JP3691934B2 - 窒化ガリウム系化合物半導体発光デバイス及びその製造方法 - Google Patents

窒化ガリウム系化合物半導体発光デバイス及びその製造方法 Download PDF

Info

Publication number
JP3691934B2
JP3691934B2 JP15972497A JP15972497A JP3691934B2 JP 3691934 B2 JP3691934 B2 JP 3691934B2 JP 15972497 A JP15972497 A JP 15972497A JP 15972497 A JP15972497 A JP 15972497A JP 3691934 B2 JP3691934 B2 JP 3691934B2
Authority
JP
Japan
Prior art keywords
gallium nitride
sapphire substrate
compound semiconductor
emitting device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15972497A
Other languages
English (en)
Other versions
JPH1084167A (ja
Inventor
真也 布上
雅裕 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15972497A priority Critical patent/JP3691934B2/ja
Publication of JPH1084167A publication Critical patent/JPH1084167A/ja
Application granted granted Critical
Publication of JP3691934B2 publication Critical patent/JP3691934B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、サファイア基板を支持体とすると共に表裏両面にn型及びp型電極を有する窒化ガリウム系化合物半導体発光デバイスに関する。
【0002】
【従来の技術】
半導体レーザ或いはLED等の発光デバイスとして、サファイア基板を用いた窒化ガリウム系化合物半導体発光デバイスが用いられる。この種の発光デバイスにおいては、サファイア基板が絶縁性であると共に孔あけ加工が困難なために、n型電極及びp型電極は同一面側に形成される。この場合、チップサイズが大きくなるため一枚のウエハより得られるデップ数が少なくなり、コストも増加する。また、電極の間隔を狭くできないためデバイス抵抗が高くなると共に、均−なキャリアの注入が困難となるため発光効率が悪い。また、電極間隔を狭くする場合には、電気的に短絡する恐れがある等の問題がある。
【0003】
このような問題に対応するため、特開平7−202325号及び特開平7−221347号公報は、サファイア基板上に積層された窒化ガリウム系化合物半導体多重層の上下面にn型及びp型電極を配設した発光デバイスを開示する。これらの公報に開示の発光デバイスの製造に際しては、先ず、サファイア基板上に、n型及びp型層を含む窒化ガリウム系化合物半導体多重層を積層する。次に、下面側からサファイア基板の一部を除去し、半導体多重層の下面を露出させる。次に、半導体多重層の上下面にn型及びp型電極を形成する。
【0004】
【発明が解決しようとする課題】
上述の公報に開示の発光デバイスの製造方法においては、サファイア基板上に窒化ガリウム系化合物半導体多重層を積層し、その後、電極を作成するための孔をサファイア基板に形成している。孔の加工は、ダイサー等による物理的加工技術や、ドライエッチングやウエットエッチング等のエッチング技術を用いイている。しかし、この場合、以下のような問題が生じる。先ず、ダイサー等の物理的加工技術を用いる場合、積層した窒化ガリウム系半導体層ヘダメージを与えずにサフアイア基板のみを制御性よくカットすることは実質的に不可能である。
【0005】
また、ドライエッチングによりサファイアの加工を行なう場合、窒化ガリウム系半導体のエッチングを行なう場合のイオンエネルギーよりも大きくする必要がある。このため、物理的スパッタリングの寄与が大きくなり、サファイアと窒化ガリウム系半導体とのエッチングの選択性は低下してしまう。その結果、サファイア基板と窒化ガリウム系半導体層との界面でエッチングを制御性よく停止するのが困難となり、窒化ガリウム系半導体層にエッチング損傷をもたらす。
【0006】
また、ドライエッチングやウエットエッチング等では、サファイアのエッチング速度が非常に遅い。このため、通常350μm以上の厚さのサファイア基板に、窒化ガリウム系半導体層への損傷を導入せずに孔をあけるのは実際上困難である。
【0007】
以上のように、従来の技術では、サファイア基板の加工において、窒化ガリウム系半導体層へ損傷を与えてしまうため、デバイスの歩留まりの低下を招くと共に、デバイス特性の劣化が生じるという重大な問題がある。
【0008】
従って、本発明の目的は、サファイア基板を支持体とすると共に表裏両面にn型及びp型電極を有する窒化ガリウム系化合物半導体発光デバイスにおいて、半導体層の損傷に起因するデバイスの歩留まりの低下や特性の劣化を防止することを可能とするデバイス構造およびその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の窒化ガリウム系化合物半導体発光デバイスは、ほぼ矩形の平面形状を有し、この矩形の対向2辺において、上面から下面に貫通し且つ下方に向かって収束するように傾斜する両側壁面を有する溝が形成されたサファイア基板と、
このサファイア基板に支持され、前記両側壁面に沿って形成された両側部分および前記両側部分の間に位置し且つ前記両側部分と一体的に形成された中央部分とを有する、n型層及びp型層を含む窒化ガリウム系化合物半導体多重層と、
この化合物半導体多重層の前記中央部分において、前記矩形の他の対向2辺に沿う端面に形成された端面ミラーと、
前記デバイスの上下に位置するように、前記半導体多重層の上下面に夫々接続された第1及び第2電極と、
を具備することを特徴とする。
また、本発明の窒化ガリウム系化合物半導体発光デバイスにおいては、前記半導体多重層の前記中央部分の下面に対する前記両側壁面の角度は30°〜90゜であることを特徴とする。
さらに、本発明の窒化ガリウム系化合物半導体発光デバイスにおいては、前記溝は矩形の平面形状を有し、前記溝の対向する2辺に前記両側壁面が配設され、他の対向する2辺において前記半導体多重層がへき開面を有することを特徴とする。
さらに、本発明の窒化ガリウム系化合物半導体発光デバイスにおいては、前記サファイア基板および前記半導体多重層の間に形成されたバッファ層をさらに備えることを特徴とする。
さらに、本発明の窒化ガリウム系化合物半導体発光デバイスにおいては、前記バッファ層は、ZnO、GaN、AlN、GaAlN、LiAlO、LiGaO、MgAlおよびSiCからなるグループから選択された物質からなることを特徴とする。
さらに、本発明の窒化ガリウム系化合物半導体発光デバイスにおいては、前記溝を覆うように、前記サファイア基板に対して貼り合わされた支持基板を有することを特徴とする。
さらに、本発明の窒化ガリウム系化合物半導体発光デバイスにおいては、前記支持基板は、Si、SiC、BN、AlNおよびGaAsからなるグループから選択された物質からなることを特徴とする。
さらに、本発明の窒化ガリウム系化合物半導体発光デバイスにおいては、前記半導体多重層が、前記溝外に位置し且つ前記中央部分及び前記両側部分と一体的に形成された外部部分を有し、前記支持基板が導電性で且つ前記半導体多重層の前記外部部分に接続され、前記第1電極が前記支持基板上に配設されることを特徴とする。
次に、本発明の窒化ガリウム系化合物半導体発光デバイスの製造方法は、サファイア基板の第1面に、内方に向かって収束するように傾斜する両側壁面を有する溝を形成する工程と、
前記溝を含む前記サファイア基板の前記第1面上に、n型層及びp型層を含み、前記両側壁面に沿って配設された両側部分および前記両側部分の間に位置し且つ前記両側部分と一体的に形成された中央部分とを有する窒化ガリウム系化合物半導体多重層を形成する工程と、
前記サファイア基板の第2面から研磨し、前記溝が前記サファイア基板を貫通するまで前記サファイア基板を薄くする工程と、
前記デバイスの上下に位置するように、前記半導体多重層の上下面に夫々第1及び第2電極を形成する工程と、
前記化合物半導体多重層の前記中央部分の端面に端面ミラーを形成する工程と、
を具備することを特徴とする。
また、本発明の窒化ガリウム系化合物半導体発光デバイスの製造方法においては、前記サファイア基板および前記半導体多重層の間にさらにバッファ層を形成する工程と、前記サファイア基板を研磨した後、このサファイア基板をマスクとして、前記バッファ層の少なくとも一部を除去する工程を具備することを特徴とする。
さらに、本発明の窒化ガリウム系化合物半導体発光デバイスの製造方法においては、前記溝の周囲に位置するように、前記サファイア基板の前記第1面にスリットを形成する工程と、前記スリットにより前記サファイア基板をへき開して前記デバイスを切出す工程とを具備することを特徴とする。
さらに、本発明の窒化ガリウム系化合物半導体発光デバイスの製造方法においては前記半導体多重層を形成した後で且つ前記サファイア基板を研磨する前に、前記溝を覆うように、前記サファイア基板に対して支持基板を貼り合わせる工程を具備することを特徴とする。
【0010】
【発明の実施の形態】
図1A〜Dは本発明の実施の形態に係る窒化ガリウム系化合物半導体レーザ(発光デバイス)の製造方法を工程順に示す断面図である。
【0011】
先ず、図IA図示の如く、厚さ350μmのサファイア基板11の片面に深さ40μmの溝11aを形成する。溝11aは、例えば次の方法により形成することができる。
【0012】
即ち、先ず、スパッタリングによりアモルファスカーポン(a−C)を1μm堆積し、続いて、フオトレジストを塗布し、通常のフォトリソグラフィによりフォトレジストバターンを作製する。次に、フオトレジストパターンをマスクとしてCF4ガスを用いた反応性イオンエッチング(RIE)によりa−C層のエッチングを行い、パターンを転写する。
【0013】
次に、a−C層をマスクにCl2/Ar混合ガスを用いた反応性イオンビームエッチング(RIBE)でサファイアのエッチングを行い、その後リン酸系のエッチャントによりドライエッチングによる損傷層を除去する。溝11a形成後、a−C層を アッシャーにより除去する。このようにして形成された溝11aはテーバ状の側壁面11bと平坦な底面11cとから構成される。
【0014】
なお、サファイア基板11に溝11aを形成する方法は、ドライエッチングに限らず、ダイサー、超音波加工、研磨加工等の機械的加工方法、或いはレーザ加工法等の物理的な加工方法、その他どのような方法によってもよい。
【0015】
次に、図IB図示の如く、溝11aを形成したサファイア基板11上に、MOCVDにより、例えばAINからなるバッファ層12及び窒化ガリウム系化合物半導体多重層13を順に積層する。バッフア層12は、窒化ガリウム系化合物半導体と格子定数の極めて近い導電性若しくは非導電性の材料、例えばZnO、GaN、AlN、GaAlN、LiA1O 、LiGaO 、MgAl SiC等から形成することができる。窒化ガリウム系化合物半導体多重層13は、バッファ層12側から順に、n−GaNコンタクト層13a、n−GaAlNクラッド層13b、InGaN活性層13c、p−GaAlNクラッド層13d、及びp−GaNコンタクト層13eからなる。窒化ガリウム系化合物半導体多重層13の形成には、MOCVDに限らず、MBE等の他の結晶成長法を用いてもよい。
【0016】
次に、図IC図示の如く、サファイア基板11の、窒化ガリウム系化合物半導体多重層13を積層した面と反対側の而から、バッファ層12が露出するまでサファイア基板11を研磨加工する。サファイア基板11が厚い場合には、荒い研磨粉を使用し、薄くなるに従い、徐々に粒の小さい研磨粉を使用する。バッファ層12が露出する直前より、メカノケミカルな研磨を行うことにより、研磨による窒化ガリウム系化合物半導体多重層13の損傷を小さくすることができる。
【0017】
次に、C12/Ar混合ガスを用いてRIBEを行なった後、リン酸系のエッチャントによるウエットエッチングによりサファイア基板11をマスクとしてバッファ層12を除去する。ここで、RIBEにおいてはサファイア基板11をエッチングする条件より物理的スバッタリングの効果が小さく化学的効果の大きい条件でエッチングを行い、窒化ガリウム系化合物半導体多重層へのエッチング損傷を低減する。なお、バッファ層12が導電性の層である場合には、バッファ層12を全て除去する必要はなく、損傷を除去するために一部を除去するのみでもよい。
【0018】
次に、図1D図示の如く、積層した窒化ガリウム系化合物半導体多重層13上に保護膜としてSiO 酸化膜14を形成し、更に、酸化膜14の一部にコンタクトホール14aを形成する。次に、コンタクトホール14aを埋め込むようにp型電極15を形成し、半導体多重層13の上面にp型電極15を接続する。また、サファイア基板11の下面側にn型電極16を形成し、半導体多重層13の下面にn型電極16を接統する。n型電極16は溝11aの底部のバッファ層12が除去された部分においては、露出された窒化ガリウム系化合物半導体多重層13のn−GaNコンタクト層13aに接触する。
【0019】
以上の方法により製造した本実施の形態に係る窒化ガリウム系化合物半導体レーザは、p型電極15とn型電極16とがデバイスの表裏面上に配設され且つ半導体多重層13を介して対向する構造となる。このため、電極15、16の間隔を狭くして、デバイス抵抗を低くすることができる。また、このような構造により、窒化ガリウム系化合物半導体多重層13内のInGaN活性層13cに対してキャリアを均一且つ効率的に注入することができる。
【0020】
更に、ヒートシンクへのマウントに際して、サファイア基板11を介さずに窒化ガリウム系化合物半導体多重層13を直接ヒートシンクに接触させることができるため、デバイス特性の熱的な影響を最小に抑えることができる。また、発光デバイスの周囲に残るサファイア基板11部分は、デバイスの保護や機械的強度を保つ役割をはたす。また、溝11aのデーパ側壁面11bは溝11aの底面1lc上で発生した光を上方に集光する反射面として作用するため、半導体多重層13の上面から発光するLEDデバイスに適した構造となる。溝の幅が発光波長程度に狭い場合には、レーザ発光の横モードの制御構造にもなる。
【0021】
ここで、留意すべきことは、本発明の発光デバイスの上記利点のいくつかが、発光デバイスの能動部として機能する半導体多重層13の中央部分18(図ID参照)が、サファイア基板11の溝11a内に、望ましくはサファイア基板11の上下面内に収まるように配設されていることによりもたらされるということである。これは、溝11aが下方に向けて収束するように傾斜する両側壁面1lbを有し、ここに、窒化ガリウム系化合物半導体多重層13の両側部分19が支持されることにより可能となる。
【0022】
もし、半導体多重層13の中央部分18の上面或いは下面(一般的にはこれら上下面は平行)に対する両側壁面11bの角度θが大き過ぎると、半導体多重層13の中央部分18と両側部分との接続部の機械的強度が低下して割れが生じる可能性が高くなる。逆に、角度θが小さすぎると、半導体多重層13の中央部分18が溝11aから外部にとび出すため、発光デバイスの能動部が保護されなくなるとともに、単一の素子の幅が広くなりすぎる。従って、角度θは、望ましくは30°〜90゜に設定される。
【0023】
図2は図1A図示の工程完了時におけるサファイア基板11を示す平面図である。サファイア基板11上には2個の溝11aが形成され、また、それぞれの溝11aの両端部にはその幅方向(線IIIb-IIIbに沿った方向)にスリット21が形成される。更に、溝11aの長手方向の両側に沿ってスリット22が形成される。スリット21、22は、図ID図示の工程が完了した段階で、図2図示の如く、サファイア基板11をスリット21、22に沿ってへき開すると、2個の独立した発光デバイスが得られるように形成される。
【0024】
図3Aは発光デバイスが形成された状態における図2の線III a−III aに沿った断面図で、図3Bは図2及び図3Aの線IIIb-IIIbに沿った断面図である。図3B図示の如く、線IIIb-IIIb 即ち、スリット21に沿ってサファイア基板11が除去されるので、半導体多重層13をへき開することにより、発光デバイス31の両端面31aはレーザ共振器の端面ミラーとして作用する。従って上述の製造方法によれば、レーザ共振器の端面ミラーが容易に形成できる。
【0025】
図4は図1A図示の工程完了時におけるサファイア基板11の変更例を示す斜視図である。サファイア基板11上には6個の溝11aが平行に配列形成される。これらの溝11aは横方向の溝11dの両側に3個ずつ配置される。このようなサファイア基板11に対して、図IA−D図示の工程を施した後、ダイサー等により切断することにより、同一工程により6個の発光デバイスを一度に製造することができる。
【0026】
図5はこのようにして完成した1個のデバイスを示す斜視図である。この発光デバイス51は溝11aの長手方向の両端面52、53からレーザ光を発射する。なお、図5に示される端面52は、図4の溝11dに沿ってへき開することにより形成される。しかし、端面52はドライエッチングや研磨により形成してもよい。他方、端面53はドライエッチングにより形成される。即ち、エッチングマスクをサファイア基板11の裏面側に形成した後、塩素を主体とするガスを用いたRIBEによりエッチングを行う。
【0027】
図5図示の発光デバイス51の周囲に残るサファイア基板11部分は、デバイスの機械的強度を保つ役割を果たしている。また、端面53部分にはサファイア基板11との問に空間54が形成されており、ここに、反射器、光変調器或いは受光器等の部品(図示せず)を収納することができる。また、サファイア基板11上にはレンズ、反射器、導波路等の部品(図示せず)を形成することも可能である。
【0028】
なお、上記実施の形態で示した窒化ガリウム系化合物半導体多重層の構造は一例にすぎず、本発明は窒化ガリウム系化合物半導体多重層の構造には依存しない。即ち、本発明は、例えば、p層、n層の積層順番が逆になり、あるいは、窒化ガリウム系化合物半導体多重層の組成が変わっても適用することができる。
【0029】
図6A−Cは本発明の別の実施の形態に係る窒化ガリウム系化合物半導体レーザ(発光デバイス)の製造方法を工程順に示す断面斜視図である。
【0030】
先ず、図1A図示の工程において、サファイア基板11上に発光デバイスを作り込むための溝11aを形成する際に、溝11aと平行に延びるように素子分離溝25を溝11a問に形成する。この際、素子分離溝25が溝11aよりも、バッファ層12及び窒化ガリウム系化合物半導体多重層13の厚さ分だけ深くなるようにする。
【0031】
次に、図1B図示の工程により、サファイア基板11上記バッファ層12及び窒化ガリウム系化合物半導体多重層13を形成する。次に、図6A図示の如く、半導体多重層13上に重なるように、サファイア基板11に第2の基板26を貼り合わせる。第2の基板26は、そのへき開が容易な方向が窒化ガリウム系化合物半導体多重層13のへき開方向と−致するようにする。
【0032】
次に、図6B図示の如く、サファイア基板11を裏面側より薄くし、溝11aに形成されたバッファ層12を露出させる。この際、素子分離溝25は層12、13分だけ溝11aより深いため、サフアイア基板11は素子分離溝25で分断された状態となる。この工程において、例えば厚さ350μmのサファイア基板11の基板は約40μmまで薄くされる。しかし、第2の基板26により、サファイア基板11、バッファ層12、及び半導体多重層13が一体的に支持されているため、半導体多重層13は、図1A〜D図示の製造方法に比べて、より確実に保護される。また、この工程において、素子分離溝25による開口を目印とすることにより、ザファイア基板11を薄くしすぎて半導体多重層13を傷つけるようなことがなく、作業を行なうことが可能となる。
【0033】
次に、第2の基板26の上面上に一方の電極15、バッファ層12(もし導電性であれば)の下面上に他方の電極16を形成する。但し、バッファ層12が導電性でない揚合は、更にバッファ層12を削って半導体多重層13を露出させた後、電極16を形成する。また、上側の電極15は、溝11aの外に位置する半導体多重層13の外部部分に対して、導電性の第2の基板26を介して接統されることとなる。
【0034】
次に、素子分離溝25に沿って第2の基板26を切断し、図6C図示の如く、捧状の部分、即ち各半導体レーザ毎に切り離す。また、窒化ガリウム系化合物半導体多重層13のへき開方向に沿ってそのへき開を行い、レーザ共振器を完成する。なお、半導体多皿層13のへき開方向と、第2の基板26のへき開方向とは一致しているため、制御性よく共振器を作製することが可能となる。
【0035】
なお、第2の基板26が導電性でない揚合は、第2の基板をサファイア基板11に貼り合わせる前に、溝11a内で半導体多重層13上に電極15を予め設けるようにすればよい。
【0036】
図7A〜Gは本発明の参考例に係る窒化ガリウム系化合物半導体レーザ(発光デバイス)の製造方法を工程順に示す断面図である。
【0037】
先ず、図7A図示の如く、第1のサファイア基板61にテーバ状のコンタクトホール62を加工形成する。なお、サファイア基板61にホール62を形成する方法は、図IA図示の工程においてサファイア基板11に溝11aを形成する方法と同様、コンタクトホール62のサイズ、形状に応じて適切な方法を選択することができる。例えば、ダイサー、超音波加工、研磨加工等の機械的な加工方法、或いはレーザ加工法等の物理的な加工方法、或いはリン酸エッチヤントを用いたケミカルエッチング等の化学的な加工方法を使用することができる。
【0038】
参考例では、この工程において、先ず、厚さ350μmの第1のサファイア基板61を150μmの厚さまで薄くする。次に、ダイシング加工レーザ加工及び超音波加工後、再び研磨加工を行い、サファイア基板61に最小開口部の径若しくは幅が20μmのコンタクトホール62を穿設する。
【0039】
一方、例えばAINからなるバッファ層63を積層した第2のサファイア基板64を準備し、図7B図示の如く、第2のサファイア基板64上に第1のサファイア基板をバッファ層63をはさみ込むように貼り合わせる。次に、第1のサファイア基板61上にMOCVDにより例えばGaNからなる埋込み層65を成長させ、コンタクトホール62を埋め込む。なお、埋込み層65の形成には、MOCVDに限らず、MBE、EB蒸着、スバッタ等の他の結晶成長法を用いてもよい。
【0040】
次に、図7C図示の如く、リン酸系エッチャントによりバッファ層63を選択的にエッチングし、第1のサファイア基板61から第2のサファイア基板64を剥がす。次に、第1のサファイア基板61に成長形成された埋込み層65をテーバ状のコンタクトホール62部を除いて研磨除去する。
【0041】
バッファ層63及び埋込み層65は、窒化ガリウム系化合物半導体と格子定数の極めて近い導電性若しくは非導電性の材料、例えばZnO、GaN、AIN、GaAIN、LiA1O 、LiGaO 、MgAl SiC等から形成することができる。但し、バッファ層63は埋込み層65に対して選択的にエッチング除去できる材料からなることが望ましい。また、バッファ層63を積層した第2のサファイア基板64の代わりに、バッファ層63の材料単体からなる基板を第1のサファイア基板61に貼り合わせるようにしてもよい。
【0042】
次に、図7D図示の如く、サファイア基板61を裏返しにし、その上に、MOCVDにより、例えばGaNからなるバッファ層66及び窒化ガリウム系化合物半導体多重層67を順に積層する。バッファ層66は、窒化ガリウム系化合物半導体と格子定数の極めて近い導電性若しくは非導電性の材料、例えばZnO、GaNs、AlNs、GaAlNs、LiA1O 、LiGaO 、MgA1 SiC等から形成することができる。窒化ガリウム系化合物半導体多重層67は、バッファ層66側から順に、n−GaNコンタクト層67a、n−GaAlNクラッド層67b、InGaN活性層67c、p−GaAlNクラッド層67d、一及びp−GaNコンタクト層67eからなる。窒化ガリウム系化合物半導体多重層67の成長はMOCVD法に限らず、MBE等の他の結晶成長法を用いてもよい。
【0043】
次に、図7E図示の如く、積層した窒化ガリウム系化合物半導体多重層67上に保護膜としてSiO酸化膜68を形成し、更に、酸化膜68の一部にコンタクトホール68aを形成する。次に、コンタクトホール68aを埋め込むようにp型電極69を形成し、半導体多重層67の上面にp型電極69を接続する。
【0044】
また、埋込み層65を、ドライエッチング若しくはウエットエッチングにより、サファイア基板61をマスクとしてエッチング除去する。そして、コンタクトホール62を埋め込むようにn型電極70を形成し、半導体多重層67の下面にn型電極70を接統する。このとき、バッファ層66が導電性であれば、これを除去する必要はない。しかし、バッファ層66が非導電性の場合には、図7F図示の如く、サファイア基板61をマスクとして更にエッチングしてバッファ層66を除去し、露出した半導体多重層67の下面にコンタクトするように電極70を形成する。また、埋込み層65が導電性であれば、これを除去する必要はなく、図7G図示の如く、埋込み層65の上に電極70を作製することができる。
【0045】
以上の方法により製造した本参考例に係る窒化ガリウム系化合物半導体発光デバイスは、p型電極69とn型電極70とが、デバイスの表裏面上に配設され且つ半導体多重層67を介して対向する構造となる。このため電極69、70の間隔を狭くして、デバイス抵抗を低くすることができる。また、窒化ガリウム系化合物半導体多重層67の要部はサファイア基板61上でなく、コンタクトホール62を埋めている埋込み層65上に成長されるため、格子不整合の問題がなく高品質の結晶からなると考えられる。
【0046】
また、前述したように、従来のデバイスでは、窒化ガリウム系化合物半導体多重層を形成した後、サファイア基板に孔を明け電極用のコンタクトホールを作製しているため、半導体多重層に加工損傷が導入され、コンタクト抵抗の増大等デバイス特性の低下を招くという問題がある。これに対して本実施の形態においては、コンタクトホールを最初に形成するため、窒化ガリウム系化合物半導体多重層67を損傷することがなくなり、デバイス特性を従来のデバイスと比較して大幅に改善することができる。
【0047】
なお、図7A〜G図示の参考例では、サファイア基板61に一つのコンタクトホール62を開ける場合について説明したが、図8A図示の如くストライプ状のコンタクトホール71或いは図8B図示の如く平行な直線上に配列された複数個のコンタクトホール72を穿設してもよい。図8Cは、図8A及びBの線VIIIc−VIIIc に沿った断面図である。同図においては図7A〜G中の部分と対応する部分には同一番号を付して説明を省略する。
【0048】
図9A〜Dは本発明の更に別の参考例に係る窒化ガリウム系化合物半導体レーザ(発光デバィス)の製造方法を工程順に示す平面図及び断面図である。
【0049】
図7A〜G図示の参考例では、コンタクトホール62の幅が20μmと比較的大きい場合について説明している。しかし、コンタクトホール62の幅が10μm以下、例えば5μm程度と狭く、バッファ層6の厚さと同程度の場合には、コンタクトホール62を埋める必要がなくなる。
【0050】
図9A〜D図示の参考例はかかる観点に基づいたものである。
【0051】
先ず、図9B図示の如く、サファイア基板81に、基板面に垂直な壁面を有し且つ基板厚とほぼ同程度の幅のストライプ状のコンタクトホール82を穿設する。コンタクトホール82の平面形状は図9A図示の通りである。
【0052】
次に、図9C図示の如く、コンタクトホール82を含むサファイア基板81の面上にバッファ層66及び窒化ガリウム系化合物半導体多重層67を順に成長させる。この場合、コンタクトホール82の幅が小さいため、バッフア層66を成長させる際にコンタクトホール82の上部まで成長が生じ、上面が平坦な膜を成長させることが可能となる。
【0053】
次に、図9D図示の如く、積層した窒化ガリウム系化合物半導体多重層67上に保護膜としてSi02酸化膜68を形成し、更に、酸化膜68の一部にコンタクトホール68aを形成する。次に、コンタクトホール68aを埋め込むようにp型電極69を形成し、半導体多重層67の上面にp型電極69を接続する。
【0054】
また、サファイア基板81の裏面側からコンタクトホール82を通してバッファ層66をエッチング除去し、露出した半導体多重層67の下面にコンタクトするように電極70を形成する。なお、このとき、バッフア層66が導電性であれば、これを除去する必要はない。
【0055】
以上の方法により製造した本参考例に係る窒化ガリウム系化合物半導体発光デバイスは、図7A〜G図示の方法により製造した発光デバイスと同じ構造を有する。但し、コンタクトホール82の面積が小さいため、コンタクトホール82を複数個形成することが望ましい。
【0056】
なお、本発明は、以上の実施の形態に示すストライプ構造のレーザのみならず、面発光レーザ、LED等の他の発光デバイスにも適用することができる。
【図面の簡単な説明】
【図1】 A〜Dは本発明の実施の形態に係る窒化ガリウム系化合物半導体レーザ(発光デバイス)の製造方法を工程順に示す断面図である。
【図2】 図1A図示の工程完了時におけるサファイア基板を示す平面図である。
【図3】 Aは発光デバイスが形成された状態における図2の線III a−III aに沿った断面図、Bは図2及び図3Aの線IIIb-IIIbに沿った断面図である。
【図4】 図1A図示の工程完了時におけるサファイア基板の変更例を示す斜視図である。
【図5】 図4図示のサファイア基板を用いて完成した1個のデバイスを示す斜視図である。
【図6】 A〜Cは本発明の別の実施の形態に係る窒化ガリウム系化合物半導体レーザ(発光デバイス)の製造方法を工程順に示す断面斜視図である。
【図7】 A〜Gは本発明の参考例に係る窒化ガリウム系化合物半導体レーザ(発光デバイス)の製造方法を工程順に示す断面図である。
【図8】 A、Bは図7A〜G図示の製造方法の変更例を示す平面図、図8Cは、図8A、Bの線VIIIc−VIIIcに沿った断面図である。
【図9】 A〜Dは本発明の更に別の参考例に係る窒化ガリウム系化合物半導体レーザ(発光デバイス)の製造方法を工程順に示す平面図及び断面図である。
【符号の説明】
11 サファイア基板
11a 溝
11b 側壁面
11c 底面
12 バッファ層
13 窒化ガリウム系化合物半導体多重層
13a n−GaNコンタクト層
13b n−GaAlNクラッド層
13c InGaN活性層
14 SiO酸化膜
14a コンタクトホール
15 p型電極
16 n型電極
18 中央部分
19 両側部分

Claims (12)

  1. ほぼ矩形の平面形状を有し、この矩形の対向2辺において、上面から下面に貫通し且つ下方に向かって収束するように傾斜する両側壁面を有する溝が形成されたサファイア基板と、
    このサファイア基板に支持され、前記両側壁面に沿って形成された両側部分および前記両側部分の間に位置し且つ前記両側部分と一体的に形成された中央部分とを有する、n型層及びp型層を含む窒化ガリウム系化合物半導体多重層と、
    この化合物半導体多重層の前記中央部分において、前記矩形の他の対向2辺に沿う端面に形成された端面ミラーと、
    前記デバイスの上下に位置するように、前記半導体多重層の上下面に夫々接続された第1及び第2電極と、
    を具備することを特徴とする窒化ガリウム系化合物半導体発光デバイス。
  2. 前記半導体多重層の前記中央部分の下面に対する前記両側壁面の角度は30°〜90゜であることを特徴とする請求項1に記載の窒化ガリウム系化合物半導体発光デバイス。
  3. 前記溝は矩形の平面形状を有し、前記溝の対向する2辺に前記両側壁面が配設され、他の対向する2辺において前記半導体多重層がへき開面を有することを特徴とする請求項1に記載の窒化ガリウム系化合物半導体発光デバイス。
  4. 前記サファイア基板および前記半導体多重層の間に形成されたバッファ層をさらに備えることを特徴とする請求項1に記載の窒化ガリウム系化合物半導体発光デバイス。
  5. 前記バッファ層は、ZnO、GaN、AlN、GaAlN、LiAlO、LiGaO、MgAlおよびSiCからなるグループから選択された物質からなることを特徴とする請求項4に記載の窒化ガリウム系化合物半導体発光デバイス。
  6. 前記溝を覆うように、前記サファイア基板に対して貼り合わされた支持基板を有することを特徴とする請求項1に記載の窒化ガリウム系化合物半導体発光デバイス。
  7. 前記支持基板は、Si、SiC、BN、AlNおよびGaAsからなるグループから選択された物質からなることを特徴とする請求項6に記載の窒化ガリウム系化合物半導体発光デバイス。
  8. 前記半導体多重層が、前記溝外に位置し且つ前記中央部分及び前記両側部分と一体的に形成された外部部分を有し、前記支持基板が導電性で且つ前記半導体多重層の前記外部部分に接続され、前記第1電極が前記支持基板上に配設されることを特徴とする請求項1に記載の窒化ガリウム系化合物半導体発光デバイス。
  9. サファイア基板の第1面に、内方に向かって収束するように傾斜する両側壁面を有する溝を形成する工程と、
    前記溝を含む前記サファイア基板の前記第1面上に、n型層及びp型層を含み、前記両側壁面に沿って配設された両側部分および前記両側部分の間に位置し且つ前記両側部分と一体的に形成された中央部分とを有する窒化ガリウム系化合物半導体多重層を形成する工程と、
    前記サファイア基板の第2面から研磨し、前記溝が前記サファイア基板を貫通するまで前記サファイア基板を薄くする工程と、
    前記デバイスの上下に位置するように、前記半導体多重層の上下面に夫々第1及び第2電極を形成する工程と、
    前記化合物半導体多重層の前記中央部分の端面に端面ミラーを形成する工程と、
    を具備することを特徴とする窒化ガリウム系化合物半導体発光デバイスの製造方法。
  10. 前記サファイア基板および前記半導体多重層の間にさらにバッファ層を形成する工程と、前記サファイア基板を研磨した後、このサファイア基板をマスクとして、前記バッファ層の少なくとも一部を除去する工程を具備することを特徴とする請求項9に記載の窒化ガリウム系化合物半導体発光デバイスの製造方法。
  11. 前記溝の周囲に位置するように、前記サファイア基板の前記第1面にスリットを形成する工程と、前記スリットにより前記サファイア基板をへき開して前記デバイスを切出す工程とを具備することを特徴とする請求項9に記載の窒化ガリウム系化合物半導体発光デバイスの製造方法。
  12. 前記半導体多重層を形成した後で且つ前記サファイア基板を研磨する前に、前記溝を覆うように、前記サファイア基板に対して支持基板を貼り合わせる工程を具備することを特徴とする請求項9に記載の窒化ガリウム系化合物半導体発光デバイスの製造方法。
JP15972497A 1996-06-17 1997-06-17 窒化ガリウム系化合物半導体発光デバイス及びその製造方法 Expired - Fee Related JP3691934B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15972497A JP3691934B2 (ja) 1996-06-17 1997-06-17 窒化ガリウム系化合物半導体発光デバイス及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15565096 1996-06-17
JP8-155650 1996-06-17
JP15972497A JP3691934B2 (ja) 1996-06-17 1997-06-17 窒化ガリウム系化合物半導体発光デバイス及びその製造方法

Publications (2)

Publication Number Publication Date
JPH1084167A JPH1084167A (ja) 1998-03-31
JP3691934B2 true JP3691934B2 (ja) 2005-09-07

Family

ID=26483591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15972497A Expired - Fee Related JP3691934B2 (ja) 1996-06-17 1997-06-17 窒化ガリウム系化合物半導体発光デバイス及びその製造方法

Country Status (1)

Country Link
JP (1) JP3691934B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332300A (ja) * 1999-05-14 2000-11-30 Unisplay Sa Ledランプ
US6828596B2 (en) * 2002-06-13 2004-12-07 Lumileds Lighting U.S., Llc Contacting scheme for large and small area semiconductor light emitting flip chip devices
US7531380B2 (en) 2003-04-30 2009-05-12 Cree, Inc. Methods of forming light-emitting devices having an active region with electrical contacts coupled to opposing surfaces thereof
KR100716790B1 (ko) * 2005-09-26 2007-05-14 삼성전기주식회사 질화갈륨계 반도체 발광소자 및 그 제조방법
JP4916859B2 (ja) * 2005-12-20 2012-04-18 株式会社半導体エネルギー研究所 半導体装置、表示装置、電子機器、及び半導体装置の製造方法
KR20070093271A (ko) * 2006-03-13 2007-09-18 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조 방법
JP4908381B2 (ja) 2006-12-22 2012-04-04 昭和電工株式会社 Iii族窒化物半導体層の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
JP5125433B2 (ja) * 2007-11-09 2013-01-23 サンケン電気株式会社 半導体発光装置及びその製造方法
JP2010153710A (ja) * 2008-12-26 2010-07-08 Sanyo Electric Co Ltd 半導体レーザ装置およびその製造方法
JP2010283124A (ja) * 2009-06-04 2010-12-16 Disco Abrasive Syst Ltd 発光ダイオード
JP2010283123A (ja) * 2009-06-04 2010-12-16 Disco Abrasive Syst Ltd 発光ダイオード
KR101516609B1 (ko) * 2011-05-23 2015-05-04 나미키 세이미쓰 하우세키 가부시키가이샤 발광소자의 제조 방법 및 발광소자

Also Published As

Publication number Publication date
JPH1084167A (ja) 1998-03-31

Similar Documents

Publication Publication Date Title
US5905275A (en) Gallium nitride compound semiconductor light-emitting device
JP3822976B2 (ja) 半導体装置およびその製造方法
US5701321A (en) Semiconductor laser producing short wavelength light
JP4938267B2 (ja) レーザダイオードの製造方法
US20100320488A1 (en) Integrated semiconductor light-emitting device and its manufacturing method
JP4901477B2 (ja) 窒化化合物半導体素子およびその製造方法
JP2008252069A (ja) 半導体レーザ素子の製造方法および半導体レーザ素子
JP2000091636A (ja) 半導体発光素子の製法
JP2001053056A (ja) エピタキシャル層を1つの基板から分離して他の基板に移し替えるための方法
KR20090080486A (ko) 반도체 레이저 소자 및 그 제조 방법
JP3691934B2 (ja) 窒化ガリウム系化合物半導体発光デバイス及びその製造方法
US8367443B2 (en) Method of manufacturing semiconductor light emitting device
KR100277940B1 (ko) 지에이엔(gan) 반도체 레이저 다이오드 및 그 제조방법
US7183585B2 (en) Semiconductor device and a method for the manufacture thereof
JP2009123939A (ja) 窒化物系半導体素子およびその製造方法
JP5277066B2 (ja) 半導体発光素子およびその製造方法
JP2005012206A (ja) 窒化物系半導体素子およびその製造方法
JPH10215031A (ja) 半導体レーザ素子
KR100421224B1 (ko) 반도체 레이저 다이오드 분리 방법
JP2001358404A (ja) 半導体レーザ素子及びその製造方法
JP2000196186A (ja) Iii族窒化物レ―ザダイオ―ドおよびその製造方法
JP4964027B2 (ja) 窒化物系半導体レーザ素子の作製方法
JP2009059773A (ja) 半導体レーザ装置の製造方法
JP2008311547A (ja) 半導体レーザ素子及び製造方法
JP4964026B2 (ja) 窒化物系半導体レーザ素子の作製方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050617

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees