JP3673743B2 - スクリュー式真空ポンプ - Google Patents

スクリュー式真空ポンプ Download PDF

Info

Publication number
JP3673743B2
JP3673743B2 JP2001296872A JP2001296872A JP3673743B2 JP 3673743 B2 JP3673743 B2 JP 3673743B2 JP 2001296872 A JP2001296872 A JP 2001296872A JP 2001296872 A JP2001296872 A JP 2001296872A JP 3673743 B2 JP3673743 B2 JP 3673743B2
Authority
JP
Japan
Prior art keywords
stroke
gas
vacuum pump
screw
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001296872A
Other languages
English (en)
Other versions
JP2003097480A (ja
Inventor
將士 ▲吉▼村
Original Assignee
大晃機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大晃機械工業株式会社 filed Critical 大晃機械工業株式会社
Priority to JP2001296872A priority Critical patent/JP3673743B2/ja
Priority to PCT/JP2001/010985 priority patent/WO2003031821A1/ja
Priority to US10/490,956 priority patent/US7214036B2/en
Priority to DE10197271T priority patent/DE10197271T5/de
Priority to KR1020047004326A priority patent/KR100602866B1/ko
Priority to TW091103344A priority patent/TW588143B/zh
Publication of JP2003097480A publication Critical patent/JP2003097480A/ja
Application granted granted Critical
Publication of JP3673743B2 publication Critical patent/JP3673743B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二軸多段式のスクリューロータを用いて気体を複数の行程で順次圧縮させるスクリュー式真空ポンプに関するものである。
【0002】
【従来の技術】
近年、地球環境保護の立場からCO2を削減するべく真空ポンプの消費電力に関する省エネルギが叫ばれている。また、安全性の面からケミカル用真空ポンプに関してヨーロッパ(EC)では真空ポンプからの吐出温度を135゜C以下と定めている。一般には温度等級T4に相当し、アセトアルデヒド、トリメチルアミン、エチルメチルエーテル、ジエチルエーテル等が本等級に該当し、これらの表面側温度を135゜C以下にする必要がある。
【0003】
従来のスクリュー式真空ポンプとしては、一軸単段式の一対のスクリューロータを用いたもの(特開昭63−36085号公報等)や、図5に示すような一軸二段式の一対のスクリューロータを用いたものがある。
【0004】
この真空ポンプ61は、ケーシング62内に右螺旋と左螺旋の左右一対のスクリューロータ63,64を回転自在に噛み合わせたものにおいて、各スクリューロータ63,64の軸方向に二種類のピッチの螺旋歯65,66を形成し、ケーシング62の吸入口67のある側に大きなピッチの螺旋歯65を配し、ケーシング62の吐出口(図示せず)のある側に小さなピッチの螺旋歯66を配したものである。
【0005】
各スクリューロータ63,64は両端側をベアリング73,68で支持され、一端側のタイミングギヤ69を介して互いに逆向きに回転自在であり、一方のロータ軸部70が駆動モータ側に接続される。
【0006】
各スクリューロータ63,64の回転により、吸入口67から第一の螺旋歯65側の空室71に導入されたガスは圧縮されつつ第二の螺旋歯66側の空室72に運ばれ、第二の空室72内でさらに圧縮されて、大気圧の状態で吐出口から排出される。
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の真空ポンプ61によれば、図6に特性図{縦軸の下側に軸動力(kw)、上側に排気速度(l/min)、横軸に真空度(MPaA)}を示す如く、第二の螺旋歯66でガスを圧縮する時に図6の下側の曲線の如く大きな馬力(軸動力La)を必要とし、吐出温度が200゜Cを越えることがあった。また、この第二行程までガスが圧縮されると、かなりの圧力損失が起こり、一対のスクリューロータ63,64の隙間洩れが発生し、図6の上側の線図の如く排気速度Sが低下するという問題があった。
【0008】
