge/discharge power command Pbat_ref when the system DC voltage Vdc is at the threshold voltages Vc and Vd.
  • the maximum value of the output power is determined by the rated power Pdc of the DCDC converter 7 .
  • the output power to the DC system 4 is decreased as the voltage of the DC system voltage Vdc increases. It has a characteristic of charging the DC power supply 6 with power if it still does not go down.
  • the DC power supply/distribution system 100 stops. Even if the DCDC converter 7 continues to output the rated power, which is the maximum output, in the self-sustained operation mode, the DCDC converter 7 is stopped when fluctuations in the DC system voltage Vdc cannot be suppressed.
  • the DC power supply/distribution system 100 is normally designed and operated so as to purchase less power from the AC system 1 with the aim of saving energy. Therefore, if most of the power required by the load 5 is supplied from the DC power supply 6, the power supplied from the power conversion unit 50 is small, that is, the load factor of the power conversion unit 50 is low. become more frequent. For example, the frequency of operation at a load factor of about 1 ⁇ 3 of the rated power of the main ACDC converter 2 may account for 60% or more of the operation in a certain period. On the other hand, when the DC power supply 6 cannot generate power, it is necessary to supply load power and charge power from the power converter 50, so it is difficult to significantly reduce the rated power capacity of the main ACDC converter 2.
  • FIG. 5 is a power conversion efficiency characteristic diagram of the main ACDC converter 2 and the auxiliary ACDC converter 3.
  • the vertical axis indicates the converter efficiency of the ACDC converter
  • the horizontal axis indicates the power that can be converted by the ACDC converter.
  • the efficiency of ACDC converters decreases in low load factor regions. This tendency is generally conspicuous when the load factor is in the range of 20% to 30% or less.
  • the reason why the efficiency of the ACDC converter is remarkable in the range of the load factor of 20% to 30% or less is as follows. That is, as fixed losses that do not depend on the load factor, there are, for example, losses due to power supply circuits, losses due to cooling fans, losses due to reactor iron losses, losses due to switching of switching elements, and the like.
  • the rated output capacity of the auxiliary ACDC converter 3 is set to be smaller than that of the main ACDC converter 2, for example, about 1/3, and the operation mode switching control between the main ACDC converter 2 and the auxiliary ACDC converter 3 is performed. (details will be described later), it is possible to improve the power distribution efficiency at a low load factor while suppressing an increase in the size of the entire DC power supply and distribution system.
  • the rated output capacity of the auxiliary ACDC converter 3 can be made smaller than that of the main ACDC converter 2, and the output current of the auxiliary ACDC converter 3 is reduced.
  • the output current of the auxiliary ACDC converter 3 is lowered, the withstand current capability of the reactor can be lowered, thereby making it possible to reduce the size of the power conversion section 50 including the auxiliary ACDC converter 3 .
  • the heat generated by the ACDC converter is reduced, thereby reducing the cooling fan loss. Due to the factors described above, the DC power supply/distribution system 100 according to the present embodiment has the effect of improving the conversion efficiency of the ACDC converter.
  • the lower output current of the auxiliary ACDC converter 3 also reduces the cost of the components, making it less expensive than the main ACDC converter 2 .
  • the switching frequency of the auxiliary ACDC converter 3 is set lower than that of the main ACDC converter 2, the ripple width of the current flowing through the reactor becomes large. Therefore, it is necessary to suppress the current ripple width by increasing the L value of the reactor. Increasing the L value of the reactor leads to an increase in size of the reactor.
  • the size of the auxiliary ACDC converter 3 can be reduced by lowering the current withstand capability of the reactor in the auxiliary ACDC converter 3 . As a result, an increase in size of the reactor can be prevented comprehensively. By lowering the switching frequency, reactor loss and switching loss can be reduced, and efficiency can be improved in a low load factor region.
  • the auxiliary ACDC converter 3 can achieve higher conversion efficiency than the main ACDC converter 2 in a low load region where the ratio of the rated power to the main ACDC converter 2 is, for example, 1/3 or less. be. Therefore, by setting the power conversion unit 50 to the operation mode 2, the system efficiency of the DC power supply/distribution system 100 can be improved.
  • FIG. 6 is a processing flow in Embodiment 1 of the present disclosure.
  • FIG. 7 is an explanatory diagram for explaining switching thresholds of the main ACDC converter 2 and the auxiliary ACDC converter 3 according to Embodiment 1 of the present disclosure.
  • FIG. 8 is an explanatory diagram for explaining voltage control of the DC system 4 of the DC power supply/distribution system 100 according to Embodiment 1 of the present disclosure.
  • the switching command generation unit 8 determines whether the DC power supply/distribution system 100 is in a steady state in step S1. If the DC power supply/distribution system 100 is in an unsteady state such as during start-up or shutdown, the switching command generation unit 8 terminates the switching process flow.
  • step S ⁇ b>2 If the DC power supply/distribution system 100 is in a steady state, the process proceeds to step S ⁇ b>2 , and the switching command generation unit 8 confirms the operation mode of the power conversion unit 50 . If the main ACDC converter 2 is in operation mode 1 (step S2: YES), the process proceeds to step S3. Go to step S6.
  • step S3 the switching command generation unit 8 uses the output DC power (hereinafter sometimes referred to as "P50") of the power conversion unit 50 detected by the detection unit 12 and the threshold power to perform the determination described below. .
  • the switching command generator 8 determines whether the output DC power P50 is within the range from the threshold power +Ps to the threshold power ⁇ Ps, that is, whether the relationship ⁇ Ps ⁇ P50 ⁇ +Ps holds.
  • the direction in which power is supplied (powered) from the power conversion unit 50 to the DC system 4 is the + (plus) direction
  • the direction in which power is regenerated from the DC system 4 to the AC system 1 is the - (minus) direction.
  • the switching command generator 8 uses the output DC power P50 and the threshold powers +Pm and -Pm to determine whether the relationship -Pm ⁇ P50 ⁇ +Pm holds.
  • the threshold powers Ps and Pm described above are set to be equal to or less than the rated output power of the auxiliary ACDC converter 3 .
  • the threshold powers Ps and Pm are the threshold power Ps (first threshold power) used when generating a switching command for switching from the operation mode 1 to the operation mode 2, and the threshold power Ps (first threshold power) used to switch from the operation mode 2 to the operation mode 1 It includes the threshold power Pm (second threshold power) used when generating the second switching command, which is switching to .
  • the threshold power Pm second threshold power
  • the absolute value of the threshold power Pm (second threshold power) may be set larger than the absolute value of the threshold power PS (first threshold power). In this way, it can function as a hysteresis for preventing hunting in switching between the operation mode 1 and the operation mode 2.
  • a filtered value is used for the output DC power P50 used in steps S3 and S6.
  • the influence of noise contained in output DC power P50 can be removed.
  • other methods for suppressing the influence of noise such as judging that the conditional expression is satisfied when the conditional expression is satisfied continuously for a certain period of time, may be used.
  • the determination formulas of -Ps ⁇ P50 ⁇ +Ps and -Pm ⁇ P50 ⁇ +Pm may be formulas including the case where P50 is equal to the threshold power, such as -Ps ⁇ P50 ⁇ +Ps and -Pm ⁇ P50 ⁇ +Pm. .
  • step S3 if the switching command generator 8 satisfies the relationship of -Ps ⁇ P50 ⁇ +Ps (YES), the process proceeds to step S4. If the above relationship is not established in step S3 (NO), the switching process flow ends. In other words, this is the state of operation mode 1 in which the main ACDC converter 2 is operated, but since the load factor of the main ACDC converter 2 is not low, it is determined that the operation mode will not be switched. .
  • step S4 the switching command generator 8 determines whether the DC system voltage Vdc detected by the detector 12 is within the stable voltage range, that is, whether Vb ⁇ Vdc ⁇ Va holds.
  • the stable voltages Va and Vb are set as a voltage range within which the system is in a stable operating state with respect to the distribution voltage command value Vref, which is the steady-state voltage of the DC system 4, and the sensor error and the like are within the normal range.
  • Vref which is the steady-state voltage of the DC system 4
  • the sensor error and the like are within the normal range.
  • the stable voltage Va is equal to or lower than the upper limit of the load's operable voltage
  • the stable voltage Vb is equal to or higher than the lower limit of the load's operable voltage.
  • step S4 If the DC system voltage Vdc is within the stable voltage range (Vb ⁇ Vdc ⁇ Va) in step S4 (YES), the process proceeds to step S5 for switching to operation mode 2. On the other hand, when the DC system voltage Vdc is not within the stable voltage range in step S4 (NO), the switching processing flow of FIG. 6 is ended.
  • step S4 the purpose of confirming that the DC system voltage Vdc is within the stable voltage range is that if ⁇ Ps ⁇ P50 ⁇ +Ps holds, but the Vdc voltage is outside the stable voltage range, the DC supply This is because there is a risk that the power balance and its control within the power distribution system 100 are not stable, and the risk of occurrence of operating mode hunting due to this is to be avoided.
  • step S5 the switching command generation unit 8 performs control processing for switching to the operation mode 2 via the DC/DC conversion control unit 71, and then ends the flow.
  • step S6 if the relationship of -Pm ⁇ P50 ⁇ +Pm is not established (NO), the process proceeds to step S7, the power conversion unit 50 is switched from operation mode 2 to operation mode 1, and the flow ends. On the other hand, if the judgment formula of step 6 is satisfied (YES), the switching processing flow is terminated.
  • FIG. 9 is a flowchart for explaining in detail the "process for switching to operation mode 2" in step S5.
  • step S51 the operation of the auxiliary ACDC converter 3 is started.
  • step S52 when the absolute value of the DC output power of the power converter unit 50 is smaller than (the absolute value of the threshold power Ps), the switching command generation unit 8 sets the following as shown in FIG.
  • the self-sustaining operation thresholds Vc and Vd of the DCDC converter 7 are changed to values close to or equal to Va and Vb, respectively, that is, voltages narrower than the first voltage range, which is the voltage range for determining whether self-sustaining operation is necessary.
  • the DC/DC conversion control section 71 is instructed to set the range as the first voltage range.
  • step S52 when performing the switching process (S5) from the operation mode 1 to the operation mode 2, in step S52, the self-sustained operation threshold Vc (lower limit) is brought closer to the stable voltage Va (lower limit), and the self-sustained operation threshold Vd (upper limit) is brought closer to the stable voltage Vb (upper limit).
  • Vc lower limit
  • Vd upper limit
  • step S53 the operation of the main ACDC converter 2 is stopped. Stopping the operation of the main ACDC converter 2 (step S53) is performed by, for example, turning OFF a switching element that constitutes the AC/DC converter section 22 .
  • a standby state in which only the switching elements included in the main ACDC converter 2 are turned off while the main power supply of the main ACDC converter 2 is turned on may be employed. As a result, the start-up time of the main ACDC converter 2 from the stopped state can be shortened.
  • Step S7 will be described in detail with reference to FIG.
  • FIG. 10 is a flowchart illustrating in detail the "process for switching to operation mode 1" in step S7 of FIG.
  • the switching command generator 8 changes the self-sustained operation thresholds of the DCDC converter 7 from the stable voltages Va, Vb to the normal self-sustained operation thresholds Vc, Vd.
  • the DC/DC conversion control unit 71 is instructed to set the first voltage range, which is the voltage range for determining whether or not the self-sustained operation is necessary, as a voltage range narrower than the preset voltage range.
  • the switching command generation unit 8 controls the DC system voltage Vdc in a range close to the steady voltage, so that the DC power supply and distribution system 100 can be stably operated even when the DC system voltage Vdc fluctuates due to fluctuations in the load state. can be operated. Finally, at step S73, the switching command generator 8 stops the auxiliary ACDC converter 3 from operating.
  • the DCDC converter 7 enters the self-sustained operation mode, and the self-sustained operation is charged. Power is output based on the discharge power command value Pbat_ind.
