JP3663234B2 - インバータ装置 - Google Patents

インバータ装置 Download PDF

Info

Publication number
JP3663234B2
JP3663234B2 JP22429995A JP22429995A JP3663234B2 JP 3663234 B2 JP3663234 B2 JP 3663234B2 JP 22429995 A JP22429995 A JP 22429995A JP 22429995 A JP22429995 A JP 22429995A JP 3663234 B2 JP3663234 B2 JP 3663234B2
Authority
JP
Japan
Prior art keywords
voltage
phase
position sensor
signal
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22429995A
Other languages
English (en)
Other versions
JPH0974790A (ja
Inventor
一信 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22429995A priority Critical patent/JP3663234B2/ja
Publication of JPH0974790A publication Critical patent/JPH0974790A/ja
Application granted granted Critical
Publication of JP3663234B2 publication Critical patent/JP3663234B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、巻線に任意の電圧波形を印加することによりブラシレスモータを駆動するインバータ装置に関する。
【0002】
【従来技術】
近年、エアコンなどのファンモータや電気自動車の駆動用モータとしては、広範囲の可変速制御や電力消費量の節約のために、また、洗濯機の洗濯用モータとしては、洗浄能力の向上のためにブラシレスモータが採用されており、これをインバータ装置によって駆動することが行われている。
【0003】
ブラシレスモータの内部には、通常、位置センサとして構成が簡単で最も安価であるホールICが、例えば電気角120度毎に配置されている。そして、インバータ装置は、これらのホールICによってロータの回転位置に対応した信号を得て、ブラシレスモータの巻線に120度通電方式で電圧を印加して駆動するようになっている。
【0004】
図28は、このようなインバータ装置の第1の従来例を示すものである。電気的構成を示す図28において、交流電源1の両端子は、一方にリアクトル2を介して全波整流回路3の交流入力端子に接続されている。全波整流回路3の直流出力端子間には、平滑用コンデンサ4が接続されており、以上が直流電源回路5を構成している。そして、直流電源回路5の出力端子は、直流母線6a,6bを介して3相ブリッジ回路7の入力端子に接続されている。その3相ブリッジ回路7は、3相ブリッジ接続されたトランジスタT1乃至T6と、各トランジスタT1乃至T6に夫々接続されるフライホイールダイオードD1乃至D6とから構成されている。そして、3相ブリッジ回路7の出力端子7u,7v,7wは、3相のブラシレスモータ8の各巻線8u,8v,8wに接続されている。
【0005】
ブラシレスモータ(以下、単にモータと称す)8には、位置センサとしてのホールIC9即ち9u,9v,9wが電気角で120度毎に配置されており、夫々の出力端子は論理回路10の入力端子に接続されている。PWMのデューティを決定するための電圧指令信号Daが入力されるPWM回路11は、PWM信号PaをAND回路12即ち12u,12v,12wの一方の入力端子に与えるようになっている。また、論理回路10の出力端子10up,10vp,10wpは、AND回路12u,12v,12wのもう一方の入力端子に夫々接続されている。
【0006】
AND回路12u,12v,12wの出力端子は、例えばフォトカプラからなる駆動回路13即ち13up,13vp,13wpの入力端子に夫々接続されており、駆動信号Dup,Dvp,Dwpを夫々与えるようになっている。論理回路10の出力端子10un,10vn,10wnは,駆動回路13un,13vn,13wnの入力端子に夫々接続されており、駆動信号Dun,Dvn,Dwnを夫々与えるようになっている。そして、駆動回路13up乃至13wp及び13un乃至13wnの出力端子は、トランジスタT1乃至T3及びトランジスタT4乃至T6のベースに夫々接続されている。以上がインバータ装置14を構成している。
【0007】
次に、図29を参照して従来例の作用を説明する。ここで、モータ8の各巻線8u,8v,8wに発生する誘起電圧vmu,vmv,vmw((a)参照)のうち誘起電圧vmuを基準とした電気角によって、永久磁石形のロータ(図示せず)の回転位置を示すものとする。
【0008】
モータ8内に設けられたホールIC9u,9v,9wは夫々の対応するU,V,W相の誘起電圧に対して電気角30度遅れの関係の出力信号Hu,Hv,Hw((b)参照)を発生するように配置されている。論理回路10は、例えば、以下に示す論理演算を行って、出力端子10up,10un,10vp,10vn,10wp,10wnに夫々D´up,D´un,D´vp,D´vn,D´wp,D´wnを出力する。
D´up=(Hu)and{not(Hv)}
D´un={not(Hu)}and(Hv)
D´vp=(Hv)and{not(Hw)} …(1)
D´vn={not(Hv)}and(Hw)
D´wp=(Hw)and{not(Hu)}
D´wn={not(Hw)}and(Hu)
【0009】
PWM回路11は、例えば図30に示すように、PWM制御の搬送波Pzとして三角波を形成する例えばアップダウンカウンタからなる三角波発生器11aと、外部より速度制御信号として与えられる電圧指令信号Da(図31(a)参照)をラッチするラッチ回路11bと、ラッチ回路11bの出力信号であるラッチ信号Dbと搬送波Pzとをデジタル比較する比較回路11cとから構成されている。三角波発生器11aは、クロック信号に従ってカウント値「0」から一定値までアップカウントした後、また「0」までダウンカウントする動作を繰返すことにより、デジタルな三角波の搬送波Pzを発生させるものである。そして、図31(b)及び(c)に示すように、比較回路11cは、ラッチ信号Dbのレベルが搬送波Pzのレベルよりも大であれば出力がハイレベルとなるように構成されており、以て、PWM信号Paを形成するようになっている。
【0010】
論理回路10の出力信号D´up,D´un,D´vp,D´vn,D´wp,D´wn(図29(c)参照)とPWM信号Pa(図29(d)参照)との論理によって、駆動信号Dup,Dun,Dvp,Dvn,Dwp,Dwn(図29(e)参照)が形成され、これらの駆動信号により3相ブリッジ回路7のトランジスタT1乃至T6がオンオフ制御される。
【0011】
以て、インバータ装置14は、モータ8のロータ位置に対応した電圧を各相の巻線8u,8v,8cに供給し、電圧指令信号Daに対応したPWM制御によって、各相の巻線8u乃至8cに供給する電圧の大きさを変化させて、モータ8の回転数を制御するようになっている。
【0012】
以上のように、120度通電の電圧でモータ8を制御した場合のモータ発生トルク波形の一例を図32に示している。モータ発生トルクTqは、(2)式の近似式により求められる。ここで、モータ8の各相の電流を夫々iu,iv,iw、回転数をNとしている。図32では、PWM制御していない端子電圧波形vuと、誘起電圧波形vmuと、巻線電流波形iuと、1相分のトルク波形としての(vmu×iu)と、3相分の総合トルク波形としての(vmu×iu+vmv×iv+vmw×iw)とを、シミュレーション結果により示している。
Figure 0003663234
【0013】
図32に示すように、巻線8u乃至8cに電流が流れない期間があり、ロータの図示しない永久磁石が発生する磁束が最大限有効に利用されていない。また、電圧の切替え、即ち、転流時には、これに伴うトルク変動がモータ8に生じている。
【0014】
エアコンや洗濯機などの家庭電気製品や電気自動車などの分野においては、消費電力の低減や振動の低減が要求されており、効率向上やトルク変動低減に効果のある、例えば正弦波などの電圧波形をモータに供給できるインバータ装置が望まれている。
【0015】
この様に、任意波形の電圧をロータの回転位置に対応してモータ巻線に供給する方法として、図33に示すようなインバータ装置がある。第2の従来例を示す図33においては、モータ8の図示しない回転軸に分解能の高いエンコーダ15を設けてあると共に、3相ブリッジ回路7の出力端子7u,7v,7wと、モータ8の巻線8u,8v,8wとの間には、電流検出器16u,16v,16wが夫々設けられている。エンコーダ15の出力端子は、ロータ位相カウンタ17の入力端子に接続されており、ロータ位相カウンタ17の出力端子は、電流指令発生回路18の入力端子に接続されている。
【0016】
比較回路19u,19v,19wの各2つの入力端子には、電流指令発生回路18の各相に応じた出力端子及び電流検出器16u,16v,16wの出力端子が夫々接続されている。そして、比較回路20u,20v,20wの各2つの入力端子には、比較回路19u,19v,19wの出力端子及び三角波発生器21の出力端子が夫々接続されており、比較回路20u,20v,20wの出力端子は、駆動回路13の入力端子に接続されている。その他は前記従来例と同様であり、以上がインバータ装置22を構成している。
【0017】
図34に示すように、エンコーダ15は、モータ8が回転すると、回転角度の例えば15度毎にパルス信号を出力し((b)参照)、ロータ位相カウンタ17は、そのパルス信号をカウントすることにより、ロータの位相Peを0〜360度の範囲で循環的に示す((c)参照)。電流指令発生回路18は、ロータ位相カウンタ17が示すロータの位相に応じて、電流指令データの電流パターンを内部のROMから読出すと、D/A変換して電流指令ieu,iev,iewを出力する((d)参照)。
【0018】
比較回路19u,19v,19wは、その電流指令ieu,iev,iewと、電流検出器16u,16v,16wの出力信号とを比較して、比較回路20u,20v,20wに電圧指令veu,vev,vewを出力する((e)参照)。そして、比較回路20u,20v,20wは、電圧指令veu,vev,vew及び搬送波Pzのレベルを比較することにより、駆動信号を駆動回路13に出力する。このようにして、予めROMに記憶された電流パターンを読出して、電気角数度単位でモータ8に供給する電流をフィードバック制御するものである。
【0019】
【発明が解決しようとする課題】
しかしながら、インバータ装置22に用いられる分解能の高いエンコーダ15は高価であるため、製品のコストが大幅に上昇してしまう。また、エンコーダ15を取付けるには、製品寸法の制約もあり、家電製品など低コスト及び小形化を要求される製品分野においては、インバータ装置22のような構成を導入することは出来なかった。
【0020】
本発明は上記事情を鑑みて成されたものであり、その目的は、最小限の位置センサで任意波形の電圧をブラシレスモータに供給することができるインバータ装置を提供することにある。
【0021】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載のインバータ装置は、ブラシレスモータの複数の巻線に発生する誘起電圧と一定の位相関係をもち且つロータの基準位置からの回転位置たる電圧位相を示す複数の位置センサ信号に基づいて複数の巻線に通電するものにおいて、
複数の位置センサ信号が変化する周期を測定する位置センサ周期測定手段と、
位置センサ周期測定手段が測定した変化周期に対応するロータ位相差と、位置センサ信号の変化時刻に対応するロータ位相とを記憶するパラメータ記憶手段を有し、複数の位置センサ信号変化周期,ロータ位相及びロータ位相差に基づいて、変化周期に対応する電気角よりも高い分解能を有する電圧位相を決定する電圧位相決定手段と、
電圧位相決定手段によって決定された電圧位相に対応した電圧率を記憶する電圧率記憶手段と、
電圧率に基づいて信号波を形成する信号波形成手段と、
PWM制御を行うための搬送波を出力する搬送波出力手段を有し、信号波と搬送波との振幅レベルを比較することによって駆動信号を形成する駆動信号形成手段と、
駆動信号に基づいて複数の巻線に通電する駆動手段とを具備したことを特徴とする。
【0022】
この場合、パラメータ記憶手段は、ロータ位相及びロータ位相差に加えて、位置センサ周期測定手段が測定した位置センサの変化周期と位置センサ信号の変化時刻と、予め定められた電圧位相指令とを演算パラメータとして記憶しており
前記電圧位相決定手段は、ある時刻Tnにおける電圧位相Pnを前記演算パラメータに基づいて演算により決定しても良く(請求項2)、具体的には、
Pn=Px+Pr+Ps×(Tn−Tx)/Ts
のように演算すると良い(請求項3)。
【0023】
また、位置センサ周期測定手段によって得られた位置センサの変化周期に基づいてカウント周期が決定され、位置センサ信号の変化時刻に対応するロータ位相と電圧位相指令との和によって一定時間毎にカウント値が書替えられる電圧位相カウンタを備え、電圧位相決定手段は、電圧位相カウンタのカウント値を読出して電圧位相を決定するようにしても良い(請求項4)。
【0024】
請求項5記載のインバータ装置は、ブラシレスモータの複数の巻線に発生する誘起電圧と一定の位相関係をもち且つロータの基準位置からの回転位置たる電圧位相を示す複数の位置センサ信号に基づいて複数の巻線に通電するものにおいて、
巻線に流れる電流の誘起電圧に対する位相差即ち電圧電流位相差を検出する電流位相差検出手段と、
複数の位置センサ信号が変化する周期を測定する位置センサ周期測定手段と、
前記位置センサ周期測定手段が測定した変化周期に対応するロータ位相差と、前記位置センサ信号の変化時刻に対応するロータ位相とを記憶するパラメータ記憶手段を有し、電圧電流位相差及び位置センサ信号変化周期,ロータ位相及びロータ位相差に基づいて変化周期に対応する電気角よりも高い分解能を有する電圧位相を決定する電圧位相決定手段と、
電圧位相決定手段によって決定された電圧位相に対応した電圧率を記憶する電圧率記憶手段と、
電圧率に基づいて信号波を形成する信号波形成手段と、
PWM制御を行うための搬送波を出力する搬送波出力手段を有し、信号波と搬送波との振幅レベルを比較することによって駆動信号を形成する駆動信号形成手段と、
駆動信号に基づいて複数の巻線に通電する駆動手段とを具備したことを特徴とする。
【0025】
この場合、パラメータ記憶手段は、ロータ位相Px及びロータ位相差Psに加えて、位置センサ周期測定手段が測定した変化周期Tsと位置センサ信号の変化時刻Txと電流位相差検出手段が検出する電圧電流位相差Pjとを演算パラメータとして記憶しており電圧位相決定手段は、ある時刻Tnにおける電圧位相Pnを演算パラメータに基づいて演算により決定しても良く(請求項6)、具体的には、
Pn=Px+Pj+Ps×(Tn−Tx)/Ts
のように演算すると良い(請求項7)。
【0026】
また、位置センサ周期測定手段によって得られた位置センサの変化周期に基づいてカウント周期が決定され、位置センサ信号の変化時刻に対応するロータ位相と電圧電流位相差との和によって一定時間毎にカウント値が書替えられる電圧位相カウンタを備え、電圧位相決定手段は、電圧位相カウンタのカウント値を読出して電圧位相を決定するようにしても良い(請求項8)。
【0027】
更に、巻線に流れる電流のゼロクロス点を検出する電流検出手段を備え、電流位相差検出手段は、前記ゼロクロス点に基づいて電圧電流位相差を検出するようにしても良い(請求項9)。
【0028】
以上の場合において、位置センサ信号の論理演算結果により初期駆動信号を形成する初期駆動信号形成手段と、ブラシレスモータの始動開始後に所定条件が成立したか否かを判断する条件判断手段と、ブラシレスモータの始動開始時に初期駆動信号を選択し、条件判断手段が所定条件成立と判断すると駆動信号形成手段により得られる駆動信号を選択して駆動手段に出力する選択手段とを備えるのが好ましい(請求項10)。
【0029】
また、条件判断手段は、ブラシレスモータの始動開始時からの経過時間を計時する計時手段を備え、経過時間が一定時間に達すると所定条件成立と判断するようにしても良い(請求項11)。
【0030】
更に、条件判断手段は、位置センサ信号に基づいてロータの回転回数を計測する回転回数計測手段を備え、ロータの回転回数が一定値に達すると所定条件成立と判断するようにしても良い(請求項12)。
【0031】
加えて、条件判断手段は、位置センサ信号に基づいてロータの回転数を計測する回転数計測手段を備え、ロータの回転数が一定値に達すると所定条件成立と判断するようにしても良い(請求項13)。
また、以上の場合において、電圧率記憶手段に記憶される電圧位相に対応した電圧率は、正弦波に応じた電圧率であるのが好ましい(請求項14)。
【0032】
更に、駆動信号形成手段と初期駆動信号形成手段と選択手段とを集積回路によって構成し、位置センサ周期測定手段と電圧位相決定手段と電圧率記憶手段と条件判断手段と信号波形成手段と駆動信号形成手段とをマイクロコンピュータにより構成すると良い(請求項15)。
【0033】
また、位置センサ周期測定手段と、電圧位相決定手段と、電圧率記憶手段と、信号波形成手段と、駆動信号形成手段とをワンチップマイクロコンピュータにより構成しても良い(請求項16)。
【0034】
更にまた、電流位相差検出手段と、位置センサ周期測定手段と、電圧位相決定手段と、電圧率記憶手段と、信号波形成手段と、駆動信号形成手段とをワンチップマイクロコンピュータにより構成しても良い(請求項17)。
【0035】
【発明の実施の形態】
以下、本発明の第1実施例について、図1乃至図11を参照して説明する。尚、図28と同一部分には同一符号を付して説明を省略し、以下異なる部分のみ説明する。電気的構成を示す図1において、ブラシレスモータ(以下、単にモータと称す)8内に配置されたホールIC9u,9v,9wの出力端子は、マイクロコンピュータ(以下、マイコンと称す)30の入力端子及び割込み信号発生回路31の入力端子に接続されている。
【0036】
割込み信号発生回路31は、図2に示すように、NOTゲート31a乃至31c,ANDゲート31d乃至31f及びORゲート31gによって構成されており、ホールIC9u,9v,9wの出力信号Hu,Hv,Hwの内の何れか一つが立上ると立上り、何れか一つが立下ると立下る信号Shを出力するようになっている。そして、割込み信号発生回路31の出力端子は、マイコン30の割込み信号入力端子に接続されており、出力信号Shを割込み信号として与えるようになっている。尚、マイコン30は、割込み信号の立上りエッジ及び立下りエッジの両方で割込みを認識するようになっている。
【0037】
また、マイコン30の入力端子には、外部から電圧指令信号Daが与えられるようになっている。更に、マイコン30は、その内部に有しているROM30a(電圧率記憶手段,パラメータ記憶手段)に、図3に示すように、電気角0〜359度に対応した正弦波の一周期の電圧率データDuを記憶している。その電圧率データDuの値は、例えば、「−127」〜「127」とする。加えて、マイコン30の内部には、例えば1μs単位で「0」から「999999」までのカウントを繰返す時間カウンタ30bが内蔵されていると共に、作業領域としてパラメータ記憶手段たるRAM30cをも内蔵している。
【0038】
駆動信号回路(駆動信号形成手段)32は、搬送波Pzとして三角波を形成する例えば8ビットのアップダウンカウンタ32aと、マイコン30から得られる各相の信号波に対応するデータvau,vav,vawをラッチするラッチ回路32Lu,32Lv,32Lwと、搬送波Pzとラッチ出力を比較する比較器32u,32v,32wとから構成されている。
【0039】
駆動信号回路32の割込み信号出力端子は、マイコン30の割込み信号入力端子に接続されており、割込み信号Spを与えるようになっている。アップダウンカウンタ32aは、カウント値「0」からアップカウントを開始して、カウント値が「255」に達すると、そこからダウンカウントに切替るという動作を繰返すことにより、図8(d)に示すようにデジタルな三角波の搬送波Pzを出力するものである。そして、割込み信号Spは、アップダウンカウンタ32aのカウント値が「0」になるとハイレベルとなり、カウント値が「255」に達するとローレベルとなる矩形波状の信号である。而して、駆動信号回路32の6つの駆動信号出力端子は、選択手段たる選択回路33の入力端子に夫々接続されており、駆動信号Dup,Dun,Dvp,Dvn,Dwp,Dwnを夫々与えるようになっている。
【0040】
初期駆動信号回路(初期駆動信号形成手段)34は、図28において第1の従来例として示した論理回路10,PWM回路11及びAND回路12から構成されており、第1の従来例と同様に、PWM制御された120度通電の駆動信号を形成するものである。そして、初期駆動信号回路34の6つの駆動信号出力端子は、選択回路33の入力端子に夫々接続されている。
【0041】
また、マイコン30の2つの選択信号出力端子は、選択回路33の2つの入力端子に夫々接続されており、マイコン30は、選択信号Se1及びSe2を選択回路33に与えるようになっている。そして、選択回路33は、駆動信号回路32により形成された駆動信号と初期駆動信号回路34により形成された初期駆動信号とのどちらか一方を、与えられる選択信号Se1及びSe2のレベルに応じて選択して(図4参照)、駆動手段たる駆動回路13に供給するものである。以上がインバータ装置35を構成している。
【0042】
次に、本実施例の作用について、図5乃至図8をも参照して説明する。モータ8の始動時におけるマイコン30の制御内容のフローチャートを示す図5において、このフローチャートはメインループであり、例えば20m秒周期で処理が行われている。まず、「始動条件?」の判断ステップD1において、マイコン30は、図示しないスタート信号が外部より与えられる入力端子を参照して、始動条件が成立しているか否かを判定する。判断ステップD1において「NO」と判断すると、「Se1=L,Se2=L」の処理ステップD2に移行して、選択信号Se1及びSe2を共にローレベル(L)にする。この場合は、駆動回路13に駆動信号は供給されない。
【0043】
スタート信号が与えられて、判断ステップD1において「YES」と判断すると、「一定時間経過?」の判断ステップD3に移行して、マイコン30は、ステップD1において「YES」と判断した時点から、例えば図示しないシステムタイマ(計時手段)によるタイマ割込み回数をカウントすることにより、一定時間が経過したか否かを判断する。判断ステップD3において「NO」と判断すると、「Se1=H,Se2=L」の処理ステップD4に移行して、選択信号Se1及びSe2をハイ(H)及びローレベルにする。これにより初期駆動信号回路34が出力する初期駆動信号が選択されて、インバータ装置35は、位置センサ信号Hu乃至Hwに対応した120度通電の電圧によりモータ8を駆動して始動させる。
【0044】
その後、一定時間が経過して、判断ステップD3において「YES」と判断すると、「Se1=L,Se2=H」の処理ステップD5に移行して、マイコン30は、選択信号Se1及びSe2をロー及びハイレベルにして、駆動回路13に駆動信号回路32が出力する駆動信号を与えるようにする。以降は、ステップD1で「NO」と判断するまで、駆動信号回路32が出力する駆動信号が駆動回路13に与えられる。尚、判断ステップD3は、条件判断手段に対応している。
【0045】
次に、駆動信号回路32の動作について説明する。尚、以降はU相に関する信号を中心として説明する。
割込み信号Shは、前述のように、位置センサたるホールIC9u,9v,9wの出力信号(位置センサ信号)Hu,Hv,Hwの内の何れか一つのレベルが変化する毎に変化するので、図8(c)に示すように、電気角60度毎にハイ,ローレベルを繰返す信号となる。図6は、割込み信号Shによって生じる割込み処理ルーチンのフローチャートである。
【0046】
まず、「カウンタデータTcの読込み」の処理ステップA1において、マイコン30は、割込み信号Shによる割込みが生じた時刻、即ち、位置センサ信号Hu乃至Hwが変化した時刻のカウンタデータTcを時間カウンタ30bから読込む。そして、前回の割込み処理で読込んだカウンタデータが変数Txに格納されているので、その変数Txを変数Tyに代入して、今回読込んだカウンタデータTcを、新たに変数Txに代入する。尚、これらの変数は、RAM30cに記憶される。そして、「位置センサ信号周期測定」の処理ステップA2に移行する。
【0047】
処理ステップA2においては、マイコン30は、位置センサ信号Hu乃至Hwが変化する周期Tsを求める。この変化周期(以下、位置センサ周期と称す)Tsは、前回と今回の割込み処理が発生した時刻の差に等しいので、ステップA1における変数Tx及びTyの差、即ち、Ts=Tx−Tyにより求める。次に、「位置センサ信号データ読込み」の処理ステップA3に移行する。尚、ステップA1及びA2は、位置センサ周期測定手段に対応している。
【0048】
処理ステップA3においては、マイコン30は、この時点で位置センサ信号Hu,Hv,Hwが示している信号レベルを読込んで、次の「電気角Pxを得る」の処理ステップA4に移行する。処理ステップA4においては、ステップA3で得た位置センサ信号データに基づいて、ROM30aに記憶されたデータテーブル1(図9参照)を参照してロータ位相たる電気角Pxを得て、RAM30cの所定領域に書込む。例えば、位置センサ信号Hu,Hv,Hwの信号レベルがH,L,Lであれば、電気角Pxは90度(U相誘起電圧vmuを基準として)となる。そして、「ロータ位相差Psを得る」の処理ステップA5に移行する。
【0049】
処理ステップA5においては、位置センサ周期Tsに対応するロータ位相差Psを、ステップA4と同様に、位置センサ信号データに基づいて、ROM30aに記憶されたデータテーブル2(図10参照)を参照してロータ位相差Psを得てRAM30cの所定領域に書込むと、メインルーチンにリターンする。尚、本実施例では、ホールIC9u,9v,9wは電気角で120度間隔で配置されているので、ロータ位相差Psは全て60度となる。以上の処理が、割込み信号Shのレベルが変化する度に繰返される。
【0050】
次に、割込み信号Spに応じた割込み処理について図7を参照して説明する。割込み信号Spは、割込み信号Shよりも短い周期でマイコン30に割込みを発生させるものである。まず、「カウンタデータTcの読込み」の処理ステップB1においては、割込み発生時刻を示す時間カウンタ30bのデータTcを読込んで、変数Tnに代入する。そして、「電圧位相指令Prの読出し」の処理ステップB2に移行する。
【0051】
処理ステップB2においては、マイコン30は、U相誘起電圧vmuに対して、印加電圧に進み位相を与えるための電圧位相指令PrをROM30aから読出すと、次の「電圧位相Pnを演算」処理ステップB3に移行する。処理ステップB3においては、マイコン30は、以上の処理によって得られた演算パラメータをもRAM30cから読出して、時刻Tnにおける電圧位相Pnを次式により演算して求める。
Pn=Px+Pr+Ps×(Tn−Tx)/Ts …(3)
【0052】
この(3)式は、時刻の変化に応じて電圧位相Pnが線形に変化することに基づいたものである。ここで、電圧位相Pnは「0」〜「359」のデータであり、計算結果が「359」を超えた場合には「360」を減じてデータの修正を行う。尚、以上のステップB1乃至B3は、電圧位相決定手段に対応している。
【0053】
またここで、図8(e)に示す時刻t1,t2,t3において演算パラメータとして以下の具体的数値を得た場合の、電圧位相Pnの計算例を示す。時刻t1,において割込み信号Shによる割込みが発生し、時刻t2は、その次に割込み信号Shによる割込みが発生した時刻である。また、時刻t3は、時刻t2後の任意の時刻で割込み信号Spによる割込みが発生した時刻である。
【0054】
時刻t1,t2,t3において時間カウンタ30bによって得られたカウント値を順に「10000」,「14000」,「15000」とすると、ステップA1及びA2によって、変数Ty,Tx及びTsが下記のように決定されて記憶される。そして、ステップA3において位置センサ信号Hu,Hv,Hwの信号レベルが「H,L,L」と得られたとすると、ステップA4においては、図9のデータテーブル1から電気角Pxが「90」と、ステップA5においては、図10のデータテーブル2からロータ位相差Psが「60」と求められる。
【0055】
ステップB1においては、Tn(=t3)が「15000」と記憶され、ステップB2では、ROM30aに記憶された電圧位相指令Prが「15」であったとする。すると、ステップB3においては、電圧位相Pnは以下のように演算される。
Figure 0003663234
【0056】
以上のようにして電圧位相Pnを求めると、「電圧指令信号Daを読込む」の処理ステップB4に移行する。処理ステップB4においては、マイコン30は、外部より与えられている電圧指令信号Daを読込むと、次の「電圧率データDuの読出し」の処理ステップB5に移行して、ステップB3で求めた電圧位相Pnに対応する正弦波の電圧率データDu(図3参照)をROM30aから読出す。そして、「信号波vauを演算」の処理ステップB6に移行する。
【0057】
処理ステップB6においては、次式に従って信号波vauを演算する。
vau=Du×(Da/255)+128 …(5)
ここで、電圧率データDuの値域は、例えば8ビットデータの2の補数表現で取り得る「−127」〜「127」であり、8ビットのアップダウンカウンタ22aの取り得る値域(カウントデータ0〜255)にシフトさせるため、「128」をoffset値として加えている。また、電圧指令信号Daの値域も「0」〜「255」であり、電圧率データDuに「Da/255」を乗ずることによって、電圧指令に応じて正弦波の振幅、即ち、信号波vauのレベルを制御するものである。そして、「信号波vauを出力」の処理ステップB7に移行して、信号波vauの演算結果をラッチ回路32Luに出力する。
【0058】
次に、「信号波vavを演算して出力」の処理ステップB8に移行する。処理ステップB8においては、マイコン30は、V相の信号波vavを演算するために、ステップB3において演算したU相の電圧位相Pnから120度を減じてV相の電圧位相Poを求める。そして、その電圧位相Poに応じてROM30aより電圧率データDvを読出し、ステップB4と同様に、信号波vavを演算する。
Po=Pn−120 (Po<0の場合、Po=Po+360) …(6)
vav=Dv×(Da/256)+128 …(7)
そして、信号波vavの演算結果をラッチ回路32Lvに対して出力すると、「信号波vawを演算して出力」の処理ステップB9に移行する。
【0059】
処理ステップB9においては、マイコン30は、W相の信号波vawを演算するために、ステップB3において演算したU相の電気角Pnから240度を減じてW相の電圧位相Pqを求める。そして、その電圧位相Pqに応じてROM30aより電圧率データDwを読出し、ステップB4と同様に、信号波vawを演算する。
Pq=Pn−240 (Pq<0の場合、Pq=Po+360) …(8)
vaw=Dw×(Da/256)+128 …(9)
尚、以上のステップB4乃至B9は、信号波形成手段に対応している。
【0060】
次に、駆動信号回路32の作用について、図8を参照して説明する。信号波vau,vav,vawは、ラッチ回路32Lu乃至32Lwを介して搬送波Pzと比較され、その大小関係から駆動信号Dupが形成される。比較器32uは、信号波vauと搬送波Pzのレベルを比較して、信号波vauのレベルが大きい場合に出力をハイレベルにすることにより駆動信号Dupを形成する。また、駆動信号Dupを反転した信号が駆動信号Dunとなる。同様に、信号波vavと搬送波Pzの比較結果から駆動信号Dvp及びその反転信号である駆動信号Dvnが、信号波vawと搬送波Pzの比較結果から駆動信号Dwp及びその反転信号である駆動信号Dwnが形成される。
【0061】
図8(h)に示すように、駆動信号DupのPWMデューティは、正弦波の振幅変化に応じて、滑らかに変化して行く。従って、これらの駆動信号により駆動回路13を介して3相ブリッジ回路7の夫々のトランジスタT1乃至T6をオンオフ制御すると、モータ8の各巻線8u,8v,8wには夫々の誘起電圧vmu,vmv,vmwと電気角Pr進み位相の正弦波電圧が供給されて、図8(i)のようにロータ位置に応じた正弦波電流が各巻線に通電される。
【0062】
図11は、本実施例のインバータ装置35によって正弦波電圧でモータ8を駆動した場合の、シミュレーションによるモータ8のトルク波形を示したものである。実際の端子電圧は複雑なPWM波形を示すが、ここでは正弦波波形に近似して、しかも交流電圧として示している。3相分の総合トルク波形としての(vmu×iu+vmv×iv+vmw×iw)は直線で示され、トルク変動が激減しているのが明確である。
【0063】
以上のように本実施例によれば、モータ8内にホールIC9u,9v及び9wを配置して、その位置センサ信号Hu,Hv及びHwに基づいて発生される割込み信号Shによる割込み処理で、マイコン30は、ステップA1及びA2において位置センサ周期Tsを決定し、ステップA4及びA5においてロータ位相たる電気角Px及び位置センサ周期Tsに対応するロータ位相差PsをROM30aから読出すと共に、割込み信号Spによる割込み処理ルーチンのステップB1及びB2において時間カウンタ30bのカウンタデータTc及びROM30aから電圧位相指令Prを読出すと、これらの演算パラメータからステップB3において電圧位相Pnを演算(Pn=Px+Pr+Ps×(Tn−Tx)/Ts)によって求め、ステップB5において電圧位相Pnに対応する正弦波の電圧率データDuをROM30aから読出し、その電圧率データDuに応じてステップB6乃至B9においてU,V及びW相の信号波vau,vav及びvawを演算して駆動信号回路32に出力し、駆動信号回路32は、信号波vau,vav及びvawと搬送波Pzとの振幅レベルを比較することによって駆動信号を形成して駆動回路13に出力するようにした。
【0064】
従って、ホールIC9u,9v及び9wによって位置センサ信号Hu,Hv及びHwを得るだけで、これらの位置センサ信号から得られる以上に高い分解能を有するロータの電圧位相Pnを得ることができ、その電圧位相Pnに基づいて正弦波の電圧率データDuに応じた駆動信号によってモータ8を駆動することができるので、トルク変動を著しく低減して振動及び騒音をも低減することができる。また、従来のように高精度のエンコーダ15を用いる必要がないので、低コストで実現でき、モータ8の設置スペースを確保できると共に、防塵対策なども不要となる。
【0065】
更に、本実施例によれば、マイコン30は、モータ8の起動開始時には初期駆動信号回路34が出力する初期駆動信号によってモータ8を駆動し、起動開始から一定時間が経過したと判断すると、駆動信号回路32が出力する駆動信号によってモータ8を駆動するように、選択回路33に選択信号Se1及びSe2を与えて駆動回路13に選択的に出力させるようにした。
【0066】
従って、モータ8の起動時には、ロータの停止位置によらない初期駆動信号でモータ8を駆動して、モータ8の回転が定常状態に達した後に駆動信号回路32によってモータ8を駆動することができるので、モータ8にスムーズに起動を開始させることができ、起動開始時からモータ8の振動及び騒音を低減することができる。
【0067】
次に、本発明の第2実施例について、図12乃至図15を参照して説明する。第2実施例の構成は、図1に示す第1実施例のインバータ装置35において、3相ブリッジ回路7の出力端子7u,7v,7wとモータ8の各巻線8u,8v,8wとの間に、巻線に流れる電流に比例した電圧信号を得るための電流検出器36u,36v,36wが設けられている。そして、電流検出器36u,36v,36wの出力端子は、比較器37u,37v,37wを介してマイコン30の入力端子に接続されており、電流の正負判定結果、即ち、ゼロクロス点に対応した電流信号Siu,Siv,Siwをマイコン30に与えるようになっている。尚、電流検出器36u乃至36w及び比較器37u乃至37wは、電流検出手段を構成している。
【0068】
また、比較器37u乃至37wの出力端子は、回路構成は第1実施例の割込み信号発生回路31と全く同様である割込み信号発生回路38の入力端子に接続されている。その割込み信号発生回路38の出力端子は、マイコン30の第3の割込み信号入力端子に接続されており、マイコン30に割込み信号Siを与えるようになっている。他は第1実施例と同様の構成であり、以上がインバータ装置39を構成している。尚、選択回路33及び初期駆動回路34は、図示を省略している。
【0069】
次に、第2実施例の作用について、図13乃至図15をも参照して説明する。マイコン30は、第2実施例においても図5乃至図7の処理を同様に行い、更に、割込み信号Siの入力に応じて、図13に示す割込み処理を行うものである。
【0070】
処理ステップC1乃至C3は、割込み信号Siが入力された時刻における電圧位相Pnを演算により求めるもので、第1実施例におけるステップB1乃至B3と同様の処理である。
【0071】
次の「電流信号データの読込み」の処理ステップC4においては、マイコン30は、この時点で電流信号Siu,Siv,Siw(図15(i)参照)が示している信号レベルを読込んで、次の「電流位相Piを得る」の処理ステップC5に移行する。処理ステップC5においては、電流位相としての電気角データPiを、予め各相の電流の正負判定結果の関係から算出してマイコン30のROMに30a記憶されたデータテーブル3(図14参照)を参照して求める。そして、「電流位相差Pjを演算」の処理ステップC6に移行する。
【0072】
処理ステップC6においては、U相の誘起電圧vmuと通電電流iuとの位相差Pjを算出するもので、ステップC3において得られた電圧位相PnからステップC5において得た電流位相Piを減じることにより、電流位相差(電圧電流位相差)Pj(=Pn−Pi)を求める。そして、「電圧位相指令Prを決定」の処理ステップC7に移行する。尚、ステップC4乃至C6は、電流位相差検出手段に対応している。
【0073】
処理ステップC7においては、ステップC2ではROM30aから読出した電圧位相指令Prを、ステップC6で得られた電圧位相Pnと電流位相Piとの位相差Pjに置き換えて、RAM30cの所定領域に書き込む。そして、以降のステップB2及びC2における電圧位相指令Prの読出しは、例えばフラグをたてることによって、RAM30cから読出して電圧位相Pnの演算を行うようにする。この処理によって、以降の印加電圧の位相は、実際のU相誘起電圧vmuとU相電流iuとの位相差Pjに基づいて決定されるので、両者の位相差Pjは、縮小される方向に動的に調整される。
【0074】
以上のように第2実施例によれば、電流検出器36u,36v及び36wによって電流波形のゼロクロス点に対応した電流信号Siu,Siv及びSiwを得て、これらの電流信号に基づいて発生される割込み信号Siによる割込み処理で、マイコン30は、ステップC4乃至C6において誘起電圧に対する電流の位相差Pjを検出して、その位相差Pjを電圧位相指令Prとして設定するようにした。
【0075】
従って、電圧電流位相差Pjを正確に検出することができ、誘起電圧に対する電圧位相指令Prがその電圧電流位相差Pjに設定されることにより、各巻線8u,8v及び8wに流れる巻線電流は、誘起電圧vau,vav及びvawと同相になり、モータ8の発生トルクを最大にして効率を高めることができる。
【0076】
次に、本発明の第3実施例につき、図16乃至図19を参照して説明する。第3実施例の構成は、図16に示すように、マイコン30の内部に電圧位相カウンタ30dが内蔵されている以外は第1実施例のインバータ装置35と同様であり、以下異なる作用についてのみ説明する。尚、時間カウンタ30bは、図示を省略している。
【0077】
割込み信号Shの入力による割込み処理のフローチャートを示す図17においては、ステップA1乃至A5は、図6に示す第1実施例と同様の処理である。そして、ステップA5から、「電圧位相指令Prの読出し」の処理ステップG6に移行する。処理ステップG6においては、マイコン30は、第1実施例と同様に電圧位相指令PrをROM30aから読出す。そして、「カウント周期Tgを設定」の処理ステップG7に移行する。
【0078】
ここで、マイコン30には、前述のように電圧位相カウンタ30dが内蔵されており、この電圧位相カウンタ30dは、カウント周期Tgが設定でき、カウント値Dgが読書きできるプログラマブルカウンタである。処理ステップG7においては、ステップA2で得た割込み周期TsをステップA5で得たロータ位相差Psで除算することによりカウンタ周期Tgを決定する。そして、そのカウンタ周期Tgを電圧位相カウンタ30dに設定すると、「カウントデータ書替え」の処理ステップG8に移行する。
【0079】
処理ステップG8においては、電圧位相カウンタ30dの設定カウント値Dgを、ステップA4で得た電気角PxとステップG6で得た電圧位相指令Prとの和として求め、電圧位相カウンタ30dに書込んでカウントデータを書替える。そして、メインルーチンにリターンする。
【0080】
以上の処理が、割込み信号Shが入力される毎に繰返される。電圧位相カウンタ30dは、そのカウント周期Tgとカウント値Dgが,位置センサ信号の変化タイミングの度に調整されるので、そのカウント動作は、誘起電圧vmuの電圧位相と電圧位相指令Prによる位相差に対応するカウント値を示すものである。
【0081】
ここで、図19(c)に示す時刻t4,t5において、演算パラメータとして以下の具体的数値を得た場合の、カウント周期Tgとカウント値Dgとの計算例を示す。時刻t4において割込み信号Shによる割込みが発生し、時刻t5は、その次に割込み信号Shによる割込みが発生した時刻である。時刻t4,t5における時間カウンタ30bのカウント値を「20000」,「23000」とすると、ステップA1及びA2によって、変数Ty,Tx、及びTsが下記のように決定されて記憶される。
【0082】
そして、ステップA3において位置センサ信号Hu,Hv,Hwの信号レベルが「H,L,L」と得られたとすると、ステップA4においては、図9に示すデータテーブル1から電気角Pxが「90」と、ステップA5においては、図10に示すデータテーブル2からロータ位相差Psが「60」と求められる。また、ステップG6において得られた電圧位相指令Prが「15」とすると、ステップG7及びG8の演算によって、次のようにカウンタ周期Tgとカウント値Dgが決定される。
Ty=20000, Tx=23000,
Ts=Tx−Ty=3000
Px=90, Ps=60, Tn=15000, Pr=15
Tn=Ts/Px=50 …(10)
Dg=Px+Pr=105 …(11)
【0083】
次に、図18に示すフローチャートにつき説明する。このフローチャートは、第1実施例においては図7に対応するものであり、割込み信号Spが入力された場合の割込み処理である。まず、「電圧位相Pnを決定」の処理ステップH1においては、マイコン30は、電圧位相カウンタ30dのカウント値Dgを読出して、そのカウント値Dgを電圧位相Pnとする。尚、ステップH1は、電圧位相決定手段に対応する。以降の処理ステップB4乃至B9までは、第1実施例と同様の処理である。
【0084】
以上の構成と作用により、U相誘起電圧vmuと電気角Pr進み位相のカウント値を示す電圧位相カウンタ30dが形成され、この電圧位相カウンタ30dと正弦波電圧率とから各相の信号波が形成されるから、モータ8の各巻線8u,8v,8wには夫々の誘起電圧vmu,vmv,vmwと電気角Pr進み位相の正弦波電圧が供給され、ロータ位置に応じた正弦波電流が各巻線に通電される。
【0085】
以上のように第3実施例によれば、ステップA1及びA2において決定された位置センサ周期Tsに基づいてカウント周期Tgが決定され、割込み信号Shによる割込み処理が行われる毎に、その割込み発生時刻に対応する電気角Pxと電圧位相指令Prとの和によってカウント値が書替えられる電圧位相カウンタ30dを備え、マイコン30は、電圧位相カウンタ30dのカウント値Dgを読出すことによって、電圧位相Pnを決定するようにした。従って、より単純な処理によって電圧位相Pnを決定することができる。
【0086】
次に、本発明の第4実施例について、図20を参照して説明する。第4実施例の構成は、第2実施例と同様であり、以下異なる作用についてのみ説明する。マイコン30は、第4実施例においても、第3実施例における図17及び図18に示す割込み処理を同様に行っている。また、第2実施例において、図13に示した割込み信号Siによる割込み処理に対応して、図20に示すフローチャートを実行するようになっている。
【0087】
図20においては、図13におけるステップC1乃至C3が、「電圧位相Pnを決定」の処理ステップK1に置き換わっている。処理ステップK1においては、マイコン30は、電圧位相カウンタ30dのカウント値Dgを読込んで、電圧位相Pnを得る。即ち、第2実施例においては演算によって求めた電圧位相Pnを、電圧位相カウンタ30dのカウント値Dgを読出すことによって得るものである。以降の処理は第2実施例と同様である。
【0088】
以上のように第4実施例によれば、電圧位相カウンタ30dのカウント値Dgを読出すことによって電圧位相Pnを決定し、その電圧位相Pnと電流位相Piとの位相差Pjにより電圧位相指令Prを決定するので、より単純な処理によって決定することができる。
【0089】
本発明は、上記し且つ図面に記載した実施例にのみ限定されるものではなく、以下のような変形または拡張が可能である。
第1及び第3実施例のインバータ装置35を、図21に示すように、直流電源回路5,3相ブリッジ回路7,駆動回路13,マイコン30及び集積回路40からなるインバータ装置41として構成しても良い。ここで、集積回路40は、割込み信号発生回路31,駆動信号回路32,選択回路33、初期駆動信号回路34及びインターフェイス回路42から構成されている。また、インターフェイス回路42は、位置センサ信号Hu,Hv,Hwや割込み信号Sh及びSpをマイコン30に与えると共に、マイコン30が出力する信号波vau,vav,vawと選択信号Se1,Se2を集積回路40内部の各回路に与えるものである。以上のように集積回路40を構成することにより、インバータ装置41をより小形に構成することができる。
【0090】
また、第1及び第3実施例のインバータ装置35を、図22に示すように、直流電源回路5,3相ブリッジ回路7,駆動回路13及びワンチップマイコン43からなるインバータ装置44として構成しても良い。ここで、ワンチップマイコン43は、割込み信号発生回路31,駆動信号回路32,選択回路33,初期駆動信号回路34,インターフェイス回路42及びマイコン30を制御部43aとしたものから構成されている。以上のようにワンチップマイコン43を構成することにより、インバータ装置44をより一層小形に構成することができる。
【0091】
第2及び第4実施例のインバータ装置39を、図23に示すように、直流電源回路5,3相ブリッジ回路7,駆動回路13,マイコン30及び集積回路45からなるインバータ装置46として構成しても良い。ここで、集積回路45は、割込み信号発生回路31,駆動信号回路32,選択回路33,初期駆動信号回路34,比較器37,割込み信号発生回路38及びインターフェイス回路47から構成されている。また、インターフェイス回路47は、位置センサ信号Hu,Hv,Hwや電流信号Siu,Siv,Siw並びに割込み信号Sh,Sp及びSiをマイコン30に与えると共に、マイコン30が出力する信号波vau,vav,vawと選択信号Se1,Se2を集積回路45内部の各回路に与えるものである。以上のように集積回路45を構成することにより、インバータ装置46をより小形に構成することができる。
【0092】
また、第2及び第4実施例のインバータ装置39を、図24に示すように、直流電源回路5,3相ブリッジ回路7,駆動回路13及びワンチップマイコン48からなるインバータ装置49として構成しても良い。ここで、ワンチップマイコン48は、割込み信号発生回路31及び38,駆動信号回路32,選択回路33,初期駆動信号回路34,インターフェイス回路47及びマイコン30を制御部48aとしたものから構成されている。以上のようにワンチップマイコン47を構成することにより、インバータ装置49をより一層小形に構成することができる。
【0093】
位置センサ信号は夫々の誘起電圧と30度の位相差を持った信号としたが、これに限定されるものではない。例えば、図25に示すような誘起電圧に対する位相差をもつ位置センサ信号の場合でも、データテーブル1及び2を、図26及び図27に示すように夫々設定すれば、同様の構成・作用により同様の効果を得ることができる。
【0094】
また、第1実施例のように、ホールIC9u乃至9wが電気角で120度間隔で配置されている場合、割込み信号Shによる割込み周期は電気角については一定であるので、ステップA5においてデータテーブル2から読出して求めたロータ位相差Psは、固定値(60度)として与えるようにしても良い。
【0095】
更に、ステップA4においてデータテーブル1から読出して求めた電気角Pxも、毎回データテーブル1から読出して求めずとも、一度データテーブル1から読出して初期値Px0求めた後は、割込み信号Shによる割込みが入る毎に、初期値Px0に60度を加算して求めても良い(但し、360度を超える場合は360度を減算する)。
【0096】
ステップA4,A5,B6及びC5において、電気角Px,ロータ位相差Ps,電圧位相指令Pr及び電流位相PiをROM30aから読出すようにしたが、マイコン30の初期処理において、データテーブル1乃至3並びに電圧位相指令PrをRAM30cに転送して、以降はRAM30cから読出すようにしても良い。
【0097】
第1実施例において、モータ8の起動時に初期駆動信号回路34によって駆動した後、駆動信号回路32に切替える場合に、所定時間が経過するのを待って切替えたが、例えばロータの回転回数を計測する回転回数計測手段を設けて、その回転回数が所定値を超えた場合に切替えるようにしても良い。また、ロータの回転数を計測する回転数計測手段を設けて、その回転数が所定値を超えた場合に切替えるようにしても良い。
【0098】
また、回転回数計測手段は、割込み信号Shによる割込み処理ルーチンにおいて、マイコン30が割込み回数をカウントすることによりロータの回転回数を計測するように制御プログラムによって構成しても良い。同様に、回転数計測手段は、マイコン30が単位時間について割込み回数をカウントしてロータの回転数を計測するように構成しても良い。
【0099】
信号波発生手段に対応するマイコン30の動作は、搬送波Pzに同期した割込み信号Spに基づいて行われているが、これに限定されることはなく、例えば、所定周期の時間などその他のタイミングに基づいて行っても良い。
電圧位相Pnを求める演算は、(3)式に限らず適宜変更して良い。
メインルーチンの実行周期は、20msに限らず適宜変更して良い。
電圧率データDuは、正弦波に応じた電圧率に限ること無く、モータ8のトルク変動を減少させる波形に応じた電圧率であれば適宜変更して良い。
【0100】
電圧率データDu及び電圧指令信号Daの値域は、設定ビット数に応じて適宜変更して良い。また、アップダウンカウンタ22aのビット数も8ビットに限らず、適宜変更して良い。これらの値を変更する場合は、信号波vauの計算式である(5)式を、一般式として以下のように変更する。
vau=Do×(Du/Dum)×(Da/Dm)+Do …(12)
Do:アップダウンカウンタ22aのビット数のMSBが示す値
Dum:電圧率データDuのビット数のMSBが示す値
Dm:電圧指令信号Daの最大値
【0101】
また、電圧率データDuの値域は、「−127」〜「127」のように正負の値をとらずとも、例えば8ビットであれば「0」〜「254」の正の値としても良い。その場合は、(5),(7)及び(9)式でoffset値として「128」を加算せずとも良い。(12)式の場合は、Doの加算が不要となる。
【0102】
第3実施例において、ステップG7で決定される電圧位相カウンタ30dのカウント周期Tgは電気角1度に対応するカウント値となるが、カウント周期Tgの設定に限界がある場合には、ステップG7の(10)式を(13)式と、ステップG8の(11)式を(14)式とする。そして、ステップH1において電圧位相Pnを決定する場合は、(15)式に示すように、読出した電圧位相カウンタ30dのカウント値をn倍して電圧位相Pnを決定するようにして、変数nを回転数に応じて変更しても良い。
Tg=n×Ts/Ps …(13)
Dg=(Px+Pr)/n …(14)
Pn=n×Dg …(15)
【0103】
時間カウンタ30b及び電圧位相カウンタ30dは、マイコン30のシステムタイマによるタイマ割込み間隔が充分短い場合は、ソフトウエアタイマにより構成しても良い。
【0104】
【発明の効果】
本発明は以上説明した通りであるので、以下の効果を奏する。
請求項1記載のインバータ装置によれば、電圧位相決定手段は、複数の位置センサ信号とこれらの位置センサ信号の変化周期とロータ位相及びロータ位相差とに基づいて、その変化周期に対応する電気角よりも高い分解能を有する電圧位相を決定し、信号波形成手段は、電圧位相に対応した電圧率に基づいて信号波を形成し、駆動信号形成手段は、信号波とPWM制御を行うための搬送波との振幅レベルを比較することによって駆動信号を形成して駆動手段に出力するので、最小限の位置センサで、ロータ位相と同期した任意波形の電圧をブラシレスモータに供給でき、ブラシレスモータのトルク変動を低減することができる。
【0105】
請求項2または3記載のインバータ装置によれば、電圧位相決定手段は、位置センサ信号の変化周期と、変化周期に対応するロータ位相差と、位置センサ信号の変化時刻と、その変化時刻に対応するロータ位相と、予め定められた位相指令とを演算パラメータとして、ある時刻における電圧位相を上記演算パラメータに基づいて演算により決定するので、電圧位相を正確に求めることができる。
【0106】
請求項4記載のインバータ装置によれば、電圧位相決定手段は、電圧位相カウンタのカウント値を読出して電圧位相を決定するので、より単純な処理によって電圧位相を決定することができる。
【0107】
請求項5記載のインバータ装置によれば、電圧位相決定手段は、巻線に流れる電流の電圧に対する位相差及び位置センサ信号並びに位置センサ信号の変化周期,ロータ位相及びロータ位相差に基づいて、変化周期に対応する電圧位相よりも高い分解能を有する電圧位相を決定し、信号波形成手段は、電圧位相に対応した電圧率に基づいて信号波を形成し、駆動信号形成手段は、信号波とPWM制御を行うための搬送波との振幅レベルを比較することによって駆動信号を形成して駆動手段に出力するので、巻線に流れる電流と誘起電圧とを同相にすることができ、発生トルクを最大にしてモータの効率を高めることができる。
【0108】
請求項6または7記載のインバータ装置によれば、電圧位相決定手段は、位置センサ信号の変化周期と、変化周期に対応するロータ位相差と、位置センサ信号の変化時刻と、その変化時刻に対応するロータ位相と、巻線に流れる電流の電圧に対する位相差とを演算パラメータとして、ある時刻における電圧位相を上記演算パラメータに基づいて演算により決定するので、請求項2または3と同様の効果が得られる。
【0109】
請求項8記載のインバータ装置によれば、電圧位相決定手段は、電圧位相カウンタのカウント値を読出して電圧位相を決定するので、請求項4と同様の効果が得られる。
【0110】
請求項9記載のインバータ装置によれば、電流位相差検出手段は、巻線に流れる電流のゼロクロス点に基づいて、電流の電圧に対する位相差を正確に検出することができる。
【0111】
請求項10記載のインバータ装置によれば、選択手段は、モータの始動開始時に初期駆動信号形成手段が出力する初期駆動信号を選択し、条件判断手段が所定条件成立と判断すると駆動信号形成手段により得られる駆動信号を選択して駆動手段に出力するので、ブラシレスモータをスムーズに始動することができる。
【0112】
請求項11,12または13記載のインバータ装置によれば、条件判断手段は、計時手段が計時するモータの始動開始時からの経過時間が一定時間に達するか、回転回数計測手段が計測するロータの回転回数が一定値に達するか、また、回転数計測手段が計測するロータの回転数が一定値に達すると、所定条件成立と判断するので、簡単な処理で請求項10と同様の効果が得られる。
【0113】
請求項14記載のインバータ装置によれば、電圧率記憶手段に記憶される電圧位相に対応した電圧率を正弦波に応じた電圧率としたので、正弦波の電圧をブラシレスモータに供給することができ、ブラシレスモータのトルク変動を一層低減することができる。
【0114】
請求項15記載のインバータ装置によれば、主要な部分を集積回路とマイクロコンピュータにより構成したので、小形化することができる。
請求項16及び17記載のインバータ装置によれば、主要な部分をワンチップマイクロコンピュータにより構成したので、更に小形化することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す電気的構成のブロック図
【図2】割込み信号発生回路の電気的構成を示す図
【図3】電圧率データの波形図
【図4】選択信号Se1及びSe2と駆動回路に与えられる駆動信号との対応を示す図
【図5】制御内容のメインルーチンのフローチャート
【図6】割込み信号Shに対する割込み処理ルーチンのフローチャート
【図7】割込み信号Spに対する図6相当図
【図8】タイミングチャート
【図9】位置センサ信号Hu,Hv,Hwと電気角Pxとの対応を示す図
【図10】位置センサ信号Hu,Hv,Hwとロータ位相差Psとの対応を示す図
【図11】ブラシレスモータの発生トルクを示す図
【図12】本発明の第2実施例を示す図1相当図
【図13】割込み信号Siに対する図6相当図
【図14】電流信号Si,Su,Svと電気角Piとの対応を示す図
【図15】図8相当図
【図16】本発明の第3実施例を示す図1相当図
【図17】図6相当図
【図18】図7相当図
【図19】図8相当図
【図20】本発明の第4実施例を示す図13相当図
【図21】変形例を示す図1相当図
【図22】図21相当図
【図23】図21相当図
【図24】図21相当図
【図25】誘起電圧に対してホールICの配置が異なる場合のタイミングチャート
【図26】図9相当図
【図27】図10相当図
【図28】第1の従来例を示す図1相当図
【図29】図8相当図
【図30】PWM回路の電気的構成を示す図
【図31】PWM回路の内部信号のタイミングチャート
【図32】図11相当図
【図33】第2の従来例を示す図1相当図
【図34】図8相当図
【符号の説明】
8はブラシレスモータ、9u,9v,9wはホールIC、13は駆動回路(駆動手段)、30はマイクロコンピュータ、30aはROM(電圧率記憶手段,パラメータ記憶手段)、30bは時間カウンタ、30cはRAM(パラメータ記憶手段)、30dは電圧位相カウンタ、32は駆動信号回路(駆動信号形成手段)、33は選択回路(選択手段)、34は初期駆動信号回路(初期駆動信号形成手段)、35はインバータ装置、36u,36v,36wは電流検出器(電流検出手段)、39はインバータ装置、40は集積回路、41はインバータ装置、43はワンチップマイコン、44はインバータ装置、45は集積回路、46はインバータ装置、48はワンチップマイコン、49はインバータ装置を示す。

Claims (17)

  1. ブラシレスモータの複数の巻線に発生する誘起電圧と一定の位相関係をもち且つロータの基準位置からの回転位置たる電圧位相を示す複数の位置センサ信号に基づいて前記複数の巻線に通電するインバータ装置において、
    前記複数の位置センサ信号が変化する周期を測定する位置センサ周期測定手段と、
    前記位置センサ周期測定手段が測定した変化周期に対応するロータ位相差と、前記位置センサ信号の変化時刻に対応するロータ位相とを記憶するパラメータ記憶手段を有し、前記複数の位置センサ信号前記変化周期,前記ロータ位相及びロータ位相差に基づいて、前記変化周期に対応する電気角よりも高い分解能を有する電圧位相を決定する電圧位相決定手段と、
    前記電圧位相決定手段によって決定された電圧位相に対応した電圧率を記憶する電圧率記憶手段と、
    前記電圧率に基づいて信号波を形成する信号波形成手段と、
    PWM制御を行うための搬送波を出力する搬送波出力手段を有し、前記信号波と前記搬送波との振幅レベルを比較することによって駆動信号を形成する駆動信号形成手段と、
    前記駆動信号に基づいて前記複数の巻線に通電する駆動手段とを具備したことを特徴とするインバータ装置。
  2. 前記パラメータ記憶手段は、前記ロータ位相及びロータ位相差に加えて、位置センサ周期測定手段が測定した位置センサの変化周期と位置センサ信号の変化時刻と、予め定められた電圧位相指令とを演算パラメータとして記憶しており
    前記電圧位相決定手段は、ある時刻における電圧位相を、前記演算パラメータに基づいて演算により決定することを特徴とする請求項1記載のインバータ装置。
  3. 変化周期をTs,ロータ位相差をPs,変化時刻をTx,ロータ位相をPx,電圧位相指令をPrとした場合、電圧位相を決定する時刻Tnにおける電圧位相Pnは、
    Pn=Px+Pr+Ps×(Tn−Tx)/Ts
    のように演算されるようになっていることを特徴とする請求項2記載のインバータ装置。
  4. 位置センサ周期測定手段によって得られた位置センサ信号の変化周期に基づいてカウント周期が決定され、位置センサ信号の変化時刻に対応するロータ位相と電圧位相指令との和によって一定時間毎にカウント値が書替えられる電圧位相カウンタを備え、
    電圧位相決定手段は、前記電圧位相カウンタのカウント値を読出して電圧位相を決定することを特徴とする請求項1記載のインバータ装置。
  5. ブラシレスモータの複数の巻線に発生する誘起電圧と一定の位相関係をもち且つロータの基準位置からの回転位置たる電圧位相を示す複数の位置センサ信号に基づいて前記複数の巻線に通電するインバータ装置において、
    前記巻線に流れる電流の誘起電圧に対する位相差即ち電圧電流位相差を検出する電流位相差検出手段と、
    前記複数の位置センサ信号が変化する周期を測定する位置センサ周期測定手段と、
    前記位置センサ周期測定手段が測定した変化周期に対応するロータ位相差と、前記位置センサ信号の変化時刻に対応するロータ位相とを記憶するパラメータ記憶手段を有し、前記電圧電流位相差及び前記位置センサ信号前記変化周期,前記ロータ位相及びロータ位相差に基づいて、前記変化周期に対応する電気角よりも高い分解能を有する電圧位相を決定する電圧位相決定手段と、
    この電圧位相決定手段によって決定された電圧位相に対応した電圧率を記憶する電圧率記憶手段と、
    前記電圧率に基づいて信号波を形成する信号波形成手段と、
    PWM制御を行うための搬送波を出力する搬送波出力手段を有し、前記信号波と前記搬送波との振幅レベルを比較することによって駆動信号を形成する駆動信号形成手段と、
    前記駆動信号に基づいて前記複数巻線に通電する駆動手段とを具備したことを特徴とするインバータ装置。
  6. 前記パラメータ記憶手段は、前記ロータ位相及びロータ位相差に加えて、位置センサ周期測定手段が測定した変化周期と位置センサ信号の変化時刻と電流位相差検出手段が検出する電圧電流位相差とを演算パラメータとして記憶しており
    前記電圧位相決定手段は、ある時刻における電圧位相を、前記演算パラメータに基づいて演算により決定することを特徴とする請求項5記載のインバータ装置。
  7. 変化周期をTs,ロータ位相差をPs,変化時刻をTx,ロータ位相をPx,電圧電流位相差をPjとした場合、電圧位相を決定する時刻Tnにおける電圧位相Pnは、
    Pn=Px+Pj+Ps×(Tn−Tx)/Ts
    のように演算されるようになっていることを特徴とする請求項6記載のインバータ装置。
  8. 位置センサ周期測定手段によって得られた位置センサ信号の変化周期に基づいてカウント周期が決定され、位置センサ信号の変化時刻に対応するロータ位相と電圧電流位相差との和によって一定時間毎にカウント値が書替えられる電圧位相カウンタを備え、
    電圧位相決定手段は、前記電圧位相カウンタのカウント値を読出して電圧位相を決定することを特徴とする請求項5記載のインバータ装置。
  9. 巻線に流れる電流のゼロクロス点を検出する電流検出手段を備え、
    電流位相差検出手段は、前記ゼロクロス点に基づいて電圧電流位相差を検出することを特徴とする請求項5乃至8の何れかに記載のインバータ装置。
  10. 位置センサ信号の論理演算結果により初期駆動信号を形成する初期駆動信号形成手段と、
    ブラシレスモータの始動開始後に所定条件が成立したか否かを判断する条件判断手段と、
    ブラシレスモータの始動開始時に前記初期駆動信号を選択し、前記条件判断手段が所定条件成立と判断すると駆動信号形成手段により得られる駆動信号を選択して駆動手段に出力する選択手段とを備えたことを特徴とする請求項1乃至9の何れかに記載のインバータ装置。
  11. 条件判断手段は、ブラシレスモータの始動開始時からの経過時間を計時する計時手段を備え、前記経過時間が一定時間に達すると所定条件成立と判断することを特徴とする請求項10記載のインバータ装置。
  12. 条件判断手段は、位置センサ信号に基づいてロータの回転回数を計測する回転回数計測手段を備え、前記ロータの回転回数が一定値に達すると所定条件成立と判断することを特徴とする請求項10記載のインバータ装置。
  13. 条件判断手段は、位置センサ信号に基づいてロータの回転数を計測する回転数計測手段を備え、前記ロータの回転数が一定値に達すると所定条件成立と判断することを特徴とする請求項10記載のインバータ装置。
  14. 電圧率記憶手段に記憶される電圧位相に対応した電圧率は、正弦波に応じた電圧率であることを特徴とする請求項1乃至13の何れかに記載のインバータ装置。
  15. 駆動信号形成手段と、初期駆動信号形成手段と、選択手段とを集積回路によって構成し、
    位置センサ周期測定手段と、電圧位相決定手段と、電圧率記憶手段と、条件判断手段と、信号波形成手段と、駆動信号形成手段とをマイクロコンピュータにより構成したことを特徴とする請求項10乃至14の何れかに記載のインバータ装置。
  16. 位置センサ周期測定手段と、電圧位相決定手段と、電圧率記憶手段と、信号波形成手段と、駆動信号形成手段とをワンチップマイクロコンピュータにより構成したことを特徴とする請求項1乃至14の何れかに記載のインバータ装置。
  17. 電流位相差検出手段と、位置センサ周期測定手段と、電圧位相決定手段と、電圧率記憶手段と、信号波形成手段と、駆動信号形成手段とをワンチップマイクロコンピュータにより構成したことを特徴とする請求項5乃至14の何れかに記載のインバータ装置。
JP22429995A 1995-08-31 1995-08-31 インバータ装置 Expired - Lifetime JP3663234B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22429995A JP3663234B2 (ja) 1995-08-31 1995-08-31 インバータ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22429995A JP3663234B2 (ja) 1995-08-31 1995-08-31 インバータ装置

Publications (2)

Publication Number Publication Date
JPH0974790A JPH0974790A (ja) 1997-03-18
JP3663234B2 true JP3663234B2 (ja) 2005-06-22

Family

ID=16811602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22429995A Expired - Lifetime JP3663234B2 (ja) 1995-08-31 1995-08-31 インバータ装置

Country Status (1)

Country Link
JP (1) JP3663234B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225271B2 (en) 2013-08-23 2015-12-29 Kabushiki Kaisha Toshiba Semiconductor integrated circuit and motor driving apparatus
US9917539B1 (en) 2016-09-13 2018-03-13 Kabushiki Kaisha Toshiba Brushless DC motor control device and brushless DC motor device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3483740B2 (ja) * 1997-08-29 2004-01-06 株式会社東芝 洗濯機
DE60221195D1 (de) 2001-06-20 2007-08-30 Nissan Motor Regler und Regelungsverfahren für einen Motor
JP2004153924A (ja) * 2002-10-30 2004-05-27 Hitachi Ltd 永久磁石回転機
US6984948B2 (en) 2002-12-12 2006-01-10 Matsushita Electric Industrial Co., Ltd. Motor control apparatus
US7304452B2 (en) 2005-03-11 2007-12-04 Kabushiki Kaisha Toshiba Motor control device
JP5428745B2 (ja) 2008-12-02 2014-02-26 パナソニック株式会社 モータ駆動装置および圧縮機および冷蔵庫
JP5387396B2 (ja) * 2009-12-28 2014-01-15 パナソニック株式会社 モータ駆動装置および圧縮機および冷蔵庫
JP2012130172A (ja) * 2010-12-16 2012-07-05 New Japan Radio Co Ltd ブラシレスdcモータの駆動方法およびその駆動回路
JP6151107B2 (ja) * 2013-06-28 2017-06-21 本田技研工業株式会社 故障検知装置
JPWO2019216171A1 (ja) * 2018-05-07 2021-05-13 パナソニックIpマネジメント株式会社 駆動用機器、及び駆動システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225271B2 (en) 2013-08-23 2015-12-29 Kabushiki Kaisha Toshiba Semiconductor integrated circuit and motor driving apparatus
US9917539B1 (en) 2016-09-13 2018-03-13 Kabushiki Kaisha Toshiba Brushless DC motor control device and brushless DC motor device

Also Published As

Publication number Publication date
JPH0974790A (ja) 1997-03-18

Similar Documents

Publication Publication Date Title
JP3663234B2 (ja) インバータ装置
CN101599731A (zh) 无刷电动机控制装置及无刷电动机
JPH10191679A (ja) ブラシレスモータの駆動装置
JP2002165480A (ja) ブラシレスモータの制御装置およびこれを備えたインバータ洗濯機
JP2006230049A (ja) モータ制御装置およびモータ電流検出装置
JPH1075597A (ja) ブラシレスdcファンモータの駆動装置
US6995538B2 (en) Rotational direction detecting apparatus for a three-phase brushless DC motor
JP3808583B2 (ja) インバータ装置
JPH11187690A (ja) インバータ装置及びブラシレスファンモータ
JP3544318B2 (ja) インバータ洗濯機
JP3695889B2 (ja) インバータ装置
JPH09215375A (ja) インバータ装置
JP3481405B2 (ja) インバータ装置
JP2000232797A (ja) ブラシレスモータの駆動装置
JP4788603B2 (ja) インバータ装置
JP7482668B2 (ja) モータ制御装置、モータシステム及びモータ制御方法
JPH09149679A (ja) インバータ装置
JP2000278987A (ja) インバータ装置
JP3663166B2 (ja) ブラシレスモータの制御装置
JP7456834B2 (ja) モータ制御装置、モータシステム及びモータ制御方法
US11757394B2 (en) Motor control device and motor system
JPH10164886A (ja) インバータ装置
JPH08237986A (ja) 回転位置検出装置及び検出方法
JP2002153082A (ja) 洗濯機のモータ駆動装置
JP2002171787A (ja) モータ速度検出装置及びモータ制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

EXPY Cancellation because of completion of term