このような排気特性の場合、モータ馬力を大きくしなければならないばかりでなく、低真空運転が困難であり、排気ガスの温度上昇(135゜C以上)を起こすと共に、特に大気〜真空の動作を繰り返す場合に多くの排気時間がかかり、性能的に不利であった。
【0009】
本発明は、上記した点に鑑み、省エネルギ化を図り、CO2の削減に寄与すると共に、真空ポンプの内部温度(吐出温度)がEN規格(135゜C以下)を満たし、安全性が高く、且つ排気性能に優れた真空ポンプを提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に係るスクリュー式真空ポンプは、軸直角断面形状がエピトロコイド、円弧、擬アルキメデス曲線からなる一対のスクリューロータを噛み合わせてケーシング内に回転自在に収容し、軸方向に沿って気体を排気するスクリュー式真空ポンプにおいて、前記一対のスクリューロータが、理論押し除け量の異なる三種類の螺旋歯を軸方向に順に備え、第一種の螺旋歯と第二種の螺旋歯との間の空間と、第二種の螺旋歯と第三種の螺旋歯との間の空間とが、それぞれ逆止弁を介して吐出側に続くバイパス管に接続され、前記三種類の螺旋歯の押し除け量に関し、第一行程と第二行程の風量比を略1.4、第二行程と第三行程の風量比を略1.4、すなわち第一行程と第三行程の風量比を略2としたことを特徴とする。
【0011】
上記構成により、ケーシング内に導入されたガスは先ず第一行程の第一種の螺旋歯で圧縮され、この際、ガス圧が規定値(例えば大気圧)以上になると規定値以上のガス圧が逆止弁からバイパス管に排気され、残りのガス圧が第二行程の第二種の螺旋歯で圧縮され、この際も第一行程と同様に規定値以上のガス圧が排気され、残りのガス圧が第三行程の第三種の螺旋歯で圧縮されて外部へ吐出される。各逆止弁はバイパス管からの排気の逆流を阻止する。
【0012】
これにより、第一行程〜第三の行程に至るまで、スクリューロータに大きな負荷がかからず、軸動力が少なくて済む。また、ケーシング内が従来のような高圧にならないから、排出ガスの温度上昇が抑えられる。また、排気は第一行程と第二行程との間及び第二行程と第三行程との間及び第三行程の吐出口からそれぞれ行われるので、排気速度が第一行程〜第三行程に至るまでほぼ均一に安定し、排気速度の低下が起こらず、排気時間が短縮される。
【0014】
上記構成により、圧力比Pd/Ps=2であり、Pd=760Torrとすれば、Ps=Pd/2=380Torrである。吐出温度Td=Ts(Pd/Ps)n-1/nであり、ポリトロープ指数n=1.6とすれば、Td≒106゜Cで、この値はEN規格の135゜C以下を十分に満足する。
【0015】
請求項に係るスクリュー式真空ポンプは、請求項記載のスクリュー式真空ポンプにおいて、前記第三行程でガスを第一行程の略1/2に圧縮した後に吐出ポートが開いてガスを排出するようにしたことを特徴とする。
上記構成により、請求項記載の第一行程と第三行程の風量比(略2)が正確に規制される。
【0016】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明に係るスクリュー式真空ポンプ(正確にはスクリュー式ドライ真空ポンプ)の一実施形態を示すものである。
【0017】
この真空ポンプ1は、金属製のケーシング2内に右螺旋と左螺旋の金属製の一対のスクリューロータ3,4を回転自在に歯合させたものにおいて、各スクリューロータ3,4を軸方向に三種類の螺旋ピッチで形成し、ケーシング2の吸入口5から吐出口6に至るまで第一〜第三の三つの圧縮行程(ステージ)7〜9を設定すると共に、第一行程7と第二行程8との中間の空室10と、第二行程8と第三行程9との中間の空室11とをそれぞれ逆止弁12,13を介してケーシング外部の配管(バイパス管)14で連通させ、その配管14を吐出口6側の配管15に連通させたことを特徴としている。
【0018】
ケーシング2は外側が略長円形に形成され、内側に二つの断面円形の空室を径方向にラップ(連通)させた略眼鏡形状のロータ収容室16,17を有し、外側に冷却(水冷)用のジャケット18を有している。二つの並列な収容室16,17に左右一対のスクリューロータ3,4が回転自在に収容され、各スクリューロータ3,4の外周面は若干の隙間を存して収容室16,17の内周面に近接し、各スクリューロータ3,4同士も若干の隙間を存して非接触で位置している。
【0019】
各スクリューロータ3,4の軸部19,20はケーシング2の長手方向前後の隔壁21,22を貫通して外側の各サイドケース23,24内のベアリング25,26で回動自在に支持されている。軸部19,20とスクリューロータ3,4とはキー等で固定されている。吐出口6は隔壁22側の吐出ポート6aに続いている。
【0020】
吸入口5側のサイドケース23内には一対のコロ軸受25が配設固定され、吐出口6側のサイドケース24内には一対のボール軸受26が配設固定されると共に、その外側のカバー27内に一対のタイミングギヤ28が配設され、各軸部19,20は隔壁22側でシール部材で気密に封止され、各タイミングギヤ28は相互に歯合して両軸部19,20を逆方向に回転自在に連結している。
【0021】
一方の軸部19はカバー27の外側に延長され、継手を介してモータ(図示せず)に接続される。モータの駆動で駆動側のスクリューロータ3は矢印Aの如く右回りに回転し、従動側のスクリューロータ4は左回りに回転する。
【0022】
各スクリューロータ3,4は吸入口5側において大きな螺旋ピッチで形成され、吐出口6側において小さな螺旋ピッチで形成され、吸入口5と吐出口6との軸方向中間位置において中位の大きさの螺旋ピッチで形成されている。吸入口5側の大きなピッチの螺旋歯(第一種の螺旋歯)29で第一の行程7が構成され、軸方向中間の中位のピッチの螺旋歯(第二種の螺旋歯)30で第二の行程8が構成され、吐出口6側の小さなピッチの螺旋歯(第三種の螺旋歯)31で第三の行程9が構成されている。
【0023】
本形態において第一行程7の空室(収容室)32は軸方向に長く、第二行程8の空室33は第一行程7の空室32と同程度ないしそれよりもやや短く、第三行程9の空室34は第二行程8の空室33よりも短く形成されている。
【0024】
吸入口5は第一行程7の空室32に連通して第一行程7の螺旋歯29の一巻き目に対応して位置し、吐出口6のポート6aは第三行程9の空室34に連通して第三行程9の螺旋歯31の終端面31bに対応して位置し、吐出管15で外部に続いている。吐出ポート6aはスクリューロータ4の回動に伴って螺旋歯31の終端面31bで塞がれて閉じ、終端面31bの移動によって開放されて開く。吐出ポート6aの形状は例えば略三日月状である(例えば小径の内側円弧と大径の外側円弧と両円弧の一端を結ぶ直線とで構成され、他端は交差している)。
【0025】
吐出管15は途中で分岐され、その分岐された配管14が、ケーシング長手方向に沿って位置し、第二行程8と第三行程9との中間位置の空室11と、第一行程7と第二行程8の中間位置の空室10とにそれぞれ逆止弁13,12を介して連通している。配管14の始端側の部分14aがほぼ直角に屈曲して第一の逆止弁12に続き、配管14の長手方向中間部が短い配管14bで第二の逆止弁13に続いている。
【0026】
各逆止弁12,13はケーシング2の外壁面に固定されてシールリングで密封されつつ、ケーシング2の孔部35,36を経て各中間室10,11に続いている。各逆止弁12,13は各中間室10,11から配管14へのガス(気体)の流出を可能とし、配管14から各中間室10,11へのガスの逆流を阻止する。各逆止弁12,13は、中間室10,11の圧力が規定圧(例えば大気圧)以上になると開弁してガスを一方向にのみ流出させる。
【0027】
第一の中間室10は第一行程7の螺旋歯29の終端面29bと第二行程8の螺旋歯30の始端面30aとの間に位置し、第二の中間室11は第二行程8の螺旋歯30の終端面30bと第三行程9の螺旋歯31の始端面31aとの間に位置している。各中間室10,11の軸方向長さは螺旋歯30の半周程度の軸方向長さであり、各中間室10,11内にスクリューロータ19,20の谷部37と同じ径の円筒形の中間軸38が位置している。軸部19,20は中間軸38や谷部37よりも小径でスクリューロータ3,4の径方向中心部を貫通している。各中間室10,11に続く孔部35,36に対して180゜反対側に設けられた孔部39,40は蓋とシールリングで密閉されている。
【0028】
一対のスクリューロータ3,4は逆ねじ形状であるだけでなく、駆動側の右螺旋のスクリューロータ3が軸方向に第三行程9の小ピッチの螺旋歯31→第二行程8の中ピッチの螺旋歯30→第一行程7の大ピッチの螺旋歯29と続くのに対し、従動側の左回りのスクリューロータ4は軸方向に第一行程7の大ピッチの螺旋歯29→第二行程8の中ピッチの螺旋歯30→第三行程9の小ピッチの螺旋歯31と続く点で全体形状が相違している。各螺旋歯29〜31ごとの形状は両スクリューロータ3,4で同じである。
【0029】
参考までに図2に一対のスクリューロータ3,4を噛み合わせた状態の軸直角方向断面を示す如く、各螺旋歯29〜31(図では中間の螺旋歯30を示す)は、谷部37の外周を構成する小径のほぼ1/4周の円弧43と、円弧43の一方に続く擬アルキメデス曲線44と、円弧43の他方に続くエピトロコイド曲線45と、螺旋歯外周の大きな円弧46とで構成され、擬アルキメデス曲線44の裾側とエピトロコイド曲線45の裾側は大きな円弧46に滑らかに続いている。図2で符号47は回転中心を示す。
【0030】
一対のスクリューロータ3,4がケーシング2内で矢印の如く逆向きに回転し、あるところまで圧縮なしで等容積で移動し、サイドケース24側の隔壁22に設けた吐出ポート6a(図1)がスクリューロータ4の終端面で閉止された状態から開になる直前の1/2回転のところでガスが圧縮されて、吐出ポート6aの開と同時に排出される。詳細については特開昭63−36085号公報参照。
【0031】
以下に上記真空ポンプの作用及び理論構成を説明する。
図1で一対のスクリューロータ3,4の回転により、ケーシング2の吸入口5から吸引されたガス(気体)は第一行程7の左右一対の螺旋歯29により圧縮されつつ第二行程8へ送られる。ここで、第二行程8の排気容量は第一行程7の排気容量よりも小さい(例えばケーシング内2で第二行程8の螺旋歯30のつくり出す空間は第一行程7の螺旋歯29のつくり出す空間よりも小さい)から、当然ガスの圧縮が起こる。この圧縮圧が吐出圧力(本形態の場合は大気圧)よりも大きい場合、ガスは、第一の中間室10から逆止弁12を経て配管14を通って吐出されるものと、第二行程8に進むものとに分岐される。
【0032】
第一行程7と第二行程8の中間圧力すなわち第一の中間室10の圧力をPm1とすれば、
Pm1=Ps1×Qs1/Qs2×Tm1/Ts1 ……(1)
ここで、Ps1;吸入口5の圧力
Qs1;第一行程7の吸込排気速度
Qs2;第二行程8の吸込排気速度
Tm1;第一行程7と第二行程8間のガスの温度
Ts1;吸入口5のガスの温度(絶対温度) である。
【0033】
Pm1が(1)式で上記各値を代入して得られる値になるまで{(1)式の値を満足するまで}、ガスは逆止弁12を介して吐出口6側へ配管14を経て排出されるものと、第二行程8に進行するものとに分岐され、Pm1が(1)式の値を満足すると、逆止弁12は閉となり、吸入口5から吸引されたガスは全て第二行程8へ進行する。
【0034】
第二行程8においても、第一行程7と同様に、第二行程8と第三行程9の中間圧力すなわち第二の中間室11の圧力をPm2とすれば、
Figure 0003673743
ここで、Qs3;第三行程の吸込排気速度
Tm2;第二行程と第三行程間のガスの温度
Ps1,Qs1,Qs2,Tm1,Ts1は上記同様である。
【0035】
Pm2が(2)式の値を満足するまで、ガスは逆止弁13を介して吐出口6側へ配管14を通って排出されるものと、第三行程9へ進行するものとに分岐される。Pm2が(2)式の値を満足すると、逆止弁13は閉となり、吸入口5から吸引されたガスは全て第三行程9へと移行する。
【0036】
図3に、従来と本発明の真空ポンプのP−V(仕事)線図を比較して示す如く、従来品のP−V線図は、図3で0−V1−1−m−4−Pdを結ぶ線図となり、本発明の真空ポンプ1のP−V線図は、0−V1−1−2−3−4−Pdを結ぶ線図となる。
【0037】
図3で、Pは圧力、Vは比体積、Pdは吐出圧、Pm1は第一行程7と第二行程8との中間(第一の中間室10)の圧力、Pm2は第二行程8と第三行程9との中間(第二の中間室11)の圧力、V1は吸入側(圧縮開始点)における比体積、V2は第一の中間室10における比体積、V3は第二の中間室11における比体積、V4は吐出側における比体積をそれぞれ示す。
【0038】
従来の真空ポンプにおいては吸入側(図3の符号1)から吐出側(図3の符号4)に至るまで圧力が直線に近い二次曲線で増加するのに対して、本発明の真空ポンプ1(図1)によれば、第一行程7の空室32内のガス圧力が大気圧以上になった際に、中間室10から逆止弁12を経てバイパス管14に排出されるから、図3の符号1〜2の如く第一行程7の空室32内で圧力が一定(Pm1)に保たれ、次いで第二行程8の空室33内でガスが圧縮されて符号2〜mの如く縦方向にPm2まで高められ、第二行程8の空室33内のガス圧力が大気圧以上になった際に、中間室11から逆止弁13を経てバイパス管14に排出されるから、図3の符号m〜3の如く第二行程8の空室33内で圧力が一定(Pm2)に保たれ、次いで第三行程9の空室34内で吐出側に至るまで図3の符号3〜4の如く略二次曲線的に圧力が高められる。
【0039】
このように、従来型に較べて本発明品の場合は、図3でハッチングを施した部分の面積に相当する分だけ動力が節約される(省エネルギ化される)ことになる。
【0040】
吐出温度に関しては、吸入温度Ts1を40゜C(絶対温度で313K)とすれば、第一行程を出たところの温度すなわち第一行程での吐出温度tm1は、
Figure 0003673743
ここで、n;ポリトロープ指数
第一行程での吐出温度tm1は82゜C<135゜Cであり、EN規格を満足している。
【0041】
同じく第二行程での吐出温度tm2は、
Figure 0003673743
第二行程での吐出温度tm2は130゜C<135゜Cであり、同じくEN規格を満足している。
【0042】
第三行程では、真空状態での熱量授受から計算すると、殆どの熱量すなわちモータ動力はケーシングジャケット部18(図1)の冷却水の温度上昇として変換されるので、第二行程の吐出温度tm2≒第三行程の吐出温度tdと考えられる。
従って、第一行程〜第三行程を通過した全てのガスはEN規格を満足して135゜C以下で排出されることになる。
【0043】
以下に本発明の真空ポンプ1の特徴を総括して記載する。
従来技術では最終段まで一度に圧縮するため、第一行程と第二行程の中間圧がスクリューロータに作用して馬力を消費していた。本発明の実施形態においてもバイパス管としての配管14や逆止弁12,13を用いなければ、従来と同様に第一行程7と第二行程8の中間圧や第二行程8と第三行程9の中間圧がスクリューロータ3,4に作用して馬力を消費してしまうことになる。そうならないために、各行程間で中間圧を抜いてやり、大気以上の圧力が発生しないような構造とした。
【0044】
また、吸入側から第一行程7の螺旋歯29、第二行程8の螺旋歯30、第三行程9の螺旋歯31と配列した場合に、吐出温度(内部温度)の限界を135゜C以下と考え、第一行程7→第二行程8→吐出(第三行程9)の順で吸引ガスが流れ始める時の圧力比を2とした。
【0045】
第一行程7と第二行程8の間の中間圧をPm1、第二行程8と第三行程9の間の中間圧をPm2、吸入圧をPs、吐出圧をPd、第一行程7の空室32の容積をQ1、第二行程8の空室33の容積をQ2、空室32内の温度をT1、空室33内の温度をT2、第一行程7と第二行程8の風量比をR1、第二行程8と第三行程の風量比をR2とすると、
1=Pm1/Ps=Q1/Q2×T2/T1 ……(3)
2=Pm2/Pm1=Q2/Q3×T3/T2 ……(4)
従って、
1×R2=Pm2/Ps=Q1/Q3×T3/T1≒Qth1/Qth3 ……(5)
【0046】
(5)式を計算すると、R1×R2=2である。
すなわち、第三行程9の螺旋歯31による理論押し除け量Qth3を第一行程7の螺旋歯29による理論押し除け量Qth1の1/2とする。
【0047】
また、R1×R2=R2=2より、
1=R2=R=√2≒1.4となり、
第一行程7と第二行程8の理論押し除け量は1.4、すなわち第二行程8の理論押し除け量を第一行程7の1/1.4、第三行程9の1.4倍とすればよい。理論押し除け量の比率は第一行程:第二行程:第三行程=2:1.4:1である。
【0048】
このように、第一行程7と第二行程8の風量比を略1.4、第二行程8と第三行程9の風量比を略1.4とする。すなわち、第一行程7と第三行程9の風量比を略2とする。第三行程9において吐出ポート6a(図1)の形状を、ガスが略1/2圧縮後にポート6aが開いて排出されるような形状とする。
【0049】
圧力比Pd/Ps=2と言うことは、
Pd=760Torr(0.1MPaA又は1ATM)とすれば、
Ps=Pd/2=380Torr(0.05MPaA)である。
ここで、Pdは吐出圧、Psは吸入圧である。
一般に、吐出温度Td=Ts(Pd/Ps)n-1/n
ここで、nはポリトロープ指数であり、n=1.6とすれば、
Td=293×20.375
≒106(゜C)
106゜C<135゜CでEN規格を満足する。
【0050】
380Torr以上の高真空域については熱量授受による吐出温度計算をすると、135゜C以下となり得る。吸引側を締め切って使用する時には、送冷却ガスをロータ吐出側に導入して真空ポンプ内を冷却するものとする。送冷却ガスはケーシング内周に設けたポート(図示せず)から螺旋歯による開閉動作でケーシング内に供給される。この点については特開昭63−36085号参照。
【0051】
また、図4に性能特性を示す{縦軸の下側に軸動力La(kw)、上側に排気速度(流量)S(l/min)、横軸に真空度(MPaA)を示す}如く、消費電力(軸動力)も従来の一軸単段式のスクリューロータで到達まで運転するより(図6参照)遙かに少ない動力で運転でき、省エネ型となる。
【0052】
図4で、軸動力Laの符号1〜2の区間は第一行程7の螺旋歯29でガスを圧縮する際の軸動力、符号2〜3の区間は第二行程8の螺旋歯30でガスを圧縮する際の軸動力、符号3〜4の区間は第三行程9の螺旋歯31でガスを圧縮する際の軸動力をそれぞれ示している。従来と違ってバイパス管14による排気作用で特に第二行程8におけるガス圧縮時の軸動力が低く抑えられ、全体としてフラットな略台形状の軸動力線図となっている。
【0053】
また、図4で上側に排気速度線図を示す如く、バイパス管14を設けたことにより、従来(図6の上側の線図)のように排気量が吐出側で損なわれることなく、第一行程7の螺旋歯29による排気速度(流量)が第三行程9で大気圧に至るまで維持されるので、大気〜真空を繰り返す運転の場合、排気時間が大幅に短縮され、運転が効率良く行われる。
【0054】
なお、上記真空ポンプ1(図1)の他の実施形態として、一対のスクリューロータ3,4を左右一対ではなく、上下一対配置することも可能である。また、スクリューロータ3,4の各行程における螺旋歯を別体に製造して組み立てて一体化させることも可能である。また、タイミングギヤ28を吐出側ではなく吸入側に配置することも可能である。また、ガスの圧縮を三つ行程7〜9で行わせる構成は、図2の曲線形状以外のスクリューロータを使う真空ポンプにも適用可能である。また、上記ガスは空気であってもよい。
【0055】
【発明の効果】
以上の如く、請求項1記載の発明によれば、三種類の螺旋歯とバイパス管と逆止弁の作用で、第一行程〜第三の行程に至るまで、スクリューロータに大きな負荷がかからず、軸動力(消費電力)が少なくて済むから、省エネルギ化が達成され、火力発電等におけるCO2の削減が可能となる。また、ケーシング内が従来のような高圧にならないから、排出ガスの温度上昇が抑えられ、例えばケミカル用真空ポンプにおける安全性が高まる。また、排気速度が第一行程の状態で維持されるから、特に大気〜真空を繰り返す運転の場合に排気時間が大幅に短縮され、運転効率がアップする。
【0056】
また、排出ガスの温度上昇が抑えられ、ケミカル用真空ポンプにおけるECの温度規格を満足して、ケミカルガスの引火等の危険が回避され、安全性が高まる。
請求項記載の発明によれば、各行程の風量比が正確に規制され、上記請求項記載の効果が一層確実に達成される。
【図面の簡単な説明】
【図1】本発明に係るスクリュー式真空ポンプの一実施形態を示す断面図である。
【図2】同じく真空ポンプの一対のスクリューロータの形状を示す軸直角断面図である。
【図3】本発明の真空ポンプと従来の真空ポンプの仕事量を比較して示すPV線図である。
【図4】本発明の真空ポンプの排気速度と軸動力を示す性能線図である。
【図5】従来の真空ポンプを示す断面図である。
【図6】従来の真空ポンプの排気速度と軸動力を示す性能線図である。
【符号の説明】
1 スクリュー式真空ポンプ
2 ケーシング
3,4 スクリューロータ
6 吐出口
6a 吐出ポート(ポート)
7 第一行程
8 第二行程
9 第三行程
10 中間室(空間)
11 中間室(空間)
12,13 逆止弁
14 配管(バイパス管)
29 第一種の螺旋歯
30 第二種の螺旋歯
31 第三種の螺旋歯

Claims (2)

  1. 軸直角断面形状がエピトロコイド、円弧、擬アルキメデス曲線からなる一対のスクリューロータを噛み合わせてケーシング内に回転自在に収容し、軸方向に沿って気体を排気するスクリュー式真空ポンプにおいて、
    前記一対のスクリューロータが、理論押し除け量の異なる三種類の螺旋歯を軸方向に順に備え、第一種の螺旋歯と第二種の螺旋歯との間の空間と、第二種の螺旋歯と第三種の螺旋歯との間の空間とが、それぞれ逆止弁を介して吐出側に続くバイパス管に接続され
    前記三種類の螺旋歯の押し除け量に関し、第一行程と第二行程の風量比を略1.4、第二行程と第三行程の風量比を略1.4、すなわち第一行程と第三行程の風量比を略2としたことを特徴とするスクリュー式真空ポンプ。
  2. 前記第三行程でガスを第一行程の略1/2に圧縮した後に吐出ポートが開いてガスを排出するようにしたことを特徴とする請求項記載のスクリュー式真空ポンプ。
JP2001296872A 2001-09-27 2001-09-27 スクリュー式真空ポンプ Expired - Fee Related JP3673743B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001296872A JP3673743B2 (ja) 2001-09-27 2001-09-27 スクリュー式真空ポンプ
PCT/JP2001/010985 WO2003031821A1 (fr) 2001-09-27 2001-12-14 Pompe a vide a vis
US10/490,956 US7214036B2 (en) 2001-09-27 2001-12-14 Screw type vacuum pump
DE10197271T DE10197271T5 (de) 2001-09-27 2001-12-14 Schraubenvakuumpumpe
KR1020047004326A KR100602866B1 (ko) 2001-09-27 2001-12-14 스크류식 진공 펌프
TW091103344A TW588143B (en) 2001-09-27 2002-02-25 Screw type vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001296872A JP3673743B2 (ja) 2001-09-27 2001-09-27 スクリュー式真空ポンプ

Publications (2)

Publication Number Publication Date
JP2003097480A JP2003097480A (ja) 2003-04-03
JP3673743B2 true JP3673743B2 (ja) 2005-07-20

Family

ID=19118038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001296872A Expired - Fee Related JP3673743B2 (ja) 2001-09-27 2001-09-27 スクリュー式真空ポンプ

Country Status (6)

Country Link
US (1) US7214036B2 (ja)
JP (1) JP3673743B2 (ja)
KR (1) KR100602866B1 (ja)
DE (1) DE10197271T5 (ja)
TW (1) TW588143B (ja)
WO (1) WO2003031821A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030223897A1 (en) * 2002-06-03 2003-12-04 Jim Ferentinos Two-stage rotary screw fluid compressor
CN100417817C (zh) * 2004-03-18 2008-09-10 北京化工大学 双端复合齿型迷宫螺旋泵
DE102004033439C5 (de) * 2004-07-08 2009-02-26 Getrag Driveline Systems Gmbh Antriebsstrang für ein Kraftfahrzeug
CN100460681C (zh) * 2005-01-31 2009-02-11 浙江大学 一种大流量双螺杆泵的渐开线螺杆齿形
CN100400875C (zh) * 2005-01-31 2008-07-09 浙江大学 一种大流量双螺杆泵的摆线螺杆齿形
FR2883934B1 (fr) * 2005-04-05 2010-08-20 Cit Alcatel Pompage rapide d'enceinte avec limitation d'energie
US8801395B2 (en) * 2008-06-16 2014-08-12 Gardner Denver, Inc. Startup bypass system for a screw compressor
EP2304241B1 (en) * 2008-06-24 2016-04-27 Carrier Corporation Automatic volume ratio variation for a rotary screw compressor
JP5234769B2 (ja) * 2008-09-30 2013-07-10 新明和工業株式会社 吸引装置および吸引車
CN101382131B (zh) * 2008-10-15 2010-06-16 马子奇 可试压井下采油螺杆泵
US8328542B2 (en) * 2008-12-31 2012-12-11 General Electric Company Positive displacement rotary components having main and gate rotors with axial flow inlets and outlets
WO2010111685A2 (en) * 2009-03-26 2010-09-30 Johnson Controls Technology Company Compressor
TWI518245B (zh) * 2010-04-19 2016-01-21 荏原製作所股份有限公司 乾真空泵裝置、排氣單元,以及消音器
JP5318062B2 (ja) * 2010-10-04 2013-10-16 株式会社神戸製鋼所 スクリュ膨張機
EP2710267B1 (en) * 2011-05-20 2017-07-12 BP Exploration Operating Company Limited Pump
GB2498816A (en) 2012-01-27 2013-07-31 Edwards Ltd Vacuum pump
GB2502134B (en) * 2012-05-18 2015-09-09 Edwards Ltd Method and apparatus for adjusting operating parameters of a vacuum pump arrangement
CN102937094B (zh) * 2012-10-22 2016-05-04 台州职业技术学院 一种干式螺杆真空泵变螺距螺杆
KR101499561B1 (ko) * 2013-05-08 2015-03-30 주식회사 동방플랜텍 진공펌프의 다단식 스크류 구조
KR101613161B1 (ko) * 2014-09-05 2016-04-18 주식회사 우성진공 2단형 건식 진공펌프
KR101523895B1 (ko) * 2015-02-16 2015-05-28 김학률 스크류날개의 냉각구조를 구비한 진공펌프
CN105003435B (zh) * 2015-08-06 2017-05-31 山东伯仲真空设备股份有限公司 可变内压比螺杆真空泵
CN105485014B (zh) * 2016-01-05 2017-06-30 中国石油大学(华东) 一种等螺距变齿宽的螺杆转子
US11022122B2 (en) * 2016-06-01 2021-06-01 Trane International Inc. Intermediate discharge port for a compressor
GB2558626A (en) * 2017-01-11 2018-07-18 Edwards Ltd A multiple stage vacuum pump and pump configuring method
GB201701000D0 (en) * 2017-01-20 2017-03-08 Edwards Ltd Multi-stage vacuum booster pump coupling
GB201700995D0 (en) * 2017-01-20 2017-03-08 Edwards Ltd Multi-stage vacuum booster pump rotor
FR3065040B1 (fr) * 2017-04-07 2019-06-21 Pfeiffer Vacuum Groupe de pompage et utilisation
BE1025222B1 (nl) 2017-05-04 2018-12-13 Atlas Copco Airpower Naamloze Vennootschap Overbrenging en compressor of vacuümpomp voorzien van dergelijke overbrenging
CN106989027B (zh) 2017-06-05 2019-05-24 珠海格力电器股份有限公司 多级压缩机
DE202017003212U1 (de) 2017-06-17 2018-09-18 Leybold Gmbh Mehrstufige Wälzkolbenpumpe
CN113048056B (zh) * 2021-03-18 2023-02-28 上海樊容工业技术中心 一种悬臂混合式干式真空泵
CN113833655B (zh) * 2021-11-02 2023-05-26 杭州久益机械股份有限公司 一种螺杆真空泵转子及螺杆真空泵

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE374589B (ja) * 1973-07-20 1975-03-10 Atlas Copco Ab
EP0290663B1 (de) * 1987-05-15 1993-08-04 Leybold Aktiengesellschaft Ein- oder mehrstufige Zweiwellenvakuumpumpe
JPH0278783A (ja) * 1988-09-14 1990-03-19 Hitachi Ltd スクリユー真空ポンプ
JPH03111690A (ja) 1989-09-22 1991-05-13 Tokuda Seisakusho Ltd 真空ポンプ
KR0133154B1 (ko) * 1994-08-22 1998-04-20 이종대 무단 압축형 스크류식 진공펌프
JPH08144977A (ja) * 1994-11-24 1996-06-04 Kashiyama Kogyo Kk 複合ドライ真空ポンプ
JPH11270484A (ja) * 1998-03-24 1999-10-05 Taiko Kikai Industries Co Ltd スクリューロータ型ウエット真空ポンプ
JP2000136787A (ja) 1998-10-30 2000-05-16 Teijin Seiki Co Ltd 真空ポンプ
JP2003343469A (ja) * 2002-03-20 2003-12-03 Toyota Industries Corp 真空ポンプ

Also Published As

Publication number Publication date
TW588143B (en) 2004-05-21
US7214036B2 (en) 2007-05-08
US20040247465A1 (en) 2004-12-09
JP2003097480A (ja) 2003-04-03
KR100602866B1 (ko) 2006-07-20
KR20040035885A (ko) 2004-04-29
DE10197271T5 (de) 2004-09-23
WO2003031821A1 (fr) 2003-04-17

Similar Documents

Publication Publication Date Title
JP3673743B2 (ja) スクリュー式真空ポンプ
KR0133154B1 (ko) 무단 압축형 스크류식 진공펌프
US8827669B2 (en) Screw pump having varying pitches
US8702407B2 (en) Multistage roots vacuum pump having different tip radius and meshing clearance from inlet stage to exhaust stage
JP3758550B2 (ja) 多段真空ポンプ
US4761125A (en) Twin-shaft multi-lobed type hydraulic device
KR101799411B1 (ko) 드라이 스크루 드라이버
WO2004083643A1 (en) Positive-displacement vacuum pump
JP4839443B2 (ja) スクリュー真空ポンプ
JP2005171766A (ja) ドライポンプ及びドライポンプの運転方法
US20080181803A1 (en) Reflux gas compressor
JP3580890B2 (ja) オイルレス真空ポンプ装置とその運転制御方法
JP2002174174A (ja) 真空排気装置
JP6653732B2 (ja) 真空ポンプユニット
JP3884101B2 (ja) オイルフリースクロール真空ポンプ
JP3403452B2 (ja) 無給油式スクリュー圧縮機
JP5595782B2 (ja) ドライ真空ポンプ装置
KR100495637B1 (ko) 로터리 유체 이송 장치
RU2322615C1 (ru) Двухступенчатая жидкостно-кольцевая машина
WO2022148670A1 (en) Pumping stage and dry vacuum pump
CN111075719A (zh) 一种双螺旋干式螺杆真空泵
JP2005054762A (ja) 2段式2軸形スクリュー流体機械
JP2002061589A (ja) スクリュー型流体機械
JPS62265483A (ja) 回転ベ−ン式真空ポンプ
JPH09158855A (ja) スクロール圧縮機

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees