WO2022180781A1 - 直流給配電システム - Google Patents
直流給配電システム Download PDFInfo
- Publication number
- WO2022180781A1 WO2022180781A1 PCT/JP2021/007333 JP2021007333W WO2022180781A1 WO 2022180781 A1 WO2022180781 A1 WO 2022180781A1 JP 2021007333 W JP2021007333 W JP 2021007333W WO 2022180781 A1 WO2022180781 A1 WO 2022180781A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- converter
- voltage
- acdc
- power supply
- Prior art date
Links
- 102100031786 Adiponectin Human genes 0.000 claims abstract description 208
- 101000775469 Homo sapiens Adiponectin Proteins 0.000 claims abstract description 208
- 238000006243 chemical reaction Methods 0.000 claims abstract description 77
- HEZMWWAKWCSUCB-PHDIDXHHSA-N (3R,4R)-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1O HEZMWWAKWCSUCB-PHDIDXHHSA-N 0.000 claims description 46
- 230000008859 change Effects 0.000 claims description 12
- 238000007599 discharging Methods 0.000 claims description 11
- 230000000295 complement effect Effects 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 27
- 238000000034 method Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 238000001514 detection method Methods 0.000 description 8
- 238000001816 cooling Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 230000003071 parasitic effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0032—Control circuits allowing low power mode operation, e.g. in standby mode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/06—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
- H02M7/08—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/23—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
Definitions
- the present disclosure relates to a DC power supply and distribution system that supplies and distributes DC power to a load.
- DC power supplies In recent years, in order to utilize natural energy and deal with blackouts in the power system, solar power generators, storage batteries, etc. (hereinafter simply referred to as "DC power supplies") have been installed in ordinary homes, office buildings, factories, station buildings, etc. is in progress.
- DC power supply/distribution system AC power from an AC system is converted into DC power by an ACDC converter, and the DC power output from the DC power supply is supplied to a load without being converted into AC power.
- a DC power supply/distribution system can reduce the number of power conversions when charging a DC power supply or supplying power to a load, and thus can reduce power loss associated with power conversion.
- the configuration of the device since it is not necessary to provide an ACDC converter for each load, the configuration of the device is simplified and the economic efficiency is improved.
- a plurality of ACDC converters are connected in parallel to a load to ensure variability of the output capacity and high reliability (for example, See Patent Document 1). That is, the above system is configured to have N+1 (N is an integer equal to or greater than 1) ACDC converters.
- the power conversion efficiency is low and extra power loss may occur in power conversion within the ACDC converter.
- the total current of the ACDC converters of the same capacity connected in parallel is measured, and the number of ACDC converters to be operated is controlled to be the minimum.
- the load factor of the ACDC converter is increased, thereby improving the power conversion efficiency of the entire system.
- Patent Document 2 if a system is configured by connecting only the minimum number of large-capacity ACDC converters in parallel, even if the number of ACDC converters that are operated at a low load factor is reduced, the number of ACDC converters to be operated can be reduced. The amount of improvement in the load factor of the device is small, and the effect of improving the power conversion efficiency is small.
- the present disclosure has been made to solve the above-described problems, and aims to obtain a DC power supply and distribution system that can improve power distribution efficiency at a low load factor while suppressing an increase in the size of the entire DC power supply and distribution system. purpose.
- a DC power distribution system includes a main ACDC converter and an auxiliary ACDC converter connected in parallel to the main ACDC converter and having a rated power capacity smaller than that of the main ACDC converter. a power conversion unit that converts the supplied AC power into DC power and outputs it to a DC system; and a switching command generation unit that controls the power conversion unit based on the DC output power output by the power conversion unit, the main ACDC If the first operation mode is the case where the converter is in operation and the auxiliary ACDC converter is in the stopped state, and the second operation mode is the case in which the main ACDC converter is in the stopped state and the auxiliary ACDC converter is in the operation state.
- the switching command generating unit sets the absolute value of the DC output power of the power converting unit to be smaller than the rated power capacity of the auxiliary ACDC converter when the power converting unit is in the first operation mode.
- a first switching command from the first operation mode to the second operation mode is generated for the power conversion unit.
- the true DC power supply/distribution system it is possible to improve the power distribution efficiency at a low load factor while suppressing an increase in the size of the entire DC power supply/distribution system.
- FIG. 1 is a schematic configuration diagram of a DC power supply/distribution system according to Embodiment 1 of the present disclosure
- FIG. 1 is a schematic configuration diagram of an ACDC converter and a distribution voltage command generator of a DC power supply/distribution system according to Embodiment 1 of the present disclosure
- FIG. 1 is a schematic configuration diagram of a DCDC converter and a charge/discharge power command generator of a DC power supply/distribution system according to Embodiment 1 of the present disclosure
- FIG. 4 is a characteristic diagram for explaining self-sustained operation control of the DCDC converter according to Embodiment 1 of the present disclosure
- 4 is a power conversion efficiency characteristic diagram of the main ACDC converter and the auxiliary ACDC converter according to Embodiment 1 of the present disclosure
- FIG. 4 is a flowchart for explaining control of the DC power supply/distribution system according to Embodiment 1 of the present disclosure
- FIG. 4 is an explanatory diagram for explaining switching thresholds of the main ACDC converter and the auxiliary ACDC converter according to Embodiment 1 of the present disclosure
- FIG. 2 is an explanatory diagram for explaining control of the DC power supply/distribution system according to Embodiment 1 of the present disclosure
- FIG. 7 is a flow chart for explaining in detail "processing for switching to operation mode 2" in step S5 of FIG. 6.
- FIG. 7 is a flow chart for explaining in detail "processing for switching to operation mode 1" in step S7 of FIG. 6.
- FIG. FIG. 4 is a schematic configuration diagram of a DC power supply/distribution system according to Embodiment 2 of the present disclosure
- FIG. 9 is an explanatory diagram for explaining switching thresholds of the main ACDC converter and the auxiliary ACDC converter according to Embodiment 2 of the present disclosure
- FIG. 4 is a schematic configuration diagram of a DC power supply/distribution system according to Embodiment 3 of the present disclosure;
- FIG. 11 is a characteristic diagram for explaining self-sustaining control of a DCDC converter according to Embodiment 3 of the present disclosure
- FIG. 11 is a schematic configuration diagram according to a modification of the DC power supply/distribution system according to Embodiment 3 of the present disclosure
- 1 is a hardware schematic configuration diagram of a DC power supply/distribution system according to an embodiment of the present disclosure
- FIG. 1 is a schematic configuration diagram of a DC power supply/distribution system 100 according to Embodiment 1 of the present disclosure.
- the DC power supply/distribution system 100 includes a DCDC converter 7 , a switching command generator 8 , a detector 12 and a power converter 50 .
- the DC power supply/distribution system 100 is applied, for example, to ordinary homes, office buildings, factories, station buildings, and the like.
- the DC power supply/distribution system 100 performs a power running operation in which power is purchased from the AC system 1 to be supplied to the load 5 and the DC power supply 6, and a regenerative operation in which the power generated by the load 5 and the DC power supply 6 is sold to the AC system 1.
- the AC system 1 is, for example, an AC power supply supplied to the DC power supply/distribution system 100 from a commercial power system for supplying commercial power from an electric power company via an AC power receiving facility.
- the load 5 consists of single or multiple loads.
- the DC power supply 6 is configured by a solar power generation device, a storage battery, or the like, and can discharge to the DC system 4 and charge from the DC system 4 .
- the storage battery is not limited to a stationary storage battery, and may be a storage battery provided in a mobile object such as a car, bus, or truck, as long as it is in a state where it can be charged and discharged with the DC system 4 .
- a DC power supply/distribution system 100 is a system that supplies electric power output from an AC system 1 and a DC power supply 6 to a plurality of loads 5 .
- the AC electric line from the AC system 1 to the power converter 50 is configured by, for example, a single-phase three-wire system or a three-phase three-wire system, which is represented by one straight line in FIG.
- the DC system 4 is composed of, for example, a pair of electric lines including a positive electrode side wire and a negative electrode side wire, which are represented by a single straight line in FIG. 1 .
