JP3650767B2 - ジッタ測定装置、ジッタ測定方法、及び試験装置 - Google Patents

ジッタ測定装置、ジッタ測定方法、及び試験装置 Download PDF

Info

Publication number
JP3650767B2
JP3650767B2 JP2002539830A JP2002539830A JP3650767B2 JP 3650767 B2 JP3650767 B2 JP 3650767B2 JP 2002539830 A JP2002539830 A JP 2002539830A JP 2002539830 A JP2002539830 A JP 2002539830A JP 3650767 B2 JP3650767 B2 JP 3650767B2
Authority
JP
Japan
Prior art keywords
jitter
signal
phase
timing
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002539830A
Other languages
English (en)
Other versions
JPWO2002037127A1 (ja
Inventor
雅裕 石田
敏文 渡邊
隆弘 山口
マニ ソーマ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/703,469 external-priority patent/US6775321B1/en
Priority claimed from US09/722,167 external-priority patent/US6525523B1/en
Application filed by Advantest Corp filed Critical Advantest Corp
Publication of JPWO2002037127A1 publication Critical patent/JPWO2002037127A1/ja
Application granted granted Critical
Publication of JP3650767B2 publication Critical patent/JP3650767B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/26Measuring noise figure; Measuring signal-to-noise ratio

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc Digital Transmission (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

技術分野
本発明は、信号のジッタを測定するジッタ測定装置、及び電子デバイスを試験する試験装置に関する。また本出願は、下記の米国特許出願に関連する。文献の参照による組み込みが認められる指定国については、下記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
09/703,469 出願日 2000年10月31日
09/722,167 出願日 2000年11月24日
背景技術
従来、被測定信号のジッタの測定において、タイムインターバルアナライザや、オシロスコープが用いられている。以下、これらの装置を用いた、従来の信号のジッタの測定について説明する。
図54は、タイムインターバルアナライザ12を用いた、被測定信号のジッタの測定について説明する。タイムインターバルアナライザ12を用いる場合、いわゆるゼロクロス方式により被測定信号のジッタの測定を行っていた。まず、例えばPLL(Phase-Locked Loop)11から、周期信号である被測定信号x(t)がタイムインターバルアナライザ12へ供給される。
ジッタを有する被測定信号x(t)において、波形の1つの立上りに対し、次の立上りは、当該ジッタのため、点線のようなタイミングを取りうる。図54に示すように、被測定信号の基本周期をTpとすると、当該1つの立ち上がりと、当該次の立ち上がりとの周期は、Tpとならない場合がある。
ゼロクロス方式は被測定信号のゼロクロス間の時間間隔(周期)を測定し、周期の相対的な揺らぎ(fluctuation)をヒストグラム解析により測定し、測定結果に基づいて、被測定信号のジッタを測定していた。つまり、タイムインターバルアナライザを用いたジッタ測定方法は、被測定信号の基本周期の変動を測定しているため、被測定信号の基本周波数近傍の周波数成分のみを測定している。
図55は、ヒストグラム解析の解析結果の一例を示す。図55において、横軸は被測定信号の周期を示し、縦軸は測定数を示す。タイムインターバルアナライザ12については、例えばD.Chu,“Phase Digitizing Sharpens Timing Measurements,”IEEE Spectrum,pp.28-32,1988.,J.Wilstrup,“A Method of Serial Data Jitter Analysis Using One-Shot Time Interval Measurements”,Proceedings of IEEE International Test Conference,pp.819-823,1998.に記載されている。
図56は、ディジタルオシロスコープ14を用いた、被測定信号のジッタの測定方法について説明する。本方法では、ディジタルオシロスコープ14により高速にサンプリングされた被測定信号の測定データに基づいてジッタを測定する。当該測定データの、ゼロクロス付近のデータを、補間法により補間し、ゼロクロスのタイミングを推定し、推定したゼロクロスのタイミングに基づいて、被測定信号のジッタを測定していた。
図57は、従来の方法におけるディジタルオシロスコープ14の構成を示す。ディジタルオシロスコープ14は、アナログディジタルコンバータ(ADC)15、補間器16、周期推定器17、ジッタ検出器19、及びヒストグラム生成器18を備える。ADC15は、例えばPLL11から被測定信号を受け取り、被測定信号をディジタル信号に変換する。
補間器16は、当該ディジタル信号のゼロクロス付近のデータ補間を行う。周期算出器17は、データ補間されたディジタル信号のゼロクロス間の時間間隔を算出する。ヒストグラム生成部18は、周期算出器17が算出した当該時間間隔のヒストグラムを生成する。また、ジッタ検出器19は、当該時間間隔に基づいて被測定信号のそれぞれの周期に対してジッタを算出し、算出したジッタの自乗平均値及びピークツゥピーク値を算出する。
図58は、被測定信号の例を示す。また、図58に示した被測定信号のジッタ算出結果を図59に示す。
図54に関連して説明したタイムインターバルアナライザを用いたジッタ測定の場合、アナログ信号である被測定信号のゼロクロス間の時間間隔を測定するため、精度よくジッタの測定を行うことができるが、1回の周期測定の後、測定を行なえないデッド時間があるため、ヒストグラム解析に必要なデータ数を獲得するのに時間がかかるという問題がある。
また、図56に関連して説明したディジタルオシロスコープと補間法を組み合わせたジッタ測定方法は、ディジタル信号に高調波成分を含むため、当該高調波成分に影響され、精度のよい補間を行うことができず、算出したゼロクロスタイミングに誤差が生じ、ジッタを精度よく測定することが困難であった。
例えば、ディジタルオシロスコープと補間法を組み合わせたジッタ測定方法は、ジッタ値を過大評価する場合がある。つまり、ジッタ測定値がタイムインターバルアナライザ方式と互換性を持たない。また、本方法によって測定したジッタ値は、測定方法による誤差が生じるため、タイムインターバルアナライザによって測定したジッタ値と比較することが困難である。
また、ジッタ測定方法として他にΔφ法がある。上述したΔφ法については、たとえば、T.Y.Yamaguchi,M.Soma,M.Ishida,T.Watanabe,and T.Ohmi,“Extraction of Peak-to-Peak and RMS Sinusoidal Jitter Using an Analytic Signal Method,”Proceedings of 18th IEEE VLSI Test Symposium,pp.395-402,2000.に記載されている。
例えば、400MHzのクロック信号に対する、タイムインターバルアナライザによるジッタ測定結果は図60に示すようになる。また、補間ベース・ジッタ測定方法によるジッタ測定結果は図61に示すようになる。
図60及び図61に示すように、タイムインターバルアナライザによる測定値7.72ps(RMS)に対して、補間法を用いたディジタルオシロスコープによる測定値は8.47ps(RMS)であり、後者の方が大きく、補間用を用いたディジタルオシロスコープによるジッタ測定値はジッタ値を過大評価していることがわかる。また補間法を用いたディジタルオシロスコープによるジッタ測定においては、単峰のガラス分布を正しく推定できない。
これらのため、従来のディジタルオシロスコープ及び補間法によるジッタ測定法より精度よく測定できるジッタ測定方法が望まれていた。また、ジッタに基づいて伝子デバイスの良否を判定する試験装置においては、高速且つ精度よくジッタを測定することにより、電子デバイスの良否を高速且つ精度よく判定することが望まれていた。この発明の目的は、従来のタイムインターバルアナライザ法と互換性がある、つまり正確なデータ値をより短い時間で測定できるジッタ測定装置、及び試験装置を提供することにある。
発明の開示
上記課題を解決するために、本発明の第1の形態においては、被測定信号のジッタを測定するジッタ測定装置であって、被測定信号を複素解析信号に変換する解析信号変換器と、解析信号変化器が変換した複素解析信号に基づいて、被測定信号の瞬時位相を算出する瞬時位相推定器と、瞬時位相推定器が算出した瞬間位相の最小二乗直線を求めることにより、被測定信号がジッタを有さない場合の瞬時位相であるリニア瞬時位相を算出するリニア瞬時位相推定器と、被測定信号の信号値が予め定められた信号値となるタイミング、被測定信号の瞬時位相が予め定められた位相となるタイミング、又はリニア瞬時位相が予め定められた位相となるタイミングのいずれかを算出するタイミング推定器と、タイミング推定器が算出したタイミングにおける、被測定信号の瞬時位相の位相値と、リニア瞬時位相の位相値との差であるタイミングジッタ系列を算出するタイミングジッタ推定器と、タイミングジッタ系列に基づいて、被測定信号のジッタを算出するジッタ検出器とを備えることを特徴とするジッタ測定装置を提供する。
タイミング推定器は、被測定信号の信号値が略零となるゼロクロスタイミング、被測定信号の瞬時位相が略π/2+2nπ及び/又は略3π/2+2nπ(n=0,1,2,…)となるゼロクロスタイミング、又はリニア瞬時位相が略π/2+2nπ及び/又は略3π/2+2nπ(n=0,1,2,…)となるゼロクロスタイミングのいずれかを算出してよい。
また、タイミングジッタ推定器は、複数のタイミングのそれぞれに対応するデータを有するタイミングジッタ系列を算出し、ジッタ測定装置は、タイミングジッタ系列の隣接するデータの差分である、周期ジッタ系列を算出する周期ジッタ推定器を更に備え、ジッタ検出器は、周期ジッタ系列に更に基づいて、被測定信号のジッタを検出してよい。
また、周期ジッタ系列の隣接するデータの差分である、サイクルツゥサイクル周期ジッタ系列を算出するサイクルツゥサイクル周期ジッタ推定器を更に備え、ジッタ検出器は、サイクルツゥサイクル周期ジッタ系列に更に基づいて、被測定信号のジッタを検出してよい。
また、タイミング推定器は、リニア瞬時位相の位相データであって、予め定められた位相値より大きい位相データのうち、予め定められた位相値に最も近い位相データと、予め定められた位相値より小さい位相データのうち、予め定められた位相値に最も近い位相データとの間をデータ補間する補間器と、データ補間されたリニア瞬時位相の位相データのうち、予め定められた位相値に最も近い位相データを検出する値検出器と、値検出器が検出した位相データの、時間軸におけるタイミングを算出する推定器とを有してよい。
また、タイミング推定器は、瞬時位相の位相データであって、予め定められた位相値より大きい位相データのうち、予め定められた位相値に最も近い位相データと、予め定められた位相値より小さい位相データのうち、予め定められた位相値に最も近い位相データとの間をデータ補間する補間器と、データ補間された瞬時位相の位相データのうち、予め定められた位相値に最も近い位相データを検出する値検出器と、値検出器が検出した位相データの、時間軸におけるタイミングを算出する推定器とを有してよい。
また、タイミング推定器は、離散化された被測定信号の信号値データであって、予め定められた信号値より大きい信号値データのうち、予め定められた信号値に最も近い信号値データと、予め定められた信号値より小さい信号値データのうち、予め定められた信号値に最も近い信号データとの間をデータ補間する補間器と、データ補間された被測定信号の信号値データのうち、予め定められた信号値に最も近い信号値データを検出する値検出器と、値検出器が検出した信号値データの、時間軸におけるタイミングを算出する推定器とを有してもよい。
また、タイミング推定器は、多項式補間法に基づいて、データ補間を行ってよい。また、タイミング推定器は、3次スプライン補間法に基づいて、データ補間を行ってもよい。
また、解析信号変換器は、被測定信号から、所望の周波数成分を取り出す帯域制限器と、帯域制限器によって帯域制限された被測定信号のヒルベルト変換対を生成するヒルベルト変換器とを有してよい。また、解析信号変換器は、被測定信号を周波数領域の信号に変換する周波数領域変換器と、周波数領域の信号に変換された被測定信号から、所望の周波数成分を取り出す帯域制限器と、帯域制限器によって帯域制限された周波数領域の信号を、時間領域の信号に変換する時間領域変換器とを有してもよい。また、解析信号変換器は、被測定信号を格納するバッファメモリと、バッファメモリに格納されたデータを順次取り出すデータ選択器と、データ選択器が選択したデータに、所定の窓関数を乗算する窓関数乗算器と、窓関数が乗算されたデータを、周波数領域の信号に変換する周波数領域変換器と、周波数領域の信号から所望の周波数成分を取り出す帯域制限器と、帯域制限器が取り出した周波数成分を、時間領域の信号に変換する時間領域変換器と、時間領域変換器が時間領域の信号に変換した信号に、窓関数の逆数を乗算する振幅補正器とを有してもよい。