  • the sharing of the output power of the auxiliary ACDC converter 3 and the DCDC converter 7 is determined based on the self-sustaining characteristics of the DCDC converter 7 and the relationship between the control gain K of the auxiliary ACDC converter 3 .
  • the control gain K may be selected so that the auxiliary ACDC converter 3 outputs Pm at stable voltages Va and Vb. Further, when the operation of the DCDC converter 7 in the self-sustained operation mode continues for a certain period of time, the operation mode 1 may be forcibly switched. When the power that can be generated by the DC power supply 6 or a parameter associated therewith becomes equal to or less than a threshold value, the configuration may be such that the mode is switched to the operation mode 1 or the output power is reduced. This makes it possible to avoid the problem of running out of generated power as described above.
  • the rated power of the main ACDC converter 2 and the DCDC converter 7 is 100 kW
  • the rated power of the auxiliary ACDC converter 3 is 30 kW
  • 20 kW of the 40 kW of power required by the load is supplied from the DC power supply 6.
  • the system voltage Vdc is within the stable voltage range
  • the power conversion unit 50 is operating in mode 2
  • the auxiliary ACDC converter 3 is supplying 20 kW.
  • the auxiliary ACDC converter 3 must supply 40 kW of power to the load.
  • the threshold value Pm for example, 25 kW
  • the operation mode is switched to operation mode 1 with the main ACDC converter 2 . If the charging/discharging power command Pbat_ref is filtered by the command value filter 713, the charging/discharging power of the DC power supply 6 changes gently according to the command value. Therefore, there is time to detect an increase in the output power of the auxiliary ACDC converter 3 and switch to the main ACDC converter 2 .
  • the output power increase of the auxiliary ACDC converter 3 may not keep up. In this case, the DC system voltage Vdc drops, the DCDC converter 7 enters the self-sustained operation mode, and power must be supplied from the DC power supply 6 to the DC system 4 . In order to avoid such fluctuations in the DC system voltage, when switching from the operation mode 1 to the operation mode 2, a limit may be placed on the change in the value of the charge/discharge power command Pbat_ref of the DC power supply 6 .
  • the charge/discharge power command Pbat_ref is equal to the rated power Pdc of the DCDC converter 7, if the operation mode 1 is switched to the operation mode 2, even if the autonomous operation mode is entered due to a sudden load change, the DC power supply There is no room for additional charging and discharging of power from 6. Therefore, the following conditions may be set, for example, in order to leave power charging/discharging room even after the DCDC converter 7 transitions to the self-sustained operation mode. That is, a condition may be added such that the operation mode is switched to operation mode 2 only when the charge/discharge power index Pbat_ref is 80% or less of the rated power of the DCDC converter 7 .
  • the auxiliary ACDC converter 3 also contributes to improving the reliability of the system as a redundant configuration. For example, even if the main ACDC converter 2 fails and stops, power can be supplied to the load from the auxiliary ACDC converter 3 and the DC power supply 6, and the power for charging the DC power supply 6 is supplied to the auxiliary ACDC converter. It can be fed from converter 3 .
  • the DC power supply/distribution system 100 includes the power conversion unit 50 that converts the power output from the AC system 1 into DC power, the main ACDC converter 2 and the main ACDC
  • the auxiliary ACDC converter 3 having a capacity smaller than that of the converter 2 is used.
  • the switching command generator 8 determines whether to operate or not, and issues commands to the main ACDC converter 2 and the auxiliary ACDC converter 3 .
  • the DC power supply/distribution system 100 can improve power distribution efficiency even when the load factor is low.
  • the switching command generating unit 8 is configured to change the self-sustaining operation threshold voltages Vc and Vd for controlling the operation of the DCDC converter 7 that converts the charge/discharge power of the DC power supply 6 connected to the DC system 4.
  • FIG. 11 is a schematic configuration diagram of a DC power supply/distribution system according to Embodiment 2 of the present invention.
  • the second embodiment differs from the first embodiment in that the auxiliary ACDC converter 3A is composed of a diode rectifier.
  • diode rectifiers The main features of diode rectifiers are: That is, the maximum value of the DC output voltage that can be output by the diode rectifier is ⁇ 2 times the effective value voltage Vac of the AC system 1, and an arbitrary voltage value cannot be output according to the distribution voltage command Vref. Further, only the power running operation of supplying power from the AC system 1 to the DC system 4 is possible, but the regenerative operation of supplying power from the DC system 4 to the AC system 1 cannot be performed.
  • diode rectifiers do not require the switching of the diodes to be controlled by the controller. Therefore, in this embodiment, the switching frequency can be lowered as compared with the case where the complementary ACDC converter 3 of the first embodiment is used.
  • the ACDC converter according to the present embodiment can be realized with a smaller loss and a smaller size than the ACDC converter shown in the first embodiment. Therefore, it is possible to further reduce the size of the DC power supply and distribution system and improve efficiency.
  • the distribution voltage command Vref is set to the auxiliary ACDC converter 3A. is changed to match the output voltage (DC system voltage Vdc) of .
  • the output voltage of the complementary ACDC converter 3A can most easily be obtained as a stationary value by Vac* ⁇ 2, but the error from the actual output voltage may become large.
  • the switching command generation unit 8 changes the values of the stable voltages Va and Vb according to the steady-state value of the output voltage of the auxiliary ACDC converter 3A, and the self-sustained operation voltage thresholds Vc and Vd are , the changed regulated voltages Va and Vb.
  • FIG. 12 is an explanatory diagram for explaining switching thresholds of the main ACDC converter 2 and the auxiliary ACDC converter 3A according to Embodiment 2 of the present disclosure.
  • the threshold powers -Ps and -Pm in the regeneration direction are set to values greater than 0, that is, Psd and Pmd in the powering direction.
  • the threshold powers Ps and Pm must be set in consideration of the current passing through the parasitic diodes included in the main ACDC converter 2 as well. For example, when the current sharing ratio is "1" for the main ACDC converter 2 and "4" for the auxiliary ACDC converter 3A, when the auxiliary ACDC converter 3A outputs Pm power, the parasitic diode is Pm/ 5 power output. In this case, it is preferable to select Pm so that the current flowing through the parasitic diode does not exceed the rated current.
  • a switch 13 such as a switch or circuit breaker may be provided at the DC output terminal or AC input terminal of the main ACDC converter 2 as shown in FIG.
  • the switch 13 In the operation mode 2, it is possible to prevent power from being supplied to the DC system 4 through the parasitic diode by opening the switch 13 .
  • the switch 13 when switching to operation mode 1, the switch 13 is closed, but before closing the switch 13, the output voltage of the main ACDC converter 2 is made equal to the DC system voltage Vdc to prevent rush current. is preferred.
  • the auxiliary ACDC converter 3A is configured with a diode rectifier, and when switching to operation, the stable voltage range Va to Vb and the self-sustained operation are set according to the output voltage of the auxiliary ACDC converter 3A.
  • the operating range Vc to Vd and the DC voltage command value Vref of the main ACDC converter 2 are changed.
  • the auxiliary ACDC converter 3A is composed of small, low-loss diodes, it is possible to further improve the conversion efficiency in the low-load region and reduce the size of the system. can be done.
  • FIG. 13 is a schematic configuration diagram of a DC power supply/distribution system according to Embodiment 3 of the present invention.
  • the main ACDC converter 2A has an AC/DC converter section 22, a DC bus 28, and a DC/DC converter section 29 (corresponding to a "second DC/DC converter section").
  • the output terminal of the complementary ACDC converter 3 is connected to the DC bus 28 and configured to be connected in parallel with the AC/DC converter section 22 .
  • the DC/DC converter unit 29 outputs a plurality of DC voltages having different voltages, such as the DC system 4 and the DC system 10, and a load is connected to each DC system.
  • DCDC converter 7 is configured to be capable of outputting charging/discharging power to DC power supply 6 to a plurality of DC systems such as DC system 4 and DC system 10 .
  • the detector 12 detects the DC bus voltage, the output current and the output power of the AC/DC converter 22 and the auxiliary ACDC converter 3 , and outputs the detected values to the switching command generator 8 and the DCDC converter 7 .
  • the main ACDC converter 2A includes the AC/DC converter section 22 and the DC/DC converter section 29 as described above. AC/DC converter section 22 and DC/DC converter section 29 are connected via DC bus 28 .
  • the switching command generation unit 8 is based on the DC bus voltage value detected by the detection unit 12 provided on the DC bus 28 and the DC output power output from the AC/DC converter unit 22 and the auxiliary ACDC converter 3. Then, it determines which of the AC/DC converter unit 22 and the auxiliary ACDC converter 3 is to be operated in the same manner as in the first embodiment, and outputs an operation command.
  • FIG. 14 is a characteristic diagram for explaining self-sustained operation control of the DCDC converter 7 according to Embodiment 3 of the present disclosure.
  • the stable voltages Va and Vb are set with respect to the voltage of the DC bus 28, and the DCDC converter 7 has the threshold voltages Vc and Vd for the DC system 4 and the threshold voltages Ve and Vf for the DC system 10 as self-sustaining operation threshold voltages.
  • threshold voltages Vg and Vh for the DC bus 28 are set. That is, as shown in FIG. 14, the voltage of the DC bus 28 also has self-sustaining operation characteristics independent of the DC system 4 .
  • self-sustaining operation threshold voltages Vg and Vh of DC bus 28 change to approach or match stable voltages Va and Vb, respectively.
  • the DC/DC converter unit 72 supplies charge/discharge power from the DC power supply 6 to the DC bus 28 .
  • the self-sustaining operation threshold voltages Vc and Vd of the DC system 4 and the self-sustaining operation threshold voltages Ve and Vf (not shown) of the DC system 10 need not be changed.
  • the switching command generator 8 switches the operation between the AC/DC converter 22 and the auxiliary ACDC converter 3 based on the voltage and power detected by a detector (sensor) connected to the DC bus 28. At the same time, a change is made so as to narrow the second voltage range. That is, the threshold voltages Vg and Vh are changed to approach or match the stable voltages Va and Vb, respectively.
  • FIG. 15 is a schematic configuration diagram according to a modification of the DC power supply/distribution system according to Embodiment 3 of the present disclosure.
  • the main ACDC converter 2A has a DC/DC converter section 29 capable of multiple DC outputs.
  • the complementary ACDC converter 3B also has a DC/DC converter section 29 capable of a plurality of DC outputs.
  • the auxiliary ACDC converter 3B is connected in parallel to the main ACDC converter 2A.
  • the main ACDC converter 2A is composed of the AC/DC converter section 22, the DC bus 28, and the DC/DC converter section 29, the complementary ACDC conversion
  • the converters 3 and 3B are connected in parallel to the AC/DC converter section 22 of the main ACDC converter 2A, so that both converters can be switched.
  • FIG. 16 is a schematic hardware configuration diagram of the switching command generator 8 according to the first to third embodiments of the present disclosure.
  • the control units switching command generation unit 8, ACDC conversion control unit 21, distribution voltage command generation unit 200, and charge/discharge power command generation unit 700
  • It includes a CPU 151 (Central Processing Unit), a storage device 152, an IO (INPUT OUTPUT) interface 153, a system bus 154, and the like.
  • the storage device 152 includes a ROM (Read Only Memory), HDD (Hard Disk Drive), and the like.
  • An input device 201 and an output device 202 are connected via a cable 155 to the IO interface 153 of the switching command generator.
  • Each process of the control unit that controls the DC power supply/distribution system is executed by the CPU 151 .
  • the storage device 152 stores parameters (for example, threshold power, self-sustained operation threshold voltage, etc.) used by the controller of the DC power supply and distribution system. These parameters may be input from the outside via the input device 201 instead of being stored in the storage device 152 in advance.
  • the output device 202 may display these parameters, display the operation mode, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

