JP3690049B2 - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
JP3690049B2
JP3690049B2 JP06764897A JP6764897A JP3690049B2 JP 3690049 B2 JP3690049 B2 JP 3690049B2 JP 06764897 A JP06764897 A JP 06764897A JP 6764897 A JP6764897 A JP 6764897A JP 3690049 B2 JP3690049 B2 JP 3690049B2
Authority
JP
Japan
Prior art keywords
output
winding
choke coil
smoothing capacitor
rectifying means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06764897A
Other languages
English (en)
Other versions
JPH10271814A (ja
Inventor
文明 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP06764897A priority Critical patent/JP3690049B2/ja
Publication of JPH10271814A publication Critical patent/JPH10271814A/ja
Application granted granted Critical
Publication of JP3690049B2 publication Critical patent/JP3690049B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は民生用あるいは産業用電子機器に利用されるスイッチング電源装置に関するものである。
【0002】
【従来の技術】
従来の多出力のスイッチング電源装置を図9、図10により説明する。
【0003】
図9は2出力のスイッチング電源装置の回路構成図、図10は同動作波形図である。同図によると、1は制御された第1出力を得るためのチョッパー方式降圧型コンバータで第1出力が一定電圧になるように制御されたパルス入力電源2にチョークコイルとして働くトランス3の第1巻線3aと第1の平滑コンデンサ4の直列回路と、第1巻線3aに蓄積したエネルギーを制御された第1出力へ放電するための第1の整流手段としてのダイオード5とを並列接続した構成からなり、第1巻線3aと第1の平滑コンデンサ4の接続点を制御された第1出力とし、トランス3の第2巻線3bと、第2の整流手段としてのダイオード6と、第2の平滑コンデンサ7の直列接続回路からなるコンデンサインプット型整流平滑回路8を並列接続し、ダイオード6と第2の平滑コンデンサ7の接続点を非制御第2出力とする構成となっている。
【0004】
上記構成における動作を図10を用いて説明する。図10は図9の回路構成における各部の動作波形を示し、図10(a)はパルス入力電源2の電圧波形を、図10(b)はトランス3の第1巻線3aの印加電圧波形を、図10(c)はトランス3の第1巻線3aを流れる電流波形を、図10(d)はトランス3の第2巻線3bの両端電圧波形を示し、図10(e)はトランス3の第2巻線3bを流れる電流波形を示す。
【0005】
パルス入力電源2のパルス電圧の周期をT、電圧VINが出力される期間をTON、δ=TON/T、トランス3の第1巻線3aの巻線数をna、インダクタンス値をL3a、2次巻線数をnb、リーケージインダクタンス値をLr、ダイオード5及びダイオード6には順方向電圧が存在するが説明をわかりやすくするためゼロとし制御された第1出力電圧をV1、非制御第2出力電圧をV2とすると、TON期間には第1巻線3aにはVIN−V1の電圧が印加されトランス3の第2巻線3bには、nb/na・(VIN−V1)の電圧が発生するがダイオード6は逆バイアスとなるため電流は流れず非制御第2出力にはエネルギーは供給されない。この時、第1巻線3aには第1巻線3aの励磁電流と第1出力の出力電流との和の電流が流れる。
【0006】
次にT−TON期間では、第1巻線3aにはTON期間とは逆向きの電圧V1が印加され、第1巻線3aの励磁エネルギーがダイオード5を介して制御された第1出力へ放電されると同時に第2巻線3bにもTON期間とは逆向きの電圧すなわちダイオード6の順バイアス電圧nb/na・V1が発生し、リーケージインダクタンスLrを介して非制御第2出力には図中(c)及び(e)の斜線部の電流が流れエネルギーが供給される。
【0007】
この時、制御された第1出力および非制御第2出力の出力電圧V1,V2はそれぞれ、
V1=δ・VIN
V2=nb/naV1−2・Lr/{T・(1−δ)^2}・I2……(1)となる。
但し、I2は非制御第2出力の出力電流値である。
【0008】
式(1)から非制御第2出力の出力電圧V2は出力電流I2の増加により低下する。
【0009】
又、非制御第2出力はTON期間に第1巻線3aに蓄積した励磁エネルギーをT−TON期間に第1出力に放電するエネルギーの一部を取り出すことになるため取り出すことが可能な限界電力P2maxが存在し、この限界電力P2maxは計算を容易にするためにL3a=∞とすると、
P2max=V2・I2={(1−δ)/(1+δ)}・V1・I1={(1−V1/VIN)/(1+V1/VIN)}・V1・I1……(2)
となる。実際はL3aは有限であるためP2maxは上記式(2)よりは少ない。
【0010】
さらに上記(2)式で決定される非制御第2出力の出力電流よりさらに出力電流I2を増やすと、第1巻線を流れる電流が不連続となる期間tが発生し、これにより図10(d)のnb/na・V1・(T−TON)の電圧時間積及び(b)のV1・(T−TON)の電圧時間積が減少(黒色部分)するため第1出力を一定電圧に制御するためにパルス入力電圧のTON時間が短くなりTOnaとなる(図10中の点線動作波形となる。)。
【0011】
このため非制御第2出力の出力電圧はさらに低下が助長される。
【0012】
【発明が解決しようとする課題】
上記従来のスイッチング電源装置のように一定電圧に制御された第1出力を得る降圧型コンバータのトランス3にコンデンサインプット型整流平滑回路8を接続した第2巻線3bを設けトランスの第1巻線3aに蓄積されたエネルギーの制御された第1出力への放電期間に第2巻線3bから第2巻線3bに接続されたコンデンサインプット型整流平滑回路8へエネルギーを供給し非制御第2出力を得る構成では、
(1)トランス3の第1巻線3aに流れる電流が連続動作状態では非制御第2出力に安定電力を供給できるが非制御第2出力への電力供給はトランス3の第1巻線3aと第2巻線3bのリーケージインダクタンスLrを介して行うため前述の式(1)より非制御第2出力の出力電流I2に比例した電圧降下がリーケージインダクタンスLrで発生するため非制御第2出力の電圧安定度が悪い(負荷変動が大きい。)。
【0013】
(2)非制御第2出力への電力供給はトランス3の第1巻線3aに流れる電流が不連続状態となると安定出力を得ることができず、非制御第2出力への安定な電力供給は前述の式(2)で表され制限が存在する(第1出力の電力で制限される。)。
【0014】
(3)非制御第2出力はTON期間に第1巻線3aに蓄積した励磁エネルギーをT−TON期間に第1出力へ放電するエネルギーの一部を取り出すことで得ているため、第1巻線3aを流れる電流の不連続状態への動作を助長することになり非制御第2出力の安定化を行うためには第1出力の最小出力電流で決定されるトランス3の第1巻線のインダクタンス値よりさらに大きなインダクタンス値が必要となるためトランス3が大きくなる。また、トランス3の大きさのわりには非制御第2出力は小電力しか扱えない。さらに、第1巻線3aを流れる電流のリップル電流が大きくなり第1出力を得るコンバータの第1の平滑コンデンサ4のリップル電流が大きくなり第1の平滑コンデンサ4の小型化ができない。
【0015】
(4)非制御第2出力への電力供給はコンデンサインプット型整流平滑回路8を介して行うため第2の平滑コンデンサ7のリップル電流が大きくなり第2の平滑コンデンサ7の小型化ができないといった多くの課題があった。
【0016】
本発明は上記従来の課題を解決するものであり、トランスの第2巻線に接続された非制御出力の安定化、大電力化、トランスの小型化及び平滑コンデンサの小型化が可能なスイッチング電源装置を提供するものである。
【0017】
【課題を解決するための手段】
上記課題を解決するために本発明のスイッチング電源装置は、パルス入力電源と、このパルス入力電源に接続したチョークコイルとして働くトランスの第1巻線と第1の平滑コンデンサからなる第1の直列回路と、この第1の直列回路に並列接続した第1の整流手段と、前記チョークコイルとして働くトランスの第2巻線と、この第2巻線に接続した第2の整流手段と、この第2の整流手段に接続した他のチョークコイルと第2の平滑コンデンサからなる第2の直列回路と、この第2の直列回路に並列接続した第3の整流手段とを備え、前記第1巻線と前記第1の平滑コンデンサの接続点を第1出力にするとともに、前記 他のチョークコイルと前記第2の平滑コンデンサの接続点を非制御第2出力としたものであり、前記第2出力への電力供給は制御された第1出力の電力供給動作に関係なく行うことができ、さらに非制御第2出力の出力電流による出力電圧の安定化が行え、制御された第1出力を得るためのチョークコイルとして働くトランスに設けた第2巻線から構成される非制御第2出力の安定化、大電力化やスイッチング電源装置の小型化が行えるものである。
【0018】
【発明の実施の形態】
本発明の請求項1に記載の発明は、パルス入力電源と、このパルス入力電源に接続したチョークコイルとして働くトランスの第1巻線と第1の平滑コンデンサからなる第1の直列回路と、この第1の直列回路に並列接続した第1の整流手段と、前記チョークコイルとして働くトランスの第2巻線と、この第2巻線に接続した第2の整流手段と、この第2の整流手段に接続した他のチョークコイルと第2の平滑コンデンサからなる第2の直列回路と、この第2の直列回路に並列接続した第3の整流手段とを備え、前記第1巻線と前記第1の平滑コンデンサの接続点を第1出力にするとともに、前記他のチョークコイルと前記第2の平滑コンデンサの接続点を非制御第2出力とするものであり、非制御第2出力への電力供給は制御された第1出力の電力供給動作に関係なく行うことができ、さらに非制御第2出力の出力電流による出力電圧の安定化が行え、制御された第1出力を得るためのチョークコイルとして働くトランスに設けた第2巻線から構成される非制御第2出力の安定化、大電力化、トランス3の小型化及び平滑コンデンサ4の小型化と第1出力の平滑コンデンサ7の小型化が行えるものである。
【0019】
本発明の請求項2に記載の発明は、パルス入力電源と、このパルス入力電源に接続したチョークコイルとして働くトランスの第1巻線と第1の平滑コンデンサからなる第1の直列回路と、この第1の直列回路に並列接続した第1の整流手段と、前記チョークコイルとして働くトランスの第2巻線と、この第2巻線に接続した第2の整流手段と、この第2の整流手段に接続した他のチョークコイルと第2の平滑コンデンサからなる第2の直列回路と、この第2の直列回路と前記第2の整流手段との接続点に接続すると共に前記第1の平滑コンデンサと接続した第3の整流手段とを備え、前記第1巻線と前記第1の平滑コンデンサの接続点を第1出力にするとともに、前記他のチョークコイルと前記第2の平滑コンデンサの接続点を非制御第2出力とするものであり、請求項1の第3の整流手段を第2の整流手段とチョークコイルとの接続点と第1出力間に接続したものであり、請求項1記載の発明の効果に加えトランスの第2巻線の巻線数の低減によるトランスの小型化と損失低減、非制御第2出力を構成するチョークコイルの動作印加電圧の低減によるチョークコイルの小型化と損失低減、第2の整流手段及び第3の整流手段の動作印加電圧の低減による損失低減、非制御第2出力の出力電圧のさらなる安定化及びトランスの小型化を可能とするものである。