- the power conversion unit 50 includes a main ACDC converter 2 and an auxiliary ACDC converter connected in parallel with the main ACDC converter 2 and having a rated power capacity smaller than that of the main ACDC converter.
- the power converter 50 converts the AC power from the AC system 1 into DC power and outputs the DC power to the DC system 4 .
- the main ACDC converter 2 and the auxiliary ACDC converter 3 are connected at a connection point A on the DC system 4 .
- the DCDC converter 7 is connected to a connection point B on the DC system 4 .
- the power output to the DC system 4 is supplied to the load 5 and to the DC power source 6 via the DCDC converter 7 .
- the detection unit 12 detects the voltage of the DC system 4 and detects the current and power output by the power conversion unit 50 . More specifically, the detection unit 12 includes a voltage sensor unit that detects the voltage of the DC system 4 (hereinafter sometimes referred to as “DC system voltage”), and a current sensor unit that measures the output current of the power conversion unit 50. , a power calculation unit that calculates the DC output power of the power conversion unit 50 using the DC system voltage and the output current.
- DC system voltage a voltage sensor unit that detects the voltage of the DC system 4
- a current sensor unit that measures the output current of the power conversion unit 50.
- a power calculation unit that calculates the DC output power of the power conversion unit 50 using the DC system voltage and the output current.
- the switching command generation unit 8 determines whether or not a switching command for the operation mode of the power conversion unit 50 is required. Generates at 50. Although the details will be described later, the switching command generation unit 8 instructs to change a parameter (voltage threshold value) for controlling the DCDC converter 7 according to the switching command of the operation mode.
- the operation modes of the power conversion unit 50 include "operation mode 1 (first operation mode)" and “operation mode 2 (second operation mode)".
- “Operating mode 1” means an operating mode in which the main ACDC converter 2 is in an operating state and the auxiliary ACDC converter 3 is in a stopped state.
- “Operating mode 2” means an operating mode in which the main ACDC converter 2 is in a stopped state and the auxiliary ACDC converter 3 is in an operating state.
- the switching command generation unit 8 generates a second switching command from the operation mode 2 to the operation mode 1 when the DC output power is equal to or higher than the threshold power and the power conversion unit 50 is in the operation mode 2. do.
- the DC power supply/distribution system 100 has two ACDC converters with different rated power capacities, and when the DC output power is smaller than the threshold power (in the low load region of the power conversion unit 50), the switching command generation unit 8 switches the power conversion unit 50 to " A command for switching from operation mode 1 to operation mode 2 is generated.
- the auxiliary ACDC converter 3 is used instead of the main ACDC converter 2 in the low load region, the load factor for the rated power can be improved compared to the case where the main ACDC converter 2 is used. improves the conversion efficiency.
- the detection unit 12 exemplifies a configuration in which the detection unit 12 is provided between the connection point A and the connection point B, the detection unit 12 detects the output current and output power of the power conversion unit 50 and the DC system 4. It may be provided at any position as long as the voltage can be measured. Further, in the above description, an example in which each part (current sensor part, voltage sensor part, power calculation part) of the detection unit 12 is arranged in a common block has been described. may be placed.
- the voltage sensor unit and the voltage sensor unit are integrated with the sensor unit provided in the DCDC converter 7 (or the sensor units provided in the main ACDC converter 2 and the auxiliary ACDC converter 3),
- the power calculation unit may be integrated with a control device (not shown) that controls the power distribution system 100 .
- each of the main ACDC converter 2 and the auxiliary ACDC converter 3 is provided with a current sensor unit, and each of them is provided with a current sensor unit.
- the output current of the power conversion unit 50 may be measured by summing the output currents from the current sensor units.
- the voltage applied to the DC system 4 is set to the normal voltage of the DC system 4. may be adjusted to vary from As a result, the power consumption of the load 5 can be reduced compared to before the voltage of the DC system 4 is adjusted.
- the switching command generation unit 8 may be implemented as part of the functions of a control device that controls the entire configuration of the DC power supply/distribution system 100 or a control unit of each converter.
- FIG. 2 is a schematic configuration diagram of an ACDC converter and a distribution voltage command generation unit 200 of the DC power supply/distribution system 100 according to Embodiment 1 of the present disclosure.
- the main ACDC converter 2 and the auxiliary ACDC converter 3 have some functions in common. Sometimes referred to as a "vessel".
- the ACDC converter includes an AC/DC converter unit 22 that converts AC power from the AC system 1 into DC power, a sensor unit 23A that measures current and voltage between the AC system 1 and the ACDC converter, Between the DC system 4 and the ACDC converter, a sensor unit 23B that detects voltage and current, and control of the ACDC converter based on the measurement results of the sensor units 23A and 23B and the command of the distribution voltage command generation unit 200 and an ACDC conversion control unit 21 that performs
- ACDC conversion control unit 21 based on the output current command Iref output from DC voltage control unit 212 and the power information (voltage/current of AC system 1 and DC system 4, etc.) detected by sensor units 23A and 23B, An operation command for the AC/DC converter section 22 is determined.
- AC/DC conversion control section 21 includes AC/DC output control section 211 , DC voltage control section 212 , and command value filter 213 .
- AC/DC output control section 211 controls the operation of AC/DC converter section 22 based on the values measured by sensor sections 23A and 23B and output current command Iref.
- the command value filter 213 performs filtering (for example, low-pass filtering) on the distribution voltage command Vref* output from the distribution voltage command generation unit 200 .
- filtering for example, low-pass filtering
- distribution voltage commands before filtering and after filtering may be described separately as “Vref*” and “Vref”, respectively.
- the voltage of the DC system 4 may overshoot due to the operation of the ACDC converter.
- the command value filter 213 may be omitted if the control response of the AC/DC converter unit 22 is small and there is no concern about overshoot.
- the time constant of the low-pass filter included in command value filter 213 is adjusted and set in advance according to the control characteristics (specifications) of the ACDC converter.
- the DC voltage control unit 212 generates a current command value Iref for the AC/DC converter unit 22 based on the voltage of the DC system 4 acquired via the sensor unit 23B and the distribution voltage command Vref.
- the power command or current command output by the DC voltage control unit 212 may be configured to have a drooping characteristic. By configuring in this way, it is possible to suppress measurement errors of current, voltage, etc. in the operation of a plurality of ACDC converters connected in parallel. In addition, it is possible to suppress output imbalance caused by variations in line impedance among a plurality of ACDC converters.
- FIG. 2 illustrates an example in which the distribution voltage command generation unit 200 is provided outside the ACDC converter
- the distribution voltage command generation unit 200 may be provided inside the ACDC converter.
- FIG. 3 is a schematic configuration diagram of DCDC converter 7 and charge/discharge power command generator 700 of DC power supply/distribution system 100 according to Embodiment 1 of the present disclosure.
- FIG. 4 is a characteristic diagram for explaining self-sustained operation control of the DCDC converter 7 according to Embodiment 1 of the present disclosure.
- the vertical axis is the voltage measurement value of the DC system 4 (hereinafter sometimes referred to as “DC system voltage Vdc”)
- the horizontal axis is the output power of the DCDC converter 7 .
- the direction of output to the DC system 4 is indicated as the positive direction.
- the DCDC converter 7 includes a DC/DC converter unit 72 (corresponding to a “first DC/DC converter unit”) that performs power conversion and is connected to the DC system 4 and the DC power supply 6. , sensor units 73 A and 73 B, and a DC/DC conversion control unit 71 .
- Sensor section 73A detects voltage and current between DC system 4 and DC/DC converter section 72 .
- Sensor section 73B detects voltage and current between DC power supply 6 and DC/DC converter section 72 .
- the DC/DC conversion control section 71 generates a power command for the DC/DC converter section 72 and controls the DC/DC converter section 72 .
- the DC/DC conversion control unit 71 controls that the voltage of the DC system 4 falls within the first voltage range ("heteronomous operation operating range" in FIG. ), the DC/DC converter unit 72 converts the DC power supply 6 to the DC system 4 so that the voltage of the DC system 4 falls within the first voltage range (heteronomous operation range). Control to supply charge/discharge power
- the DC/DC conversion control section 71 includes a DC/DC output control section 711 , a charge/discharge power control section 712 , a command value filter 713 and an independent operation control section 714 .
- the command value filter 713 performs low-pass filter processing on the command value in the same manner as the command value filter 213 (FIG. 2). Specifically, command value filter 713 performs low-pass filter processing on charge/discharge power command Pbat_ref* output from charge/discharge power command generation unit 700 to generate charge/discharge power command Pbat_ref. Note that the command value filter 713, like the command value filter 213, is provided for the purpose of preventing overshoot of the DC system 4 due to a sudden command change, but if there is no concern about overshoot, it is omitted. good too.
- the charge/discharge power command Pbat_ref depends on the state of the DC power supply 6 (charge/discharge capability, remaining power, healthy state), the operating state of the load 5, and the state of the power conversion unit 50. Based on this, the charge/discharge power command generation unit 700 generates the command.
- the state of charge SOC State Of Charge
- SOH State Of Health
- Charge/discharge power control unit 712 generates output current command value Idc_ref based on the measured values of sensor units 73A and 73B and charge power command Pbat_ref (or self-sustained operation charge/discharge power command Pbat_ind described later).
- DC/DC output control unit 711 determines an operation command for DC/DC converter unit 72 based on the output current command value Idc_ref from charge/discharge power control unit 712 and the measured values of sensor units 73A and 73B.
- the islanded operation control unit 714 (1) determines whether islanded operation is necessary based on the islanded operation characteristic diagram shown in FIG. 4 and the voltage of the DC system 4, and (2) determines that islanded operation is necessary. In this case, the self-sustained operation charge/discharge power command Pbat_ind is calculated and output to the charge/discharge power control unit 712 .
- the self-sustained operation control unit 714 determines whether self-sustained operation is necessary, as described in detail below. This determination of the need for self-sustained operation is made by determining whether or not the DC system voltage Vdc is within the heteronomous operation range (Vd ⁇ Vdc ⁇ Vc).
- the heteronomous operation range is a voltage range in which the DC system voltage Vdc is higher than the self-sustaining operation threshold voltage Vd and lower than the self-sustaining operation threshold voltage Vc.
- the DC system voltage Vdc is outside the heteronomous operation operating range (Vd ⁇ Vdc ⁇ Vc) in the above determination, that is, if the isolated operation control unit 714 is within the isolated operation operating range (FIG. 4) If there is, the self-sustaining operation charge/discharge power command Pbat_ind is calculated. This self-sustained operation charging/discharging power command Pbat_ind is used to generate a control command for the charging/discharging power control section 712 . As a result, the DCDC converter 7 is controlled in the "self-sustaining mode" so that the DC system voltage Vdc is within the heteronomous operation range (Vd ⁇ Vdc ⁇ Vc). As a result, charging/discharging power is supplied from the DC power supply 6 to the DC system 1 via the DCDC converter 7, thereby controlling the DC system voltage Vdc.
- the charge/discharge power control unit 712 uses the charge/discharge power command Pbat_ref generated by the charge/discharge power command generation unit 700 .
- the threshold voltages Vc and Vd may have hysteresis. This can prevent mode hunting in which the DCDC converter 7 frequently switches between the "heteronomous operation mode” and the "independent operation mode".
- the self-sustaining operation charge/discharge power command Pbat_ind becomes equal to the charge/discharge power command Pbat_ref when the system DC voltage Vdc is at the threshold voltages Vc and Vd.
- the maximum value of the output power is determined by the rated power Pdc of the DCDC converter 7 .
- the output power to the DC system 4 is decreased as the voltage of the DC system voltage Vdc increases. It has a characteristic of charging the DC power supply 6 with power if it still does not go down.
- the DC power supply/distribution system 100 stops. Even if the DCDC converter 7 continues to output the rated power, which is the maximum output, in the self-sustained operation mode, the DCDC converter 7 is stopped when fluctuations in the DC system voltage Vdc cannot be suppressed.
- the DC power supply/distribution system 100 is normally designed and operated so as to purchase less power from the AC system 1 with the aim of saving energy. Therefore, if most of the power required by the load 5 is supplied from the DC power supply 6, the power supplied from the power conversion unit 50 is small, that is, the load factor of the power conversion unit 50 is low. become more frequent. For example, the frequency of operation at a load factor of about 1 ⁇ 3 of the rated power of the main ACDC converter 2 may account for 60% or more of the operation in a certain period. On the other hand, when the DC power supply 6 cannot generate power, it is necessary to supply load power and charge power from the power converter 50, so it is difficult to significantly reduce the rated power capacity of the main ACDC converter 2.
- FIG. 5 is a power conversion efficiency characteristic diagram of the main ACDC converter 2 and the auxiliary ACDC converter 3.
- the vertical axis indicates the converter efficiency of the ACDC converter
- the horizontal axis indicates the power that can be converted by the ACDC converter.
- the efficiency of ACDC converters decreases in low load factor regions. This tendency is generally conspicuous when the load factor is in the range of 20% to 30% or less.
- the reason why the efficiency of the ACDC converter is remarkable in the range of the load factor of 20% to 30% or less is as follows. That is, as fixed losses that do not depend on the load factor, there are, for example, losses due to power supply circuits, losses due to cooling fans, losses due to reactor iron losses, losses due to switching of switching elements, and the like.
- the rated output capacity of the auxiliary ACDC converter 3 is set to be smaller than that of the main ACDC converter 2, for example, about 1/3, and the operation mode switching control between the main ACDC converter 2 and the auxiliary ACDC converter 3 is performed. (details will be described later), it is possible to improve the power distribution efficiency at a low load factor while suppressing an increase in the size of the entire DC power supply and distribution system.
- the rated output capacity of the auxiliary ACDC converter 3 can be made smaller than that of the main ACDC converter 2, and the output current of the auxiliary ACDC converter 3 is reduced.
- the output current of the auxiliary ACDC converter 3 is lowered, the withstand current capability of the reactor can be lowered, thereby making it possible to reduce the size of the power conversion section 50 including the auxiliary ACDC converter 3 .
- the heat generated by the ACDC converter is reduced, thereby reducing the cooling fan loss. Due to the factors described above, the DC power supply/distribution system 100 according to the present embodiment has the effect of improving the conversion efficiency of the ACDC converter.
- the lower output current of the auxiliary ACDC converter 3 also reduces the cost of the components, making it less expensive than the main ACDC converter 2 .
- the switching frequency of the auxiliary ACDC converter 3 is set lower than that of the main ACDC converter 2, the ripple width of the current flowing through the reactor becomes large. Therefore, it is necessary to suppress the current ripple width by increasing the L value of the reactor. Increasing the L value of the reactor leads to an increase in size of the reactor.
- the size of the auxiliary ACDC converter 3 can be reduced by lowering the current withstand capability of the reactor in the auxiliary ACDC converter 3 . As a result, an increase in size of the reactor can be prevented comprehensively. By lowering the switching frequency, reactor loss and switching loss can be reduced, and efficiency can be improved in a low load factor region.
- the auxiliary ACDC converter 3 can achieve higher conversion efficiency than the main ACDC converter 2 in a low load region where the ratio of the rated power to the main ACDC converter 2 is, for example, 1/3 or less. be. Therefore, by setting the power conversion unit 50 to the operation mode 2, the system efficiency of the DC power supply/distribution system 100 can be improved.
- FIG. 6 is a processing flow in Embodiment 1 of the present disclosure.
- FIG. 7 is an explanatory diagram for explaining switching thresholds of the main ACDC converter 2 and the auxiliary ACDC converter 3 according to Embodiment 1 of the present disclosure.
- FIG. 8 is an explanatory diagram for explaining voltage control of the DC system 4 of the DC power supply/distribution system 100 according to Embodiment 1 of the present disclosure.
- the switching command generation unit 8 determines whether the DC power supply/distribution system 100 is in a steady state in step S1. If the DC power supply/distribution system 100 is in an unsteady state such as during start-up or shutdown, the switching command generation unit 8 terminates the switching process flow.
- step S ⁇ b>2 If the DC power supply/distribution system 100 is in a steady state, the process proceeds to step S ⁇ b>2 , and the switching command generation unit 8 confirms the operation mode of the power conversion unit 50 . If the main ACDC converter 2 is in operation mode 1 (step S2: YES), the process proceeds to step S3. Go to step S6.
- step S3 the switching command generation unit 8 uses the output DC power (hereinafter sometimes referred to as "P50") of the power conversion unit 50 detected by the detection unit 12 and the threshold power to perform the determination described below. .
- the switching command generator 8 determines whether the output DC power P50 is within the range from the threshold power +Ps to the threshold power ⁇ Ps, that is, whether the relationship ⁇ Ps ⁇ P50 ⁇ +Ps holds.
- the direction in which power is supplied (powered) from the power conversion unit 50 to the DC system 4 is the + (plus) direction
- the direction in which power is regenerated from the DC system 4 to the AC system 1 is the - (minus) direction.
- the switching command generator 8 uses the output DC power P50 and the threshold powers +Pm and -Pm to determine whether the relationship -Pm ⁇ P50 ⁇ +Pm holds.
- the threshold powers Ps and Pm described above are set to be equal to or less than the rated output power of the auxiliary ACDC converter 3 .
- the threshold powers Ps and Pm are the threshold power Ps (first threshold power) used when generating a switching command for switching from the operation mode 1 to the operation mode 2, and the threshold power Ps (first threshold power) used to switch from the operation mode 2 to the operation mode 1 It includes the threshold power Pm (second threshold power) used when generating the second switching command, which is switching to .
- the threshold power Pm second threshold power
- the absolute value of the threshold power Pm (second threshold power) may be set larger than the absolute value of the threshold power PS (first threshold power). In this way, it can function as a hysteresis for preventing hunting in switching between the operation mode 1 and the operation mode 2.
- a filtered value is used for the output DC power P50 used in steps S3 and S6.
- the influence of noise contained in output DC power P50 can be removed.
- other methods for suppressing the influence of noise such as judging that the conditional expression is satisfied when the conditional expression is satisfied continuously for a certain period of time, may be used.
- the determination formulas of -Ps ⁇ P50 ⁇ +Ps and -Pm ⁇ P50 ⁇ +Pm may be formulas including the case where P50 is equal to the threshold power, such as -Ps ⁇ P50 ⁇ +Ps and -Pm ⁇ P50 ⁇ +Pm. .
- step S3 if the switching command generator 8 satisfies the relationship of -Ps ⁇ P50 ⁇ +Ps (YES), the process proceeds to step S4. If the above relationship is not established in step S3 (NO), the switching process flow ends. In other words, this is the state of operation mode 1 in which the main ACDC converter 2 is operated, but since the load factor of the main ACDC converter 2 is not low, it is determined that the operation mode will not be switched. .
- step S4 the switching command generator 8 determines whether the DC system voltage Vdc detected by the detector 12 is within the stable voltage range, that is, whether Vb ⁇ Vdc ⁇ Va holds.
- the stable voltages Va and Vb are set as a voltage range within which the system is in a stable operating state with respect to the distribution voltage command value Vref, which is the steady-state voltage of the DC system 4, and the sensor error and the like are within the normal range.
- Vref which is the steady-state voltage of the DC system 4
- the sensor error and the like are within the normal range.
- the stable voltage Va is equal to or lower than the upper limit of the load's operable voltage
- the stable voltage Vb is equal to or higher than the lower limit of the load's operable voltage.
- step S4 If the DC system voltage Vdc is within the stable voltage range (Vb ⁇ Vdc ⁇ Va) in step S4 (YES), the process proceeds to step S5 for switching to operation mode 2. On the other hand, when the DC system voltage Vdc is not within the stable voltage range in step S4 (NO), the switching processing flow of FIG. 6 is ended.
- step S4 the purpose of confirming that the DC system voltage Vdc is within the stable voltage range is that if ⁇ Ps ⁇ P50 ⁇ +Ps holds, but the Vdc voltage is outside the stable voltage range, the DC supply This is because there is a risk that the power balance and its control within the power distribution system 100 are not stable, and the risk of occurrence of operating mode hunting due to this is to be avoided.
- step S5 the switching command generation unit 8 performs control processing for switching to the operation mode 2 via the DC/DC conversion control unit 71, and then ends the flow.
- step S6 if the relationship of -Pm ⁇ P50 ⁇ +Pm is not established (NO), the process proceeds to step S7, the power conversion unit 50 is switched from operation mode 2 to operation mode 1, and the flow ends. On the other hand, if the judgment formula of step 6 is satisfied (YES), the switching processing flow is terminated.
- FIG. 9 is a flowchart for explaining in detail the "process for switching to operation mode 2" in step S5.
- step S51 the operation of the auxiliary ACDC converter 3 is started.
- step S52 when the absolute value of the DC output power of the power converter unit 50 is smaller than (the absolute value of the threshold power Ps), the switching command generation unit 8 sets the following as shown in FIG.
- the self-sustaining operation thresholds Vc and Vd of the DCDC converter 7 are changed to values close to or equal to Va and Vb, respectively, that is, voltages narrower than the first voltage range, which is the voltage range for determining whether self-sustaining operation is necessary.
- the DC/DC conversion control section 71 is instructed to set the range as the first voltage range.
- step S52 when performing the switching process (S5) from the operation mode 1 to the operation mode 2, in step S52, the self-sustained operation threshold Vc (lower limit) is brought closer to the stable voltage Va (lower limit), and the self-sustained operation threshold Vd (upper limit) is brought closer to the stable voltage Vb (upper limit).
- Vc lower limit
- Vd upper limit
- step S53 the operation of the main ACDC converter 2 is stopped. Stopping the operation of the main ACDC converter 2 (step S53) is performed by, for example, turning OFF a switching element that constitutes the AC/DC converter section 22 .
- a standby state in which only the switching elements included in the main ACDC converter 2 are turned off while the main power supply of the main ACDC converter 2 is turned on may be employed. As a result, the start-up time of the main ACDC converter 2 from the stopped state can be shortened.
- Step S7 will be described in detail with reference to FIG.
- FIG. 10 is a flowchart illustrating in detail the "process for switching to operation mode 1" in step S7 of FIG.
- the switching command generator 8 changes the self-sustained operation thresholds of the DCDC converter 7 from the stable voltages Va, Vb to the normal self-sustained operation thresholds Vc, Vd.
- the DC/DC conversion control unit 71 is instructed to set the first voltage range, which is the voltage range for determining whether or not the self-sustained operation is necessary, as a voltage range narrower than the preset voltage range.
- the switching command generation unit 8 controls the DC system voltage Vdc in a range close to the steady voltage, so that the DC power supply and distribution system 100 can be stably operated even when the DC system voltage Vdc fluctuates due to fluctuations in the load state. can be operated. Finally, at step S73, the switching command generator 8 stops the auxiliary ACDC converter 3 from operating.
- the DCDC converter 7 enters the self-sustained operation mode, and the self-sustained operation is charged. Power is output based on the discharge power command value Pbat_ind.
- the sharing of the output power of the auxiliary ACDC converter 3 and the DCDC converter 7 is determined based on the self-sustaining characteristics of the DCDC converter 7 and the relationship between the control gain K of the auxiliary ACDC converter 3 .
- the control gain K may be selected so that the auxiliary ACDC converter 3 outputs Pm at stable voltages Va and Vb. Further, when the operation of the DCDC converter 7 in the self-sustained operation mode continues for a certain period of time, the operation mode 1 may be forcibly switched. When the power that can be generated by the DC power supply 6 or a parameter associated therewith becomes equal to or less than a threshold value, the configuration may be such that the mode is switched to the operation mode 1 or the output power is reduced. This makes it possible to avoid the problem of running out of generated power as described above.
- the rated power of the main ACDC converter 2 and the DCDC converter 7 is 100 kW
- the rated power of the auxiliary ACDC converter 3 is 30 kW
- 20 kW of the 40 kW of power required by the load is supplied from the DC power supply 6.
- the system voltage Vdc is within the stable voltage range
- the power conversion unit 50 is operating in mode 2
- the auxiliary ACDC converter 3 is supplying 20 kW.
- the auxiliary ACDC converter 3 must supply 40 kW of power to the load.
- the threshold value Pm for example, 25 kW
- the operation mode is switched to operation mode 1 with the main ACDC converter 2 . If the charging/discharging power command Pbat_ref is filtered by the command value filter 713, the charging/discharging power of the DC power supply 6 changes gently according to the command value. Therefore, there is time to detect an increase in the output power of the auxiliary ACDC converter 3 and switch to the main ACDC converter 2 .
- the output power increase of the auxiliary ACDC converter 3 may not keep up. In this case, the DC system voltage Vdc drops, the DCDC converter 7 enters the self-sustained operation mode, and power must be supplied from the DC power supply 6 to the DC system 4 . In order to avoid such fluctuations in the DC system voltage, when switching from the operation mode 1 to the operation mode 2, a limit may be placed on the change in the value of the charge/discharge power command Pbat_ref of the DC power supply 6 .
- the charge/discharge power command Pbat_ref is equal to the rated power Pdc of the DCDC converter 7, if the operation mode 1 is switched to the operation mode 2, even if the autonomous operation mode is entered due to a sudden load change, the DC power supply There is no room for additional charging and discharging of power from 6. Therefore, the following conditions may be set, for example, in order to leave power charging/discharging room even after the DCDC converter 7 transitions to the self-sustained operation mode. That is, a condition may be added such that the operation mode is switched to operation mode 2 only when the charge/discharge power index Pbat_ref is 80% or less of the rated power of the DCDC converter 7 .
- the auxiliary ACDC converter 3 also contributes to improving the reliability of the system as a redundant configuration. For example, even if the main ACDC converter 2 fails and stops, power can be supplied to the load from the auxiliary ACDC converter 3 and the DC power supply 6, and the power for charging the DC power supply 6 is supplied to the auxiliary ACDC converter. It can be fed from converter 3 .
- the DC power supply/distribution system 100 includes the power conversion unit 50 that converts the power output from the AC system 1 into DC power, the main ACDC converter 2 and the main ACDC
- the auxiliary ACDC converter 3 having a capacity smaller than that of the converter 2 is used.
- the switching command generator 8 determines whether to operate or not, and issues commands to the main ACDC converter 2 and the auxiliary ACDC converter 3 .
- the DC power supply/distribution system 100 can improve power distribution efficiency even when the load factor is low.
- the switching command generating unit 8 is configured to change the self-sustaining operation threshold voltages Vc and Vd for controlling the operation of the DCDC converter 7 that converts the charge/discharge power of the DC power supply 6 connected to the DC system 4.
- FIG. 11 is a schematic configuration diagram of a DC power supply/distribution system according to Embodiment 2 of the present invention.
- the second embodiment differs from the first embodiment in that the auxiliary ACDC converter 3A is composed of a diode rectifier.
- diode rectifiers The main features of diode rectifiers are: That is, the maximum value of the DC output voltage that can be output by the diode rectifier is ⁇ 2 times the effective value voltage Vac of the AC system 1, and an arbitrary voltage value cannot be output according to the distribution voltage command Vref. Further, only the power running operation of supplying power from the AC system 1 to the DC system 4 is possible, but the regenerative operation of supplying power from the DC system 4 to the AC system 1 cannot be performed.
- diode rectifiers do not require the switching of the diodes to be controlled by the controller. Therefore, in this embodiment, the switching frequency can be lowered as compared with the case where the complementary ACDC converter 3 of the first embodiment is used.
- the ACDC converter according to the present embodiment can be realized with a smaller loss and a smaller size than the ACDC converter shown in the first embodiment. Therefore, it is possible to further reduce the size of the DC power supply and distribution system and improve efficiency.
- the distribution voltage command Vref is set to the auxiliary ACDC converter 3A. is changed to match the output voltage (DC system voltage Vdc) of .
- the output voltage of the complementary ACDC converter 3A can most easily be obtained as a stationary value by Vac* ⁇ 2, but the error from the actual output voltage may become large.
- the switching command generation unit 8 changes the values of the stable voltages Va and Vb according to the steady-state value of the output voltage of the auxiliary ACDC converter 3A, and the self-sustained operation voltage thresholds Vc and Vd are , the changed regulated voltages Va and Vb.
- FIG. 12 is an explanatory diagram for explaining switching thresholds of the main ACDC converter 2 and the auxiliary ACDC converter 3A according to Embodiment 2 of the present disclosure.
- the threshold powers -Ps and -Pm in the regeneration direction are set to values greater than 0, that is, Psd and Pmd in the powering direction.
- the threshold powers Ps and Pm must be set in consideration of the current passing through the parasitic diodes included in the main ACDC converter 2 as well. For example, when the current sharing ratio is "1" for the main ACDC converter 2 and "4" for the auxiliary ACDC converter 3A, when the auxiliary ACDC converter 3A outputs Pm power, the parasitic diode is Pm/ 5 power output. In this case, it is preferable to select Pm so that the current flowing through the parasitic diode does not exceed the rated current.
- a switch 13 such as a switch or circuit breaker may be provided at the DC output terminal or AC input terminal of the main ACDC converter 2 as shown in FIG.
- the switch 13 In the operation mode 2, it is possible to prevent power from being supplied to the DC system 4 through the parasitic diode by opening the switch 13 .
- the switch 13 when switching to operation mode 1, the switch 13 is closed, but before closing the switch 13, the output voltage of the main ACDC converter 2 is made equal to the DC system voltage Vdc to prevent rush current. is preferred.
- the auxiliary ACDC converter 3A is configured with a diode rectifier, and when switching to operation, the stable voltage range Va to Vb and the self-sustained operation are set according to the output voltage of the auxiliary ACDC converter 3A.
- the operating range Vc to Vd and the DC voltage command value Vref of the main ACDC converter 2 are changed.
- the auxiliary ACDC converter 3A is composed of small, low-loss diodes, it is possible to further improve the conversion efficiency in the low-load region and reduce the size of the system. can be done.
- FIG. 13 is a schematic configuration diagram of a DC power supply/distribution system according to Embodiment 3 of the present invention.
- the main ACDC converter 2A has an AC/DC converter section 22, a DC bus 28, and a DC/DC converter section 29 (corresponding to a "second DC/DC converter section").
- the output terminal of the complementary ACDC converter 3 is connected to the DC bus 28 and configured to be connected in parallel with the AC/DC converter section 22 .
- the DC/DC converter unit 29 outputs a plurality of DC voltages having different voltages, such as the DC system 4 and the DC system 10, and a load is connected to each DC system.
- DCDC converter 7 is configured to be capable of outputting charging/discharging power to DC power supply 6 to a plurality of DC systems such as DC system 4 and DC system 10 .
- the detector 12 detects the DC bus voltage, the output current and the output power of the AC/DC converter 22 and the auxiliary ACDC converter 3 , and outputs the detected values to the switching command generator 8 and the DCDC converter 7 .
- the main ACDC converter 2A includes the AC/DC converter section 22 and the DC/DC converter section 29 as described above. AC/DC converter section 22 and DC/DC converter section 29 are connected via DC bus 28 .
- the switching command generation unit 8 is based on the DC bus voltage value detected by the detection unit 12 provided on the DC bus 28 and the DC output power output from the AC/DC converter unit 22 and the auxiliary ACDC converter 3. Then, it determines which of the AC/DC converter unit 22 and the auxiliary ACDC converter 3 is to be operated in the same manner as in the first embodiment, and outputs an operation command.
- FIG. 14 is a characteristic diagram for explaining self-sustained operation control of the DCDC converter 7 according to Embodiment 3 of the present disclosure.
- the stable voltages Va and Vb are set with respect to the voltage of the DC bus 28, and the DCDC converter 7 has the threshold voltages Vc and Vd for the DC system 4 and the threshold voltages Ve and Vf for the DC system 10 as self-sustaining operation threshold voltages.
- threshold voltages Vg and Vh for the DC bus 28 are set. That is, as shown in FIG. 14, the voltage of the DC bus 28 also has self-sustaining operation characteristics independent of the DC system 4 .
- self-sustaining operation threshold voltages Vg and Vh of DC bus 28 change to approach or match stable voltages Va and Vb, respectively.
- the DC/DC converter unit 72 supplies charge/discharge power from the DC power supply 6 to the DC bus 28 .
- the self-sustaining operation threshold voltages Vc and Vd of the DC system 4 and the self-sustaining operation threshold voltages Ve and Vf (not shown) of the DC system 10 need not be changed.
- the switching command generator 8 switches the operation between the AC/DC converter 22 and the auxiliary ACDC converter 3 based on the voltage and power detected by a detector (sensor) connected to the DC bus 28. At the same time, a change is made so as to narrow the second voltage range. That is, the threshold voltages Vg and Vh are changed to approach or match the stable voltages Va and Vb, respectively.
- FIG. 15 is a schematic configuration diagram according to a modification of the DC power supply/distribution system according to Embodiment 3 of the present disclosure.
- the main ACDC converter 2A has a DC/DC converter section 29 capable of multiple DC outputs.
- the complementary ACDC converter 3B also has a DC/DC converter section 29 capable of a plurality of DC outputs.
- the auxiliary ACDC converter 3B is connected in parallel to the main ACDC converter 2A.
- the main ACDC converter 2A is composed of the AC/DC converter section 22, the DC bus 28, and the DC/DC converter section 29, the complementary ACDC conversion
- the converters 3 and 3B are connected in parallel to the AC/DC converter section 22 of the main ACDC converter 2A, so that both converters can be switched.
- FIG. 16 is a schematic hardware configuration diagram of the switching command generator 8 according to the first to third embodiments of the present disclosure.
- the control units switching command generation unit 8, ACDC conversion control unit 21, distribution voltage command generation unit 200, and charge/discharge power command generation unit 700
- It includes a CPU 151 (Central Processing Unit), a storage device 152, an IO (INPUT OUTPUT) interface 153, a system bus 154, and the like.
- the storage device 152 includes a ROM (Read Only Memory), HDD (Hard Disk Drive), and the like.
- An input device 201 and an output device 202 are connected via a cable 155 to the IO interface 153 of the switching command generator.
- Each process of the control unit that controls the DC power supply/distribution system is executed by the CPU 151 .
- the storage device 152 stores parameters (for example, threshold power, self-sustained operation threshold voltage, etc.) used by the controller of the DC power supply and distribution system. These parameters may be input from the outside via the input device 201 instead of being stored in the storage device 152 in advance.
- the output device 202 may display these parameters, display the operation mode, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Direct Current Feeding And Distribution (AREA)
Abstract
Description
(直流給配電システム100の構成説明)
図1は、本開示の実施の形態1に係る直流給配電システム100の概略構成図である。直流給配電システム100は、DCDC変換器7と切替指令生成部8と検出部12と電力変換部50とを備える。
直流給配電システム100は、例えば一般家庭やオフィスビル、工場、駅舎等に適用される。直流給配電システム100は、交流系統1から負荷5および直流電源6へ供給する電力を買電する力行動作と、負荷5および直流電源6が発電した電力を交流系統1に売電する回生動作とを行うことができるように構成される。交流系統1は、例えば、電力会社が商用電力を供給するための商用電力系統から交流受電設備を介して、直流給配電システム100に供給される交流電源である。
なお、電力変換部50の運転モードとしては、「運転モード1(第1の運転モード)」および「運転モード2(第2の運転モード)」がある。「運転モード1」は、主ACDC変換器2が動作状態、かつ、補ACDC変換器3が停止状態である運転モードを意味する。「運転モード2」は、主ACDC変換器2が停止状態、かつ、補ACDC変換器3が動作状態である運転モードを意味する。
一方で、切替指令生成部8は、直流出力電力が閾値電力以上となり、かつ、電力変換部50が運転モード2である場合に、運転モード2から運転モード1への第2の切替指令を生成する。
さらに、上述では共通の電流センサ部により電力変換部50の出力電流を計測する構成を説明したが、主ACDC変換器2および補ACDC変換器3の各々に電流センサ部を設け、各々に設けられた電流センサ部による出力電流を合計することで、電力変換部50の出力電流を計測する構成としてもよい。
次に、図2を用いて図1における主ACDC変換器2および補ACDC変換器3の説明を行う。図2は、本開示の実施の形態1による直流給配電システム100のACDC変換器および配電電圧指令生成部200の概略構成図である。本実施の形態1では、主ACDC変換器2および補ACDC変換器3は、一部の機能が互いに共通であるため、両構成を互いに区別して説明する必要がない場合には、単に「ACDC変換器」と称する場合がある。
なお、AC/DC変換器部22の制御応答が小さく、オーバーシュートの懸念がない場合、指令値フィルタ213を省略してもよい。指令値フィルタ213に含まれるローパスフィルタの時定数はACDC変換器の制御特性(仕様)に合わせて予め調整および設定がなされる。
次に、図3、図4を用いて図1におけるDCDC変換器7の説明を行う。図3は本開示の実施の形態1による直流給配電システム100のDCDC変換器7および充放電電力指令生成部700の概略構成図である。図4は、本開示の実施の形態1によるDCDC変換器7の自立運転制御を説明するための特性図である。図4では、縦軸が直流系統4の電圧測定値(以下、「直流系統電圧Vdc」と称す場合あり)であり、横軸がDCDC変換器7の出力電力である。横軸では、直流系統4へ出力する方向を正方向として記載している。
なお、指令値フィルタ713は、指令値フィルタ213と同様に、急激な指令変更に伴う直流系統4のオーバーシュートを防止することを目的として設けられるが、オーバーシュートの懸念がない場合、省略してもよい。
なお、図3では充放電電力指令生成部700がDCDC変換器7の外部に設けた例を示しているが、DCDC変換器7内部の制御装置に設置されていてもよい。
閾値電圧Vdより低い電圧領域では、直流系統電圧Vdcの低下を防ぐように、直流系統電圧Vdcが下がるほど直流系統4に向かって大きな電力を出力する特性を有する。なお、出力電力の最大値はDCDC変換器7の定格電力Pdcによって決まる。
一方で、閾値電圧Vcより高い電圧領域では、直流系統電圧Vdcの電圧が上がるほど直流系統4への出力電力を下げる。それでも下がらない場合は直流電源6へ電力を充電するような特性を有する。
以下、直流給配電システム100の簡単な動作について説明する。直流給配電システム100では、通常、省エネルギーを目指して交流系統1から購入する電力が少なくなるように直流給配電システム100の設計および運転が行われる。
そのため、負荷5が必要とする電力の大部分が直流電源6から供給される構成であれば、電力変換部50からの供給電力は少ない状態、つまり、電力変換部50の負荷率が低い状況の頻度が高くなる。例えば、主ACDC変換器2の定格電力に1/3程度の負荷率での動作頻度が、一定期間における動作の6割以上を占めることがある。
一方で、直流電源6が発電できない状況では、電力変換部50から負荷電力と充電電力を供給する必要があるため、主ACDC変換器2の定格電力容量を著しく小さくすることは難しい。
なお、負荷率が20%~30%以下の領域でACDC変換器の効率が顕著となる理由は以下の理由からである。すなわち、負荷率に依存しない固定的な損失として、例えば、電源回路による損失、冷却ファンによる損失、リアクトル鉄損による損失、スイッチング素子のスイッチングによる損失等がある。固定的な損失に起因して、負荷率が低下するにつれて上記入出力電力に対する電力損失の比率が大きくなる。なお、固定的な損失のうち、リアクトル損失、スイッチング損失は、ACDC変換器内のスイッチング周波数が高いほど大きくなる。また、ACDC変換器の発熱が増加するほど冷却ファン損失が大きくなる。これは増加した発熱を冷やすためにより高い冷却能力が必要となり、結果として、冷却ファンの台数および容量が増加するためである。
なお、ここでは、電力変換部50から直流系統4へ電力を供給(力行)する方向を+(プラス)方向、直流系統4から交流系統1へ電力を回生する方向を-(マイナス)方向としている。
なお、上述した閾値電力Ps、Pmは、補ACDC変換器3の定格出力電力以下に設定される。なお、閾値電力Ps、Pmは、運転モード1から運転モード2への切替えである切替指令を生成する際に用いられる閾値電力Ps(第1の閾値電力)、および、運転モード2から運転モード1への切替えである第2の切替指令を生成する際に用いられる閾値電力Pm(第2の閾値電力)を含む。
なお、図7に示すように、Ps<Pmの関係を有するようにしてもよい。換言すると、閾値電力Pm(第2の閾値電力)の絶対値は、閾値電力PS(第1の閾値電力)の絶対値よりも大きく設定されていてもよい。このように、運転モード1と運転モード2との切り替えのハンチングを防ぐためのヒステリシスとして機能させることができる。
安定電圧Va、Vbは、直流系統4の定常電圧である配電電圧指令値Vrefに対して、システムが安定動作状態であり、かつセンサ誤差などが正常範囲である場合に収まる電圧範囲として設定されている。安定電圧Vaは負荷の動作可能電圧の上限以下であり、安定電圧Vbは負荷の動作可能電圧の下限以上である。
ステップS4にて直流系統電圧Vdcが安定電圧範囲内(Vb<Vdc<Va)であれば(YES)、場合、運転モード2への切り替えを行うステップS5に進む。一方で、ステップS4にて直流系統電圧Vdcが安定電圧範囲内でない場合は(NO)、図6の切り替え処理フローを終了する。
すなわち、運転モード1から運転モード2への切り替え処理(S5)を行う際には、ステップS52では、自立運転閾値Vc(下限値)を安定電圧Va(下限値)に近づけるとともに、自立運転閾値Vd(上限値)を安定電圧Vb(上限値)に近づける。これは、図8の破線矢印で示すように、自立運転閾値範囲の電圧範囲を狭めることを意味する。結果として、DCDC変換器7が自立運転モードに入りやすくする。これにより、運転モード2における負荷急変や、直流電源6の充放電電力急変に伴う直流系統電圧Vdcの変動が、補ACDC変換器3だけでは抑えることができない場合に、直流電源6から電力支援を受けやすくし、負荷への供給電力が不足することや、補ACDC変換器3が過出力状態となることを防ぐことができる。
図中、まず、ステップS71にて、主ACDC変換器2の運転を開始する。
次に、ステップS72にて、切替指令生成部8は、DCDC変換器7の自立運転閾値を、安定電圧Va、Vbから、通常の値である自立運転閾値Vc、Vdに変更する。換言すると、自立運転の要否を判断するための電圧範囲である第1の電圧範囲を、予め設定されていたよりも狭い電圧範囲として設定するようDC/DC変換制御部71に指示する。上述により、切替指令生成部8が定常電圧に近い範囲に直流系統電圧Vdcを制御しているため、負荷状態が変動して直流系統電圧Vdcが変動した場合でも直流給配電システム100を安定的に動作させることができる。
最後に、ステップS73にて、切替指令生成部8は、補ACDC変換器3の運転を停止させる。
直流電源6の充放電電力は充放電電力指令Pbat_refが指令値フィルタ713によりフィルタリングされていれば、この指令値による出力電力は、なだらかに変化する。このため、補ACDC変換器3の出力電力の増加を検出して、主ACDC変換器2へと切り替える時間がある。
充放電電力指令Pbat_refが指令値フィルタ713によりフィルタリングされていない場合は、補ACDC変換器3の出力電力増加が間に合わない場合がある。この場合、直流系統電圧Vdcが下がり、DCDC変換器7が自立運転モードに入り、直流電源6から直流系統4に対して電力を供給する必要がある。こうした直流系統電圧の変動を避けるために、運転モード1から運転モード2に切り替える際には、直流電源6の充放電電力指令Pbat_refの値が変更する幅に制限を設けてもよい。
(構成の説明)
図11は、本発明の実施の形態2に係る直流給配電システムの概略構成図である。本実施の形態2では、補ACDC変換器3Aがダイオード整流器によって構成される点が実施の形態1と異なる。
基本的な動作は実施の形態1と同様のため、ここでは相違点を説明する。実施の形態2では、補ACDC変換器3Aとしてダイオード整流器を使用するため、前述のように任意の直流電圧を出力することができない。そのため、主ACDC変換器2の配電電圧指令VrefがVac*√2より大きい場合、電力変換部50を運転モード1から、運転モード2に切り替えると、直流系統電圧Vdcが下がる。反対に、運転モード2から運転モード1に切り替えた際は、直流系統電圧Vdcが上がることになる。この時、主ACDC変換器2への指令Vrefよりも、実際の直流系統電圧Vdcが低いことから、主ACDC変換器2には過電流が流れる可能性がある。
(構成の説明)
図13は、本発明の実施の形態3に係る直流給配電システムの概略構成図である。本実施の形態3では、主ACDC変換器2Aは、AC/DC変換器部22と直流バス28、DC/DC変換器部29(「第2のDC/DC変換器部」に相当)を有する。補ACDC変換器3の出力端は、直流バス28に接続され、AC/DC変換器部22と並列接続されるように構成されている。
DCDC変換器7は直流電源6への充放電電力を、直流系統4と直流系統10といった複数の直流系統に出力可能であるように構成される。
検出部12は、直流バス電圧とAC/DC変換器部22と補ACDC変換器3の出力電流、出力電力を検出し、検出値は切替指令生成部8とDCDC変換器7に出力される。
基本的な動作は実施の形態1と同様のため、ここでは相違点のみを説明する。実施の形態3では、上述のとおり主ACDC変換器2AはAC/DC変換器部22とDC/DC変換器部29とを含んで構成される。AC/DC変換器部22とDC/DC変換器部29は直流バス28を介して接続されている。
直流給配電システムを制御する制御部の各処理は、CPU151により実行される。なお、記憶装置152には、直流給配電システムの制御部が用いるパラメータ(例えば、閾値電力、自立運転閾値電圧等)が保存されている。これらのパラメータは、予め記憶装置152に保存する代わりに、入力装置201を介して外部から入力される構成としてもよい。これらのパラメータの表示や運転モードの表示等を出力装置202で行ってもよい。
B 接続点
1 交流系統
2 主ACDC変換器
3 補ACDC変換器
4 直流系統
5 負荷
6 直流電源
7 DCDC変換器
8 切替指令生成部
9 負荷
10 直流系統
12 検出部
13 スイッチ
200 配電電圧指令生成部
21 ACDC変換制御部
22 AC/DC変換器部
23A、23B センサ部
28 直流バス
29 DC/DC変換器部
50 電力変換部
700 充放電電力指令生成部
71 DC/DC変換制御部
72 DC/DC変換器部
73A、73B センサ部
100 直流給配電システム
211 AC/DC出力制御部
212 直流電圧制御部
213 指令値フィルタ
711 DC/DC出力制御部
712 充放電電力制御部
713 指令値フィルタ
714 自立運転制御部
Claims (9)
- 主ACDC変換器と、前記主ACDC変換器に並列に接続されて前記主ACDC変換器よりも小さい定格電力容量を有する補ACDC変換器とを含み、交流系統から入力された交流電力を直流電力に変換して直流系統に出力する電力変換部と、
前記電力変換部が出力する直流出力電力に基づき、前記電力変換部を制御する切替指令生成部と
を備え、
前記主ACDC変換器が動作状態かつ前記補ACDC変換器が停止状態である場合を第1の運転モードとし、前記主ACDC変換器が停止状態かつ前記補ACDC変換器が動作状態である場合を第2の運転モードとすると、
前記切替指令生成部は、
前記電力変換部が前記第1の運転モードである場合であって、前記電力変換部の前記直流出力電力の絶対値が、前記補ACDC変換器の定格電力容量よりも小さく設定された閾値電力の絶対値を下回る場合に、
前記第1の運転モードから前記第2の運転モードへの切替指令である第1の切替指令を前記電力変換部に対して生成する
直流給配電システム。 - 前記切替指令生成部は、前記第2の運転モードであって、前記電力変換部の前記直流出力電力が前記閾値電力以上となった場合に、前記第2の運転モードから前記第1の運転モードへの第2の切替指令を生成する
請求項1に記載の直流給配電システム。 - 前記閾値電力は、前記第1の切替指令を生成する際に用いられる第1の閾値電力、および、前記第2の切替指令を生成する際に用いられる第2の閾値電力を含み、
前記第2の閾値電力の絶対値は、前記第1の閾値電力の絶対値よりも大きく設定される
請求項2に記載の直流給配電システム。 - 前記直流系統および直流電源に接続される第1のDC/DC変換器部と、前記第1のDC/DC変換器部を制御するDC/DC変換制御部と、を含むDCDC変換器を備え、
前記DC/DC変換制御部は、前記直流系統の電圧が予め設定された第1の電圧範囲外となった場合に、前記直流系統の電圧が前記第1の電圧範囲に含まれるように、前記第1のDC/DC変換器部が前記直流電源から前記直流系統へ充放電電力を供給するよう制御する、
請求項1から請求項3の何れか一項に記載の直流給配電システム。 - 前記切替指令生成部は、前記電力変換部の前記直流出力電力の絶対値が前記閾値電力の絶対値よりも小さくなる場合には、前記第1の電圧範囲よりも狭い電圧範囲を前記第1の電圧範囲として設定するよう、前記DC/DC変換制御部に指示する
請求項4に記載の直流給配電システム。 - 前記切替指令生成部は、前記電力変換部の前記直流出力電力の絶対値が前記閾値電力の絶対値以上となる場合には、前記第1の電圧範囲よりも広い電圧範囲を前記第1の電圧範囲として設定するよう、前記DC/DC変換制御部に指示する
請求項4又は請求項5に記載の直流給配電システム。 - 前記切替指令生成部は、前記電力変換部の前記直流出力電力の絶対値が前記閾値電力の絶対値よりも小さくなる場合であって、かつ、システムが安定に動作するための前記直流系統の電圧範囲である安定電圧範囲に、前記直流系統の電圧が存在する場合に、
前記第1の運転モードから前記第2の運転モードへの切り替えを行うとともに
前記第1の電圧範囲を前記安定電圧範囲に変更する
請求項4から請求項6の何れか一項に記載の直流給配電システム。 - 前記補ACDC変換器はダイオード整流器を用いて構成され、
前記切替指令生成部は、前記補ACDC変換器が動作状態である場合に、前記主ACDC変換器の直流電圧目標値Vrefを前記補ACDC変換器の出力電圧に設定する
請求項4から請求項7の何れか一項に記載の直流給配電システム。 - 前記主ACDC変換器は、AC/DC変換器部と、前記AC/DC変換器部に直流バスを介して接続された第2のDC/DC変換器部と、を含んで構成され、
前記補ACDC変換器は、前記主ACDC変換器の前記AC/DC変換器部と並列に接続され、
前記直流バスの電圧が予め設定された第2の電圧範囲に含まれない場合に、前記直流バスの電圧が第2の電圧範囲内に収まるよう、前記第1のDC/DC変換器部が前記第2のDC/DC変換器部を介して前記直流電源から前記直流バスへ充放電電力を供給し、前記切替指令生成部は、前記直流バスに設けられたセンサ部により検知された前記電力変換部が出力する電力により前記第1の切替指令を生成し、前記第2の電圧範囲を狭めるように変更を行う
請求項4から請求項8の何れか一項に記載の直流給配電システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/007333 WO2022180781A1 (ja) | 2021-02-26 | 2021-02-26 | 直流給配電システム |
JP2023501949A JP7536172B2 (ja) | 2021-02-26 | 2021-02-26 | 直流給配電システム |
US18/276,045 US20240106316A1 (en) | 2021-02-26 | 2021-02-26 | Dc power supply and distribution system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/007333 WO2022180781A1 (ja) | 2021-02-26 | 2021-02-26 | 直流給配電システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022180781A1 true WO2022180781A1 (ja) | 2022-09-01 |
Family
ID=83048994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/007333 WO2022180781A1 (ja) | 2021-02-26 | 2021-02-26 | 直流給配電システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240106316A1 (ja) |
JP (1) | JP7536172B2 (ja) |
WO (1) | WO2022180781A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03111148U (ja) * | 1990-02-28 | 1991-11-14 | ||
JPH05292750A (ja) * | 1992-04-06 | 1993-11-05 | Oki Electric Ind Co Ltd | 直流電力供給装置 |
JP2001204137A (ja) * | 2000-01-18 | 2001-07-27 | Auto Network Gijutsu Kenkyusho:Kk | 車両の給電回路 |
JP2012095418A (ja) * | 2010-10-26 | 2012-05-17 | Sharp Corp | 直流給電システム |
JP2012244862A (ja) * | 2011-05-24 | 2012-12-10 | Mitsubishi Electric Corp | Dc/dcコンバータ装置 |
JP2015050913A (ja) * | 2013-09-04 | 2015-03-16 | 日本電信電話株式会社 | 電源制御システム |
JP6771700B1 (ja) * | 2020-01-28 | 2020-10-21 | 三菱電機株式会社 | 電力変換装置 |
-
2021
- 2021-02-26 US US18/276,045 patent/US20240106316A1/en active Pending
- 2021-02-26 JP JP2023501949A patent/JP7536172B2/ja active Active
- 2021-02-26 WO PCT/JP2021/007333 patent/WO2022180781A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03111148U (ja) * | 1990-02-28 | 1991-11-14 | ||
JPH05292750A (ja) * | 1992-04-06 | 1993-11-05 | Oki Electric Ind Co Ltd | 直流電力供給装置 |
JP2001204137A (ja) * | 2000-01-18 | 2001-07-27 | Auto Network Gijutsu Kenkyusho:Kk | 車両の給電回路 |
JP2012095418A (ja) * | 2010-10-26 | 2012-05-17 | Sharp Corp | 直流給電システム |
JP2012244862A (ja) * | 2011-05-24 | 2012-12-10 | Mitsubishi Electric Corp | Dc/dcコンバータ装置 |
JP2015050913A (ja) * | 2013-09-04 | 2015-03-16 | 日本電信電話株式会社 | 電源制御システム |
JP6771700B1 (ja) * | 2020-01-28 | 2020-10-21 | 三菱電機株式会社 | 電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
US20240106316A1 (en) | 2024-03-28 |
JP7536172B2 (ja) | 2024-08-19 |
JPWO2022180781A1 (ja) | 2022-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5800919B2 (ja) | 電力変換装置 | |
JP5893544B2 (ja) | 電圧制御装置、電圧制御方法、電力調整装置、及び電圧制御プログラム | |
JP5154660B2 (ja) | Upsの動作を制御するためのシステムおよび方法 | |
US20230198261A1 (en) | Power supply system including dc-to-dc converter and control method therefor | |
JP4951403B2 (ja) | 風力発電制御システム及びその制御方法 | |
JP6877640B2 (ja) | 電力変換装置および電力変換システム | |
JP2013169083A (ja) | 電力供給システム | |
JP2012210018A (ja) | 直流給電システム | |
KR102233773B1 (ko) | 전력 변환 시스템 및 그의 제어 방법 | |
WO2013125425A1 (ja) | 電力変換装置および直流システム | |
WO2022180781A1 (ja) | 直流給配電システム | |
KR101219799B1 (ko) | 입력피크전력저감 기능을 갖는 지능형 무정전전원장치 및 그 제어방법 | |
JP6268786B2 (ja) | パワーコンディショナ、パワーコンディショナシステムおよびパワーコンディショナの制御方法 | |
JP4569223B2 (ja) | 電源装置 | |
WO2020162166A1 (ja) | 電力システムおよび電力変換装置 | |
KR101549313B1 (ko) | 배터리 에너지 저장 시스템 및 배터리 에너지 저장 시스템의 운전 방법 | |
JP4569552B2 (ja) | 瞬時電圧低下補償装置 | |
JP2006067673A (ja) | 電源装置 | |
JP7525062B2 (ja) | 蓄電池用の電力変換装置の負荷電流配分調整装置、負荷電流配分調整方法、及び負荷電流配分調整プログラム | |
JP2021069168A (ja) | 電源装置 | |
WO2023243072A1 (ja) | 直流配電システム | |
JP6453581B2 (ja) | 電力供給機器、電力供給システム、および電力供給方法 | |
JP6787473B1 (ja) | 分散型電源システム | |
KR102298064B1 (ko) | 무정전 전원장치의 제어시스템 | |
JP2023168882A (ja) | 電力貯蔵装置、電力貯蔵制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21927883 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023501949 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18276045 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21927883 Country of ref document: EP Kind code of ref document: A1 |