直流給配電システム全体の大型化を抑制しつつ低負荷率時の配電効率を向上させることができる直流給配電システムを得る。 直流給配電システム(100)は、主ACDC変換器(2)と、主ACDC変換器(2)に並列に接続されて主ACDC変換器(2)よりも小さい定格電力容量を有する補ACDC変換器(3)とを含み、直流出力電力の絶対値が補ACDC変換器(3)の定格電力容量よりも小さく設定された閾値電力の絶対値を下回る場合に、第1の運転モードから第2の運転モードへの第1の切替指令を電力変換部(50)に対して生成することを特徴とする。

Description

直流給配電システム
 本開示は、負荷に直流電力に給配電する直流給配電システムに関するものである。
 近年、自然エネルギーの活用や電力系統の停電時の対処のため、一般家庭やオフィスビル、工場、駅舎等において太陽光発電の発電装置や蓄電池等(以下、単に「直流電源」と称す)の設置が進められている。直流給配電システムでは、交流系統からの交流電源をACDC変換器により直流電力に変換し、直流電源から出力された直流電力を交流電力に変換せずに負荷に供給する。直流給配電システムでは、交流給配電システムに比べ、直流電源の充電や負荷に電力を供給する際の電力変換回数を減らすことができるため、電力変換に伴う電力損失を低減することができる。また、直流給配電システムでは、負荷ごとにACDC変換器を設ける必要がなくなるため、装置の構成が簡単となり、経済性を向上させている。
 従来の直流給配電システムでは、複数台のACDC変換器を負荷に対して並列に接続して構成することで、出力容量の可変性の確保と高信頼性の確保を行うことがある(例えば、特許文献1参照)。すなわち、上記システムはN+1台(Nは1以上の整数)のACDC変換器を有する構成となっている。
 一般的に、ACDC変換器が低負荷率で運転する場合、電力変換効率は低く、ACDC変換器内の電力変換において余分な電力損失が発生していることがある。例えば、特許文献2に記載のシステムでは、並列接続された同一容量のACDC変換器の総合電流を計測し、運転するACDC変換器の台数が最小限となるように制御を行うことで、運転するACDC変換器の負荷率を上げ、これにより上記システム全体での電力変換効率を改善している。
特開2009-195079号公報 特開2010-154613号公報
 しかしながら、特許文献1の技術のように、小容量のACDC変換器を複数台並列接続して直流給配電システムが必要とする変換器容量を確保しようとすると、システムが大型化してしまう。
 一方で、特許文献2のように、大容量のACDC変換器を最小限の台数だけ並列接続してシステムを構成すると、低負荷率時に運転するACDC変換器台数を減らしても、運転するACDC変換器の負荷率の向上幅は小さく、電力変換効率の改善効果は少なくなってしまう。
 本開示は、上述の課題を解決するためになされたもので、直流給配電システム全体の大型化を抑制しつつ低負荷率時の配電効率を向上させることができる直流給配電システムを得ることを目的としている。
 本開示に係る直流給配電システムは、主ACDC変換器と、主ACDC変換器に並列に接続されて主ACDC変換器よりも小さい定格電力容量を有する補ACDC変換器とを含み、交流系統から入力された交流電力を直流電力に変換して直流系統に出力する電力変換部と、電力変換部が出力する直流出力電力に基づき、電力変換部を制御する切替指令生成部と、を備え、主ACDC変換器が動作状態かつ補ACDC変換器が停止状態である場合を第1の運転モードとし、主ACDC変換器が停止状態かつ補ACDC変換器が動作状態である場合を第2の運転モードとすると、切替指令生成部は、電力変換部が第1の運転モードである場合であって、電力変換部の直流出力電力の絶対値が、補ACDC変換器の定格電力容量よりも小さく設定された閾値電力の絶対値を下回る場合に、第1の運転モードから第2の運転モードへの第1の切替指令を電力変換部に対して生成するものである。
 本開示に係る真直流給配電システムによれば、直流給配電システム全体の大型化を抑制しつつ低負荷率時の配電効率を向上させることができる。
本開示の実施の形態1による直流給配電システムの概略構成図である。 本開示の実施の形態1による直流給配電システムのACDC変換器および配電電圧指令生成部の概略構成図である。 本開示の実施の形態1による直流給配電システムのDCDC変換器および充放電電力指令生成部の概略構成図である。 本開示の実施の形態1によるDCDC変換器の自立運転制御を説明するための特性図である。 本開示の実施の形態1による主ACDC変換器と補ACDC変換器の電力変換効率特性図である。 本開示の実施の形態1による直流給配電システムの制御を説明するためのフローチャートである。 本開示の実施の形態1による主ACDC変換器と補ACDC変換器の切り替え閾値を説明するための説明図である。 本開示の実施の形態1による直流給配電システムの制御を説明するための説明図である。 図6のステップS5の「運転モード2への切り替え処理」を詳細に説明するフローチャートである。 図6のステップS7の「運転モード1への切り替え処理」を詳細に説明するフローチャートである。 本開示の実施の形態2による直流給配電システムの概略構成図である。 本開示の実施の形態2による主ACDC変換器と補ACDC変換器の切り替え閾値を説明するための説明図である。 本開示の実施の形態3による直流給配電システムの概略構成図である。 本開示の実施の形態3によるDCDC変換器の自立運転制御を説明するための特性図である。 本開示の実施の形態3による直流給配電システムの変形例に係る概略構成図である。 本開示の実施の形態にかかる直流給配電システムのハードウェア概略構成図である。
実施の形態1.
(直流給配電システム100の構成説明)
 図1は、本開示の実施の形態1に係る直流給配電システム100の概略構成図である。直流給配電システム100は、DCDC変換器7と切替指令生成部8と検出部12と電力変換部50とを備える。
 直流給配電システム100は、例えば一般家庭やオフィスビル、工場、駅舎等に適用される。直流給配電システム100は、交流系統1から負荷5および直流電源6へ供給する電力を買電する力行動作と、負荷5および直流電源6が発電した電力を交流系統1に売電する回生動作とを行うことができるように構成される。交流系統1は、例えば、電力会社が商用電力を供給するための商用電力系統から交流受電設備を介して、直流給配電システム100に供給される交流電源である。
負荷5は単一または複数の負荷により構成される。直流電源6は、太陽光発電装置、蓄電池等により構成され、直流系統4への放電、および直流系統4からの充電を行うことができる。なお、蓄電池は定置蓄電池に限らず、直流系統4との充放電が可能な状態であれば、例えば車、バス、トラック等の移動体に設けられた蓄電池でもよい。
図1に示すように、直流給配電システム100は、交流系統1および直流電源6から出力された電力を複数の負荷5に供給するシステムである。ここで、交流系統1から電力変換部50への交流電路は、例えば単相三線式又は三相三線式で構成されるが、図1では一本の直線で表している。また、直流系統4は、例えば正極側の電線と負極側の電線とからなる一対の電路で構成されるが、図1では一本の直線で表している。
電力変換部50は、主ACDC変換器2と、主ACDC変換器2と並列に接続されて主ACDC変換器よりも小さい定格電力容量を有する補ACDC変換器とを含む。電力変換部50は、交流系統1からの交流電力を直流電力に変換して直流系統4に出力する。主ACDC変換器2と補ACDC変換器3とは、直流系統4上の接続点Aにて接続される。また、DCDC変換器7は直流系統4上の接続点Bに接続されている。直流系統4に出力された電力は、負荷5に供給されるとともに、DCDC変換器7を介して直流電源6に供給される。
検出部12は、直流系統4の電圧を検出するとともに、電力変換部50が出力する電流および電力を検出する。より詳細には、検出部12は、直流系統4の電圧(以下「直流系統電圧」と呼ぶ場合がある)を検出する電圧センサ部と、電力変換部50の出力電流を計測する電流センサ部と、直流系統電圧と出力電流とを用いて電力変換部50の直流出力電力を算出する電力算出部を有する。
切替指令生成部8は、検出部12が検出した直流出力電力に基づいて、電力変換部50の運転モードの切替指令が必要かを判断し、切替指令が必要な場合は切替指令を電力変換部50に生成する。切替指令生成部8は、詳細は後述するが、上記運転モードの切替指令に応じて、DCDC変換器7を制御するためのパラメータ(電圧閾値)の変更を指示する。
なお、電力変換部50の運転モードとしては、「運転モード1(第1の運転モード)」および「運転モード2(第2の運転モード)」がある。「運転モード1」は、主ACDC変換器2が動作状態、かつ、補ACDC変換器3が停止状態である運転モードを意味する。「運転モード2」は、主ACDC変換器2が停止状態、かつ、補ACDC変換器3が動作状態である運転モードを意味する。
切替指令生成部8は、より詳細には、補ACDC変換器の定格電力容量よりも小さい閾値電力(詳細は後述)を直流出力電力が下回り、かつ、電力変換部50が運転モード1である場合に、上記運転モード1から上記運転モード2への切替指令(第1の切替指令)を電力変換部50に対して生成する。
一方で、切替指令生成部8は、直流出力電力が閾値電力以上となり、かつ、電力変換部50が運転モード2である場合に、運転モード2から運転モード1への第2の切替指令を生成する。
ここで、本開示に係る直流給配電システム100の効果を簡単に説明する。定格電力容量の異なる2つのACDC変換器を有し、切替指令生成部8は、直流出力電力が閾値電力よりも小さい(電力変換部50の低負荷領域である)場合、電力変換部50を「運転モード1」から「運転モード2」への切替指令を生成する。これにより、低負荷領域では、主ACDC変換器2の代わりに補ACDC変換器3を用いるため、主ACDC変換器2を用いる場合に比べて、定格電力に対する負荷率を向上させることができ、これにより変換効率が向上する。
また、図1では検出部12が接続点Aと接続点Bとの間に設けられた構成を例示しているが、検出部12は電力変換部50の出力電流および出力電力と直流系統4の電圧とを計測することができれば、いずれの位置に設けられてもよい。また、上述では、検出部12の各部(電流センサ部、電圧センサ部、電力算出部)が共通のブロックに配置されている例を説明したが、検出部12の各部は異なるブロックに分散されて配置されてもよい。例えば、電圧センサ部および電圧センサ部を、DCDC変換器7内に設けたセンサ部(又は、主ACDC変換器2および補ACDC変換器3に設けたセンサ部)と統合して構成し、直流給配電システム100を制御する制御装置(図示省略)に電力算出部と統合することで構成してもよい。
さらに、上述では共通の電流センサ部により電力変換部50の出力電流を計測する構成を説明したが、主ACDC変換器2および補ACDC変換器3の各々に電流センサ部を設け、各々に設けられた電流センサ部による出力電流を合計することで、電力変換部50の出力電流を計測する構成としてもよい。
なお、図1では直流給配電システム100と交流系統1との絶縁を実施するトランスについて、その記載を省略しているが、交流系統1との絶縁が必要な場合にはトランスを配置してもよい。
負荷5の消費電力は負荷5の動作状況に応じて変動するため、負荷5の動作状態が一定であれば、負荷5の消費電力はほとんど変化しない。このことより、負荷5の動作状態の変動が小さい期間において、負荷5の電源回路や入力インターフェース部における電力損失を減少させるために、直流系統4に印加される電圧を通常の直流系統4の電圧から変動させるよう調整してもよい。これにより、直流系統4の電圧を調整する前に比べて、負荷5の消費電力を低減することができる。なお、上記調整において直流系統4の電圧は、負荷5を構成する機器ごとに定められた入力電圧範囲内に制限することが好ましい。これにより、上述のように直流系統4の電圧を調整した場合でも、負荷5の正常な動作の阻害が抑制できる。
切替指令生成部8は、直流給配電システム100の全構成を制御する制御装置又は各変換器の制御部の機能の一部として実現される構成としてもよい。
(ACDC変換器の構成説明)
次に、図2を用いて図1における主ACDC変換器2および補ACDC変換器3の説明を行う。図2は、本開示の実施の形態1による直流給配電システム100のACDC変換器および配電電圧指令生成部200の概略構成図である。本実施の形態1では、主ACDC変換器2および補ACDC変換器3は、一部の機能が互いに共通であるため、両構成を互いに区別して説明する必要がない場合には、単に「ACDC変換器」と称する場合がある。
ACDC変換器は、交流系統1からの交流電力を直流電力に変換するAC/DC変換器部22と、交流系統1およびACDC変換器との間の電流と電圧とを計測するセンサ部23Aと、直流系統4とACDC変換器との間にて、電圧と電流とを検出するセンサ部23Bと、センサ部23A及び23Bの計測結果及び配電電圧指令生成部200の指令に基づいてACDC変換器の制御を行うACDC変換制御部21と、を備える。
ACDC変換制御部21は、直流電圧制御部212から出力される出力電流指令Irefと、センサ部23Aおよび23Bにより検出した電力情報(交流系統1および直流系統4の電圧・電流等)に基づいて、AC/DC変換器部22の動作指令を決定する。
ACDC変換制御部21の各構成を以下に詳細に説明する。ACDC変換制御部21は、AC/DC出力制御部211と、直流電圧制御部212と、指令値フィルタ213とを備える。
AC/DC出力制御部211は、センサ部23Aおよび23Bによる測定値と出力電流指令Irefとに基づいて、AC/DC変換器部22の動作を制御する。
指令値フィルタ213は、配電電圧指令生成部200より出力される配電電圧指令Vref*に対して、フィルタ処理(例えばローパスフィルタ処理)を行う。なお、以下では、フィルタリング処理前および処理後の配電電圧指令を、それぞれ「Vref*」および「Vref」と区別して記載する場合がある。
配電電圧指令生成部200より出力される配電電圧指令Vref*の変動幅が大きい場合、ACDC変換器の動作により直流系統4の電圧がオーバーシュートする可能性がある。上述のように指令値フィルタ213により配電電圧指令Vref*にローパスフィルタ処理を行うことで、上述した配電電圧指令Vrefの変動を抑制し、直流系統4の電圧がオーバーシュートするのを抑制できる。
なお、AC/DC変換器部22の制御応答が小さく、オーバーシュートの懸念がない場合、指令値フィルタ213を省略してもよい。指令値フィルタ213に含まれるローパスフィルタの時定数はACDC変換器の制御特性(仕様)に合わせて予め調整および設定がなされる。
直流電圧制御部212は、センサ部23Bを介して取得した直流系統4の電圧と、配電電圧指令Vrefとに基づき、AC/DC変換器部22の電流指令値Irefを生成する。なお、直流電圧制御部212が出力する電力指令または電流指令が、垂下特性を有するように構成してもよい。このように構成することで、並列接続された複数のACDC変換器の運転において、電流や電圧等の測定誤差を抑制できる。また、複数のACDC変換器間の線路インピーダンスのバラつきに起因する出力アンバランスを抑制することが可能である。
なお、図2ではACDC変換器の外部に配電電圧指令生成部200を設ける例を図示しているが、配電電圧指令生成部200をACDC変換器の内部に設けてもよい。
(DCDC変換器の構成説明)
次に、図3、図4を用いて図1におけるDCDC変換器7の説明を行う。図3は本開示の実施の形態1による直流給配電システム100のDCDC変換器7および充放電電力指令生成部700の概略構成図である。図4は、本開示の実施の形態1によるDCDC変換器7の自立運転制御を説明するための特性図である。図4では、縦軸が直流系統4の電圧測定値(以下、「直流系統電圧Vdc」と称す場合あり)であり、横軸がDCDC変換器7の出力電力である。横軸では、直流系統4へ出力する方向を正方向として記載している。
図3に示すようにDCDC変換器7は、直流系統4および直流電源6に接続される電力変換を実施するDC/DC変換器部72(「第1のDC/DC変換器部」に相当)と、センサ部73Aおよび73Bと、DC/DC変換制御部71とを備える。
センサ部73Aは直流系統4とDC/DC変換器部72との間の電圧および電流を検出する。センサ部73Bは、直流電源6とDC/DC変換器部72との間の電圧および電流を検出する。DC/DC変換制御部71は、DC/DC変換器部72に対する電力指令を生成し、DC/DC変換器部72を制御する。
より詳細には、DC/DC変換制御部71は、直流系統4の電圧が第1の電圧範囲(図4にて「他律運転動作範囲」つまり、「自立運転閾値Vd大きくVcより小さい電圧範囲」に相当)外となった場合に、直流系統4の電圧が第1の電圧範囲(他律運転動作範囲)内に収まるよう、DC/DC変換器部72が直流電源6から直流系統4へ充放電電力を供給するよう制御する
DC/DC変換制御部71は、DC/DC出力制御部711と、充放電電力制御部712と、指令値フィルタ713と、自立運転制御部714とを備える。
指令値フィルタ713は、指令値フィルタ213(図2)と同様に、指令値のローパスフィルタ処理を行う。具体的には、指令値フィルタ713は、充放電電力指令生成部700より出力される充放電電力指令Pbat_ref*をローパスフィルタ処理し、充放電電力指令Pbat_refを生成する。
なお、指令値フィルタ713は、指令値フィルタ213と同様に、急激な指令変更に伴う直流系統4のオーバーシュートを防止することを目的として設けられるが、オーバーシュートの懸念がない場合、省略してもよい。
本実施の形態に係る直流給配電システム100では、充放電電力指令Pbat_refは直流電源6の状態(充放電能力、残電力、健全状態)、負荷5の動作状態、および電力変換部50の状況に基づいて、充放電電力指令生成部700により作成される。例えば、直流電源6が二次電池などの蓄電池により構成される場合、蓄電池の充電状態SOC(State Of Charge)、健全状態SOH(State Of Health)などを考慮する。
なお、図3では充放電電力指令生成部700がDCDC変換器7の外部に設けた例を示しているが、DCDC変換器7内部の制御装置に設置されていてもよい。
充放電電力制御部712は、センサ部73Aおよび73Bの測定値と充電電力指令Pbat_ref(または、後述する自立運転充放電電力指令Pbat_ind)とに基づいて、出力電流指令値Idc_refを生成する。
DC/DC出力制御部711は、充放電電力制御部712による出力電流指令値Idc_refと、センサ部73Aおよび73Bの測定値とに基づいて、DC/DC変換器部72の動作指令を決定する。
自立運転制御部714は、(1)図4に示すような自立運転特性図および直流系統4の電圧に基づいて自立運転の要否判定を行い、(2)自立運転が必要であると判断した場合に、自立運転充放電電力指令Pbat_indを算出し、充放電電力制御部712に出力する。
上記自立運転の要否判定について説明する。DCDC変換器7の運転モードとして、「他律運転モード」と「自立運転モード」とがある。自立運転制御部714は、以下で詳細に説明するように、自立運転の要否判断を行う。この自立運転の要否判断は、直流系統電圧Vdcが、他律運転動作範囲(Vd<Vdc<Vc)内であるか否かを判断する。ここで、他律運転動作範囲は直流系統電圧Vdcが、自立運転閾値電圧Vdよりも大きく自立運転閾値電圧Vcよりも小さい電圧範囲である。
より詳細には、自立運転制御部714は、上記判断にて直流系統電圧Vdcが他律運転動作範囲(Vd<Vdc<Vc)外であれば、すなわち、自立運転動作範囲内(図4)であれば、自立運転充放電電力指令Pbat_indを算出する。この自立運転充放電電力指令Pbat_indは上記充放電電力制御部712の制御指令を生成するために用いられる。これにより、直流系統電圧Vdcが他律運転動作範囲内(Vd<Vdc<Vc)となるように「自立運転モード」にてDCDC変換器7が制御される。結果として、DCDC変換器7を介して直流電源6から直流系統1へ充放電電力が供給されることで、直流系統電圧Vdcが制御される。
一方で、上記自立運転の要否判断にて、直流系統電圧Vdcが他律運転動作範囲内(Vd<Vdc<Vc)にあれば、自立運転(直流電源6からの充放電電力により直流系統電圧Vdcを調整する)が必要ないため、「他律運転モード」にてDCDC変換器7が制御される。上記充放電電力制御部712は、充放電電力指令生成部700が生成した充放電電力指令Pbat_refを用いることになる。
なお、直流系統電圧Vdcが閾値電圧付近の場合において、閾値電圧Vc、Vdにはヒステリシスが設けてもよい。これによりDCDC変換器7が「他律運転モード」と「自立運転モード」とを頻繁に切り替えてしまうモードハンチングを防ぐことができる。
図4を用いて系統直流電圧Vdcを変化させた場合における自立運転充放電電力指令Pbat_indと充放電電力指令Pbat_refとの関係の一例を以下に説明する。自立運転充放電電力指令Pbat_indは系統直流電圧Vdcが閾値電圧VcおよびVdにおいて、充放電電力指令Pbat_refと等しくなる。
閾値電圧Vdより低い電圧領域では、直流系統電圧Vdcの低下を防ぐように、直流系統電圧Vdcが下がるほど直流系統4に向かって大きな電力を出力する特性を有する。なお、出力電力の最大値はDCDC変換器7の定格電力Pdcによって決まる。
一方で、閾値電圧Vcより高い電圧領域では、直流系統電圧Vdcの電圧が上がるほど直流系統4への出力電力を下げる。それでも下がらない場合は直流電源6へ電力を充電するような特性を有する。
なお、直流系統電圧Vdcは、図4に示す停止電圧(下限)よりも小さくなるか、停止電圧(上限)を超えると、直流給配電システム100は停止する。自立運転モードにてDCDC変換器7が最大出力である定格電力を出力し続けても、直流系統電圧Vdcの変動を抑制できない場合に停止が行われる。
(動作説明)
以下、直流給配電システム100の簡単な動作について説明する。直流給配電システム100では、通常、省エネルギーを目指して交流系統1から購入する電力が少なくなるように直流給配電システム100の設計および運転が行われる。
そのため、負荷5が必要とする電力の大部分が直流電源6から供給される構成であれば、電力変換部50からの供給電力は少ない状態、つまり、電力変換部50の負荷率が低い状況の頻度が高くなる。例えば、主ACDC変換器2の定格電力に1/3程度の負荷率での動作頻度が、一定期間における動作の6割以上を占めることがある。
一方で、直流電源6が発電できない状況では、電力変換部50から負荷電力と充電電力を供給する必要があるため、主ACDC変換器2の定格電力容量を著しく小さくすることは難しい。
図5は、主ACDC変換器2と補ACDC変換器3の電力変換効率特性図である。図中、縦軸はACDC変換器の変換器効率を示し、横軸はACDC変換器が変換可能な電力を示している。一般的にACDC変換器の効率は、負荷率の低い領域では低下する。その傾向は一般的に、負荷率が20%~30%以下の領域で顕著に表れる。
なお、負荷率が20%~30%以下の領域でACDC変換器の効率が顕著となる理由は以下の理由からである。すなわち、負荷率に依存しない固定的な損失として、例えば、電源回路による損失、冷却ファンによる損失、リアクトル鉄損による損失、スイッチング素子のスイッチングによる損失等がある。固定的な損失に起因して、負荷率が低下するにつれて上記入出力電力に対する電力損失の比率が大きくなる。なお、固定的な損失のうち、リアクトル損失、スイッチング損失は、ACDC変換器内のスイッチング周波数が高いほど大きくなる。また、ACDC変換器の発熱が増加するほど冷却ファン損失が大きくなる。これは増加した発熱を冷やすためにより高い冷却能力が必要となり、結果として、冷却ファンの台数および容量が増加するためである。
そこで、本開示では補ACDC変換器3の定格出力容量を主ACDC変換器2よりも小さく、例えば、1/3程度とし、主ACDC変換器2と補ACDC変換器3との運転モードの切替制御(詳細は後述)により、直流給配電システム全体の大型化を抑制しつつ低負荷率時の配電効率を向上させることができる。
なお、補ACDC変換器3の定格出力容量を主ACDC変換器2よりも小さく構成することができ、補ACDC変換器3の出力電流が下がる。補ACDC変換器3の出力電流が下がるとリアクトルの耐電流能力を低くすることができ、これにより補ACDC変換器3を含む電力変換部50の小型化が可能となる。さらに、出力電流が下がるためACDC変換器としての発熱が小さくなり、これにより冷却ファン損失が下がるという効果を奏する。以上の要因から、本実施の形態にかかる直流給配電システム100ではACDC変換器の変換効率が向上する効果を奏する。また、補ACDC変換器3の出力電流が下がると、構成部品のコストを減らすことができ、主ACDC変換器2よりも低コストとすることができる。
補ACDC変換器3において、主ACDC変換器2よりもスイッチング周波数を低く設定すると、リアクトルに流れる電流のリプル幅が大きくなってしまう。このため、リアクトルのL値を高くすることで、電流のリプル幅を抑制する必要がある。リアクトルのL値を大きくすると、リアクトルの大型化につながる。一方で、上述のとおり本実施の形態に係る直流送電システムでは、補ACDC変換器3ではリアクトルの耐電流能力を低くすることにより、補ACDC変換器3の小型化が可能である。結果として、総合的にリアクトルの大型化を防ぐことができる。スイッチング周波数を低くすることで、リアクトル損失、スイッチング損失を下げることができ、負荷率の低い領域での効率を向上させることができる。
以上より、補ACDC変換器3は、主ACDC変換器2に対する定格電力の比が例えば1/3以下となる低負荷領域において、主ACDC変換器2よりも高い変換効率を実現することが可能である。そのため、電力変換部50を運転モード2とすることで、直流給配電システム100としてのシステム効率を向上させることができる。