【0020】
本発明の請求項3に記載の発明は、パルス入力電源と、このパルス入力電源に接続したチョークコイルとして働くトランスの第1巻線と第1の平滑コンデンサからなる第1の直列回路と、この第1の直列回路に並列接続した第1の整流手段と、前記第1の平滑コンデンサに接続した前記チョークコイルとして働くトランスの第2巻線と、この第2巻線に接続した第2の整流手段と、この第2の整流手段に接続した他のチョークコイルと第2の平滑コンデンサからなる第2の直列回路と、この第2の直列回路と前記第2の整流手段との接続点に接続した第3の整流手段とを備え、前記第1巻線と前記第1の平滑コンデンサの接続点を第1出力にするとともに、前記他のチョークコイルと前記第2の平滑コンデンサの接続点を非制御第2出力とするものであり、請求項1記載のものの第1の平滑コンデンサにチョークコイルと第2の平滑コンデンサの直列回路が並列接続された第3の整流手段と第2の整流手段とトランスの第2巻線の第3の直列回路を並列接続した構成としたもので、請求項1記載の発明の効果に加えてトランスの第2巻線の巻線数の低減によるトランスの小型化と損失低減、非制御第2出力を構成するチョークコイルの動作印加電圧の低減によるチョークコイルの小型化と損失低減、第2の整流手段及び第3の整流手段の動作印加電圧の低減による損失低減、非制御第2出力の出力電圧のさらなる安定化を可能とするものである。
【0021】
本発明の請求項4記載の発明は、パルス入力電源と、このパルス入力電源に接続したチョークコイルとして働くトランスの第1巻線と第1の平滑コンデンサからなる第1の直列回路と、この第1の直列回路に並列接続した第1の整流手段と、前記第1の平滑コンデンサに接続した前記チョークコイルとして働くトランスの第2巻線と、この第2巻線に接続した第2の整流手段と、この第2の整流手段に接続した他のチョークコイルと第2の平滑コンデンサからなる第2の直列回路と、この第2の直列回路と前記第2の整流手段との接続点に接続すると共に前記第1の平滑コンデンサと前記チョークコイルとして働くトランスの第2巻線との接続点に接続した第3の整流手段とを備え、前記第1巻線と前記第1の平滑コンデンサの接続点を第1出力にするとともに、前記他のチョークコイルと前記第2の平滑コンデンサの接続点を非制御第2出力とするものであり、請求項1に記載の構成の第1の平滑コンデンサにトランスの第2巻線と第2の整流手段からなる第3の直列回路が並列接続された第3の整流手段とチョークコイルと第2の平滑コンデンサからなる第2の直列回路を並列接続したものであり前述の請求項1、請求項2及び請求項3に記載の発明の効果を併せて得ることができるものである。
【0022】
請求項5記載の発明は、請求項1または請求項2または請求項3または請求項4に記載の第1の整流手段、第2の整流手段及び第3の整流手段を電界効果トランジスタとし、パルス入力電源のハイレベルと同期させ第2の整流手段である電界効果トランジスタをオンとし、第1の整流手段及び第3の整流手段である電界効果トランジスタをオフとし、パルス入力電源のロウレベルと同期させて第1の整流手段及び第3の整流手段である電界効果トランジスタをオンとし、第2の整流手段である電界効果トランジスタをオフとするスイッチング手段を設けたものであり、整流手段として電界効果トランジスタを用いることによって整流手段が自己消費する電力の低減を図りスイッチング電源の高効率化を可能とするものである。
【0023】
以下本発明の一実施の形態について図1から図7により説明する。なお、従来技術と同一部分は同一番号を付与して説明する。
【0024】
(実施の形態1)
図1は本発明のスイッチング電源装置の一実施の形態の回路構成図であり、図2は同動作波形図である。同図によると、1は制御された第1出力を得るためのチョッパー方式降圧型コンバータで、第1出力が一定電圧となるように制御されたパルス入力電源2にチョークコイルとして働くトランス3の第1巻線3aと第1の平滑コンデンサ4の第1の直列回路と、第1巻線3aに蓄積したエネルギーを第1出力へ放電するための第1の整流手段としてのダイオード5とを並列接続した構成からなり、第1巻線3aと第1の平滑コンデンサ4の接続点を制御された第1出力とし、トランス3の第2巻線3bにチョークコイル10と第2の平滑コンデンサ7の第2の直列回路が並列接続された第3の整流手段としてのダイオード11に、第2の整流手段としてのダイオード9とトランス3の第2巻線3bとの第3の直列回路を並列接続し、チョークコイル10と第2の平滑コンデンサ7の接続点を非制御第2出力とする構成としたものである。
【0025】
上記構成における動作を図2を用いて説明する。図2は図1の回路構成における各部の動作波形を示し、図2(a)はパルス入力電源2の電圧波形を、図2(b)はトランス3の第1巻線3aの印加電圧波形を、図2(c)はトランス3の第1巻線3aを流れる電流波形を、図2(d)はトランス3の第2巻線3bの両端電圧波形を、図2(e)はチョークコイル10の印加電圧波形を、図2(f)はチョークコイル10を流れる電流波形を示している。
【0026】
パルス入力電源2のパルス周期をT、電圧VINが出力される周期をTON、TON/T=δ、トランス3の第1巻線3aの巻線数をna、インダクタンス値をL3a、2次巻線数をnbとし、チョークコイル10のインダクタンス値L10、ダイオード5、ダイオード9及びダイオード11は順方向電圧が存在するが説明をわかりやすくするためゼロとし第1出力電圧をV1、第2出力電圧をV2と導くと、TON期間では第1巻線3aにはVIN−V1の電圧が印加されるとともにトランス3の第2巻線3bには、nb/na・(VIN−V1)の電圧が発生し、ダイオード9を介してチョークコイル10にはnb/na・(VIN−V1)−V2の電圧が印加され、チョークコイル10の励磁電流と非制御第2出力の出力電流が流れる。又、第1巻線3aには、第1巻線3aの励磁電流と制御された第1出力の出力電流と第2巻線3bを介して流れる前記チョークコイル10の励磁電流と非制御第2出力の出力電流の和の電流が流れる。
【0027】
次にT−TON期間では第1巻線3aにはTON期間とは逆向きの電圧V1が印加され第1巻線3aの励磁エネルギーがダイオード5を介して制御された第1出力へ供給されると同時に第2巻線3bにもTON期間とは逆向きの電圧nb/na・V1が印加されるためダイオード9が逆バイアスとなりオフし、チョークコイル10にはTON期間とは逆向きの電圧V2が印加されチョークコイル10の励磁エネルギーがダイオード11を介して非制御第2出力へ供給される。
【0028】
この時、制御された第1出力の電圧V1及び非制御第2出力の電圧V2はそれぞれ、
V1=δ・VIN……(3)
V2=nb/na・(1−δ)・V1……(4)
となる。
【0029】
又、非制御第2出力が安定化可能な条件は、トランス3の第1巻線3aを流れる電流が連続状態の時であり制御された第1出力の出力電流をI1とすると、
I1≧(VIN−V1)/(2・L3a)・TON V1/(2・L3a)・(T−TON)……(5)
であり、上記条件において第2出力が安定な出力電流I2の範囲は、
I2≧{nb/na・(1−δ)・V1−V2}/(2・L10)・TON V2/(2・L10)・(T−TON)……(6)
となる。
【0030】
上述のように非制御第2出力への電力供給は制御された第1出力への電力供給のためのトランス3の第1巻線3aにエネルギーを蓄積期間(TON期間)中にトランス3の第2巻線3b、ダイオード9を介してチョークコイル10にエネルギーを蓄積し、トランス3の第1巻線3aに蓄積されたエネルギーを制御された第1出力へ放電している期間(T−TON期間)中はエネルギーが蓄積されたチョークコイル10から非制御第2出力へエネルギーが供給されるため、第2出力は第1出力の電力制限を受けない。また、第2出力はリーケージインダクタンスLrを介した電力供給でないためリーケージインダクタンスLrでの電圧降下がなく電圧安定度がよい。さらにトランス3の第1巻線3aに蓄積されたエネルギーの制御された第1出力への放電動作においては放電エネルギーの一部を非制御第2出力に取り出さないため第1巻線3aを流れる電流のリップル電流を小さくでき平滑コンデンサ4の小型化が図れるとともにトランス3の小型化も可能である。また、非制御第2出力がチョークインプット型整流平滑回路12の構成となるため電圧安定度がよくさらに第2の平滑コンデンサ7のリップル電流も小さくなり第2の平滑コンデンサ7の小型化が可能であることから、非制御第2出力の安定化、大電力化、トランス3の小型化及び平滑コンデンサ4及び平滑コンデンサ7の小型化が可能となるものである。
【0031】
なお、この実施の形態では制御された第1出力と非制御第2出力の2出力構成としたが、さらにトランス3に第3、第4巻線等を設けて、3出力以上のチョークインプット型整流平滑回路からなる非制御の多出力の構成としてもよいものである。
【0032】
又、パルス入力電源2の周期Tを固定し、TON幅制御としたが周期T制御、TON幅固定の制御方法等を用いても良いものである。
【0033】
(実施の形態2)
次に、本発明のスイッチング電源装置の他の実施の形態について説明する。なお、以下の各実施の形態の説明にあたっては主として実施の形態1との相違点を中心に説明する。
【0034】
図3は回路構成図であり、図4は同動作波形図である。1はチョッパー方式降圧型コンバータで、パルス入力電源2とトランス3の第1巻線3aと第1の平滑コンデンサ4からなる第1の直列回路と、ダイオード5の構成からなり、第1の直流回路の第1巻線3aと第1の平滑コンデンサ4の接続点を制御された第1出力とし、トランス3の第2巻線3bとダイオード9からなる第3の直流回路とチョークコイル10と第2の平滑コンデンサ7からなる第2の直列回路を直列接続し、ダイオード9とチョークコイル10の接続点と前記第1出力間にダイオード11を接続し、チョークコイル10と第2の平滑コンデンサ7の接続点を非制御第2出力とする構成からなっている。
【0035】
上記構成における動作を図4を用いて説明すると、図4(a)はパルス入力電源2の電圧波形を示し、図4(b)はトランス3の第1巻線3aの印加電圧波形を示し、図4(c)はトランス3の第1巻線3aを流れる電流波形を示し、図4(d)はトランス3の第2巻線3bの両端電圧波形を示し、図4(e)はチョークコイル10の印加電圧波形を示し、図4(f)はチョークコイル10を流れる電流波形を示している。
【0036】
今、パルス入力電源2のパルス周期をT、電圧VINが出力される期間をTON、δ=TON/T、トランス3の第1巻線3aの巻線数をna、インダクタンス値をL3a、2次巻線数をnbとし、チョークコイル10のインダクタンス値L10、ダイオード5、ダイオード9及びダイオード11には順方向電圧が存在するが説明をわかりやすくするためゼロとして第1出力電圧をV1、第2出力電圧をV2とすると、TONでは第1巻線3aにはVIN−V1の電圧が印加されるとともにトランス3の第2巻線3bには、nb/na・(VIN−V1)の電圧が発生し、ダイオード9を介してチョークコイル10にはnb/na・(VIN−V1)−V2の電圧が印加され、チョークコイル10の励磁電流と非制御第2出力の出力電流が流れる。又、第1巻線3aには、第1巻線3aの励磁電流と制御された第1出力の出力電流と第2巻線3bを介して流れる前記チョークコイル10の励磁電流と非制御第2出力の出力電流の和の電流が流れる。
【0037】
次にT−TON期間では第1巻線3aにはTON期間とは逆向きの電圧V1が印加され第1巻線3aの励磁エネルギーがダイオード5を介して制御された第1出力へ供給されると同時に第2巻線3bにもTON期間とは逆向きの電圧nb/na・V1が印加されるためダイオード9が逆バイアスとなりオフし、チョークコイル10にはTON期間とは逆向きの電圧V2−V1が印加されチョークコイル10の励磁エネルギーがダイオード5、ダイオード11を介して非制御第2出力へ供給される。
【0038】
この時、制御された第1出力の電圧V1及び非制御第2出力の電圧V2はそれぞれ
V1=δ・VIN……(7)
V2=(nb/na+1)・(1−δ)・V1……(8)
となる。
【0039】
又、非制御第2出力が安定化可能な条件は、トランス3の第1巻線3aを流れる電流が連続状態の時であり第1出力の出力電流をI1とすると、
I1≧(VIN−V1)/(2・L3a)・TON−I2 V1/(2・L3a)・(T−TON)−I2……(9)
であり、上記条件において非制御第2出力が安定な出力電流I2の範囲は、
I2≧{nb/na・(VIN−V1)−V2}/(2・L10)・TON (V2−V1)/(2・L10)・(T−TON)……(10)
となる。
【0040】
上述のように非制御第2出力への電力供給は、制御された第1出力への電力供給のためのトランス3の第1巻線3aにエネルギーを蓄積期間(TON期間)中にトランス3の第2巻線3b、ダイオード9を介してチョークコイル10にエネルギーを蓄積し、トランス3の第1巻線3aに蓄積されたエネルギーを制御された第1出力へ放電している期間(T−TON期間)中はエネルギーが蓄積されたチョークコイル10からダイオード5、第1巻線3a、ダイオード11を介して非制御第2出力へエネルギーが供給されるため、実施の形態1の効果に加えてさらに、式(3)、(4)、(7)、(8)から明らかなようにトランス3の第2巻線数nbを少なくすることができトランス3の小型化、損失低減ができるとともに第2の整流手段であるダイオード9及び第3の整流手段であるダイオード11の逆印加電圧を低減できるため電圧定格の小さい素子が使え高効率化及び低コストが可能となる。
【0041】
また、式(6)、式(10)から明らかなように非制御第2出力の出力電流I2の範囲を拡大することが可能となる(I2の最小電流値をさらに小さくできる。)。言い換えると非制御第2出力の最小出力電流を実施の形態1と同じとすればチョークコイル10のインダクタンス値L10を小さくできるためチョークコイル10の小型化、損失低減が可能となる。
【0042】
また、T−TON期間にチョークコイル10の放電電流がダイオード5、第1巻線3aにも流れることが制御された第1出力の出力電流の減少に伴う第1巻線3aを流れる電流の不連続動作への移行を抑制するため制御された第1出力の出力電流I1の範囲を拡大することが可能となる(I1の最小電流値をさらに小さくできる。)。言い換えると制御された第1出力の最小出力電流を実施の形態1と同じとすれば第1巻線3aのインダクタンス値を小さくできるためトランス3の小型化、損失低減が可能となる。
【0043】
さらに、T−TON期間にチョークコイル10の放電電流がダイオード5、第1巻線3aにも流れその電流による電圧降下が発生するため制御された第1出力の電圧も低下するが出力電圧を一定となるようにTON期間が変化しこの変化が非制御第2出力のラインインピーダンスによる電圧降下分の一部を補うように働くため非制御第2出力は実施の形態1よりもさらに安定化が可能にできるといった効果が得られ、さらなる第2出力の安定化、チョークコイル10の小型化、トランス3の小型化と高効率化ができる。
【0044】
なお、本実施の形態においてもトランス3に第3、第4巻線等を設けて、3出力以上のチョークインプット型整流平滑回路からなる非制御の多出力の構成としてもよいものである。
【0045】
又、パルス入力電源2の周期Tを固定し、TON幅制御としたが周期T制御、TON幅固定の制御方法等としてもよいものである。
【0046】
(実施の形態3)
図5は本発明の他の実施の形態の多出力のスイッチング電源装置の回路構成図であり、図6は同動作波形図である。同図によると、1はチョッパー方式降圧型コンバータで、パルス入力電源2とトランス3の第1巻線3aと第1の平滑コンデンサ4からなる第1の直列回路とダイオード5の構成からなり、第1巻線3aと第1の平滑コンデンサ4の接続点を制御された第1出力とし、第1の平滑コンデンサ4にチョークコイル10と第2の平滑コンデンサ7からなる第2の直列回路を第3の整流手段であるダイオード11に並列接続するとともに、このダイオード11と第2の整流手段であるダイオード9とトランスの第2巻線3bからなる第3の直列回路を直列接続したものを第1の平滑コンデンサ4に並列接続し、チョークコイル10と第2の平滑コンデンサ7の接続点を非制御第2出力とする構成としたものである。
【0047】
次に動作について説明すると、図6(a)は、パルス入力電源2の電圧波形を、図6(b)はトランス3の第1巻線3aの印加電圧波形を、図6(c)はトランス3の第1巻線3aを流れる電流波形を、図6(d)はトランス3の第2巻線3bの両端電圧波形を、図6(e)はチョークコイル10の印加電圧波形を、図6(f)はチョークコイル10を流れる電流波形を示している。
【0048】
今、パルス入力電源2のパルス周期をT、電圧VINが出力される期間をTON、δ=TON/T、トランス3の第1巻線3aの巻線数をna、インダクタンス値をL3a、2次巻線数をnbとし、ダイオード5、ダイオード9及びダイオード11には順方向電圧が存在するが説明をわかりやすくするためゼロとして第1出力電圧をV1、第2出力電圧をV2とすると、TONには第1巻線3aにはVIN−V1の電圧が印加されるとともにトランス3の第2巻線3bには、nb/na・(VIN−V1)の電圧が発生し、ダイオード9を介してチョークコイル10にnb/na・(VIN−V1)+V1−V2の電圧が印加され、チョークコイル10の励磁電流と非制御第2出力の出力電流が流れる。
【0049】
又、第1巻線3aには、第1巻線3aの励磁電流と制御された第1出力の出力電流と第2巻線3bを介して流れる前記チョークコイル10の励磁電流と非制御第2出力の出力電流の和の電流が流れる。
【0050】
次にT−TON期間では第1巻線3aにはTON期間とは逆向きの電圧V1が印加され第1巻線3aの励磁エネルギーがダイオード5を介して制御された第1出力へ供給されると同時に第2巻線3bにもTON期間とは逆向きの電圧nb/na・V1が印加されるためダイオード9が逆バイアスとなりオフし、チョークコイル10にはTON期間とは逆向きの電圧V2が印加されチョークコイル10の励磁エネルギーがダイオード11を介して非制御第2出力へ供給される。
【0051】
この時、制御された第1出力の電圧V1及び非制御第2出力の電圧V2はそれぞれ
V1=δ・VIN……(11)
V2={δ+nb/na・(1−δ)}・V1……(12)
となる。
【0052】
又、非制御第2出力が安定化可能な条件は、トランス3の第1巻線3aを流れる電流が連続状態の時であり第1出力の出力電流をI1とすると、
I1≧(VIN−V1)/(2・L3a)・TON V1/(2・L3a)・(T−TON)……(13)
であり、上記条件において第2出力が安定な出力電流I2の範囲は、
I2≧{nb/na・(VIN−V1)+V1−V2}/(2・L10)・TON V2/(2・L10)・(T−TON)……(14)
となる。
【0053】
上述のように非制御第2出力への電力供給は、制御された第1出力への電力供給のためのトランス3の第1巻線3aにエネルギーを蓄積期間(TON期間)中にトランス3の第2巻線3b、ダイオード9を介してチョークコイル10にエネルギーを蓄積し、トランス3の第1巻線3aに蓄積されたエネルギーを制御された第1出力へ放電している期間(T−TON期間)中はエネルギーが蓄積されたチョークコイル10からダイオード11を介して非制御第2出力へエネルギーが供給されるため、実施の形態1の効果に加えてさらに、式(3)、(4)、(11)、(12)から明らかなようにトランス3の第2巻線数nbを少なくすることができ、パルス入力電圧2の出力電圧値VINの変動に対しても第2出力の変動を小さくでき非制御第2出力のさらなる安定化とさらにトランス3の小型化、損失低減ができるとともに第2の整流手段であるダイオード9及び第3の整流手段であるダイオード11の逆印加電圧を低減できるため電圧定格の小さい素子が使え高効率化及び低コストが可能となる。
【0054】
また、式(6)、式(14)から明らかなように非制御第2出力の出力電流I2の範囲を拡大することが可能となる(I2の最小電流値をさらに小さくできる。)。言い換えると非制御第2出力の最小出力電流を実施の形態1と同じとすればチョークコイル10のインダクタンス値L10を小さくできるためチョークコイル10の小型化、損失低減が可能となるといった効果が得られ、さらなる非制御第2出力の安定化、チョークコイル10の小型化、トランス3の小型化、高効率化ができる。
【0055】
なお、この実施の形態でも制御された第1出力と非制御第2出力の2出力構成としたが、前記実施形態同様に3出力以上の出力構成としてもよいものである。
【0056】
又、パルス入力電源2の周期Tを固定し、TON幅制御としたが周期T制御、TON幅固定の制御方法等としても良いものである。
【0057】
(実施の形態4)
図7は本発明のスイッチング電源の他の実施の形態の回路構成図であり、図8は同動作波形図である。同図によると、1はチョッパー方式降圧型コンバータで、パルス入力電源2とトランス3の第1巻線3aと第1の平滑コンデンサ4からなる第1の直列回路とダイオード5の構成からなり、この第1の直列回路の第1巻線3aと第1の平滑コンデンサ4の接続点を制御された第1出力とし、トランス3の第2巻線3bと第2の整流手段であるダイオード9からなる第3の直列回路に並列に第3の整流手段であるダイオード11を接続すると共に第1の平滑コンデンサ4に接続し、チョークコイル10と第2の平滑コンデンサ7からなる第2の直列回路を前記ダイオード11と第1の平滑コンデンサ4間に並列接続し、前記チョークコイル10と第2の平滑コンデンサ7の接続点を非制御第2出力とする構成にしたものであり、前述の実施の形態2と実施の形態3を組み合わせた構成としたものである。
【0058】
上記構成における動作を図8により説明する。図8(a)は、パルス入力電源2の電圧波形を、図8(b)はトランス3の第1巻線3aの印加電圧波形を、図8(c)はトランス3の第1巻線3aを流れる電流波形を、図8(d)はトランス3の第2巻線3bの両端電圧波形を、図8(e)はチョークコイル10の印加電圧波形を、図8(f)はチョークコイル10を流れる電流波形を示している。
【0059】
今、パルス入力電源2のパルス周期をT、電圧VINが出力される期間をTON、δ=TON/T、トランス3の第1巻線3aの巻線数をna、インダクタンス値をL3a、2次巻線数をnbとし、ダイオード5、ダイオード9及びダイオード11には順方向電圧が存在するが説明をわかりやすくするためゼロとして第1出力電圧をV1、第2出力電圧をV2とすると、TONでは第1巻線3aにはVIN−V1の電圧が印加されるとともにトランス3の第2巻線3bには、nb/na・(VIN−V1)の電圧が発生し、ダイオード9を介してチョークコイル10にnb/na・(VIN−V1)+V1−V2の電圧が印加され、チョークコイル10の励磁電流と非制御第2出力の出力電流が流れる。
【0060】
又、第1巻線3aには、第1巻線3aの励磁電流と制御された第1出力の出力電流と第2巻線3b、ダイオード9を介して流れる前記チョークコイル10の励磁電流と非制御第2出力の出力電流の和の電流が流れる。
【0061】
次にT−TON期間では第1巻線3aにはTON期間とは逆向きの電圧V1が印加され第1巻線3aの励磁エネルギーが第1出力、ダイオード5を介して放電されると同時に第2巻線3bにもTON期間とは逆向きの電圧nb/na・V1が印加されるためダイオード9が逆バイアスとなりオフし、チョークコイル10にはTON期間とは逆向きの電圧V2−V1が印加されチョークコイル10の励磁エネルギーがダイオード5とトランス3の第1巻線3aとダイオード11を介して非制御第2出力へ供給される。
【0062】
この時、第1出力の電圧V1及び第2出力の電圧V2はそれぞれ
V1=δ・VIN……(15)
V2={1+nb/na・(1−δ)}・V1……(16)
となる。
【0063】
又、非制御第2出力が安定化可能な条件は、トランス3の第1巻線3aを流れる電流が連続状態の時であり制御された第1出力の出力電流をI1とすると、
I1≧(VIN−V1)/(2・L3a)・TON V1/(2・L3a)・(T−TON)……(17)
であり、上記条件において第2出力が安定な出力電流I2の範囲は、
I2≧{nb/na・(VIN−V1)+V1−V2}/(2・L3a)・TON (V2−V1)/(2・L10)・(T−TON)……(18)
となる。
【0064】
上述のように非制御第2出力への電力供給は、制御された第1出力への電力供給のためのトランス3の第1巻線3aにエネルギーを蓄積期間(TON期間)中にトランス3の第2巻線3b、ダイオード9を介してチョークコイル10にエネルギーを蓄積し、トランス3の第1巻線3aに蓄積されたエネルギーを制御された第1出力へ放電している期間(T−TON期間)中はエネルギーが蓄積されたチョークコイル10からダイオード5とトランス3の第1巻線3aとダイオード11を介して非制御第2出力へ供給されるため実施の形態1に加えさらに実施の形態2と実施の形態3の効果も併せて得ることが可能となる。
【0065】
なお、本実施の形態でも制御された第1出力と非制御第2出力の2出力構成としたがさらにトランス3に第3、第4巻線を設け、非制御第3、非制御第4等の多出力の非制御出力構成としても良いものである。
【0066】
又、パルス入力電源2の周期Tを固定し、TON幅制御としたが周期T制御、TON幅固定の制御方法等でもよいものである。
【0067】
(実施の形態5)
本他の実施の形態は特に図示しないが実施の形態1、実施の形態2、実施の形態3または実施の形態4のそれぞれに記載の第1の整流手段であるダイオード5、第2の整流手段であるダイオード9及び第3の整流手段であるダイオード11を電界効果トランジスタとし、パルス入力電源2のハイレベルと同期して第2の整流手段である電界効果トランジスタ9をオン、第1の整流手段及び第3の整流手段である電界効果トランジスタ5及び11をオフし、パルス入力電源2のロウレベルと同期して第1の整流手段及び第3の整流手段である電界効果トランジスタ5及び11をオン、第2の整流手段である電界効果トランジスタ9をオフする既知のスイッチング手段(図示せず)を設けたものである。
【0068】
動作は各実施の形態と同様であるため説明は省略するが、本実施の形態では、各整流手段を電界効果トランジスタとすることによりダイオードに比べて整流損失の低減ができ高効率化が可能となるものである。
【0069】
以上、それぞれの実施の形態について説明したが、各実施の形態を組み合わせた複数の安定した出力を有する多出力スイッチング電源装置としても良いものである。
【0070】
又、パルス入力電源2を直流電源と第1出力を安定に制御するためにオン・オフ時間を制御されたスイッチング素子の直列接続構成としてもよく、さらには第1の出力を安定に制御する絶縁型スイッチング電源のトランスの2次巻線と整流素子の直列接続構成としてもよい。
【0071】
さらには、本発明の実施の形態の説明では1をチョッパー方式降圧型コンバータとしたが昇圧型コンバータでも極性反転型コンバータでも同じ効果が得られるものである。
【0072】
【発明の効果】
以上のように本発明のスイッチング電源装置は構成されるため、大電力化が可能で安定した非制御第2出力を得ることができさらにトランスの第3、第4、……巻線を設けることにより非制御第3、非制御第4、……出力の安定した複数の出力を得ることができるなどの効果が得られ又、第2の整流手段及び第3の整流手段の逆印加電圧の低減による高効率化、チョークコイルの小型化、トランスの小型化などを行うことが可能な効果も得られ高効率で小型化できる多出力スイッチング電源装置が実現できる。
【図面の簡単な説明】
【図1】 本発明のスイッチング電源装置の一実施の形態の回路構成図
【図2】 同動作波形図
【図3】 同他の実施の形態の回路構成図
【図4】 同動作波形図
【図5】 同他の実施の形態の回路構成図
【図6】 同動作波形図
【図7】 同他の実施の形態の回路構成図
【図8】 同動作波形図
【図9】 従来のスイッチング電源装置の回路構成図
【図10】 同動作波形図
【符号の説明】
1 チョッパー方式降圧型コンバータ
2 パルス入力電源
3 トランス
3a 第1巻線
3b 第2巻線
4 第1の平滑コンデンサ
5 ダイオード
6 ダイオード
7 第2の平滑コンデンサ
8 コンデンサインプット型整流平滑回路
9 ダイオード
10 チョークコイル
11 ダイオード
12 チョークインプット型整流平滑回路

Claims (5)

  1. パルス入力電源と、このパルス入力電源に接続したチョークコイルとして働くトランスの第1巻線と第1の平滑コンデンサからなる第1の直列回路と、この第1の直列回路に並列接続した第1の整流手段と、前記チョークコイルとして働くトランスの第2巻線と、この第2巻線に接続した第2の整流手段と、この第2の整流手段に接続した他のチョークコイルと第2の平滑コンデンサからなる第2の直列回路と、この第2の直列回路に並列接続した第3の整流手段とを備え、前記第1巻線と前記第1の平滑コンデンサの接続点を第1出力にするとともに、前記他のチョークコイルと前記第2の平滑コンデンサの接続点を非制御第2出力とするスイッチング電源装置。
  2. パルス入力電源と、このパルス入力電源に接続したチョークコイルとして働くトランスの第1巻線と第1の平滑コンデンサからなる第1の直列回路と、この第1の直列回路に並列接続した第1の整流手段と、前記チョークコイルとして働くトランスの第2巻線と、この第2巻線に接続した第2の整流手段と、この第2の整流手段に接続した他のチョークコイルと第2の平滑コンデンサからなる第2の直列回路と、この第2の直列回路と前記第2の整流手段との接続点に接続すると共に前記第1の平滑コンデンサと接続した第3の整流手段とを備え、前記第1巻線と前記第1の平滑コンデンサの接続点を第1出力にするとともに、前記他のチョークコイルと前記第2の平滑コンデンサの接続点を非制御第2出力とするスイッチング電源装置。
  3. パルス入力電源と、このパルス入力電源に接続したチョークコイルとして働くトランスの第1巻線と第1の平滑コンデンサからなる第1の直列回路と、この第1の直列回路に並列接続した第1の整流手段と、前記第1の平滑コンデンサに接続した前記チョークコイルとして働くトランスの第2巻線と、この第2巻線に接続した第2の整流手段と、この第2の整流手段に接続した他のチョークコイルと第2の平滑コンデンサからなる第2の直列回路と、この第2の直列回路と前記第2の整流手段との接続点に接続した第3の整流手段とを備え、前記第1巻線と前記第1の平滑コンデンサの接続点を第1出力にするとともに、前記他のチョークコイルと前記第2の平滑コンデンサの接続点を非制御第2出力とするスイッチング電源装置。
  4. パルス入力電源と、このパルス入力電源に接続したチョークコイルとして働くトランスの第1巻線と第1の平滑コンデンサからなる第1の直列回路と、この第1の直列回路に並列接続した第1の整流手段と、前記第1の平滑コンデンサに接続した前記チョークコイルとして働くトランスの第2巻線と、この第2巻線に接続した第2の整流手段と、この第2の整流手段に接続した他のチョークコイルと第2の平滑コンデンサからなる第2の直列回路と、この第2の直列回路と前記第2の整流手段との接続点に接続すると共に前記第1の平滑コンデンサと前記チョークコイルとして働くトランスの第2巻線との接続点に接続した第3の整流手段とを備え、前記第1巻線と前記第1の平滑コンデンサの接続点を第1出力にするとともに、前記他のチョークコイルと前記第2の平滑コンデンサの接続点を非制御第2出力とするスイッチング電源装置。
  5. 第1の整流手段、第2の整流手段及び第3の整流手段を電界効果トランジスタとし、パルス入力電源のハイレベルと同期させ第2の整流手段をオンし、第1の整流手段及び第3の整流手段をオフし、パルス入力電源のロウレベルと同期させて第1の整流手段及び第3の整流手段をオンし、第2の整流手段をオフするスイッチング手段を設けた請求項1〜請求項4のいずれか1つに記載のスイッチング電源装置。
JP06764897A 1997-03-21 1997-03-21 スイッチング電源装置 Expired - Fee Related JP3690049B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06764897A JP3690049B2 (ja) 1997-03-21 1997-03-21 スイッチング電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06764897A JP3690049B2 (ja) 1997-03-21 1997-03-21 スイッチング電源装置

Publications (2)

Publication Number Publication Date
JPH10271814A JPH10271814A (ja) 1998-10-09
JP3690049B2 true JP3690049B2 (ja) 2005-08-31

Family

ID=13351064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06764897A Expired - Fee Related JP3690049B2 (ja) 1997-03-21 1997-03-21 スイッチング電源装置

Country Status (1)

Country Link
JP (1) JP3690049B2 (ja)

Also Published As

Publication number Publication date
JPH10271814A (ja) 1998-10-09

Similar Documents

Publication Publication Date Title
JP6942852B2 (ja) 広出力電圧範囲用の絶縁型dc/dcコンバータ及びその制御方法
JP3682773B2 (ja) スイッチング電源装置
US6483731B1 (en) Alexander topology resonance energy conversion and inversion circuit utilizing a series capacitance multi-voltage resonance section
JP3201324B2 (ja) スイッチング電源装置
US7272020B2 (en) Isolated, current-fed, pulse width modulation, DC-DC converter
JPS63257459A (ja) スイツチングレギユレ−タ
JPH05316721A (ja) 並列制御型dc/dcコンバータ
JPH04351465A (ja) Dc・dcコンバータ
JPH11150875A (ja) 二次電池ユニット
US20060133119A1 (en) Electric power unit
JP4252269B2 (ja) 多出力dc−dcコンバータ
JPH0345984B2 (ja)
JP2009219333A (ja) 降圧型スイッチングdc/dcコンバータ
JP2006187159A (ja) 共振型スイッチング電源装置
JP3690049B2 (ja) スイッチング電源装置
JPH09201043A (ja) 電源装置
JP2001309646A (ja) スイッチング電源装置
KR100387381B1 (ko) 고효율의 스위칭모드 전원공급장치
JP4422504B2 (ja) スイッチング電源装置及びその制御方法
JP4093116B2 (ja) 力率改善コンバータ
JP2561201B2 (ja) 共振型dc−dcコンバータ
JP2003299359A (ja) スイッチング電源装置
JP3143847B2 (ja) Dc−dcコンバータ
JP2002159176A (ja) 電源装置及び放電灯点灯装置
JPH0340757A (ja) スイッチング電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees