JP3656008B2 - 面発光レーザ - Google Patents

面発光レーザ Download PDF

Info

Publication number
JP3656008B2
JP3656008B2 JP26482499A JP26482499A JP3656008B2 JP 3656008 B2 JP3656008 B2 JP 3656008B2 JP 26482499 A JP26482499 A JP 26482499A JP 26482499 A JP26482499 A JP 26482499A JP 3656008 B2 JP3656008 B2 JP 3656008B2
Authority
JP
Japan
Prior art keywords
dbr
refractive index
index layer
layer
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26482499A
Other languages
English (en)
Other versions
JP2001094208A (ja
Inventor
俊明 香川
功太 舘野
修 忠永
裕行 植之原
達也 竹下
主税 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26482499A priority Critical patent/JP3656008B2/ja
Publication of JP2001094208A publication Critical patent/JP2001094208A/ja
Application granted granted Critical
Publication of JP3656008B2 publication Critical patent/JP3656008B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、基板面に対して垂直方向に光を出射する面発光レーザに関するものである。
【0002】
【従来の技術】
従来、この種の技術としては、図4や出典特開平6−45695号公報に記載されたものがある。図4において、1はn−GaAs基板、2は厚さ52nmのn−Al0.15Ga0.85As、3は厚さ10nmのグレーディド層であり、Al組成は0.15から0.95まで連続的に変化している。4は厚さ59nmのn−Al0.95Ga0.05Asである。これらの層2,3,4はいずれも不純物密度2×1018cm-3にSiがドープされている。2のn−Al0.15Ga0.85Asと4のn−Al0.95Ga0.05Asとは異なる屈折率を持っている。一般にAlGaAsのAl組成が大きくなるにしたがって屈折率は小さくなる。本明細書では、Al組成の小さい層(この場合Al0.15Ga0.85As)を高屈折率層、Al組成の大きい層(この場合Al0.95Ga0.05As)を低屈折率層と呼ぶ。低屈折率層と高屈折率層を交互に積層した反射鏡をDBR(Distributes Bragg Reflector)ミラーと呼び、これらの層の間の屈折率の差が大きいほど、即ち両層のAl組成比の差が大きいほど、DBRの反射率は大きくなる。各層の厚さは、2のn−Al0.15Ga0.85Asと3のグレーディド層の光学長(厚さ×屈折率)の和と4のn−Al0.95Ga0.05Asと3のグレーディド層の光学長の和がそれぞれレーザ発振波長の1/4となるように調整されている。これらが互いに35ペア積層されることによって99%以上の反射率を有するDBRミラーとなっている。グレーディド層3は、Al組成を高屈折率層側に接する部分の0.15から低屈折率層側に接する部分の0.95まで連続的に変えることによって、電子が界面をスムーズに走ることを可能にし、抵抗を小さくするためのものである。5は厚さ88nmのAl0.4 Ga0.6 Asのスペーサ層、6はGaAs量子井戸層、7はAl0.3 Ga0.7 Asの障壁層である。これらの層5,6,7はいずれもノンドープで、GaAs量子井戸層6が活性層として働く。これらの層5,6,7の全体の光学長は、レーザの発振波長に等しい。
【0003】
8はp−Al0.95Ga0.05As、9はAl組成比が0.15から0.95まで連続的に変化するグレーディド層、10はp−Al0.15Ga0.85Asである。これらの層8,9,10は不純物密度2×1018cm-3までCドープされている。
【0004】
これらが20ペア積層されることによってp側のDBRミラーとなっている。それぞれの層の厚さは、n側と同じである。レーザ光はp−DBRを通して出射されるため、p−DBRの方がn−DBRよりもペア数を少なくしてある。一般にDBR(特にp−DBR)の抵抗はバルクの半導体に比べて大きく、これによるジュール熱のために素子の動作時に活性層の温度が上昇し、素子特性が劣化することがある。これを避けるために2×1018cm-3まで高濃度に不純物のドープが行われている。
【0005】
11はAuZnNiのp型オーミック電極、12はAuGeNiのn型オーミック電極である。また13はp−DBRをエッチングした溝であり、これをポリイミドで埋めて平坦化してある。エッチングの深さはp−DBRを数ペア残し、活性層まではエッチングをしない(これをローメサ構造と呼ぶ)。8の低屈折率層と10の高屈折率層との間には大きなバンドギャップの差があり、たとえ中間にグレーディド層9があっても電流の縦方向の伝搬には大きな抵抗となる。また、これらの層には高濃度に不純物がドープされているため、材料本体の抵抗は小さい。したがって、電流の横方向への抵抗は小さく、このままでは、エッチングされていない数ペアのp−DBRで電流が横方向に拡がり、DBRのメサ径よりもずっと広い領域の活性層に電流が流れて、閾値電流が大きくなり、また効率も劣化する。これを防ぐために14の領域にプロトンや酸素などのイオンを打ち込み、高抵抗化して電流の拡がりを防いでいる。
【0006】
【発明が解決しようとする課題】
従来の面発光レーザにおいて、DBRミラーの反射率を大きくするためには、高屈折率層及び低屈折率層を構成する両AlGaAsのAl組成の差をなるべく大きくして、屈折率の差を大きくする必要がある。一方、Al組成比が小さく、バンドギャップの小さな層(n,pのDBRにおけるAl0.15Ga0.85As層)でのレーザ光の吸収を避けねばならない。この両方の要請から、n,pのAl0.15Ga0.85AsのAl組成は、バンドギャップがレーザ発振光のエネルギー(1.46eV)より少しだけ大きくなるような組成にしてある。しかし、抵抗を下げるために不純物を高濃度(2×1018cm-3)にドープしたときには、半導体の吸収スペクトルはバンドギャップよりも小さなエネルギーの光子に対しても無視できない。したがって、p−DBRではレーザ発振光が吸収され、閾値電流の増大や、効率の劣化を招くという問題点があった。またDBRでの光吸収によって発生した電子と正孔の再結合エネルギーによって結晶欠陥が発生、増殖するため、素子の信頼性も損なう。また、ローメサ構造は活性層の側面が露出しないために、信頼性の観点から優れているが、電流の横方向拡がりを防ぐためのイオン注入が必要であり、このためコストの上昇を招いていた。また活性層の近傍までイオンを注入するため、これによる活性層での欠陥が素子特性に悪影響を与えるという問題点があった。
【0007】
本発明は、上記に鑑みてなされたもので、低閾値化、高効率化、高信頼性及び低コスト化を達成することができる面発光レーザを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明は、第1の導電型であり高屈折率層と低屈折率層のペアを複数層有する第1のDBR、第1の導電型であり高屈折率層と低屈折率層のペアを所定層有する第2のDBR、活性層、第2の導電型であり高屈折率層と低屈折率層のペアを複数層有する第3のDBR、第2の導電型であり高屈折率層と低屈折率層のペアを所定層有する第4のDBRを順次積層した構造を有し、同じ導電型の前記DBRでは前記活性層に近い側のDBRの不純物ドープ濃度が前記活性層から遠い側のDBRの不純物ドープ濃度よりも低く、同じ導電型の前記DBRでは前記活性層に近い側のDBRの高屈折率層のバンドギャップが前記活性層から遠い側のDBRの高屈折率層のバンドギャップよりも大きく、前記第4のDBRを貫き前記第3のDBRまで達するエッチングによるローメサ構造を有することを要旨とする。この構成により、活性層に近い側の第3のDBRの不純物ドープ濃度を低くすることで、抵抗が大きくなり、ローメサ構造のエッチングされずに残った第3のDBR領域での電流の横拡がりを小さくすることが可能となる。またレーザ発振光が最も強いこの活性層に近い側の第2、第3のDBRにおける各高屈折率層のバンドギャップを大きくすることで、この部分の光吸収が抑制される。さらに、この第2、第3のDBRは不純物ドープ濃度が低いことから自由キャリアによる光吸収も小さくなる。
【0010】
請求項記載の発明は、上記請求項記載の面発光レーザにおいて、前記第1乃至第4のDBRの材料はAlGaAs半導体であることを要旨とする。
【0011】
この構成により、第2、第3のDBRにおける高屈折率層を構成するAlx Ga1-x Asのxの値、即ちAl組成比を大きくすることで、バンドギャップが大きくなり、確実にこの部分の光吸収抑制作用が得られる。
【0012】
請求項記載の発明は、上記請求項記載の面発光レーザにおいて、前記第1乃至第4のDBRの材料はInGaAsP半導体であることを要旨とする。この構成により、第2、第3のDBRにおける高屈折率層を構成するInx Ga1-x Asy P1-y のx,yの値、即ちInとAsの組成比をそれぞれ大きくすることで、バンドギャップが大きくなり、確実にこの部分の光吸収抑制作用が得られる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0014】
図1及び図2は、本発明の第1の実施の形態を示す図である。まず、図1を用いて、面発光レーザの構成を説明する。なお、図1において前記図4における部材と同一ないし均等のものは、前記と同一符号を以って示し、重複した説明を省略する。図1において、n−Al0.15Ga0.85As高屈折率層2、グレーディド層3、n−Al0.95Ga0.05As低屈折率層4及びグレーディド層3を1ペアとして、その複数ペアにより第1のDBR領域が形成されている。15はn−Al0.25Ga0.75As高屈折率層、17はn−Al0.95Ga0.05As低屈折率層、16はAl組成を高屈折率層15側に接する部分の0.25から低屈折率層17側に接する部分の0.95まで連続的に変化させたn−AlGaAsグレーディド層である。これらの層15,16,17は、上記第1のDBR領域に比べて不純物密度が小さく、1×1018cm-3にSiがドープされている。また、この部分の高屈折率層である15のn−Al0.25Ga0.75AsのAl組成は、第1のDBR領域におけるn−Al0.15Ga0.85As高屈折率層2のAl組成よりも大きくしてある。即ち、Alx Ga1-x Asにおけるxの値を0.15から0.25に大きくすることで、バンドギャップを所要量大きくしてある。n−Al0.25Ga0.75As高屈折率層15、グレーディド層16、n−Al0.95Ga0.05As低屈折率層17及びグレーディド層16の積層を1ペアとして、その3ペアにより活性層6の直下に第2のDBR領域が形成されている。
【0015】
18はp−Al0.95Ga0.05As低屈折率層、20はp−Al0.25Ga0.75As高屈折率層、19はAl組成を低屈折率層18側に接する部分の0.95から高屈折率層20側に接する部分の0.25まで連続的に変化させたp−AlGaAsグレーディド層である。これらの層18,19,20のCの不純物ドーピング密度は、次に述べる第4のDBR領域のそれよりも低く1×1018cm-3である。また、この部分のp−Al0.25Ga0.75As高屈折率層20も、第4のDBR領域における高屈折率層よりもAl組成を前記と同様に大きくすることで、バンドギャップを所要量大きくしてある。p−Al0.95Ga0.05As低屈折率層18、グレーディド層19、p−Al0.25Ga0.75As高屈折率層20及びグレーディド層19の積層を1ペアとして、その3ペアにより活性層6の直上に第3のDBR領域が形成されている。また、p−Al0.95Ga0.05As低屈折率層8、グレーディド層9、p−Al0.15Ga0.85As高屈折率層10及びグレーディド層9を1ペアとして、その複数ペアにより、上記第3のDBR領域上に第4のDBR領域が形成されている。13のエッチング溝は、第4のDBR領域部分は全て除去し、第3のDBR領域のうち、2ペアを残してエッチングしてあり、このエッチングにより、面発光レーザはローメサ構造となっている。
【0016】
次に、上記のように構成された面発光レーザの作用を、図3を用いて説明する。図3は、面発光レーザの活性層と、その周囲のDBR反射鏡での光の強度分布を示している。光は活性層6とその両側の1ペアのDBRで最大になり、活性層6から離れるにしたがって小さくなる。活性層6から3ペア離れた所で、光強度は1/2以下になる。本実施の形態の素子では、光強度の最も強い活性層6の近傍の第2、第3のDBRの少なくとも3ペアのバンドギャップが大きく、不純物ドーピング密度が小さいので、この部分での光吸収を抑制できる。3ペア以上離れた第1、第4のDBRでは光強度は1/2以下になり光吸収の影響は小さくなる。高屈折率層と低屈折率層の間の屈折率差を大きくする方が、少ないペア数でDBRの反射率を大きくすることができる。したがって、活性層6から遠く、光強度の小さい第1、第4のDBRの領域においては、高屈折率層2,10のAl組成を小さくすることによって少ないペア数で所望の反射率を得ることができる。また、活性層6から遠く、光強度の小さい第1、第4のDBRの領域の不純物ドーピング密度を上げることによって電気抵抗を小さくすることができる。ローメサ構造でエッチングされずに残った第3のDBRにおける2ペアの部分では、低屈折率層18と高屈折率層20の間のバンドギャップが小さいために、界面の電気抵抗が小さい。また、不純物密度が小さいため、電流の横拡がりの抵抗が大きい。したがって、ローメサ構造のエッチングされずに残った第3のDBRにおける2ペア部分での電流拡がりを小さくすることができる。
【0017】
上述したように、本実施の形態の面発光レーザは、レーザ発振光が最も強い活性層6に近い側の第2、第3のDBR領域での光吸収が小さく、ローメサ構造のエッチングされずに残った第3のDBRにおける2ペア部分での電流の横拡がりが小さいので、高効率化、低閾値化が可能であり、光吸収による結晶欠陥の発生も防げるので高信頼性となる。またイオン注入を用いずに、ローメサ構造での電流拡がりを抑制できるため、低コストであり、さらにイオン注入による欠陥の発生がないため、この点からも高信頼性となる。
【0018】
図3には、本発明の第2の実施の形態を示す。同図において、21はn−InP基板、22は吸収端波長1.4μm(バンドギャップ0.89eV)のn−In0.7 Ga0.3 As0.4 0.6 高屈折率層、23はn−InP低屈折率層である。これらの層22,23は、いずれも不純物密度2×1018cm−3にSiがドープされている。このn−In0.7 Ga0.3 As0.4 0.6 高屈折率層22及びInP低屈折率層23を1ペアとして、その複数ペアにより第1のDBR領域が形成されている。24は吸収端波長1.2μm(バンドギャップ0.98eV)のn−In0.8 Ga0.2 As0.550.45高屈折率層、25はn−InP低屈折率層であり、これらの層24,25は、上記第1のDBR領域に比べて不純物密度が小さく、1×1018cm−3にSiがドープされている。また、この部分の高屈折率層である24のn−In0.8 Ga0.2 As0.550.45のInとAsの組成は、第1のDBR領域におけるn−In0.7 Ga0.3 As0.4 0.6 高屈折率層22のInとAsの組成よりも大きくしてある。即ち、InGa1−x As1−y におけるxの値を0.7から0.8、yの値を0.4から0.55に大きくすることで、バンドギャップを0.89eVから0.98eVに大きくしてある。n−In0.8 Ga0.2 As0.550.45高屈折率層24及びn−InP低屈折率層25を1ペアとして、その3ペアにより活性層の直下に第2のDBR領域が形成されている。26は吸収端波長1.2μm(バンドギャップ0.98eV)のノンドープのInGaAsP、27はInGaAs量子井戸層、28は吸収端波長1.4μm(バンドギャップ0.89eV)のInGaAsP障壁層である。これらの層が活性層として働き、これらの層の光学長は発振波長(1.55μm)に等しい。29は吸収端波長1.2μm(バンドギャップ0.98eV)のp−In0.8 Ga0.2 As0.550.45高屈折率層、30はp−InP低屈折率層であり、これらの層29,30は1×1018cm−3にZnがドープされている。この部分のp−In0.8 Ga0.2 As0.550.45高屈折率層29も、次に述べる第4のDBR領域における高屈折率層よりもInとAsの組成を前記と同様に大きくすることで、バンドギャップを0.98eVに大きくしてある。p−In0.8 Ga0.2 As0.550.45高屈折率層29及びp−InP低屈折率層30を1ペアとして、その3ペアにより活性層の直上に第3のDBR領域が形成されている。31は吸収端波長1.4μm(バンドギャップ0.89eV)のp−In0.7 Ga0.3 As0.4 0.6 高屈折率層、32はp−InP低屈折率層である。これらの層31,32は、いずれも不純物密度2×1018cm−3にZnがドープされている。p−In0.7 Ga0.3 As0.4 0.6 高屈折率層31及びp−InP低屈折率層32を1ペアとして、その複数ペアにより、上記第3のDBR領域上に第4のDBR領域が形成されている。13のエッチング溝は、第4のDBR領域部分は全て除去し、第のDBR領域のうち、2ペアを残してエッチングしてあり、このエッチングにより、面発光レーザはローメサ構造となっている。33はp型のオーミック電極、34はn型のオーミック電極である。
【0019】
本実施の形態においては、レーザ発振波長を1.3μm又は1.55μmとすることができるようにInP系材料を用いたものである。そして基本的な考え方はGaAs系材料を用いた前記第1の実施の形態と全く同じであり、第1の実施の形態と略同様の作用、効果が得られる。
【0020】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、第1の導電型である第1のDBR、第1の導電型である第2のDBR、活性層、第2の導電型である第3のDBR、第2の導電型である第4のDBRを順次積層した構造を有し、同じ導電型の前記DBRでは前記活性層に近い側のDBRの不純物ドープ濃度が前記活性層から遠い側のDBRの不純物ドープ濃度よりも低く、同じ導電型の前記DBRでは前記活性層に近い側のDBRの高屈折率層のバンドギャップが前記活性層から遠い側のDBRの高屈折率層のバンドギャップよりも大きく、前記第4のDBRを貫き前記第3のDBRまで達するエッチングによるローメサ構造を有するようにしたため、ローメサ構造のエッチングされずに残った第3のDBR領域での電流の横拡がりが小さくなって、閾値電流を小さくすることができる。レーザ発振光が最も強い活性層に近い側の第2、第3のDBRでの光吸収が抑制されて、高効率とすることができる。また、イオン注入を用いずに、上記のように、ローメサ構造での電流の横拡がりを抑制できるので、低コストとすることができ、さらにはイオン注入による結晶欠陥の発生がないので、信頼性を高めることができる。
【0022】
請求項記載の発明によれば、前記第1乃至第4のDBRの材料はAlGaAs半導体としたため、第2、第3のDBRにおける高屈折率層を構成するAlGaAsのAl組成比を大きくすることで、バンドギャップが大きくなり、このDBR領域での光吸収を確実に抑制することができる。
【0023】
請求項記載の発明によれば、前記第1乃至第4のDBRの材料はInGaAsP半導体としたため、第2、第3のDBRにおける高屈折率層を構成するInGaAsPのInとAsの組成比をそれぞれ大きくすることで、バンドギャップが大きくなり、このDBR領域での光吸収を確実に抑制することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態である面発光レーザの模式的な縦断面図である。
【図2】上記第1の実施の形態において活性層周囲の光強度分布を示す図である。
【図3】本発明の第2の実施の形態の模式的な縦断面図である。
【図4】従来の面発光レーザの模式的な縦断面図である。
【符号の説明】
2 n−Al0.15Ga0.85As高屈折率層
4,17 n−Al0.95Ga0.05As低屈折率層
6,27 量子井戸層(活性層)
8,18 p−Al0.95Ga0.05As低屈折率層
10 p−Al0.15Ga0.85As高屈折率層
15 n−Al0.25Ga0.75As高屈折率層
20 p−Al0.25Ga0.75As高屈折率層
22 n−In0.7 Ga0.3 As0.4 0.6 高屈折率層
23,25 n−InP低屈折率層
24 n−In0.8 Ga0.2 As0.550.45高屈折率層
29 p−In0.8 Ga0.2 As0.550.45高屈折率層
30,32 p−InP低屈折率層
31 p−In0.7 Ga0.3 As0.4 0.6 高屈折率層

Claims (3)

  1. 第1の導電型であり高屈折率層と低屈折率層のペアを複数層有する第1のDBR、第1の導電型であり高屈折率層と低屈折率層のペアを所定層有する第2のDBR、活性層、第2の導電型であり高屈折率層と低屈折率層のペアを複数層有する第3のDBR、第2の導電型であり高屈折率層と低屈折率層のペアを所定層有する第4のDBRを順次積層した構造を有し、同じ導電型の前記DBRでは前記活性層に近い側のDBRの不純物ドープ濃度が前記活性層から遠い側のDBRの不純物ドープ濃度よりも低く、同じ導電型の前記DBRでは前記活性層に近い側のDBRの高屈折率層のバンドギャップが前記活性層から遠い側のDBRの高屈折率層のバンドギャップよりも大きく、前記第4のDBRを貫き前記第3のDBRまで達するエッチングによるローメサ構造を有することを特徴とする面発光レーザ。
  2. 前記第1乃至第4のDBRの材料はAlGaAs半導体であることを特徴とする請求項記載の面発光レーザ。
  3. 前記第1乃至第4のDBRの材料はInGaAsP半導体であることを特徴とする請求項記載の面発光レーザ。
JP26482499A 1999-09-20 1999-09-20 面発光レーザ Expired - Lifetime JP3656008B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26482499A JP3656008B2 (ja) 1999-09-20 1999-09-20 面発光レーザ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26482499A JP3656008B2 (ja) 1999-09-20 1999-09-20 面発光レーザ

Publications (2)

Publication Number Publication Date
JP2001094208A JP2001094208A (ja) 2001-04-06
JP3656008B2 true JP3656008B2 (ja) 2005-06-02

Family

ID=17408726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26482499A Expired - Lifetime JP3656008B2 (ja) 1999-09-20 1999-09-20 面発光レーザ

Country Status (1)

Country Link
JP (1) JP3656008B2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592873B2 (ja) * 2000-05-24 2010-12-08 古河電気工業株式会社 面発光半導体レーザ素子
WO2005020305A2 (en) * 2003-08-12 2005-03-03 Massachusetts Institute Of Technology Optical device comprising crystalline semiconductor layer and reflective element
US7072376B2 (en) * 2004-09-16 2006-07-04 Corning Incorporated Method of manufacturing an InP based vertical cavity surface emitting laser and device produced therefrom
JP4815772B2 (ja) * 2004-09-02 2011-11-16 株式会社デンソー 面発光型半導体レーザ素子およびその製造方法
JP2006269664A (ja) * 2005-03-23 2006-10-05 Fuji Xerox Co Ltd 発光デバイス、光通信システム、および発光デバイスの製造方法
JP4915197B2 (ja) * 2006-10-11 2012-04-11 富士ゼロックス株式会社 面発光型半導体レーザおよびその製造方法
JP4479803B2 (ja) 2008-02-13 2010-06-09 富士ゼロックス株式会社 面発光型半導体レーザ
JP4479804B2 (ja) 2008-02-13 2010-06-09 富士ゼロックス株式会社 面発光型半導体レーザ
JP4621263B2 (ja) * 2008-02-22 2011-01-26 キヤノン株式会社 面発光レーザおよび画像形成装置
JP2009266919A (ja) * 2008-04-23 2009-11-12 Sony Corp 面発光型半導体レーザおよびその製造方法
JP5367432B2 (ja) * 2009-03-30 2013-12-11 古河電気工業株式会社 面発光レーザ素子
JP5609168B2 (ja) * 2010-03-09 2014-10-22 富士ゼロックス株式会社 半導体レーザ、半導体レーザ装置および半導体レーザの製造方法
DE102011085077B4 (de) * 2011-10-24 2020-12-31 Robert Bosch Gmbh Oberflächenemittierender Halbleiterlaser
JP6112986B2 (ja) * 2013-06-19 2017-04-12 キヤノン株式会社 半導体dbrおよび、半導体発光素子、固体レーザ、光音響装置、画像形成装置、および半導体dbrの製造方法
WO2019134075A1 (en) * 2018-01-03 2019-07-11 Xiamen Sanan Integrated Circuit Co., Ltd. Consumer semiconductor laser
US10910791B2 (en) * 2018-06-27 2021-02-02 Xiamen Sanan Integrated Circuit Co., Ltd. Low speckle laser array and image display thereof

Also Published As

Publication number Publication date
JP2001094208A (ja) 2001-04-06

Similar Documents

Publication Publication Date Title
JP3656008B2 (ja) 面発光レーザ
US7638792B2 (en) Tunnel junction light emitting device
US7613217B2 (en) Semiconductor surface emitting device
JP5735765B2 (ja) 面発光レーザ、面発光レーザアレイ、面発光レーザアレイを光源とする表示装置、プリンタヘッドおよびプリンタ
JP5029254B2 (ja) 面発光レーザ
EP3940902A1 (en) Vertical-cavity surface-emitting laser element
US20230299559A1 (en) Vertical cavity surface emitting laser element and method of producing vertical cavity surface emitting laser element
US6011811A (en) Buried heterostructure with aluminum-free active layer and method of making same
US7852896B2 (en) Vertical cavity surface emitting laser
JPH06314854A (ja) 面型発光素子とその製造方法
US8304757B2 (en) Semiconductor light-emitting device, optical module, transmitter, and optical communication system
US7006545B2 (en) Semiconductor laser device and optical fiber amplifier using the same
US20090304036A1 (en) Vertical cavity surface emitting laser device and vertical cavity surface emitting laser array
JP5355276B2 (ja) 面発光レーザ
US6333946B1 (en) Semiconductor laser device and process for manufacturing the same
JPWO2007135772A1 (ja) 発光素子
JP3658048B2 (ja) 半導体レーザ素子
JP3869106B2 (ja) 面発光レーザ装置
JP5137658B2 (ja) 長波長帯域面発光レーザ素子
US8481350B2 (en) Asymmetric DBR pairs combined with periodic and modulation doping to maximize conduction and reflectivity, and minimize absorption
JP2002033553A (ja) 半導体レーザ装置及びその製造方法
JP5392087B2 (ja) 面発光レーザ
US6977424B1 (en) Electrically pumped semiconductor active region with a backward diode, for enhancing optical signals
JP4517437B2 (ja) 半導体レーザ装置及びその製造方法
EP1193815B1 (en) Semiconductor laser device and optical fiber amplifier using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

R150 Certificate of patent or registration of utility model

Ref document number: 3656008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term