以下、切替指令生成部8による電力変換部50の運転モード切り替え処理の手順について、図6~図8を用いて詳細に説明する。図6は本開示の実施の形態1における処理フローである。図7は、本開示の実施の形態1による主ACDC変換器2と補ACDC変換器3の切り替え閾値を説明するための説明図である。図8は、本開示の実施の形態1による直流給配電システム100の直流系統4の電圧制御を説明するための説明図である。
切替指令生成部8は、処理フロー開始後、ステップS1で直流給配電システム100が定常状態であるかを判定する。なお、切替指令生成部8は、直流給配電システム100が立上げ途中や立下げ途中など、非定常状態であれば切り替え処理フローを終了させる。
直流給配電システム100が定常状態であればステップS2へ進み、切替指令生成部8は、電力変換部50の運転モードを確認する。主ACDC変換器2が動作状態つまり運転モード1であれば(ステップS2:YES)、ステップS3へと進み、主ACDC変換器2が停止状態つまり運転モード2であれば(ステップ2:NO)、ステップS6へと進む。
ステップS3では、切替指令生成部8は、検出部12で検出した電力変換部50の出力直流電力(以下、「P50」と称す場合あり)と閾値電力とを用いて以下に記載する判定を行う。まず、ステップS3では、切替指令生成部8は、出力直流電力P50が閾値電力+Psから閾値電力-Psの範囲内であるか、つまり-Ps<P50<+Psの関係が成立するかの判定をする。
なお、ここでは、電力変換部50から直流系統4へ電力を供給(力行)する方向を+(プラス)方向、直流系統4から交流系統1へ電力を回生する方向を-(マイナス)方向としている。
同様にステップS6では、切替指令生成部8は、出力直流電力P50および閾値電力+Pm、-Pmを用いて、-Pm<P50<+Pmの関係が成立するかの判定を行う。
なお、上述した閾値電力Ps、Pmは、補ACDC変換器3の定格出力電力以下に設定される。なお、閾値電力Ps、Pmは、運転モード1から運転モード2への切替えである切替指令を生成する際に用いられる閾値電力Ps(第1の閾値電力)、および、運転モード2から運転モード1への切替えである第2の切替指令を生成する際に用いられる閾値電力Pm(第2の閾値電力)を含む。
なお、図7に示すように、Ps<Pmの関係を有するようにしてもよい。換言すると、閾値電力Pm(第2の閾値電力)の絶対値は、閾値電力PS(第1の閾値電力)の絶対値よりも大きく設定されていてもよい。このように、運転モード1と運転モード2との切り替えのハンチングを防ぐためのヒステリシスとして機能させることができる。
ステップS3、S6で使用される出力直流電力P50は、フィルタリングされた数値を使用する。これにより出力直流電力P50に含まれるノイズの影響を除去することができる。なお、フィルタリングを用いる手法以外にも、一定期間連続で条件式を満足した場合に成立と判定するなど、ノイズの影響を抑制する他の手法を用いてもよい。また、-Ps<P50<+Ps、-Pm<P50<+Pmの判定式は、-Ps≦P50≦+Ps、-Pm≦P50≦+Pmのように、P50が閾値電力と等しい場合を含む式としてもよい。
ステップS3で、切替指令生成部8は、-Ps<P50<+Psの関係が成立する場合(YES)、ステップS4に進む。ステップS3で上記関係が成立しない(NO)場合は、切り替え処理フローを終了する。これは、言い換えると、主ACDC変換器2で運転している運転モード1の状態だが、主ACDC変換器2の負荷率が低くないため、運転モードの切り替えは行わないということを判断している。
ステップS4では、切替指令生成部8は検出部12で検出した直流系統電圧Vdcが、安定電圧範囲内であるか、つまりVb<Vdc<Vaが成立するかの判定を行う。
安定電圧Va、Vbは、直流系統4の定常電圧である配電電圧指令値Vrefに対して、システムが安定動作状態であり、かつセンサ誤差などが正常範囲である場合に収まる電圧範囲として設定されている。安定電圧Vaは負荷の動作可能電圧の上限以下であり、安定電圧Vbは負荷の動作可能電圧の下限以上である。
ステップS4にて直流系統電圧Vdcが安定電圧範囲内(Vb<Vdc<Va)であれば(YES)、場合、運転モード2への切り替えを行うステップS5に進む。一方で、ステップS4にて直流系統電圧Vdcが安定電圧範囲内でない場合は(NO)、図6の切り替え処理フローを終了する。
ここで、ステップS4において、直流系統電圧Vdcが安定電圧範囲内であることを確認する目的は、-Ps<P50<+Psが成立しているがVdc電圧が安定電圧範囲外の場合は、直流給配電システム100内の電力収支やその制御が安定していないリスクがあり、それによる運転モードハンチング発生などのリスクを避けるためである。
ステップS5では、切替指令生成部8は、DC/DC変換制御部71を介して運転モード2に切り替えるための制御処理を行った後、フローを終了する。
ステップS6では、-Pm<P50<+Pmの関係が不成立(NO)の場合、ステップS7に進み、電力変換部50を運転モード2から運転モード1へと切り替えを行い、フローを終了する。一方で、ステップ6の判定式が成立(YES)する場合、切り替え処理フローを終了する。
ここで、図9を用いてステップS5の処理を詳細に説明する。図9はステップS5の「運転モード2への切り替え処理」を詳細に説明するフローチャートである。
まず、ステップS51にて、補ACDC変換器3の運転を開始する。
次に、ステップS52にて、切替指令生成部8は、電力変換器部50の直流出力電力の絶対値が(閾値電力Psの絶対値)よりも小さくなる場合には、図8に示すようにDCDC変換器7の自立運転閾値Vc、VdをそれぞれVa、Vbに近い値または等しい値に変更、すなわち、自立運転の要否を判断するための電圧範囲である第1の電圧範囲よりも狭い電圧範囲を、第1の電圧範囲として設定するようDC/DC変換制御部71に指示する。
すなわち、運転モード1から運転モード2への切り替え処理(S5)を行う際には、ステップS52では、自立運転閾値Vc(下限値)を安定電圧Va(下限値)に近づけるとともに、自立運転閾値Vd(上限値)を安定電圧Vb(上限値)に近づける。これは、図8の破線矢印で示すように、自立運転閾値範囲の電圧範囲を狭めることを意味する。結果として、DCDC変換器7が自立運転モードに入りやすくする。これにより、運転モード2における負荷急変や、直流電源6の充放電電力急変に伴う直流系統電圧Vdcの変動が、補ACDC変換器3だけでは抑えることができない場合に、直流電源6から電力支援を受けやすくし、負荷への供給電力が不足することや、補ACDC変換器3が過出力状態となることを防ぐことができる。
最後に、ステップS53にて、主ACDC変換器2の運転を停止する。主ACDC変換器2の運転の停止(ステップS53)は、例えばAC/DC変換器部22を構成するスイッチング素子をOFFにすることで実施する。主ACDC変換器2の主電源を落とすことで、待機電力を削減することも可能だが、負荷5に必要な電力が増加した場合に主ACDC変換器2の立ち上げに時間がかかってしまう。そこで、主ACDC変換器2の主電源をONした状態で、主ACDC変換器2に含まれるスイッチング素子のみをOFFとした待機状態としてもよい。これにより主ACDC変換器2の停止状態からの立上げ時間を短縮することができる。
ステップS7について、図10を用いて詳細に説明する。図10は、図6のステップS7の「運転モード1への切り替え処理」を詳細に説明するフローチャートである。
図中、まず、ステップS71にて、主ACDC変換器2の運転を開始する。
次に、ステップS72にて、切替指令生成部8は、DCDC変換器7の自立運転閾値を、安定電圧Va、Vbから、通常の値である自立運転閾値Vc、Vdに変更する。換言すると、自立運転の要否を判断するための電圧範囲である第1の電圧範囲を、予め設定されていたよりも狭い電圧範囲として設定するようDC/DC変換制御部71に指示する。上述により、切替指令生成部8が定常電圧に近い範囲に直流系統電圧Vdcを制御しているため、負荷状態が変動して直流系統電圧Vdcが変動した場合でも直流給配電システム100を安定的に動作させることができる。
最後に、ステップS73にて、切替指令生成部8は、補ACDC変換器3の運転を停止させる。
上述のとおり、直流系統電圧Vdcが自立運転閾値Vc(上限値)よりも大きい範囲や、自立運転閾値Vd(下限値)より小さい範囲においては、DCDC変換器7が自立運転モードとなり、自立運転充放電電力指令値Pbat_indに基づいた電力を出力する。この際、補ACDC変換器3の出力電力とDCDC変換器7との分担は、DCDC変換器7の自立運転特性と、補ACDC変換器3の制御ゲインKの関係とに基づいて決定される。そのため、自立運転閾値Vc、Vdの設定と制御ゲインKの選び方次第で、負荷5の負荷状態が急変したときに、補ACDC変換器3の電力がPmに至らない状態で、負荷電力と直流電源6の電力とがバランスしてしまう場合が考えられる。この場合、直流電源6が自立運転を継続し続けると、発電電力がなくなってしまうという問題がある。
この問題への対応として、安定電圧Va、Vbにおいて、補ACDC変換器3がPmを出すように制御ゲインKを選定してもよい。また、DCDC変換器7の自立運転モードにおける運転が一定時間継続した場合に、運転モード1への強制的に切り替えてもよい。直流電源6の発電可能電力又はそれに連動したパラメータが閾値以下となる場合に、運転モード1へ切り替える、または出力電力を減らすといった構成としてもよい。これにより上述したような発電電力がなくなるという問題を回避することができる。
以下では、具体例を用いて説明を行う。例えば、主ACDC変換器2とDCDC変換器7の定格電力が100kW、補ACDC変換器3の定格電力が30kW、負荷が必要とする電力40kWのうち20kWを直流電源6から供給しており、直流系統電圧Vdcは安定電圧範囲内であり、電力変換部50は運転をモード2へ切り替え運転しており、補ACDC変換器3から20kWを供給しているとする。
この時、直流電源6の充放電電力指令Pbat_refが0kWに変更されると、補ACDC変換器3から負荷へ40kWの電力を供給しなければならなくなるため、補ACDC変換器3からの供給電力が閾値Pm(例えば25kW)を超えた時点で、主ACDC変換器2での運転モード1に切り替わる。
直流電源6の充放電電力は充放電電力指令Pbat_refが指令値フィルタ713によりフィルタリングされていれば、この指令値による出力電力は、なだらかに変化する。このため、補ACDC変換器3の出力電力の増加を検出して、主ACDC変換器2へと切り替える時間がある。 
充放電電力指令Pbat_refが指令値フィルタ713によりフィルタリングされていない場合は、補ACDC変換器3の出力電力増加が間に合わない場合がある。この場合、直流系統電圧Vdcが下がり、DCDC変換器7が自立運転モードに入り、直流電源6から直流系統4に対して電力を供給する必要がある。こうした直流系統電圧の変動を避けるために、運転モード1から運転モード2に切り替える際には、直流電源6の充放電電力指令Pbat_refの値が変更する幅に制限を設けてもよい。
直流電源6から20kWを供給している場合に負荷消費量が60kWまで急増した場合の動作について説明を行う。この時、補ACDC変換器3は定格電力の30kWを出力しても負荷電力が足りず、直流系統電圧Vdcが低下するが、DCDC変換器7は自立運転モードに入り、直流電源6から直流系統電圧Vdcへの電力供給を開始する。直流電源6が負荷5への電力供給している間に、電力変換部50を運転モード2から運転モード1へと切り替える。これにより負荷5の動作を停止させることなく、電力変換部50の運転モードの切り替えを行うことが可能である。
なお、充放電電力指令Pbat_refが、DCDC変換器7の定格電力Pdcと等しい場合に、運転モード1から運転モード2への切り替えを行うと、負荷急変により自立運転モードになったとしても、直流電源6から電力を追加で充放電する余地がない。そのため、DCDC変換器7が自立運転モードに遷移した後においても電力充放電余地を残すために、例えば、以下の条件を設定してもよい。すなわち、充放電電力指Pbat_refがDCDC変換器7の定格電力の80%以下である場合のみ運転モード2へ切り替えを行うといった条件を追加してもよい。
また、直流電源6が太陽光発電のみで構成される場合、直流系統電圧Vdcが高くなった際、直流系統から電力を引き抜くために充電を行うことはできず供給を停止するだけであるため、自立運転閾値Vcを安定電圧Vaよりも低く設定することも考えられる。
また、補ACDC変換器3は、冗長構成としてシステムの信頼性を向上させることにも貢献する。例えば、主ACDC変換器2が故障し停止した場合でも、負荷に対しては補ACDC変換器3と直流電源6から電力を供給可能であり、直流電源6へ充電を行うための電力を補ACDC変換器3から供給することが可能である。
上述のように、本実施の形態1によれば、直流給配電システム100は、交流系統1から出力された電力を直流電力に変換する電力変換部50を、主ACDC変換器2と、主ACDC変換器2よりも容量の小さい補ACDC変換器3により構成し、電力変換部50の出力電力と、直流系統4の電圧とに基づいて、主ACDC変換器2と補ACDC変換器3のいずれを運転させるかを切替指令生成部8により決定し、主ACDC変換器2と補ACDC変換器3とに指令を行う。これにより、直流給配電システム100は低負荷率時においても、配電効率を向上させることができる。
さらに、切替指令生成部8が直流系統4に接続された直流電源6の充放電電力を変換するDCDC変換器7の運転を制御するための自立運転閾値電圧Vc、Vdを変更する構成としている。この構成により、負荷急変に対応し安定運転することや、直流給配電システム100の大型化を防ぎながら冗長構成を実現することができる。
実施の形態2.
(構成の説明)
図11は、本発明の実施の形態2に係る直流給配電システムの概略構成図である。本実施の形態2では、補ACDC変換器3Aがダイオード整流器によって構成される点が実施の形態1と異なる。
ダイオード整流器の主な特徴として以下のものがある。すなわち、ダイオード整流器が出力できる直流出力電圧の最大値が交流系統1の実効値電圧Vacの√2倍となり、配電電圧指令Vrefに合わせて任意の電圧値を出力することはできないという特徴がある。また、交流系統1から直流系統4に電力を供給する力行動作のみが可能であるが、直流系統4から交流系統1に電力を供給する回生動作を行うことはできない。
一方で、ダイオード整流器ではダイオードのスイッチングを制御装置から制御される必要がない。そのため、本実施の形態では、実施の形態1の補ACDC変換器3を用いる場合に比べて、スイッチング周波数を下げることができる。以上より、本実施の形態にかかる、実施の形態1で示したACDC変換器よりも損失が小さく、かつ小型で実現することが可能である。そのため、直流給配電システムのさらなる小型化と、効率向上が可能である。
(動作説明)
基本的な動作は実施の形態1と同様のため、ここでは相違点を説明する。実施の形態2では、補ACDC変換器3Aとしてダイオード整流器を使用するため、前述のように任意の直流電圧を出力することができない。そのため、主ACDC変換器2の配電電圧指令VrefがVac*√2より大きい場合、電力変換部50を運転モード1から、運転モード2に切り替えると、直流系統電圧Vdcが下がる。反対に、運転モード2から運転モード1に切り替えた際は、直流系統電圧Vdcが上がることになる。この時、主ACDC変換器2への指令Vrefよりも、実際の直流系統電圧Vdcが低いことから、主ACDC変換器2には過電流が流れる可能性がある。
これに対応するために、ステップS5において主ACDC変換器2の運転を停止する際、またはステップS7において、主ACDC変換器2の運転を開始する際に、配電電圧指令Vrefを補ACDC変換器3Aの出力電圧(直流系統電圧Vdc)に一致させるように変更を行う。補ACDC変換器3Aの出力電圧は、最も簡単にはVac*√2で定常値を求めることができるが、実際の出力電圧との誤差は大きくなる場合がある。誤差を小さくするために、センサで検出した直流系統電圧Vdcを使用することや、予め補ACDC変換器3Aの出力電流と直流系統電圧Vdcの関係を表したマップ情報を記憶しておき、出力電流に応じて直流系統電圧Vdcを算出する方法などが考えられる。
また、運転モード2への切り替える際、切替指令生成部8は、安定電圧Va、Vbも補ACDC変換器3Aの出力電圧の定常値に合わせて数値を変更し、自立運転電圧閾値Vc、Vdは、変更後の安定化電圧Va、Vbに近づける、または一致するように変更を行う。
図12は、本開示の実施の形態2による主ACDC変換器2と補ACDC変換器3Aの切り替え閾値とを説明するための説明図である。図中、ダイオード整流器では交流系統1への電力回生を行うことができないため、回生方向の閾値電力-Ps、-Pmを0より大きい値、つまり力行方向のPsd、Pmdに設定している。
さらに、運転モード2では、補ACDC変換器3Aを通る電流の他に、主ACDC変換器2のAC/DC変換器部22を構成する半導体スイッチの寄生ダイオードを通る電流が存在する場合がある。この場合、閾値電力Ps、Pmは、主ACDC変換器2に含まれる寄生ダイオードを通過する電流をも考慮して設定する必要がある。例えば、電流分担比が、主ACDC変換器2が「1」に対して補ACDC変換器3Aが「4」の場合、補ACDC変換器3AがPm電力を出力する場合に、寄生ダイオードはPm/5の電力を出力する。この場合、寄生ダイオードに流れる電流が定格電流を超えないようにPmを選定することが好ましい。
上記の電流分担を避ける場合は、主ACDC変換器2の直流出力端または交流入力端に開閉器や遮断器といった図11に記載のようにスイッチ13を設けてもよい。運転モード2では、スイッチ13を開とすることで、寄生ダイオードを通過して直流系統4に電力が供給されないようにすることが可能である。また、運転モード1へ切り替える際にはスイッチ13を閉とするが、スイッチ13を閉とする前に主ACDC変換器2の出力電圧を直流系統電圧Vdcと等しくする等の突入電流を防ぐ構成することが好ましい。
このように、本実施の形態2によれば、補ACDC変換器3Aをダイオード整流器で構成し、運転へ切り替え時には、補ACDC変換器3Aの出力電圧に合わせて安定電圧範囲Va~Vbと自立運転動作範囲Vc~Vd、さらに主ACDC変換器2の直流電圧指令値Vrefを変更する。
本実施の形態にかかる直流給配電システムでは、補ACDC変換器3Aは小型で低損失なダイオードで構成されるため、低負荷領域での更なる変換効率を向上でき、システムの小型化を図ることができる。
実施の形態3.
(構成の説明)
図13は、本発明の実施の形態3に係る直流給配電システムの概略構成図である。本実施の形態3では、主ACDC変換器2Aは、AC/DC変換器部22と直流バス28、DC/DC変換器部29(「第2のDC/DC変換器部」に相当)を有する。補ACDC変換器3の出力端は、直流バス28に接続され、AC/DC変換器部22と並列接続されるように構成されている。
DC/DC変換器部29は直流系統4と直流系統10のように、電圧が異なる複数の直流電圧を出力し、各直流系統にはそれぞれ負荷が接続される。
DCDC変換器7は直流電源6への充放電電力を、直流系統4と直流系統10といった複数の直流系統に出力可能であるように構成される。
検出部12は、直流バス電圧とAC/DC変換器部22と補ACDC変換器3の出力電流、出力電力を検出し、検出値は切替指令生成部8とDCDC変換器7に出力される。
なお、図13では、主ACDC変換器2Aが電圧の異なる複数の直流電圧を出力する場合を例に記載しているが、実施の形態1、2と同様に一種類の直流電圧を出力する場合にも適用可能である。
(動作説明)
基本的な動作は実施の形態1と同様のため、ここでは相違点のみを説明する。実施の形態3では、上述のとおり主ACDC変換器2AはAC/DC変換器部22とDC/DC変換器部29とを含んで構成される。AC/DC変換器部22とDC/DC変換器部29は直流バス28を介して接続されている。
切替指令生成部8は、直流バス28に設けられた検出部12により検出される直流バス電圧値と、AC/DC変換器部22と補ACDC変換器3とが出力する直流出力電力とに基づいて、実施の形態1と同様にAC/DC変換器部22と補ACDC変換器3とのいずれが運転を行うかを判定し、運転指令を出力する。
ここで、図14を用いて本実施の形態におけるDCDC変換器7の自立運転制御を説明する。図14は、本開示の実施の形態3によるDCDC変換器7の自立運転制御を説明するための特性図である。安定電圧Va、Vbは、直流バス28の電圧に対して設定され、DCDC変換器7には自立運転閾値電圧として、直流系統4に対する閾値電圧Vc、Vdと、直流系統10に対する閾値電圧Ve、Vfと、直流バス28に対する閾値電圧Vg、Vhとが設定される。すなわち、図14のように、直流バス28電圧に対しても直流系統4とは独立した自立運転特性を備える。運転モード1から運転モード2への切り替え時には、直流バス28の自立運転閾値電圧VgおよびVhは、それぞれ安定電圧VaおよびVbに近づくまたは一致するように変更する。
換言すると、直流バス28の電圧が図14の閾値電圧Vh以上Vg以下の範囲(「第2の電圧範囲」に相当)内にない場合に、直流バス28の電圧がこの第2の電圧範囲内に収まるよう、DC/DC変換器部72が直流電源6から直流バス28へ充放電電力を供給する。なお、上述した運転モード2への切り替え時には、直流系統4の自立運転閾値電圧VcおよびVdと、直流系統10の自立運転閾値電圧VeおよびVf(図示省略)とを変更しなくてもよい。
切替指令生成部8は、直流バス28に接続された検出部(センサ部)により検出された電圧および電力と基づいて、AC/DC変換器部22と補ACDC変換器3との運転切り替えを行うとともに、第2の電圧範囲を狭めるように変更を行う。すなわち、閾値電圧VgおよびVhを、それぞれ安定電圧VaおよびVbに近づけるまたは一致するように変更する。
図15は、本開示の実施の形態3による直流給配電システムの変形例に係る概略構成図である。図15に示すように、主ACDC変換器2Aは複数の直流出力が可能なDC/DC変換器部29を有する。補ACDC変換器3Bも複数の直流出力が可能なDC/DC変換器部29を有する。また、実施の形態1と同様に、主ACDC変換器2Aに対して補ACDC変換器3Bを並列接続するように構成される。
この場合、例えば複数の直流系統4のうち、直流系統4のみ負荷率が低い場合、主ACDC変換器2Aのうち直流系統4に接続されるDC/DC変換器部29のみの運転を停止するとともに、補ACDC変換器3BのうちAC/DC変換器部22と直流系統4に接続されるDCDC変換器7の運転を開始し、DCDC変換器7の他律運転動作範囲を狭めるように変更することができる。
このように、本実施の形態3によれば、主ACDC変換器2AがAC/DC変換器部22と直流バス28とDC/DC変換器部29とで構成される場合においても、補ACDC変換器3、3Bが主ACDC変換器2AのAC/DC変換器部22に並列となるように接続し、両変換器の切り替え運転を行うことができる。
さらに、図13に示すように、主ACDC変換器2AのAC/DC変換器部22のみが補ACDC変換器3と並列となるように構成としている。この構成により、主ACDC変換器2Aが複数の電圧出力を持つ場合など、複雑な構成をしている場合でも、直流給配電システムの大型化を防ぎながら、低負荷率時の高効率化と冗長構成の実現が可能である。
図16は、本開示の実施の形態1~3にかかる切替指令生成部8のハードウェア概略構成図である。直流給配電システムを制御する制御部(切替指令生成部8、ACDC変換制御部21、配電電圧指令生成部200、および充放電電力指令生成部700)の一部又は全部は、具体的には、CPU151(Central Processing Unit)、記憶装置152、IO(INPUT OUTPUT:入出力)インターフェース153、およびシステムバス154等により構成される。記憶装置152はROM(Read Only Memory)、HDD(Hard Disk Drive)等から構成される。切替指令生成部のIOインターフェース153には、入力装置201および出力装置202がケーブル155を介して接続される。
直流給配電システムを制御する制御部の各処理は、CPU151により実行される。なお、記憶装置152には、直流給配電システムの制御部が用いるパラメータ(例えば、閾値電力、自立運転閾値電圧等)が保存されている。これらのパラメータは、予め記憶装置152に保存する代わりに、入力装置201を介して外部から入力される構成としてもよい。これらのパラメータの表示や運転モードの表示等を出力装置202で行ってもよい。
上述にて本開示の実施の形態1~3にかかる直流給配電システムを説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
A 接続点
B 接続点
1 交流系統
2 主ACDC変換器
3 補ACDC変換器
4 直流系統
5 負荷
6 直流電源
7 DCDC変換器
8 切替指令生成部
9 負荷
10 直流系統
12 検出部
13 スイッチ
200 配電電圧指令生成部
21 ACDC変換制御部
22 AC/DC変換器部
23A、23B センサ部
28 直流バス
29 DC/DC変換器部
50 電力変換部
700 充放電電力指令生成部
71 DC/DC変換制御部
72 DC/DC変換器部
73A、73B センサ部
100 直流給配電システム
211 AC/DC出力制御部
212 直流電圧制御部
213 指令値フィルタ
711 DC/DC出力制御部
712 充放電電力制御部
713 指令値フィルタ
714 自立運転制御部

Claims (9)

  1. 主ACDC変換器と、前記主ACDC変換器に並列に接続されて前記主ACDC変換器よりも小さい定格電力容量を有する補ACDC変換器とを含み、交流系統から入力された交流電力を直流電力に変換して直流系統に出力する電力変換部と、
    前記電力変換部が出力する直流出力電力に基づき、前記電力変換部を制御する切替指令生成部と
    を備え、
    前記主ACDC変換器が動作状態かつ前記補ACDC変換器が停止状態である場合を第1の運転モードとし、前記主ACDC変換器が停止状態かつ前記補ACDC変換器が動作状態である場合を第2の運転モードとすると、
    前記切替指令生成部は、
    前記電力変換部が前記第1の運転モードである場合であって、前記電力変換部の前記直流出力電力の絶対値が、前記補ACDC変換器の定格電力容量よりも小さく設定された閾値電力の絶対値を下回る場合に、
    前記第1の運転モードから前記第2の運転モードへの切替指令である第1の切替指令を前記電力変換部に対して生成する
    直流給配電システム。
  2. 前記切替指令生成部は、前記第2の運転モードであって、前記電力変換部の前記直流出力電力が前記閾値電力以上となった場合に、前記第2の運転モードから前記第1の運転モードへの第2の切替指令を生成する
    請求項1に記載の直流給配電システム。
  3.  前記閾値電力は、前記第1の切替指令を生成する際に用いられる第1の閾値電力、および、前記第2の切替指令を生成する際に用いられる第2の閾値電力を含み、
    前記第2の閾値電力の絶対値は、前記第1の閾値電力の絶対値よりも大きく設定される
    請求項2に記載の直流給配電システム。
  4. 前記直流系統および直流電源に接続される第1のDC/DC変換器部と、前記第1のDC/DC変換器部を制御するDC/DC変換制御部と、を含むDCDC変換器を備え、
    前記DC/DC変換制御部は、前記直流系統の電圧が予め設定された第1の電圧範囲外となった場合に、前記直流系統の電圧が前記第1の電圧範囲に含まれるように、前記第1のDC/DC変換器部が前記直流電源から前記直流系統へ充放電電力を供給するよう制御する、
    請求項1から請求項3の何れか一項に記載の直流給配電システム。
  5. 前記切替指令生成部は、前記電力変換部の前記直流出力電力の絶対値が前記閾値電力の絶対値よりも小さくなる場合には、前記第1の電圧範囲よりも狭い電圧範囲を前記第1の電圧範囲として設定するよう、前記DC/DC変換制御部に指示する
    請求項4に記載の直流給配電システム。
  6. 前記切替指令生成部は、前記電力変換部の前記直流出力電力の絶対値が前記閾値電力の絶対値以上となる場合には、前記第1の電圧範囲よりも広い電圧範囲を前記第1の電圧範囲として設定するよう、前記DC/DC変換制御部に指示する
    請求項4又は請求項5に記載の直流給配電システム。
  7. 前記切替指令生成部は、前記電力変換部の前記直流出力電力の絶対値が前記閾値電力の絶対値よりも小さくなる場合であって、かつ、システムが安定に動作するための前記直流系統の電圧範囲である安定電圧範囲に、前記直流系統の電圧が存在する場合に、
    前記第1の運転モードから前記第2の運転モードへの切り替えを行うとともに
    前記第1の電圧範囲を前記安定電圧範囲に変更する
    請求項4から請求項6の何れか一項に記載の直流給配電システム。
  8. 前記補ACDC変換器はダイオード整流器を用いて構成され、
    前記切替指令生成部は、前記補ACDC変換器が動作状態である場合に、前記主ACDC変換器の直流電圧目標値Vrefを前記補ACDC変換器の出力電圧に設定する
    請求項4から請求項7の何れか一項に記載の直流給配電システム。
  9. 前記主ACDC変換器は、AC/DC変換器部と、前記AC/DC変換器部に直流バスを介して接続された第2のDC/DC変換器部と、を含んで構成され、
    前記補ACDC変換器は、前記主ACDC変換器の前記AC/DC変換器部と並列に接続され、
    前記直流バスの電圧が予め設定された第2の電圧範囲に含まれない場合に、前記直流バスの電圧が第2の電圧範囲内に収まるよう、前記第1のDC/DC変換器部が前記第2のDC/DC変換器部を介して前記直流電源から前記直流バスへ充放電電力を供給し、前記切替指令生成部は、前記直流バスに設けられたセンサ部により検知された前記電力変換部が出力する電力により前記第1の切替指令を生成し、前記第2の電圧範囲を狭めるように変更を行う
    請求項4から請求項8の何れか一項に記載の直流給配電システム。
PCT/JP2021/007333 2021-02-26 2021-02-26 直流給配電システム WO2022180781A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/007333 WO2022180781A1 (ja) 2021-02-26 2021-02-26 直流給配電システム
JP2023501949A JP7536172B2 (ja) 2021-02-26 2021-02-26 直流給配電システム
US18/276,045 US20240106316A1 (en) 2021-02-26 2021-02-26 Dc power supply and distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007333 WO2022180781A1 (ja) 2021-02-26 2021-02-26 直流給配電システム

Publications (1)

Publication Number Publication Date
WO2022180781A1 true WO2022180781A1 (ja) 2022-09-01

Family

ID=83048994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007333 WO2022180781A1 (ja) 2021-02-26 2021-02-26 直流給配電システム

Country Status (3)

Country Link
US (1) US20240106316A1 (ja)
JP (1) JP7536172B2 (ja)
WO (1) WO2022180781A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111148U (ja) * 1990-02-28 1991-11-14
JPH05292750A (ja) * 1992-04-06 1993-11-05 Oki Electric Ind Co Ltd 直流電力供給装置
JP2001204137A (ja) * 2000-01-18 2001-07-27 Auto Network Gijutsu Kenkyusho:Kk 車両の給電回路
JP2012095418A (ja) * 2010-10-26 2012-05-17 Sharp Corp 直流給電システム
JP2012244862A (ja) * 2011-05-24 2012-12-10 Mitsubishi Electric Corp Dc/dcコンバータ装置
JP2015050913A (ja) * 2013-09-04 2015-03-16 日本電信電話株式会社 電源制御システム
JP6771700B1 (ja) * 2020-01-28 2020-10-21 三菱電機株式会社 電力変換装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111148U (ja) * 1990-02-28 1991-11-14
JPH05292750A (ja) * 1992-04-06 1993-11-05 Oki Electric Ind Co Ltd 直流電力供給装置
JP2001204137A (ja) * 2000-01-18 2001-07-27 Auto Network Gijutsu Kenkyusho:Kk 車両の給電回路
JP2012095418A (ja) * 2010-10-26 2012-05-17 Sharp Corp 直流給電システム
JP2012244862A (ja) * 2011-05-24 2012-12-10 Mitsubishi Electric Corp Dc/dcコンバータ装置
JP2015050913A (ja) * 2013-09-04 2015-03-16 日本電信電話株式会社 電源制御システム
JP6771700B1 (ja) * 2020-01-28 2020-10-21 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
US20240106316A1 (en) 2024-03-28
JP7536172B2 (ja) 2024-08-19
JPWO2022180781A1 (ja) 2022-09-01

Similar Documents

Publication Publication Date Title
JP5800919B2 (ja) 電力変換装置
JP5893544B2 (ja) 電圧制御装置、電圧制御方法、電力調整装置、及び電圧制御プログラム
JP5154660B2 (ja) Upsの動作を制御するためのシステムおよび方法
US20230198261A1 (en) Power supply system including dc-to-dc converter and control method therefor
JP4951403B2 (ja) 風力発電制御システム及びその制御方法
JP6877640B2 (ja) 電力変換装置および電力変換システム
JP2013169083A (ja) 電力供給システム
JP2012210018A (ja) 直流給電システム
KR102233773B1 (ko) 전력 변환 시스템 및 그의 제어 방법
WO2013125425A1 (ja) 電力変換装置および直流システム
WO2022180781A1 (ja) 直流給配電システム
KR101219799B1 (ko) 입력피크전력저감 기능을 갖는 지능형 무정전전원장치 및 그 제어방법
JP6268786B2 (ja) パワーコンディショナ、パワーコンディショナシステムおよびパワーコンディショナの制御方法
JP4569223B2 (ja) 電源装置
WO2020162166A1 (ja) 電力システムおよび電力変換装置
KR101549313B1 (ko) 배터리 에너지 저장 시스템 및 배터리 에너지 저장 시스템의 운전 방법
JP4569552B2 (ja) 瞬時電圧低下補償装置
JP2006067673A (ja) 電源装置
JP7525062B2 (ja) 蓄電池用の電力変換装置の負荷電流配分調整装置、負荷電流配分調整方法、及び負荷電流配分調整プログラム
JP2021069168A (ja) 電源装置
WO2023243072A1 (ja) 直流配電システム
JP6453581B2 (ja) 電力供給機器、電力供給システム、および電力供給方法
JP6787473B1 (ja) 分散型電源システム
KR102298064B1 (ko) 무정전 전원장치의 제어시스템
JP2023168882A (ja) 電力貯蔵装置、電力貯蔵制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023501949

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18276045

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927883

Country of ref document: EP

Kind code of ref document: A1