また、帯域制限器は、被測定信号から、被測定信号の基本周波数を含む周波数成分を取り出すことが好ましい。
また、被測定信号のうち、予め定められた第1の閾値より大きい信号値を第1の閾値と置き換え、予め定められた第2の閾値より小さい信号値を第2の閾値と置き換えて、被測定信号の振幅変調成分を除去する波形クリッパを更に備えてよい。
また、ジッタ検出器は、タイミングジッタ系列に基づいて、被測定信号のジッタのピーク値を算出するピーク値算出部を有してよい。また、ジッタ検出器は、タイミングジッタ系列に基づいて、被測定信号のジッタの実効値を算出する実効値算出部を有してもよい。また、ジッタ検出器は、タイミングジッタ系列に基づいて、被測定信号のジッタのヒストグラムを生成するヒストグラム生成部を有してもよい。
本発明の第2の形態においては、被測定信号のジッタを測定するジッタ測定装置であって、被測定信号を複素解析信号に変換する解析信号変換器と、解析信号変換器が変換した複素解析信号に基づいて、被測定信号の瞬時位相を算出する瞬時位相推定器と、瞬時位相推定器が算出した瞬時位相が、予め定められた位相値となるタイミングを算出するタイミング推定器と、タイミング推定器が算出したタイミングに基づいて、被測定信号のそれぞれのサイクルにおける周期を示す瞬時周期系列を算出する周期推定器と、瞬時周期系列に基づいて、被測定信号のジッタを算出するジッタ検出器とを備えることを特徴とするジッタ測定装置を提供する。
タイミング推定器は、被測定信号の瞬時位相が略π/2+2nπ及び/又は略3π/2+2nπ(n=0,1,2,…)となるゼロクロスタイミングを算出してよい。
また、瞬時周期系列の隣接するデータの差分である、サイクルツゥサイクル周期ジッタ系列を算出するサイクルツゥサイクル周期ジッタ推定器を更に備え、ジッタ検出器は、サイクルツゥサイクル周期ジッタ系列に更に基づいて、被測定信号のジッタを検出してよい。
また、タイミング推定器は、瞬時位相の位相データであって、予め定められた位相値より大きい位相データのうち、予め定められた位相値に最も近い位相データと、予め定められた位相値より小さい位相データのうち、予め定められた位相値に最も近い位相データとの間をデータ補間する補間器と、データ補間された瞬時位相の位相データのうち、予め定められた位相値に最も近い位相データを検出する値検出器と、値検出器が検出した位相データの、時間軸におけるタイミングを算出する推定器とを有してよい。また、タイミング推定器は、瞬時位相の位相データのうち複数の位相データに基づいて、逆補間法によりタイミングを算出してよい。
また、解析信号変換器は、被測定信号から、所望の周波数成分を取り出す帯域制限器と、帯域制限器によって帯域制限された被測定信号のヒルベルト変換対を生成するヒルベルト変換器とを有してよい。また、解析信号変換器は、被測定信号を周波数領域の信号に変換する周波数領域変換器と、周波数領域の信号に変換された被領域信号から、所望の周波数成分を取り出す帯域制限器と、帯域制限器によって帯域制限された周波数領域の信号を、時間領域の信号に変換する時間領域変換器とを有してもよい。
また、被測定信号のうち、予め定められた第1の閾値より大きい信号値を第1の閾値と置き換え、予め定められた第2の閾値より小さい信号値を第2の閾値と置き換えて、被測定信号の振幅変調成分を除去する波形クリッパを更に備えてよい。
また、ジッタ検出器は、瞬時周期系列に基づいて、被測定信号のジッタのピーク値を算出するピーク値算出部を有してよい。また、ジッタ検出器は、瞬時周期系列に基づいて、被測定信号のジッタの実効値を算出する実効値算出部を有してもよい。また、ジッタ検出器は、瞬時周期系列に基づいて、被測定信号のジッタのヒストグラムを生成するヒストグラム生成部を有してもよい。
本発明の第3の形態においては、電子デバイスを試験する試験装置であって、電子デバイスを試験するための試験信号を生成するパターン発生部と、試験信号を整形し、整形した試験信号を電子デバイスに供給する波形整形部と、試験信号に基づいて、電子デバイスが出力する出力信号のジッタを測定するジッタ測定装置と、ジッタ測定装置が測定した前記出力信号のジッタに基づいて、電子デバイスの良否を判定する判定部とを備え、ジッタ測定装置は、出力信号を複素解析信号に変換する解析信号変換器と、解析信号変換器が変換した複素解析信号に基づいて、出力信号の瞬時位相を算出する瞬時位相推定器と、瞬時位相推定器が算出した瞬時位相の最小二乗直線を求めることにより、出力信号がジッタを有さない場合の瞬時位相であるリニア瞬時位相を算出するリニア瞬時位相推定器と、出力信号の信号値が予め定められた信号値となるタイミング、出力信号の瞬時位相が予め定められた位相となるタイミング、又はリニア瞬時位相が予め定められた位相となるタイミングのいずれかを算出するタイミング推定器と、タイミング推定器が算出したタイミングにおける、出力信号の瞬時位相の位相値と、リニア瞬時位相の位相値との差であるタイミングジッタ系列を算出するタイミングジッタ推定器と、タイミングジッタ系列に基づいて、出力信号のジッタを算出するジッタ検出器とを有することを特徴とする試験装置を提供する。
本発明の第4の形態においては、電子デバイスを試験する試験装置であって、電子デバイスを試験するための試験信号を生成するパターン発生部と、試験信号を整形し、整形した試験信号を電子デバイスに供給する波形整形部と、試験信号に基づいて、電子デバイスが出力する出力信号のジッタを測定するジッタ測定装置と、ジッタ測定装置が測定した出力信号のジッタに基づいて、電子デバイスの良否を判定する判定部とを備え、ジッタ測定装置は、出力信号を複素解析信号に変換する解析信号変換器と、解析信号変換器が変換した複素解析信号に基づいて、出力信号の瞬時位相を算出する瞬時位相推定器と、瞬時位相推定器が算出した瞬時位相が、予め定められた位相値となるタイミングを算出するタイミング推定器と、タイミング推定器が算出したタイミングに基づいて、出力信号のそれぞれのサイクルにおける周期を示す瞬時周期系列を算出する周期推定器と、瞬時周期系列に基づいて、出力信号のジッタを算出するジッタ検出器とを有することを特徴とする試験装置を提供する。
本発明の第5の形態においては、被測定信号のジッタを測定するジッタ測定方法であって、被測定信号を複素解析信号に変換する解析信号変換ステップと、解析信号変換ステップにおいて変換した複素解析信号に基づいて、被測定信号の瞬時位相を算出する瞬時位相推定ステップと、瞬時位相推定ステップにおいて算出した瞬時位相の最小二乗直線を求めることにより、被測定信号がジッタを有さない場合の瞬時位相であるリニア瞬時位相を算出するリニア瞬時位相推定ステップと、被測定信号の信号値が予め定められた信号値となるタイミング、被測定信号の瞬時位相が予め定められた位相となるタイミング、又はリニア瞬時位相が予め定められた位相となるタイミングのいずれかを算出するタイミング推定ステップと、タイミング推定ステップにおいて算出したタイミングにおける、被測定信号の瞬時位相の位相値と、リニア瞬時位相の位相値との差であるタイミングジッタ系列を算出するタイミングジッタ推定ステップと、タイミングジッタ系列に基づいて、被測定信号のジッタを算出するジッタ検出ステップとを備えることを特徴とするジッタ測定方法を提供する。
タイミングジッタ推定ステップは、複数のタイミングのそれぞれに対応するデータを有するタイミングジッタ系列を算出し、ジッタ測定方法は、タイミングジッタ系列の隣接するデータの差分である、周期ジッタ系列を算出する周期ジッタ推定ステップを更に備え、ジッタ検出ステップは、周期ジッタ系列に更に基づいて、被測定信号のジッタを検出してよい。
また、周期ジッタ系列の隣接するデータの差分である、サイクルツゥサイクル周期ジッタ系列を算出するサイクルツゥサイクル周期ジッタ推定ステップを更に備え、ジッタ検出ステップは、サイクルツゥサイクル周期ジッタ系列に更に基づいて、被測定信号のジッタを検出してよい。
また、タイミング推定ステップは、リニア瞬時位相の位相データであって、予め定められた位相値より大きい位相データのうち、予め定められた位相値に最も近い位相データと、予め定められた位相値より小さい位相データのうち、予め定められた位相値に最も近い位相データとの間をデータ補間するリニア瞬時位相補間ステップと、データ補間されたリニア瞬時位相の位相データのうち、予め定められた位相値に最も近い位相データを検出する値検出ステップと、値検出ステップにおいて検出した位相データの、時間軸におけるタイミングを算出する推定ステップとを有してよい。
また、タイミング推定ステップは、瞬時位相の位相データであって、予め定められた位相値より大きい位相データのうち、予め定められた位相値に最も近い位相データと、予め定められた位相値より小さい位相データのうち、予め定められた位相値に最も近い位相データとの間をデータ補間する瞬時位相補間ステップと、データ補間された瞬時位相の位相データのうち、予め定められた位相値に最も近い位相データを検出する値検出ステップと、値検出ステップにおいて検出した位相データの、時間軸におけるタイミングを算出する推定ステップとを有してよい。
また、タイミング推定ステップは、離散化された被測定信号の信号値データであって、予め定められた信号値より大きい信号値データのうち、予め定められた信号値に最も近い信号値データと、予め定められた信号値より小さい信号値データのうち、予め定められた信号値に最も近い信号値データとの間をデータ補間する波形データ補間ステップと、データ補間された被測定信号の信号値データのうち、予め定められた信号値に最も近い信号値データを検出する値検出ステップと、値検出器が検出した信号値データの、時間軸におけるタイミングを算出する推定ステップとを有してよい。
また、タイミング推定ステップは、多項式補間法に基づいて、データ補間を行ってよい。また、タイミング推定ステップは、3次スプライン補間法に基づいて、データ補間を行ってもよい。
また、解析信号変換ステップは、被測定信号から、所望の周波数成分を取り出す帯域制限ステップと、帯域制限ステップにおいて帯域制限された被測定信号のヒルベルト変換対を生成するヒルベルト変換ステップとを有してよい。また、解析信号変換ステップは、被測定信号を周波数領域の信号に変換する周波数領域変換ステップと、周波数領域の信号に変換された被測定信号から、所望の周波数成分を取り出す帯域制限ステップと、帯域制限ステップにおいて帯域制限された周波数領域の信号を、時間領域の信号に変換する時間領域変換ステップとを有してもよい。
また、解析信号変換ステップは、被測定信号を格納するデータ蓄積ステップと、データ蓄積ステップにおいて格納したデータを順次取り出すデータ選択ステップと、データ選択ステップにおいて選択したデータに、所定の窓関数を乗算する窓関数乗算ステップと、窓関数が乗算されたデータを、周波数領域の信号に変換する周波数領域変換ステップと、周波数領域の信号から所望の周波数成分を取り出す帯域制限ステップと、帯域制限ステップにおいて取り出した周波数成分を、時間領域の信号に変換する時間領域変換ステップと、時間領域変換ステップが時間領域の信号に変換した信号に、窓関数の逆数を乗算する振幅補正ステップとを有してよい。
また、帯域制限ステップは、被測定信号から、被測定信号の基本周波数を含む周波数成分を取り出すことが好ましい。
また、ジッタ検出ステップは、タイミングジッタ系列に基づいて、被測定信号のジッタのピーク値を算出するピーク値算出ステップを有してよい。また、ジッタ検出ステップは、タイミングジッタ系列に基づいて、被測定信号のジッタの実効値を算出する実効値算出ステップを有してもよい。また、ジッタ検出ステップは、タイミングジッタ系列に基づいて、被測定信号のジッタのヒストグラムを生成するヒストグラム生成ステップを有してもよい。
本発明の第6の形態においては、被測定信号のジッタを測定するジッタ測定方法であって、被測定信号を複素解析信号に変換する解析信号変換ステップと、解析信号変換ステップにおいて変換した複素解析信号に基づいて、被測定信号の瞬時位相を算出する瞬時位相推定ステップと、瞬時位相推定ステップにおいて算出した瞬時位相が、予め定められた位相値となるタイミングを算出するタイミング推定ステップと、タイミング推定ステップにおいて算出したタイミングに基づいて、被測定信号のそれぞれのサイクルにおける周期を示す瞬時周期系列を算出する周期推定ステップと、瞬時周期系列に基づいて、被測定信号のジッタを算出するジッタ検出ステップとを備えることを特徴とするジッタ測定方法を提供する。
また、タイミング推定ステップは、被測定信号の瞬時位相が略π/2+2nπ及び/又は略3π/2+2nπ(n=0,1,2,…)となるゼロクロスタイミングを算出してよい。また、瞬時周期系列の隣接するデータの差分である、サイクルツゥサイクル周期ジッタ系列を算出するサイクルツゥサイクル周期ジッタステップを更に備え、ジッタ検出ステップは、サイクルツゥサイクル周期ジッタ系列に更に基づいて、被測定信号のジッタを検出してよい。
また、タイミング推定ステップは、瞬時位相の位相データであって、予め定められた位相値より大きい位相データのうち、予め定められた位相値に最も近い位相データと、予め定められた位相値より小さい位相データのうち、予め定められた位相値に最も近い位相データとの間をデータ補間する瞬時位相補間ステップと、データ補間された瞬時位相の位相データのうち、予め定められた位相値に最も近い位相データを検出する値検出ステップと、値検出ステップにおいて検出した位相データの、時間軸におけるタイミングを算出する推定ステップとを有してよい。
また、タイミング推定ステップは、瞬時位相の位相データのうち複数の位相データに基づいて、逆補間法によりタイミングを算出してよい。
また、解析信号変換ステップは、被測定信号から、所望の周波数成分を取り出す帯域制限ステップと、帯域制限ステップにおいて帯域制限された被測定信号のヒルベルト変換対を生成するヒルベルト変換ステップとを有してよい。また、解析信号変換ステップは、被測定信号を周波数領域の信号に変換する周波数領域変換ステップと、周波数領域の信号に変換された被測定信号から、所望の周波数成分を取り出す帯域制限ステップと、帯域制限ステップにおいて帯域制限された周波数領域の信号を、時間領域の信号に変換する時間領域変換ステップとを有してもよい。
また、被測定信号のうち、予め定められた第1の閾値より大きい信号値を第1の閾値に置き換え、予め定められた第2の閾値より小さい信号値を第2の閾値に置き換えて、振幅変調成分を除去する振幅変調成分除去ステップを更に備えてよい。
また、ジッタ検出ステップは、瞬時周期系列に基づいて、被測定信号のジッタのピーク値を算出するピーク値算出ステップを有してよい。また、ジッタ検出ステップは、瞬時周期系列に基づいて、被測定信号のジッタの実効値を算出する実効値算出ステップを有してもよい。また、ジッタ検出ステップは、瞬時周期系列に基づいて、被測定信号のジッタのヒストグラムを生成するヒストグラム生成ステップを有してもよい。
尚、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションも又、発明となりうる。
【図面の簡単な説明】
図1は、本発明に係る試験装置100の構成の一例を示す。
図2は、ジッタ測定装置200の構成の一例を示す。
図3は、タイミング推定器105の構成の一例を示す。
図4は、タイミング推定器105の他の構成の一例を示す。
図5は、タイミング推定器105の更に他の構成の一例を示す。
図6は、解析信号変換器101の構成の一例を示す。
図7は、解析信号変換器101の他の構成の一例を示す。
図8は、解析信号変換器101の更に他の構成の一例を示す。
図9は、被測定信号の一例を示す。
図10は、被測定信号の瞬時位相の一例を示す。
図11は、被測定信号のリニア瞬時位相の一例を示す。
図12は、タイミングジッタ波形の一例を示す。
図13は、タイミングジッタのヒストグラムの一例を示す。
図14は、周期ジッタ波形の一例を示す。
図15は、周期ジッタの測定結果の一例を示す。
図16は、本例におけるジッタ測定装置200の測定結果の例を示す。
図17は、サイクルツゥサイクル周期ジッタ波形の一例を示す。
図18は、サイクルツゥサイクル周期ジッタのヒストグラムの一例を示す。
図19は、被測定信号の一例を示す。
図20は、複素解析信号の一例を示す。
図21は、位相関数φ(t)の一例を示す。
図22は、アンラップした瞬時位相波形の一例を示す。
図23は、被測定信号の一例を示す。
図24は、被測定信号の両側スペクトルの一例を示す。
図25は、周波数領域の信号z(f)を示す。
図26は、複素解析信号の一例を示す。
図27は、補間法を説明する。
図28は、逆線形補間法を説明する。
図29は、本発明に係るジッタ測定方法の一例を示すフローチャートである。
図30は、タイミング推定ステップS204の一例の詳細を示すフローチャートである。
図31は、タイミング推定ステップS204の他の例の詳細を示すフローチャートである。
図32は、タイミング推定ステップS204の更に他の例の詳細を示すフローチャートである。
図33は、解析信号変換ステップS201の一例の詳細を示すフローチャートである。
図34は、解析信号変換ステップS201の他の例の詳細を示すフローチャートである。
図35は、解析信号変換ステップS201の更に他の例の詳細を示すフローチャートである。
図36は、ジッタ測定装置200の他の構成の例を示す。
図37は、本発明のジッタ測定方法の他の例を示すフローチャートである。
図38は、ジッタ測定装置200の更に他の構成の例を示す。
図39は、本発明のジッタ測定方法の他の例を示すフローチャートである。
図40は、ジッタ測定装置200の更に他の構成の例を示す。
図41は、本発明のジッタ測定方法の他の例を示すフローチャートである。
図42は、ジッタ測定装置200の更に他の構成の例を示す。
図43は、波形クリップを説明する図である。
図44は、本発明のジッタ測定方法の他の例を示すフローチャートである。
図45は、ジッタ測定装置200の更に他の構成の例を示す。
図46は、周期推定器341が推定した瞬時周期系列の波形の一例を示す。
図47は、本発明に係るジッタ測定方法の更に他の例を示すフローチャートである。
図48は、ジッタ測定装置200の更に他の構成の例を示す。
図49は、本発明に係るジッタ測定方法の更に他の例を示すフローチャートである。
図50は、ジッタ測定装置200の更に他の構成の例を示す。
図51は、本発明に係るジッタ測定方法の更に他の例を示すフローチャートである。
図52は、ジッタ測定装置200の更に他の構成の例を示す。
図53は、本発明に係るジッタ測定方法の更に他の例を示すフローチャートである。
図54は、従来のタイムインターバルアナライザによるジッタ測定を説明する。
図55は、タイムインターバルアナライザ12の測定結果を示す。
図56は、従来のディジタルオシロスコープ14によるジッタ測定を説明する。
図57は、ディジタルオシロスコープ14の構成を示す。
図58は、被測定信号の例を示す。
図59は、周期ジッタの例を示す。
図60は、タイムインターバルアナライザ12の測定結果を示す。
図61は、ディジタルオシロスコープ14の測定結果を示す。
発明を実施するための最良の形態
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではなく、又実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、本発明に係る試験装置100の構成の一例を示す。試験装置100は、電子デバイス30の出力信号に基づいて、電子デバイス30の良否を判定する。試験装置100は、パターン発生器10と、波形整形部20と、ジッタ測定装置200と、判定部40とを備える。
パターン発生器10は、電子デバイス30を試験するための試験パターンを生成する。パターン発生器10は、例えば利用者が生成した試験プログラムに基づいた試験パターンを生成し、波形整形部20に供給する。
波形整形部20は、受け取った試験パターンに基づいて試験信号を生成し、電子デバイス30に供給する。例えば、波形整形部20は、利用者が生成した試験プログラム及び試験パターンに基づいて、所望のタイミングで電子デバイス30に試験信号を供給する。
ジッタ測定装置200は、電子デバイス30が試験信号に基づいて出力する出力信号のジッタを測定する。ジッタ測定装置200は、当該出力信号として、電子デバイス30の内部クロックを受け取り、当該内部クロックのジッタを測定してよい。また、ジッタ測定装置200は、当該出力信号のタイミングジッタ、周期ジッタ、及び/又はサイクルツゥサイクル周期ジッタを測定してよい。
判定部40は、ジッタ測定装置200が測定した当該出力信号のジッタに基づいて、電子デバイス30の良否を判定する。以下、ジッタ測定装置200について詳細に説明する。
図2は、ジッタ測定装置200の構成の一例を示す。ジッタ測定装置100は、解析信号変換器101と、瞬時位相推定器102と、リニア瞬時位相推定器103と、スイッチ104と、タイミング推定器105と、タイミングジッタ推定器106と、ジッタ検出器107とを備える。
解析信号変換器101は、被測定信号を受け取り、被測定信号のうち、所定の周波数成分を選択的に通過させる。また、解析信号変換器101は、被測定信号のうちの所定の周波数成分を複素信号に変換した複素解析信号を出力する。例えば、解析信号変換器101は、被測定信号を当該複素解析信号の実数部とし、被測定信号の位相を90度おくらせた信号を当該複素解析信号の虚数部とした、複素解析信号を出力する。
瞬時位相推定器102は、解析信号変換器101から受け取った複素解析信号に基づいて、被測定信号の瞬時位相を測定する。例えば、複素解析信号の実数部をx(t)、複素解析信号の虚数部をX’(t)とした場合、瞬時位相推定手段102は、下式に基づいて被測定信号の瞬時位相φ(t)を算出してよい。
φ(t)=tan-1(x’(t)/x(t))
リニア瞬時位相推定器103は、瞬時位相推定器102が推定した瞬時位相データの直線近似波形を、被測定信号のリニア瞬時位相として推定する。リニア瞬時位相推定器103は、当該瞬時位相のデータの最小二乗直線を求めることにより、被測定信号のリニア瞬時位相を推定してよい。
スイッチ104は、解析信号変換器101が出力する複素解析信号の実数部、瞬時位相推定器102が出力する瞬時位相、又はリニア瞬時位相推定器103が出力するリニア瞬時位相の何れかを選択し、タイミング推定器105に供給する。
タイミング推定器105は、スイッチ104が選択した解析信号の実数部、瞬時位相、又はリニア瞬時位相に基づいて、被測定信号が、所定の値を取るタイミングを推定する。本例において、タイミング推定器105は、被測定信号が略零の値を取るゼロクロスタイミングを推定する。また、タイミング推定器105は、当該タイミングを補間法又は逆補間法により推定してよい。
タイミングジッタ推定器106は、タイミング推定器105が推定したタイミングにおける、被測定信号の瞬時位相値とリニア瞬時位相値の差を計算し、タイミングジッタ系列を推定する。タイミングジッタ推定器106は、複数の当該タイミングにおける被測定信号の瞬時位相値とリニア瞬時位相値の差に基づいて、当該タイミングジッタ系列を推定する。被測定信号がジッタを有する場合、それぞれのタイミングにおける被測定信号の瞬時位相値とリニア瞬時位相値の差にバラツキが生じ、タイミングジッタ系列のそれぞれのデータにバラツキが生じる。
ジッタ検出器107は、タイミングジッタ系列に基づいて、被測定信号のジッタを算出する。つまり、ジッタ検出器107は、タイミングジッタ系列のそれぞれのデータのバラツキに基づいて、被測定信号のジッタを算出する。ジッタ検出器107は、ピーク値算出部108と、実効値算出部109と、ヒストグラム生成部110とを有してよい。ピーク値算出部108は、タイミングジッタ系列の最大値と最小値との差を算出する。実効値算出部109は、タイミングジッタ系列の二乗平均値(実効値)を算出する。ヒストグラム生成部110は、被測定信号のジッタのヒストグラムを生成する。ジッタ検出器107は、ピーク値算出部108、実効値算出部109、ヒストグラム生成部110のうちの1つ又は複数を設けてもよい。
図3は、タイミング推定器105の構成の一例を示す。本例において、タイミング推定器105は、リニア瞬時位相を受け取り、当該リニア瞬時位相に基づいて、被測定信号が所定の位相を取るタイミングを推定する。タイミング推定器105は、補間器151と、値検出器152と、推定部153とを有する。
補間器151は、リニア瞬時位相推定器103(図2参照)が推定したリニア瞬時位相に対して、予め定められた値付近のデータを補間する。本例において、補間器151は、リニア瞬時位相に対して、π/2+2nπ及び/又は3π/2+2nπ(n=0,1,2,…)付近のデータ間を補間する。補間器151は、予め所定の値と、所定の範囲とが与えられ、当該所定の値から当該所定の範囲内にあるリニア瞬時位相データ間を、所定の間隔でデータ補間する。補間器151は、後述する多項式補間法を用いてリニア瞬時位相データを補間してよく、後述する3次スプライン補間法を用いてリニア瞬時位相データを補間してよく、また、直線補間法を用いてリニア瞬時位相データを補間してよく、他の補間法を用いてリニア瞬時位相データを補間してもよい。補間器151は、リニア瞬時位相データを十分に細かく補間することが好ましい。
値検出器152は、データ補間されたリニア瞬時位相データに対し、当該所定値に最も近いリニア瞬時位相データを検出する。
推定部153は、値検出器152が検出したリニア瞬時位相データの、時間タイミングを推定する。
図4は、タイミング推定器105の他の構成の例を示す。本例において、タイミング推定器105は、瞬時位相を受け取り、当該瞬時位相に基づいて、被測定信号が所定の位相を取るタイミングを推定する。本例におけるタイミング推定器105は、図3に関連して説明したタイミング推定器105と同様の機能及び構成を有する。
補間器161は、瞬時位相推定器102(図2参照)が推定した瞬時位相に対して、予め定められた値付近のデータを補完する。本例において、補間器161は、瞬時位相に対して、π/2+2nπ及び/又は3π/2+2nπ(n=0,1,2,…)付近のデータ間を補間する。補間器161は、図3に関連して説明した補間器151と同様の方法で、当該補間を行ってよい。
値検出器151は、データ補間された瞬時位相データに対し、当該所定値に最も近い瞬時位相データを検出する。
推定部153は、値検出器152が検出した瞬時位相データの、時間タイミングを推定する。
図5は、タイミング推定器105の更に他の構成の例を示す。本例において、タイミング推定器105は、複素解析信号を受け取り、当該複素解析信号に基づいて、被測定信号が所定の値を取るタイミングを推定する。本例におけるタイミング推定器105は、図3に関連して説明したタイミング推定器105と同様の機能及び構成を有する。
補間器171は、解析信号変換器101(図2参照)が出力した複素解析信号の実数部に対して、予め定められた値付近のデータを補完する。本例において、補間器171は、複素解析信号の実数部に対して、ゼロクロス付近のデータを補完する。補間器171は、図3に関連して説明した補間器151と同様の方法で、当該補間を行ってよい。
値検出器152は、データ補間された複素解析信号の実数部に対し、当該所定値に最も近いデータを検出する。
推定部153は、値検出器152が検出したデータの、時間タイミングを推定する。
図6は、解析信号変換器101の構成の一例を示す。解析信号変換器101は、被測定信号を複素解析信号に変換する。解析信号変換器101は、周波数領域変換器181と、帯域制限器182と、時間領域変換器183とを有する。
周波数領域変換器181は、被測定信号を周波数領域の信号に変換する。周波数領域変換器181は、被測定信号を正の周波数スペクトル及び負の周波数スペクトルを有する両側スペクトル信号に変換する。周波数領域変換器181は、フーリエ変換により、被測定信号を周波数領域の信号に変換してよい。周波数領域変換器181は、被測定信号を高速フーリエ変換する手段を有することが好ましい。
帯域制限器182は、周波数領域の信号に変換された被測定信号の、所定の周波数成分を選択的に通過させる。本例において帯域制限器182は、当該被測定信号の基本周波数近傍の周波数成分を選択して出力する。つまり、帯域制限器182は、周波数領域の信号に変換された被測定信号の、負の周波数成分を零とし、片側スペクトル信号を生成する。また、帯域制限器182は、当該片側スペクトル信号に対し、被測定信号の基本周波数近傍の成分以外の周波数成分を零とした信号を生成し出力する。また、帯域制限器182は、被測定信号の基本周波数付近の成分のみを残しその他の周波数成分を零として周波数領域の信号を帯域制限した後、両側スペクトル信号における負の周波数成分を零とした信号を出力してもよい。帯域制限器182は、アナログフィルタでもデジタルフィルタでもよいし、FFTなどのデジタル信号処理を用いて実装してもよい。
時間領域変換器183は、帯域制限器182が出力した周波数成分を、時間領域の信号に変換する。時間領域変換器183は、逆フーリエ変換により、当該周波数成分を時間領域の信号に変換してよい。時間領域変換器183は、当該周波数成分を逆高速フーリエ変換する手段を有することが好ましい。解析信号変換器101は、時間領域変換器183が、時間領域の信号に変換した信号を、複素解析信号として出力する。
図7は、解析信号変換器101の他の構成の例を示す。解析信号変換器101は、帯域制限器191と、ヒルベルト変換器192とを有する。
帯域制限器191は、図6に関連して説明した帯域制限器182と同一又は同様の機能を有する。帯域制限器191は、被測定信号から基本周波数近傍の周波数成分を取り出す。
ヒルベルト変換器192は、帯域制限器191の出力信号を受け取り、当該出力信号をヒルベルト変換する。つまり、ヒルベルト変換器192は、当該出力信号のヒルベルト変換対を生成する。
解析信号変換器101は、帯域制限器191の出力信号を、複素解析信号の実数部として出力し、ヒルベルト変換器192が生成したヒルベルト変換対を、複素解析信号の虚数部として出力する。
図8は、解析信号変換器101の更に他の構成の例を示す。解析信号変換器101は、バッファメモリ201と、データ選択器202と、窓関数乗算器203と、周波数領域変換器204と、帯域制限器205と、時間領域変換器206と、振幅補正器207とを有する。
バッファメモリ201は、被測定信号を格納する。データ選択器202は、バッファメモリ201が格納したデータを、順次取り出す。データ選択器202は、前回取り出したデータと、少なくとも一部が重複するデータを取り出すことを繰り返すのが好ましい。例えば、データ選択器202は、被測定信号の4周期分のデータを、前回のデータと1周期分が重複するように取り出す。また、データ選択器202は、バッファメモリ201が格納したデータを全て取り出すまで、バッファメモリ201からデータを取り出してよい。
窓関数乗算器203は、データ選択器202が順次取り出したデータに所定の窓関数を順次乗算する。窓関数乗算器203は、窓関数を順次乗算したデータを周波数領域変換器204に、被測定信号として順次供給する。
周波数領域変換器204、帯域制限器205、及び時間領域変換器206は、図6に関連して説明した周波数領域変換器181、帯域制限器182、及び時間領域変換器183と同一又は同様の機能及び構成を有する。周波数領域変換器204、帯域制限器205、及び時間領域変換器206は、窓関数乗算器203から順次供給される被測定信号に対して、上述した処理を順次行う。
振幅補正器207は、時間領域変換器206が時間領域の信号に順次変換した信号に、当該窓関数の逆数を順次乗算する。例えば、振幅補正器207は、窓関数を乗算した信号の時間軸上の中央部が、前回窓関数の逆数を乗算した信号に連続するように、当該信号の振幅を補正する。本例における解析信号変換器101によれば、被測定信号のデータ量が多い場合であっても、被測定信号の帯域制限を効率良く行うことができる。
図9は、被測定信号の一例を示す。図9に示した被測定信号を用いて、本例におけるジッタ測定装置200のジッタ測定方法を説明する。
被測定信号がジッタのないクロック信号である場合、被測定信号は基本周波数(fundamental frequency)f0を持つ方形波(square wave)である。当該被測定信号は、フーリエ解析によって周波数f0,3f0,5f0,…からなる高調波に分解できる。被測定信号のジッタは被測定信号の基本周波数の揺らぎに対応する。本例におけるジッタ測定装置200のジッタ解析においては、被測定信号の基本周波数付近の信号成分のみを取り扱うことにより、効率よく被測定信号のジッタを検出する。
被測定信号がジッタを有する場合、被測定信号の基本サイン波(fundamental sinusoidal wave)成分は、
Acos(φ(t))=Acos(2πf0t+θ−Δφ(t)) (1)
ただし、Aは振幅、f0は基本周波数
で表される。すなわち、被測定信号の瞬時位相関数φ(t)は、基本周波数f0を含むリニア瞬時位相成分2πf0tと、初期位相成分θ(本例においては、θ=0とする)と、位相変調成分Δφ(t)との和で表される。
位相変調成分Δφ(t)が零のとき、被測定信号の立ち上がり又は立ち下がりが所定の値を取るタイミングは、一定周期T0だけ隔たっている。本例において、当該所定の値を零、すなわち当該タイミングをゼロクロスタイミングとして説明する。位相変調成分Δφ(t)が零でない場合、被測定信号の立ち上がりゼロクロス点間は、一定周期とならない。すなわち、Δφ(nT)はゼロクロス点の時間変動、すなわちタイミングジッタを表す。周期ジッタは、隣り合う立ち上がりゼロクロス点におけるタイミングジッタの差に対応する。さらに、サイクルツゥサイクル周期ジッタは、隣り合う周期間の変動であり、隣り合う周期ジッタ値の差として求めることができる。
従って、被測定信号の瞬時位相φ(t)を推定し、ゼロクロス点における瞬時位相と、ジッタのない理想的な被測定信号の位相波形に対応する直線位相2πf0t+θとの差を求めることにより、被測定信号のタイミングジッタ、周期ジッタ、サイクルツゥサイクル周期ジッタを計算することができる。
また、補間法を用いてゼロクロス点のタイミングを小さい誤差で推定することにより、タイミング・ジッタ、周期ジッタ、サイクルツゥサイクル周期ジッタの測定誤差を小とできる。
例えば、ジッタ測定装置200(図2参照)が図9に示した被測定信号x(t)を受け取った場合、ジッタ測定装置200は、被測定信号x(t)の瞬時位相φ(t)を推定する。まず、解析信号変換部101(図2参照)が、被測定信号x(t)を複素解析信号に変換する。次に、瞬時位相推定器102(図2参照)が、複素解析信号に基づいて、瞬時位相φ(t)を推定する。
図10は、瞬時位相推定器102が推定した瞬時位相波形φ(t)の一例を示す。瞬時位相推定器102は、前述した方法により、瞬時位相波形を推定する。
次に、リニア位相推定器103(図2参照)が、瞬時位相波形データに対し最小二乗法による直線フィッティングを行ない、瞬時位相波形データのリニア瞬時位相φlinear(t)を求める。前述したように、当該リニア瞬時位相φlinear(t)は、ジッタのない理想的な被測定信号の瞬時位相波形に相当する。
図11は、リニア瞬時位相φlinear(t)の一例を示す。次に、タイミング推定部105(図2参照)が、被測定信号x(t)のリニア瞬時位相φlinear(t)がπ/2+2nπまたは3π/2+2nπ(n=0,1,2,…)となるゼロクロスタイミングを補間法や逆補間法等を用いて推定する。タイミングジッタ推定器106は、ゼロクロスタイミングにおける瞬時位相値と直線位相の差、即ちタイミングジッタΔφ[n](=Δφ(nT))を算出する。
ここで、π/2+2nπとなる点は被測定信号の立ち下がりゼロクロス点に、3π/2+2nπとなる点は被測定信号の立ち上がりゼロクロス点にそれぞれ対応する。
図12は、タイミングジッタΔφ[n]の波形の一例を示す。最後に、ジッタ検出器107が、タイミングジッタΔφ[n]のデータ系列に基づいて、タイミングジッタの実効値とピークツゥピーク値を算出する。タイミングジッタの実効値ΔφRMSは、タイミングジッタΔφ[n]の二乗平均値であり、下式により算出される。
ΔφRMS=√((1/N)Σk=1 NΔφ2[k]) (2)
ただし、Nは測定されたタイミングジッタデータの標本数である。
また、ピーク・ツゥ・ピークタイミングジッタΔφPPは、Δφ[n]の最大値と最小値の差であり、下式により算出される。
ΔφPP=maxk(Δφ[k])−mink(Δφ[k]) (3)
図13は、タイミングジッタのヒストグラムの一例を示す。ヒストグラム生成部110(図2参照)は、当該ヒストグラムを生成する。
また、本例におけるジッタ測定装置200は、被測定信号の周期ジッタを同時に測定してもよい。周期ジッタJは、基本周期T0に対する周期Tの相対的な揺らぎであり、隣り合う2つのゼロクロス点におけるタイミングジッタ値の差として、下式で表される。
J[k]=T[k]−T0=Δφ[k+1]−Δφ[k] (4)
ここで、周期ジッタを求めるときの周期は、m周期(m=0.5,1,2,3、…)としてもよい。例えば、m=0.5周期として、立ち上がり(または立ち下がり)ゼロクロス点と、次の立ち下がり(または立ち上がり)ゼロクロス点とにおける両タイミング・ジッタ値の差を求めてもよいし、m=2周期として、立ち上がり(または立ち下がり)ゼロクロス点と、このゼロクロス点から2つ後の立ち上がり(または立ち下がり)ゼロクロス点とにおける両タイミング・ジッタ値の差を求めてもよい。
図14は、m=1周期として求めた周期ジッタ波形J[n]の一例を示す。また、このようにして測定された周期ジッタデータの二乗平均と、最大値と最小値の差を計算することにより、周期ジッタの実効値JRMSとピークツゥピーク値JPPを式(5)、式(6)によりそれぞれ求めることができる。
RMS=√((1/M)Σk=1 M2[k]) (5)
PP=maxk(J[k])−mink(J[k]) (6)
ここで、Mは測定された周期ジッタ・データの標本数である。
図15は、周期ジッタの測定結果の一例を示す。図15(a)は、従来のタイムインターバル・アナライザで測定したヒストグラムを、図15(b)は、Δφ法で測定したヒストグラムを、図15(c)は、本例におけるジッタ測定装置200が測定した周期ジッタのヒストグラムを示す。本例におけるジッタ測定装置200によれば、被測定信号の周期ジッタを精度よく検出することができる。
図16は、周期ジッタの実効値及びピークツゥピーク値の、本例におけるジッタ測定装置200と従来のジッタ測定方法との測定値の一例を示す。
ここで、観測される周期ジッタのピークツゥピーク値JPPは、測定数(ゼロクロス数)の対数の平方根にほぼ比例する。例えば、5000イベント程度においてはJPP=45psが正しい値である。図16におけるJPPの誤差は45psを真値として算出した。図16に示すように本例におけるジッタ測定装置によれば、タイムインターバル・アナライザで測定した値に対し、JRMSで−3.1%、JPPで+1.0%と精度よく検出することができる。図15(a)、(b)、(c)図16に示したように、本例におけるジッタ測定装置200は、正しい測定値が得られる従来のタイムインターバル・アナライザによる測定方法と互換性のあるジッタ測定値を得ることができる。
さらに、この本例におけるジッタ測定装置200は、サイクルツゥサイクル周期ジッタを同時に測定することができる。サイクルツゥサイクル周期ジッタJCCは連続するサイクル間の周期変動であり、下式で表される。
Figure 0003650767
従って、上述した方法により測定された周期ジッタデータの差分をとり、その二乗平均と最大値と最小値の差を計算することにより、サイクルツゥサイクル周期ジッタの実効値JCC,RMSとピークツゥピーク値JCC,PPをそれぞれ式(8)、式(9)により求めることができる。
CC,RMS=√((1/L)Σk=1 L2 CC[k]) (8)
CC,PP=maxk(JCC[k])−mink(JCC[k]) (9)
ここで、Lは測定されたサイクル・ツゥ・サイクル周期ジッタ・データの標本数である。
図17は、サイクルツゥサイクル周期ジッタJCC[n]の波形の一例を示す。また、図18は、サイクルツゥサイクル周期ジッタのヒストグラムの一例を示す。本例におけるジッタ測定装置200は、上述したようにリニア瞬時位相データを補間してゼロクロスタイミングを推定するだけでなく、これにかえて、瞬時位相データを補間してゼロクロス・タイミングを推定してもよいし、あるいは解析信号の実数部データ(実信号に対応する)を補間してゼロクロス・タイミングを推定してもよい。
また、本例におけるジッタ測定装置200は、波形クリップ手段を用いて、被測定信号の振幅変調(amplitude modulation,AM)成分を取り除いてよい。ジッタに対応する位相変調(phase modulation,PM)成分のみを残すことにより、周期ジッタを高精度に推定することもできる。次に、ヒルベルト変換による複数解析信号の生成について説明する。
図19は、被測定信号の一例を示す。被測定信号x(t)の複素解析信号z(t)は、下式で定義される。
z(t)≡x(t)+jx′(t) (10)
ここで、jは虚数単位であり、複素信号z(t)の虚数部x′(t)は、実数部x(t)のヒルベルト変換である。
一方、時間関数x(t)のヒルベルト変換は、次式で定義される。
Figure 0003650767
ここで、X′(t)は関数x(t)と(1/πf)の畳み込みである。即ち、ヒルベルト変換は、被測定信号x(t)を全帯域通過フィルタを通過させた時の出力と等価である。ただし、この時の全帯域通過フィルタの出力x′(t)は、被測定信号x(t)とスペクトル成分の大きさは変わらないが、その位相はπ/2だけシフトする。
解析信号及びヒルベルト変換については、例えば、A.Papoulis,Probability,Random Variables,and Stochastic Processes,2nd edition,McGraw-Hill Book Company,1984.に記載されている。
被測定信号x(t)の瞬時位相波形φ(t)は、複素解析信号z(t)から次式を用いて求められる。
φ(t)=tan-1[x′(t)/x(t)] (12)
次に、図7に関連して説明した解析信号変換器101において、ヒルベルト変換を用いて瞬時位相を推定するアルゴリズムについて説明する。はじめに、帯域制限器191(図7参照)が、被測定信号x(t)の基本周波数近傍の周波数成分を出力する。次に、ヒルベルト変換器192(図7参照)が、被測定信号x(t)に式10から式12を用いて説明したヒルベルト変換を適用して複素解析信号の虚数部に対応する信号x′(t)を求める。解析信号変換器101は、帯域制限器191が出力する帯域制限された被測定信号x(t)を、複素解析信号の実数部として出力し、ヒルベルト変換器192が出力する帯域制限された被測定信号x(t)のヒルベルト変換を、複素解析信号の虚数部として出力する。
図20は、複素解析信号の一例を示す。図20において、複素解析信号の実数部x(t)を実線で、虚数部x′(t)を破線で示す。次に、瞬時位相推定器102(図2参照)が、複素解析信号z(t)に基づいて、式(12)を用いて瞬時位相関数φ(t)を推定する。ここで、φ(t)は、−πから+πの範囲の位相の主値を用いて表され、+πから−πに変化する付近で不連続点を持つ。
図21は、位相関数φ(t)の一例を示す。最後に、瞬時位相推定器102が、不連続な位相関数φ(t)をアンラップする。すなわち、瞬時位相推定器102は、位相関数φ(t)に2πの整数倍を適切に加える。瞬時位相推定器102が、位相関数φ(t)をアンラップすることにより、不連続を取り除き連続な瞬時位相関数φ(t)を得ることができる。
図22は、アンラップされた瞬時位相関数φ(t)を示す。瞬時位相推定器102は、図22に示すような、アンラップされた瞬時位相関数φ(t)を出力する。また、被測定信号から複素解析信号への変換は、高速フーリエ変換を用いたディジタル信号処理によっても実現できる。次に、フーリエ変換による複素解析信号の生成について、図6において説明した解析信号変換器101を用いて説明する。
図23は、被測定信号の一例を示す。図23に示す被測定信号は、離散化されたデータ系列を有する。周波数領域変換器181(図6参照)は、離散化された被測定信号x(t)にFFT(高速フーリエ変換)を適用し、被測定信号の両側スペクトルx(f)を得る。
図24は、被測定信号の両側スペクトルの一例を示す。次に、帯域制限器182が、スペクトルx(f)の正の周波数成分における基本周波数400MHz付近のデータのみを残して、残りのデータをゼロとし、さらに、正の周波数成分を2倍する。周波数領域におけるこれらの処理が、時間領域において被測定信号を帯域制限し複素解析信号に変換することに対応する。
図25は、周波数領域の信号Z(f)を示す。最後に、時間領域変換器183が、周波数領域の信号Z(f)に逆FFTを適用することにより、帯域制限された複素解析信号z(t)を得ることができる。
図26は、帯域制限された複素解析信号z(t)の一例を示す。FFTを用いた複素解析信号への変換については、例えば、J.S.Bendat and A.G.Piersol,Random Data:Analysis and Measurement Procedure,2nd edition,John Wiley &Sons,Inc.,1986.に記載されている。
次に、図3から図5に関連して説明した補間器における補間について説明する。
関数y=f(x)の値が、変数xの不連続な値x1,x2,…xnに対して与えられている時、xk(k=1,2,…,n)以外のxの値に対するf(x)の値を推測する処理が補間である。
図27は、補間法を説明する図である。補間法を用いたタイミングの推定は、例えば図27に示すように、所定の関数値yCを挟む2つの測定点xkとxk+1間を十分に細かく補間した後、上記所定値yCに最も近い補間データを検索することにより、関数値yが所定の値yCとなるタイミングxを推定する。タイミング推定の誤差は、2つの測定点xk,xk+1間を等間隔で刻む時間幅に反比例する。即ち、タイミング推定の誤差を小とするには、2つの測定点xk,xk+1間を可能な限り小さい時間刻み幅でy=f(x)を補間することが望ましい。
次に、多項式補間法について説明する。多項式補間については、例えば、L.M.Johnson and R.D.Riess,Numerical Analysis,Massachusetts:Addison-Wesley,pp.207-230,1982.に記載されている。
平面上の2点(x1,y1),(x2,y2)が与えられた時、その2点を通る直線(line)y=p1(x)は、
y=p1(x)={(x−x2)/(x1−x2)}y1+{(x−x1)/(x2−x1)}y2 (17)
で与えられ、一意的に決まる。同様に、平面上の3点(x1,y1),(x2,y2),(x3,y3)を通る2次曲線(quadratic)y=P2(x)は、
Figure 0003650767
で与えられる。一般に、平面上のN点(x1,y1),(x2,y2),…,(xN,yN)を通るN−1次曲線y=PN-1(x)は一意的に決まり、ラグランジェの公式(Lagrange′s classical formula)より、
Figure 0003650767
で与えられる。
N−1次多項式補間(interpolation by polynomial of degree N-1)は、N個の測定点から上記の式(14)を用いて希望のxに対するy=f(x)の値を推定する。補間曲線PN-1(x)の近似をよくするには、xに近いN点を選択するの望ましい。
次に、3次スプライン補間法について説明する。3次スプライン補間については、例えば、L.W.Johnson and R.D.Riess,Numerical Analysis,Massachusetts:Addison-Wesley,pp.237-248,1982.に記載されている。
“スプライン(spline)”とは製図用の自在定規(薄い弾力のある細い板(thinelastic rod))をいう。スプラインを平面上の通過すべき点を通るように曲げると、これらの点をつなぐ滑らかな曲線(スプライン曲線(spline curve))が得られる。
このスプライン曲線は、所定の点を通過し曲率(curvature)の2乗積分(スプラインの変形のエネルギーに比例する)が最小な曲線である。
平面上の2点(x1,y1,(x2,y2)が与えられた時、この2点を通るスプライン曲線は、
y=Ay1+By2+Cy1″+Dy2
Figure 0003650767
で与えられる。ここで、y1″及びy2″はそれそれ、(x1,y1)及び(x2,y2)における関数y=f(x)の2次微分(the second derivative)値である。
3次スプライン補間は、2個の測定点とその測定点における2次微分値から上記の式を用いて希望のxに対するy=f(x)の値を推定する。補間曲線の近似をよくするには、xに近い2点を選択するのが望ましい。
次に、図3から図5に関連して説明した値検出器152における逆線形補間法について説明する。
図28は、逆線形補間法を説明する図である。逆補間法とは、変数xの不連続な値x1,x2,…,xnに対して関数yk=f(xk)の値が与えられている時、y=f(x)の逆関数をx=g(y)として、不連続なy(k=1,2,…,n)以外の任意のyに対するg(y)=Xの値を推測する方法である。逆線形補間法は、yに対するxの値を推測するために直線補間を用いる。
平面上の2点(x1,y1),(x2,y2)が与えられた時、その2点を通る直線は、
y={(x−x2)/(x1−x2)}y1+{(x−x1)/(x2−x1)}y2 (16)
で与えられる。上の式の逆関数は、
x={(y−y2)/(y1−y2)}x1+{(y−y1)/(y2−y1)}x2 (17)
で与えられ、yに対するxの値を一意的に求めることができる。
逆線形補間は図28に示すように、2個の測定点(xk,yk),(xk+1,yk+1)から上記の式(17)を用いて希望のycに対するx=g(yc)の値を推定することにより、所定の値ycになる時間タイミングxを一意に推定する。推定の誤差を小さくするには、xをはさむ2つの測定点xkとxk+1を選択するのが望ましい。
次に、瞬時位相からリニア瞬時位相を推定する方法について説明する。図2に関連して説明したリニア瞬時位相推定器103は、アンラップされた瞬時位相から、最小二乗法によりリニア瞬時位相を算出する。以下、最小二乗法について説明する。
最小二乗法は、ずれの大きさの尺度としてデータ点から直線までの鉛直線(aplumbline)(縦軸に平行に下した直線)の長さの平方値を利用したフィッティング方法である。一般に、n個の2次元データ(x1,y1),(x2,y2),…,(xn,yn)が与えられた時、これらのデータに対する最小二乗直線を
y=a+bx (18)
とすると、(xI,yi)(i=1,2,…,n)というデータから最小二乗直線までの鉛直線の長さの平方値は{yi−(a+bxi)}2で与えられる。この時、鉛直時の長さの平方値の和を
Figure 0003650767
と表現することにより、平方値の和が最小となる係数a,bは、それぞれ
Figure 0003650767
と求めることができる。
以上により、式(20)及び(21)を用いて、全瞬時位相データからリニア瞬時位相関数を得ることができる。
図29は、本発明に係るジッタ測定方法の一例を示すフローチャートである。まず、解析信号変換ステップS201で、被測定信号を複素解析信号に変換する。S201は、図2に関連して説明した解析信号変換器101と同一又は同様の機能を有する。S201は、図2に関連して説明した解析信号変換器101を用いて行ってよい。
次に、瞬時位相推定ステップS202で、被測定信号の瞬時位相を推定する。S202は、図2に関連して説明した瞬時位相推定器102と同一又は同様の機能を有する。S202は、図2に関連して説明した瞬時位相推定器102を用いて行ってよい。
次に、リニア瞬時位相推定ステップS203で、被測定信号のリニア瞬時位相を推定する。S203は、図2に関連して説明したリニア瞬時位相推定器103と同一又は同様の機能を有する。S203は、図2に関連して説明したリニア瞬時位相推定器103を用いて行ってよい。
次に、タイミング推定ステップS204で、リニア瞬時位相が所定の位相となる複数のタイミングを推定する。また、S204では、瞬時位相が所定の位相となるタイミングを推定してよい。また、S204では、被測定信号が所定の値を取るタイミングを推定してもよい。S204は、図2に関連して説明したタイミング推定器105と同一又は同様の機能を有する。S204は、図2に関連して説明したタイミング推定器105を用いて行ってよい。
次に、タイミングジッタ系列算出ステップS205で、S204において推定した複数のタイミングにおける、瞬時位相とリニア瞬時位相との差を算出し、算出した差分に基づいて、タイミングジッタ系列を生成する。S205は、図2に関連して説明したタイミングジッタ推定器106と同一又は同様の機能を有する。S205は、図2に関連して説明したタイミングジッタ推定器106を用いて行ってよい。
次に、タイミングジッタ推定ステップS206で、タイミングジッタ系列に基づいて、被測定信号のタイミングジッタを検出する。S206は、図2に関連して説明したジッタ検出器107と同一又は同様の機能を有する。S206は、図2に関連して説明したジッタ検出器107を用いて行ってよい。
以上説明したジッタ測定方法によれば、図2に関連して説明したジッタ測定装置200と同様に、被測定信号のジッタを精度よくかつ高速に測定することができる。
図30は、タイミング推定ステップS204の一例の詳細を示すフローチャートである。本例において、S204は、リニア瞬時位相が所定の位相となる複数のタイミングを推定する。まず、リニア瞬時位相補間ステップS801で、リニア瞬時位相データを補間する。S801は、図3に関連して説明した補間器151と同様の機能を有する。S801は、図3に関連して説明した補間器151を用いて行ってよい。
次に、値検出ステップS802で、所定の位相となるリニア瞬時位相データを検出する。S802は、図3に関連して説明した値検出器152と同様の機能を有する。S802は、図3に関連して説明した値検出器152を用いて行ってよい。
次に、推定ステップS803で、S802において検出したリニア瞬時位相データの時間タイミングを算出する。S803は、図3に関連して説明した推定器153と同様の機能を有する。S803は、図3に関連して説明した推定器153を用いて行ってよい。
図31は、タイミング推定ステップS204の他の例の詳細を示すフローチャートである。本例において、S204は、瞬時位相が所定の位相となる複数のタイミングを推定する。まず、瞬時位相補間ステップS1001で、瞬時位相データを補間する。S1001は、図4に関連して説明した補間器161と同様の機能を有する。S1001は、図4に関連して説明した補間器161を用いて行ってよい。
次に、値検出ステップS1002で、所定の位相となる瞬時位相データを検出する。S1002は、図4に関連して説明した値検出器152と同様の機能を有する。S1002は、図4に関連して説明した値検出器152を用いて行ってよい。
次に、推定ステップS1003で、S1002において検出した瞬時位相データの時間タイミングを算出する。S1003は、図4に関連して説明した推定器153と同様の機能を有する。S1003は、図4に関連して説明した推定器153を用いて行ってよい。
図32は、タイミング推定ステップS204の更に他の例の詳細を示すフローチャートである。本例において、S204は、被測定信号が所定の値となる複数のタイミングを推定する。まず、波形データ補間ステップS1201で、被測定信号のデータを補間する。S1201は、図5に関連して説明した補間器171と同様の機能を有する。S1201は、図5に関連して説明した補間器171を用いて行ってよい。
次に、値検出ステップS1202で、所定の値となる被測定信号のデータを検出する。S1202は、図5に関連して説明した値検出器152と同様の機能を有する。S1202は、図5に関連して説明した値検出器152を用いて行ってよい。
次に、推定ステップS1203で、S1202において検出した被測定信号のデータの時間タイミングを算出する。S1203は、図5に関連して説明して推定器153と同様の機能を有する。S1203は、図5に関連して説明した推定器153を用いて行ってよい。
図33は、解析信号変換ステップS201の一例の詳細を示すフローチャートである。まず、帯域制限ステップS1401で、被測定信号のうち、所定の周波数成分を抽出する。S1401は、図7に関連して説明した帯域制限器191と同様の機能を有する。S1401は、図7に関連して説明した帯域制限器191を用いて行ってよい。
次に、ヒルベルト変換ステップS1402で、帯域制限された被測定信号のヒルベルト変換対を生成する。S1402は、図7に関連して説明したヒルベルト変換器192と同様の機能を有する。S1402は、図7に関連して説明したヒルベルト変換器192を用いて行ってよい。
次に、解析信号出力ステップS1403で、帯域制限された被測定信号を複素解析信号の実数部として、ヒルベルト変換された被測定信号を複素解析信号の虚数部として出力する。
図34は、解析信号変換ステップS201の他の例の詳細を示すフローチャートである。まず、周波数領域変換ステップS1601で、被測定信号を周波数領域の信号に変換する。S1601は、図6に関連して説明した周波数領域変換器181と同様の機能を有する。S1601は、図6に関連して説明した周波数領域変換器181を用いて行ってよい。
次に、負周波数成分置換ステップS1602で、周波数領域に変換された被測定信号の負周波数成分を零に置き換える。S1602は、図6に関連して説明した帯域制限器182を用いて行ってよい。
次に、帯域制限ステップS1603で、周波数領域に変換された被測定信号に対して帯域制限を行う。S1603は、図6に関連して説明した帯域制限器182を用いて行ってよい。また、S1602及びS1603は、図6に関連して説明した帯域制限器182と同様の機能を有する。S1602とS1603とは、いずれを先に行ってもよい。
次に、時間領域変換ステップS1604で、帯域制限された周波数成分を、時間領域の信号に変換する。S1604は、図6に関連して説明した時間領域変換器183と同様の機能を有する。S1604は、図6に関連して説明した時間領域変換器183を用いて行ってよい。S1604は、時間領域に変換した信号を複素解析信号として出力する。
図35は、解析信号変換ステップS201の更に他の例の詳細を示すフローチャートである。まず、データ蓄積ステップS1801で、被測定信号のデータを蓄積する。S1801は、図8に関連して説明したバッファメモリ201と同様の機能を有する。S1801は、図8に関連して説明したバッファメモリ201を用いて行ってよい。
次に、データ選択ステップS1802で、S1801で蓄積した被測定信号のデータの一部を選択して取り出す。S1802は、図8に関連して説明したデータ選択器202と同様の機能を有する。S1802は、図8に関連して説明したデータ選択器202を用いて行ってよい。
次に、窓関数乗算ステップS1803で、取り出した被測定信号のデータに対して窓関数を乗算する。S1803は、図8に関連して説明した窓関数乗算器203と同様の機能を有する。S1803は、図8に関連して説明した窓関数乗算器203を用いて行ってよい。
次に、周波数領域変換ステップS1804で、窓関数を乗算した被測定信号のデータを、周波数領域の信号に変換する。S1804は、図8に関連して説明した周波数領域変換器204と同様の機能を有する。S1804は、図8に関連して説明した周波数領域変換器204を用いて行ってよい。
次に、負周波数成分置換ステップS1805で、周波数領域の信号に変換された被測定信号の負周波数成分を零に置き換える。S1805は、図34に関連して説明した負周波数成分置き換えステップS1602と同様の機能を有する。S1805は、図8に関連して説明した帯域制限器205を用いて行ってよい。
次に、帯域制限ステップS1806で、周波数領域に変換された被測定信号に対して帯域制限を行う。S1806は、図34に関連して説明した帯域制限ステップS1603と同様の機能を有する。S1806は、図8に関連して説明した帯域制限器205を用いて行ってよい。
次に、時間領域変換ステップS1807で、帯域制限された周波数領域の信号を時間領域の信号に変換する。S1807は、図8に関連して説明した時間領域変換器206と同様の機能を有する。S1807は、図8に関連して説明した時間領域変換器206を用いて行ってよい。
次に、振幅補正ステップS1808で、S1803で乗算した窓関数の逆数を、時間領域に変換された信号に乗算する。S1808は、図8に関連して説明した振幅補正器207と同様の機能を有する。S1808は、図8に関連して説明した振幅補正器207を用いて行ってよい。
次に、S1809で、S1801で蓄積したデータがまだ格納されているか否かを判定する。S1809は、図8に関連して説明したバッファメモリ201に、まだ選択されていないデータが格納されているか否かを判定してよい。バッファメモリ201が格納した全てのデータが選択されている場合、処理を終了する。また、バッファメモリ201が、まだ選択されていないデータを格納している場合、次データ選択ステップS1810で、次に選択するべきバッファメモリ201が格納したデータを選択する。S1810で次のデータを選択し、S1803以下の処理を繰り返す。
図36は、ジッタ測定装置200の他の構成の例を示す。ジッタ測定装置200は、図2に関連して説明したジッタ測定装置200の構成に加え、周期ジッタ推定器301と、スイッチ302とを更に備える。図36において、図2と同一の符号を附した物は、図2に関連して説明した物と同一又は同様の機能及び構成を有する。
解析信号変換器101、瞬時位相推定器102、リニア瞬時位相推定器103、スイッチ104、タイミング推定器105、及びタイミングジッタ推定器106は、図2に関連して説明した解析信号変換器101、瞬時位相推定器102、リニア瞬時位相推定器103、スイッチ104、タイミング推定器105、及びタイミングジッタ推定器106と同様の処理を行う。
周期ジッタ推定器301は、タイミングジッタ推定器106が出力するタイミングジッタ系列に基づいて、被測定信号の周期ジッタ系列を推定する。つまり、周期ジッタ推定器301は、当該タイミングジッタ系列の差分波形を計算し、計算結果に基づいて周期ジッタ系列を生成する。タイミングジッタ系列の個々のデータの差分から、被測定信号のそれぞれの周期における周期ジッタ推定値を示す周期ジッタ系列を算出することが容易である。
スイッチ302は、タイミングジッタ推定器106が出力するタイミングジッタ系列、又は周期ジッタ推定器301が出力する周期ジッタ系列のいずれかを、ジッタ検出器107に供給する。
ジッタ検出器107は、受け取ったデータに基づいて、被測定信号のジッタを検出する。例えば、タイミングジッタ系列を受け取った場合、ジッタ検出器107は、被測定信号のタイミングジッタのピークツゥピーク値、及び/又は実効値を検出する。また、周期ジッタ系列を受け取った場合、ジッタ検出器107は、被測定信号の周期ジッタのピークツゥピーク値、及び/又は実効値を検出する。また、ジッタ検出器107は、タイミングジッタ又は周期ジッタのヒストグラムを生成してもよい。
本例におけるジッタ測定装置200によれば、被測定信号のタイミングジッタ及び周期ジッタを精度よくかつ高速に測定することができる。また、本例におけるジッタ測定装置200を備える試験装置100(図1参照)によれば、電子デバイスを精度よくかつ効率よく試験することができる。
図37は、本発明のジッタ測定方法の他の例を示すフローチャートである。本例におけるジッタ測定方法は、図29に関連して説明したジッタ測定方法に加え、周期ジッタ系列算出ステップS401と、周期ジッタ推定ステップS402とを更に備える。図37に示した解析信号変換ステップS201からタイミングジッタ推定ステップS206までは、図29に関連して説明した解析信号変換ステップS201からタイミングジッタ推定ステップS206までと同様の処理を行う。
周期ジッタ系列算出ステップS401は、S205において算出したタイミングジッタ系列に基づいて、被測定信号の周期ジッタ系列を算出する。S401は、図36に関連して説明した周期ジッタ推定器301と同様の機能を有する。S401は、図36に関連して説明した周期ジッタ推定器301を用いて行ってよい。
次に、周期ジッタ推定ステップS402で、周期ジッタ系列に基づいて、被測定信号の周期ジッタを推定する。S402は、図36に関連して説明したジッタ検出器107と同様の機能を有する。S402は、図36に関連して説明したジッタ検出器107を用いて行ってよい。
本例におけるジッタ測定方法によれば、図36に関連して説明したジッタ測定装置200と同様に、被測定信号のタイミングジッタ及び周期ジッタを精度よく且つ高速に測定することができる。
また、図36に示したジッタ測定装置200は、後述する周期ジッタのみを推定する装置としても構成できる。この時、ジッタ系列を選択するスイッチ302は省略される。同様に、図37に示すジッタ測定方法は、後述する周期ジッタのみを推定するジッタ測定方法としてもよい。この時、タイミングジッタ系列からタイミングジッタを推定するS206は省略される。
図38は、ジッタ測定装置200の構成の更に他の例を示す。本例におけるジッタ測定装置200は、図36に関連して説明したジッタ測定装置200の構成に加え、サイクルツゥサイクル周期ジッタ推定器311を更に備える。図38において、図36と同一の符号を附した物は、図36において説明した物と同一又は同様の機能及び構成を有する。
サイクルツゥサイクル周期ジッタ推定器311は、周期ジッタ推定器301が出力する周期ジッタ系列に基づいて、被測定信号のサイクルツゥサイクル周期ジッタ系列を推定する。
スイッチ302は、タイミングジッタ推定器106が出力するタイミングジッタ系列、周期ジッタ推定器301が出力する周期ジッタ系列、又はサイクルツゥサイクル周期ジッタ推定器311が出力するサイクルツゥサイクル周期ジッタ系列のいずれかをジッタ検出器107に供給する。
ジッタ検出器107は、受け取ったデータ系列に基づいて、被測定信号のジッタを算出する。例えば、タイミングジッタ系列を受け取った場合、ジッタ検出器107は被測定信号のタイミングジッタのピーク値、及び/又は実効値を算出する。また、例えばサイクルツゥサイクル周期ジッタ系列を受け取った場合、ジッタ検出器107は被測定信号のサイクルツゥサイクル周期ジッタのピーク値、及び/又は実効値を算出する。また、ジッタ検出器107は、被測定信号のジッタのヒストグラムを生成してもよい。
本例におけるジッタ測定装置200によれば、被測定信号のタイミングジッタ、周期ジッタ、及びサイクルツゥサイクル周期ジッタを精度よくかつ高速に測定することができる。また、本例におけるジッタ測定装置200を備える試験装置100(図1参照)によれば、電子デバイスを精度よくかつ効率よく試験することができる。
図39は、本発明に係るジッタ測定方法の更に他の例を示すフローチャートである。本例におけるジッタ測定方法は、図37に関連して説明したジッタ測定方法に加え、サイクルツゥサイクル周期ジッタ系列算出ステップS601と、サイクルツゥサイクル周期ジッタ推定ステップS602とを更に備える。解析信号変換ステップS201から周期ジッタ推定ステップS402までは、図37に関連して説明した解析信号変換ステップS201から周期ジッタ推定ステップS402までと同様の処理を行う。
サイクルツゥサイクル周期ジッタ系列算出ステップS601は、S401において算出した周期ジッタ系列に基づいて、サイクルツゥサイクル周期ジッタ系列を算出する。S601は、図38に関連して説明したサイクルツゥサイクル周期ジッタ推定器311と同様の機能を有する。S601は、図38に関連して説明したサイクルツゥサイクル周期ジッタ推定器311を用いて行ってよい。
次に、サイクルツゥサイクル周期ジッタ推定ステップS602で、サイクルツゥサイクル周期ジッタ系列に基づいて、被測定信号のサイクルツゥサイクル周期ジッタを算出する。S602は、図38に関連して説明したジッタ検出器107と同様の機能を有する。S602は、図38に関連して説明したジッタ検出器107を用いて行ってよい。
本例におけるジッタ測定方法によれば、図38に関連して説明したジッタ測定装置200と同様に、被測定信号のタイミングジッタ、周期ジッタ、サイクルツゥサイクル周期ジッタを精度よく且つ高速に測定することができる。
また、図38に示したジッタ測定装置200は、サイクルツゥサイクル周期ジッタのみを推定する装置としてもよい。この場合、ジッタ系列を選択するスイッチ302は省略される。同様に、図39に示したジッタ測定方法は、サイクルツゥサイクル周期ジッタのみを推定してもよい。この場合、タイミングジッタ系列からタイミングジッタを推定するS206と、周期ジッタ系列から周期ジッタを推定するS402と、は省略される。
図40は、ジッタ測定装置200の構成の更に他の例を示す。本例におけるジッタ測定装置200は、図2に関連して説明したジッタ測定装置200に加え、ADコンバータ321を更に備える。図40において、図2と同一の符号を附した物は、図2において説明した物と同一又は同様の機能及び構成を有する。
ADコンバータ321は、所定のサンプリング周波数で被測定信号をサンプリングし、被測定信号をアナログ−ディジタル変換する。ADコンバータ321は被測定信号のナイキスト周波数以上のサンプリング周波数で、被測定信号をサンプリングすることが好ましい。ADコンバータ321は、離散化した被測定信号を解析信号変換部101に供給する。ADコンバータ321は、高速サンプリング可能なADコンバータを用いることが好ましい。例えば、ADコンバータ321は、ディジタイザ、ディジタルサンプリングオシロスコープであることが好ましい。
本例におけるジッタ測定装置200によれば、被測定信号がアナログ信号である場合でも、被測定信号のジッタを精度よく且つ高速に測定することができる。また、本例におけるジッタ測定装置200を備える試験装置100によれば、試験信号がアナログ信号である場合であっても、電子デバイスの試験を精度よく且つ効率よくおこなうことができる。また、上述したジッタ測定装置200のそれぞれの構成例においても、ADコンバータ321を更に備えてよい。
図41は、本発明に係るジッタ測定方法の更に他の例を示すフローチャートである。本例におけるジッタ測定方法は、図29に関連して説明したジッタ測定方法に加え、アナログディジタル変換ステップS2001を更に備える。解析信号変換ステップS201からタイミングジッタ推定ステップS206までは、図29に関連して説明した解析信号変換ステップS201からタイミングジッタ推定ステップS206までと同様の処理を行う。
アナログディジタル変換ステップS2001は、被測定信号をアナログ−ディジタル変換し、離散化した被測定信号を生成する。S2001は、図40に関連して説明したADコンバータ321と同様の機能を有する。S2001は、図40に関連して説明したADコンバータ321を用いて行ってよい。
解析信号変換ステップS201は、離散化された被測定信号を複素解析信号に変換する。
本例におけるジッタ測定方法によれば、図40に関連して説明したジッタ測定方法と同様に、被測定信号がアナログ信号である場合でも、被測定信号のジッタを精度よく且つ高速に測定することができる。また、上述したジッタ測定方法のそれぞれの例においても、アナログディジタル変換ステップS2001を更に備えてよい。
図42は、ジッタ測定装置200の構成の更に他の例を示す。本例におけるジッタ測定装置200は、図2に関連して説明したジッタ測定装置200に加え、波形クリッパ331を更に備える。図42において、図2と同一の符号を附した物は、図2において説明した物と同一又は同様の機能及び構成を有する。
波形クリッパ331は、被測定信号の振幅変調成分を除去する。つまり、波形クリッパ331は、被測定信号のうち、予め定められた第1の閾値より大きい信号値を第1の閾値と置き換え、予め定められた第2の閾値より小さい信号値を第2の閾値と置き換える。つまり、波形クリッパ331を備えることにより、被測定信号から振幅変調成分を取り除き、ジッタ測定に必要な位相変調成分のみを残すことができる。本例において、波形クリッパ331は、被測定信号を受け取り、解析信号変換器101に、上述した所定の成分を除去した被測定信号を供給する。以下、波形クリッパ331における波形クリップについて説明する。
図43は、波形クリップを説明する図である。波形クリッパ331(図42参照)は、被測定信号から振幅変調成分を取り除き、ジッタに対応する位相変調成分のみを残す。波形クリッパは、アナログあるいはデジタルの入力信号に対し、信号の値を定数倍し、予め決めた第1の閾値より大きい信号値は第1の閾値と置きかえ、予め決めた第2の閾値より小さい信号値は第2の閾値と置きかえることにより行われる。ここで、第1の閾値は第2の閾値より大きいと仮定する。振幅変調成分を持っている被測定信号の例を図43(a)に示す。被測定信号の時間波形の包絡線が変動していることから、被測定信号に振幅変調成分の存在がわかる。図43(b)は、当該被測定信号を波形クリッパ331により波形クリップした信号を示す。この信号の時間波形は一定の包絡線を示しているから、上記振幅変調成分が除かれているのを確認できる。
本例におけるジッタ測定装置200によれば、被測定信号の振幅変調成分を除去し、被測定信号のジッタを更に精度よく且つ高速に測定することができる。また、本例におけるジッタ測定装置200を備える試験装置200によれば、電子デバイスの試験を精度よく且つ効率よく行うことができる。また、上述したジッタ測定装置200のそれぞれの例においても、波形クリッパ331を更に備えてよい。
図44は、本発明に係るジッタ測定方法の更に他の例を示すフローチャートである。本例におけるジッタ測定方法は、図29に関連して説明したジッタ測定方法に加え、波形クリップステップS2301を更に備える。解析信号変換ステップS201からタイミングジッタ推定ステップS206までは、図29に関連して説明した解析信号変換ステップS201からタイミングジッタ推定ステップS206までと同様に処理を行う。
波形クリップステップS2301は、被測定信号の振幅変調成分を除去する。S2301は、図42に関連して説明した波形クリッパ331と同様の機能を有する。S2301は、図42に関連して説明した波形クリッパ331を用いて行ってよい。
本例におけるジッタ測定方法によれば、図42に関連して説明したジッタ測定装置200と同様に、被測定信号の振幅変調成分を除去し、被測定信号のジッタを更に精度よく且つ高速に測定することができる。また、上述したジッタ測定方法のそれぞれの例においても、波形クリップステップS2301を更に備えてよい。
図45は、ジッタ測定装置200の構成の更に他の例を示す。ジッタ測定装置200は、解析信号変換器101と、瞬時位相推定器102と、タイミング推定器105と、周期推定器341と、ジッタ検出器107とを備える。図45において、図2と同一の符号を附した物は、図2に関連して説明した物と同一又は同様の機能及び構成を有する。
解析信号変換器101及び瞬時位相推定器102は、図2に関連して説明した解析信号変換器101及び瞬時位相推定器102と同一又は同様の機能及び構成を有する。
タイミング推定器105は、瞬時位相推定器102が出力する瞬時位相に基づいて、瞬時位相が所定の位相値となる複数のタイミングを推定する。タイミング推定器105は図2に関連して説明したタイミング推定器105と同一又は同様の機能及び構成を有する。
周期推定器341は、タイミング推定器105が推定した複数のタイミングに基づいて、被測定信号の瞬時周期系列を算出する。つまり、周期推定器341は、タイミング推定器105が推定した複数のタイミングのそれぞれの差分に基づいて、当該瞬時周期系列を算出する。
ジッタ検出器107は、当該瞬時周期系列に基づいて、被測定信号のジッタを算出する。ジッタ検出器107は、図36に関連して説明したジッタ検出器107と同様の機能及び構成を有する。ジッタ検出器107は、被測定信号の周期ジッタのピーク値を算出するピーク値算出部108と、被測定信号の周期ジッタの実効値を算出する実効値算出部109と、被測定信号の周期ジッタのヒストグラムを生成するヒストグラム生成部110とを有する。また、ジッタ検出器107は上述したピーク値算出部108、実効値算出部109、ヒストグラム生成部110のうちの1つ又は複数を有してよい。
図46は、周期推定器341が推定した瞬時周期系列の波形の一例を示す。ジッタ検出器107は、当該瞬時周期系列の波形が示す、それぞれの瞬時周期のバラツキに基づいて、被測定信号のジッタを検出する。
本例におけるジッタ測定装置200によれば、図2において説明したジッタ測定装置200と同様に、被測定信号のジッタを精度よく且つ効率よく検出することができる。
図47は、本発明に係るジッタ測定方法の更に他の例を示すフローチャートである。本例におけるジッタ測定方法は、解析信号変換ステップS2201と、瞬時位相推定ステップS2202と、タイミング推定ステップS2203と、瞬時周期系列算出ステップS2204と、周期ジッタ推定ステップS2205とを備える。解析信号変換ステップS2201及び瞬時位相推定ステップS2202は、図29に関連して説明した解析信号変換ステップS201及び瞬時位相推定ステップS202と同様の機能を有する。また、解析信号変換ステップS201は、図45に関連して説明した解析信号変換器101を用いて行ってよい。また、瞬時位相推定ステップS202は、図45に関連して説明した瞬時位相推定器102を用いて行ってよい。
タイミング推定ステップS2203は、瞬時位相推定ステップS2202において推定した瞬時位相が所定の位相となる複数のタイミングを検出する。S2203は、図45に関連して説明したタイミング推定器105と同様の機能を有する。また、S2203は、図45に関連して説明したタイミング推定器105を用いて行われてよい。
瞬時周期系列算出ステップS2204は、S2203で検出したタイミングに基づいて、被測定信号の瞬時周期系列を算出する。S2204は、図45に関連して説明した周期推定器341と同様の機能を有する。S2204は、図45に関連して説明した周期推定器341を用いて行ってよい。
周期ジッタ推定ステップS2205は、S2204で算出した瞬時周期系列に基づいて、被測定信号の周期ジッタを検出する。S2205は、図45に関連して説明したジッタ検出器107と同様の機能を有する。S2205は、図45に関連して説明したジッタ検出器107を用いて行ってよい。
本例におけるジッタ測定方法によれば、図45に関連して説明したジッタ測定装置200と同様に、被測定信号のジッタを精度よく且つ効率よく検出することができる。
図48は、ジッタ測定装置200の構成の更に他の例を示す。本例におけるジッタ測定装置200は、図45に関連して説明したジッタ測定装置200の構成に加え、サイクルツゥサイクル周期ジッタ推定器351と、スイッチ302とを更に備える。図48において、図45と同一の符号を附した物は、図45に関連して説明した物と同一又は同様の機能及び構成を有する。
サイクルツゥサイクル周期ジッタ推定器351は、周期推定器341が出力する瞬時周期系列に基づいて、被測定信号のサイクルツゥサイクル周期ジッタ系列を生成する。サイクルツゥサイクル周期ジッタ推定器351は、当該瞬時周期系列の差分波形を計算し、当該差分波形に基づいてサイクルツゥサイクル周期ジッタ系列を出力する。サイクルツゥサイクル周期ジッタ推定器351は、図38に関連して説明したサイクルツゥサイクル周期ジッタ推定器311と同様の機能を有する。
スイッチ302は、周期推定器341が出力する瞬時周期系列、又はサイクルツゥサイクル周期ジッタ推定器351が出力するサイクルツゥサイクル周期ジッタ系列のいずれを、ジッタ検出器107に供給するかを選択する。
ジッタ検出器107は、受け取った瞬時周期系列、又はサイクルツゥサイクル周期ジッタ系列に基づいて、被測定信号のジッタを検出する。
本例におけるジッタ測定装置200によれば、被測定信号の周期ジッタ及びサイクルツゥサイクル周期ジッタを精度よく且つ高速に測定することができる。
図49は、本発明に係るジッタ測定方法の更に他の例を示すフローチャートである。本例におけるジッタ測定方法は、図47に関連して説明したジッタ測定方法に加え、サイクルツゥサイクル周期ジッタ系列算出ステップS2401と、サイクルツゥサイクル周期ジッタ推定ステップS2402とを更に備える。解析信号変換ステップS2201から周期ジッタ推定ステップS2205までは、図47に関連して説明した解析信号変換ステップS2201から周期ジッタ推定ステップS2205までと同様の処理を行う。
サイクルツゥサイクル周期ジッタ系列算出ステップS2401は、S2204において算出した瞬時周期系列に基づいて、被測定信号のサイクルツゥサイクル周期ジッタ系列を生成する。S2401は、図48に関連して説明したサイクルツゥサイクル周期ジッタ推定器351と同様の機能を有する。S2401は、図48に関連して説明したサイクルツゥサイクル周期ジッタ推定器351を用いて行ってよい。
サイクルツゥサイクル周期ジッタ推定ステップS2402は、サイクルツゥサイクル周期ジッタ系列に基づいて、被測定信号のジッタを検出する。S2402は、図48に関連して説明したジッタ検出器107と同様の機能を有する。S2402は、図48に関連して説明したジッタ検出器107を用いて行ってよい。
本例におけるジッタ測定方法によれば、図48に関連して説明したジッタ測定装置200と同様に、被測定信号の周期ジッタ及びサイクルツゥサイクル周期ジッタを精度よく且つ高速に測定することができる。
また、図48に示したジッタ測定装置200は、サイクルツゥサイクル周期ジッタのみを推定する装置としても構成できる。この時、スイッチ302は省略される。同様に、図49に示すジッタ測定方法は、サイクルツゥサイクル周期ジッタのみを推定してもよい。この時、瞬時周期系列から周期ジッタを推定するステップS2205は省略される。
図50は、ジッタ測定装置200の構成の更に他の例を示す。本例におけるジッタ測定装置200は、図45に関連して説明したジッタ測定装置200の構成に加え、ADコンバータ361を更に備える。図50において、図45と同一の符号を附した物は、図45に関連して説明した物と同一又は同様の機能及び構成を有する。
ADコンバータ361は、所定のサンプリング周波数で被測定信号をサンプリングし、被測定信号をアナログ−ディジタル変換する。ADコンバータ361は、被測定信号のナイキスト周波数以上のサンプリング周波数で、被測定信号をサンプリングすることが好ましい。ADコンバータ361は、離散化した被測定信号を解析信号変換部101に供給する。ADコンバータ361は、高速サンプリング可能なADコンバータを用いることが好ましい。例えば、ADコンバータ361は、ディジタイザ、ディジタルサンプリングオシロスコープであることが好ましい。
本例におけるジッタ測定装置200によれば、被測定信号がアナログ信号である場合でも、被測定信号のジッタを精度よく且つ高速に測定することができる。また、本例におけるジッタ測定装置200を備える試験装置100によれば、試験信号がアナログ信号である場合であっても、電子デバイスの試験を精度よく且つ効率よくおこなうことができる。また、上述したジッタ測定装置200のそれぞれの構成例においても、ADコンバータ361を更に備えてよい。
図51は、本発明に係るジッタ測定方法の更に他の例を示すフローチャートである。本例におけるジッタ測定方法は、図47に関連して説明したジッタ測定方法に加え、アナログディジタル変換ステップS2501を更に備える。解析信号変換ステップS2201からタイミングジッタ推定ステップS2205までは、図47に関連して説明した解析信号変換ステップS2201からタイミングジッタ推定ステップS2205までと同様の処理を行う。
アナログディジタル変換ステップS2501は、被測定信号をアナログ−ディジタル変換し、離散化した被測定信号を生成する。S2501は、図50に関連して説明したADコンバータ361と同様の機能を有する。S2501は、図50に関連して説明したADコンバータ361を用いて行ってよい。
解析信号変換ステップS2201は、離散化された被測定信号を複素解析信号に変換する。
本例におけるジッタ測定方法によれば、図50に関連して説明したジッタ測定方法と同様に、被測定信号がアナログ信号である場合でも、被測定信号のジッタを精度よく且つ高速に測定することができる。また、上述したジッタ測定方法のそれぞれの例においても、アナログディジタル変換ステップS2501を更に備えてよい。
図52は、ジッタ測定装置200の構成の更に他の例を示す。本例におけるジッタ測定装置200は、図45に関連して説明したジッタ測定装置200に加え、波形クリッパ371を更に備える。図52において、図45と同一の符号を附した物は、図45において説明した物と同一又は同様の機能及び構成を有する。
波形クリッパ371は、被測定信号の振幅変調成分を除去する。つまり、波形クリッパ371は、被測定信号のうち、予め定められた第1の閾値より大きい信号値を第1の閾値と置き換え、予め定められた第2の閾値より小さい信号値を第2の閾値と置き換えてる。つまり、波形クリッパ371を備えることにより、被測定信号から振幅変調成分を取り除き、ジッタ測定に必要な位相変調成分のみを残すことができる。本例において、波形クリッパ371は、被測定信号を受け取り、解析信号変換器101に、上述した所定の成分を除去した被測定信号を供給する。
図53は、本発明に係るジッタ測定方法の更に他の例を示すフローチャートである。本例におけるジッタ測定方法は、図47に関連して説明したジッタ測定方法に加え、波形クリップステップS2601を更に備える。解析信号変換ステップS2201からタイミングジッタ推定ステップS2205までは、図47に関連して説明した解析信号変換ステップS2201からタイミングジッタ推定ステップS2205までと同様の処理を行う。
波形クリップステップS2601は、被測定信号の振幅変調成分を除去する。S2601は、図52に関連して説明した波形クリッパ371と同様の機能を有する。S2601は、図52に関連して説明した波形クリッパ371を用いて行ってよい。
本例におけるジッタ測定方法によれば、図52に関連して説明したジッタ測定装置200と同様に、被測定信号の振幅変調成分を除去し、被測定信号のジッタを更に精度よく且つ高速に測定することができる。また、上述したジッタ測定方法のそれぞれの例においても、波形クリップステップS2601を更に備えてよい。
以上述べたようにそれぞれのジッタ測定装置200及びジッタ測定方法によれば、高速にサンプリングされた信号データから瞬時位相を推定し、補間法を用いて高精度に推定したゼロクロス・タイミングにおける位相変動成分を求めることにより、従来のタイムインターバル・アナライザ方式やΔφ法と互換性のあるジッタ値を推定することができるため、従来のオシロスコープを用いたジッタ測定(補間ベース・ジッタ測定方法を用いる)の精度を大幅に改善することができ、しかも従来のタイムインターバル・アナライザ方式や補間ベース・ジッタ測定方法では不可能であったタイミングジッタ、周期ジッタ、サイクルツゥサイクル周期ジッタの同時測定が可能となるため、ジッタ測定の効率を大幅に改善することもできる。
このジッタ測定におけるデッド時間がないため、従来のタイムインターバル・アナライザ方式に比べ測定時間を短縮できる。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
産業上の利用可能性
上記説明から明らかなように、本発明に係るジッタ測定装置及びジッタ測定方法によれば、被測定信号のジッタを精度よくかつ高速に測定することができる。また、本発明に係る試験装置によれば、電子デバイスを精度よく且つ効率よく試験することが可能となる。

Claims (38)

  1. 被測定信号のジッタを測定するジッタ測定装置であって、
    前記被測定信号を複素解析信号に変換する解析信号変換器と、
    前記解析信号変換器が変換した前記複素解析信号に基づいて、前記被測定信号の瞬時位相を算出する瞬時位相推定器と、
    前記瞬時位相推定器が算出した前記瞬時位相の近似直線を求めることにより、前記被測定信号がジッタを有さない場合の瞬時位相であるリニア瞬時位相を算出するリニア瞬時位相推定器と、
    前記リニア瞬時位相が予め定められた位相となるタイミングを算出するタイミング推定器と、
    前記タイミング推定器が算出した前記タイミングにおける、前記被測定信号の瞬時位相の位相値と、前記リニア瞬時位相の位相値との差であるタイミングジッタ系列を算出するタイミングジッタ推定器と、
    前記タイミングジッタ系列に基づいて、前記被測定信号のジッタを算出するジッタ検出器と
    を備え
    前記タイミング推定器は、
    前記リニア瞬時位相の位相データであって、予め定められた位相値より大きい前記位相データのうち、前記予め定められた位相値に最も近い位相データと、前記予め定められた位相値より小さい前記位相データのうち、前記予め定められた位相値に最も近い位相データとの間をデータ補間する補間器と、
    前記データ補間された前記リニア瞬時位相の位相データのうち、前記予め定められた位相値に最も近い位相データを検出する値検出器と、
    前記値検出器が検出した前記位相データの、時間軸におけるタイミングを算出する推定器と
    を有することを特徴とするジッタ測定装置。
  2. 被測定信号のジッタを測定するジッタ測定装置であって、
    前記被測定信号を複素解析信号に変換する解析信号変換器と、
    前記解析信号変換器が変換した前記複素解析信号に基づいて、前記被測定信号の瞬時位相を算出する瞬時位相推定器と、
    前記瞬時位相推定器が算出した前記瞬時位相の近似直線を求めることにより、前記被測定信号がジッタを有さない場合の瞬時位相であるリニア瞬時位相を算出するリニア瞬時位相推定器と、
    前記被測定信号の前記瞬時位相が予め定められた位相となるタイミングを算出するタイミング推定器と、
    前記タイミング推定器が算出した前記タイミングにおける、前記被測定信号の瞬時位相の位相値と、前記リニア瞬時位相の位相値との差であるタイミングジッタ系列を算出するタイミングジッタ推定器と、
    前記タイミングジッタ系列に基づいて、前記被測定信号のジッタを算出するジッタ検出器と
    を備え、
    前記タイミング推定器は、
    前記瞬時位相の位相データであって、予め定められた位相値より大きい前記位相データのうち、前記予め定められた位相値に最も近い位相データと、前記予め定められた位相値より小さい前記位相データのうち、前記予め定められた位相値に最も近い位相データとの間をデータ補間する補間器と、
    前記データ補間された前記瞬時位相の位相データのうち、前記予め定められた位相値に最も近い位相データを検出する値検出器と、
    前記値検出器が検出した前記位相データの、時間軸におけるタイミングを算出する推定器と
    を有することを特徴とするジッタ測定装置。
  3. 被測定信号のジッタを測定するジッタ測定装置であって、
    前記被測定信号を複素解析信号に変換する解析信号変換器と、
    前記解析信号変換器が変換した前記複素解析信号に基づいて、前記被測定信号の瞬時位相を算出する瞬時位相推定器と、
    前記瞬時位相推定器が算出した前記瞬時位相の近似直線を求めることにより、前記被測定信号がジッタを有さない場合の瞬時位相であるリニア瞬時位相を算出するリニア瞬時位相推定器と、
    前記被測定信号の信号値が予め定められた信号値となるタイミングを算出するタイミング推定器と、
    前記タイミング推定器が算出した前記タイミングにおける、前記被測定信号の瞬時位相の位相値と、前記リニア瞬時位相の位相値との差であるタイミングジッタ系列を算出するタイミングジッタ推定器と、
    前記タイミングジッタ系列に基づいて、前記被測定信号のジッタを算出するジッタ検出器と
    を備え、
    前記タイミング推定器は、
    離散化された前記被測定信号の信号値データであって、予め定められた信号値より大きい前記信号値データのうち、前記予め定められた信号値に最も近い信号値データと、前記予め定められた信号値より小さい前記信号値データのうち、前記予め定められた信号値に最も近い信号データとの間をデータ補間する補間器と、
    前記データ補間された前記被測定信号の信号値データのうち、前記予め定められた信号値に最も近い信号値データを検出する値検出器と、
    前記値検出器が検出した前記信号値データの、時間軸におけるタイミングを算出する推定器と
    を有することを特徴とするジッタ測定装置。
  4. 前記リニア瞬時位相推定器は、前記近似直線として、前記瞬時位相の最小二乗直線を求めることを特徴とする請求項1から3のいずれかに記載のジッタ測定装置。
  5. 前記タイミング推定器は、前記被測定信号の信号値、前記被測定信号の前記瞬時位相、又は前記リニア瞬時位相のいずれかに基づいて、前記被測定信号のゼロクロスタイミングを算出することを特徴とする請求項1から3のいずれかに記載のジッタ測定装置。
  6. 前記タイミングジッタ推定器は、複数の前記タイミングのそれぞれに対応するデータを有する前記タイミングジッタ系列を算出し、
    前記ジッタ測定装置は、
    前記タイミングジッタ系列の隣接するデータの差分である、周期ジッタ系列を算出する周期ジッタ推定器を更に備え、
    前記ジッタ検出器は、前記周期ジッタ系列に更に基づいて、前記被測定信号のジッタを検出することを特徴とする請求項1から3のいずれかに記載のジッタ測定装置。
  7. 前記周期ジッタ系列の隣接するデータの差分である、サイクルツゥサイクル周期ジッタ系列を算出するサイクルツゥサイクル周期ジッタ推定器を更に備え、
    前記ジッタ検出器は、前記サイクルツゥサイクル周期ジッタ系列に更に基づいて、前記被測定信号のジッタを検出することを特徴とする請求項に記載のジッタ測定装置。
  8. 前記タイミング推定器は、多項式補間法に基づいて、前記データ補間を行うことを特徴とする請求項1から3のいずれかに記載のジッタ測定装置。
  9. 前記タイミング推定器は、3次スプライン補間法に基づいて、前記データ補間を行うことを特徴とする請求項1から3のいずれかに記載のジッタ測定装置。
  10. 前記タイミング推定器は、前記リニア瞬時位相の位相データ、前記瞬時位相の位相データ、又は前記被測定信号の信号値データのいずれかに対して、複数のデータに基づいて、逆補間法により前記タイミングを算出することを特徴とする請求項1からのいずれかに記載のジッタ測定装置。
  11. 前記解析信号変換器は、
    前記被測定信号から、所望の周波数成分を取り出す帯域制限器と、
    前記帯域制限器によって帯域制限された前記被測定信号のヒルベルト変換対を生成するヒルベルト変換器と
    を有することを特徴とする請求項1からのいずれかに記載のジッタ測定装置。
  12. 前記解析信号変換器は、
    前記被測定信号を周波数領域の信号に変換する周波数領域変換器と、
    前記周波数領域の信号に変換された前記被測定信号から、所望の周波数成分を取り出す帯域制限器と、
    前記帯域制限器によって帯域制限された前記周波数領域の信号を、時間領域の信号に変換する時間領域変換器と
    を有することを特徴とする請求項1からのいずれかに記載のジッタ測定装置。
  13. 前記解析信号変換器は、
    前記被測定信号を格納するバッファメモリと、
    前記バッファメモリが格納したデータを順次取り出すデータ選択器と、
    前記データ選択器が選択したデータに、所定の窓関数を乗算する窓関数乗算器と、
    前記窓関数が乗算された前記データを、周波数領域の信号に変換する周波数領域変換器と、
    前記周波数領域の信号から所望の周波数成分を取り出す帯域制限器と、
    前記帯域制限器が取り出した前記周波数成分を、時間領域の信号に変換する時間領域変換器と、
    前記時間領域変換器が時間領域の信号に変換した信号に、前記窓関数の逆数を乗算する振幅補正器と
    を有することを特徴とする請求項1からのいずれかに記載のジッタ測定装置。
  14. 前記帯域制限器は、前記被測定信号から、前記被測定信号の基本周波数を含む周波数成分を取り出すことを特徴とする請求項11から13のいずれかに記載のジッタ測定装置。
  15. 前記被測定信号のうち、予め定められた第1の閾値より大きい信号値を前記第1の閾値と置き換え、予め定められた第2の閾値より小さい信号値を前記第2の閾値と置き換える波形クリッパを更に備えたことを特徴とする請求項1からのいずれかに記載のジッタ測定装置。
  16. 前記ジッタ検出器は、前記タイミングジッタ系列に基づいて、前記被測定信号のジッタのピーク値を算出するピーク値算出部を有することを特徴とする請求項1からのいずれかに記載のジッタ測定装置。
  17. 前記ジッタ検出器は、前記タイミングジッタ系列に基づいて、前記被測定信号のジッタの実効値を算出する実効値算出部を有することを特徴とする請求項1からのいずれかに記載のジッタ測定装置。
  18. 前記ジッタ検出器は、前記タイミングジッタ系列に基づいて、前記被測定信号のジッタのヒストグラムを生成するヒストグラム生成部を有することを特徴とする請求項1からのいずれかに記載のジッタ測定装置。
  19. 電子デバイスを試験する試験装置であって、
    前記電子デバイスを試験するための試験信号を生成するパターン発生部と、
    前記試験信号を整形し、整形した前記試験信号を前記電子デバイスに供給する波形整形部と、
    前記試験信号に基づいて、前記電子デバイスが出力する出力信号のジッタを測定するジッタ測定装置と、
    前記ジッタ測定装置が測定した前記出力信号のジッタに基づいて、前記電子デバイスの良否を判定する判定部と
    を備え、
    前記ジッタ測定装置は、
    前記出力信号を複素解析信号に変換する解析信号変換器と、
    前記解析信号変換器が変換した前記複素解析信号に基づいて、前記出力信号の瞬時位相を算出する瞬時位相推定器と、
    前記瞬時位相推定器が算出した前記瞬時位相の近似直線を求めることにより、前記出力信号がジッタを有さない場合の瞬時位相であるリニア瞬時位相を算出するリニア瞬時位相推定器と、
    前記リニア瞬時位相が予め定められた位相となるタイミングを算出するタイミング推定器と、
    前記タイミング推定器が算出した前記タイミングにおける、前記出力信号の瞬時位相の位相値と、前記リニア瞬時位相の位相値との差であるタイミングジッタ系列を算出するタイミングジッタ推定器と、
    前記タイミングジッタ系列に基づいて、前記出力信号のジッタを算出するジッタ検出器と
    を有し、
    前記タイミング推定器は、
    前記リニア瞬時位相の位相データであって、予め定められた位相値より大きい前記位相データのうち、前記予め定められた位相値に最も近い位相データと、前記予め定められた位相値より小さい前記位相データのうち、前記予め定められた位相値に最も近い位相データとの間をデータ補間する補間器と、
    前記データ補間された前記リニア瞬時位相の位相データのうち、前記予め定められた位相値に最も近い位相データを検出する値検出器と、
    前記値検出器が検出した前記位相データの、時間軸におけるタイミングを算出する推定器と
    を有することを特徴とする試験装置。
  20. 電子デバイスを試験する試験装置であって、
    前記電子デバイスを試験するための試験信号を生成するパターン発生部と、
    前記試験信号を整形し、整形した前記試験信号を前記電子デバイスに供給する波形整形部と、
    前記試験信号に基づいて、前記電子デバイスが出力する出力信号のジッタを測定するジッタ測定装置と、
    前記ジッタ測定装置が測定した前記出力信号のジッタに基づいて、前記電子デバイスの 良否を判定する判定部と
    を備え、
    前記ジッタ測定装置は、
    前記出力信号を複素解析信号に変換する解析信号変換器と、
    前記解析信号変換器が変換した前記複素解析信号に基づいて、前記出力信号の瞬時位相を算出する瞬時位相推定器と、
    前記瞬時位相推定器が算出した前記瞬時位相の近似直線を求めることにより、前記出力信号がジッタを有さない場合の瞬時位相であるリニア瞬時位相を算出するリニア瞬時位相推定器と、
    前記出力信号の前記瞬時位相が予め定められた位相となるタイミングを算出するタイミング推定器と、
    前記タイミング推定器が算出した前記タイミングにおける、前記出力信号の瞬時位相の位相値と、前記リニア瞬時位相の位相値との差であるタイミングジッタ系列を算出するタイミングジッタ推定器と、
    前記タイミングジッタ系列に基づいて、前記出力信号のジッタを算出するジッタ検出器と
    を有し、
    前記タイミング推定器は、
    前記瞬時位相の位相データであって、予め定められた位相値より大きい前記位相データのうち、前記予め定められた位相値に最も近い位相データと、前記予め定められた位相値より小さい前記位相データのうち、前記予め定められた位相値に最も近い位相データとの間をデータ補間する補間器と、
    前記データ補間された前記瞬時位相の位相データのうち、前記予め定められた位相値に最も近い位相データを検出する値検出器と、
    前記値検出器が検出した前記位相データの、時間軸におけるタイミングを算出する推定器と
    を有することを特徴とする試験装置。
  21. 電子デバイスを試験する試験装置であって、
    前記電子デバイスを試験するための試験信号を生成するパターン発生部と、
    前記試験信号を整形し、整形した前記試験信号を前記電子デバイスに供給する波形整形部と、
    前記試験信号に基づいて、前記電子デバイスが出力する出力信号のジッタを測定するジッタ測定装置と、
    前記ジッタ測定装置が測定した前記出力信号のジッタに基づいて、前記電子デバイスの良否を判定する判定部と
    を備え、
    前記ジッタ測定装置は、
    前記出力信号を複素解析信号に変換する解析信号変換器と、
    前記解析信号変換器が変換した前記複素解析信号に基づいて、前記出力信号の瞬時位相を算出する瞬時位相推定器と、
    前記瞬時位相推定器が算出した前記瞬時位相の近似直線を求めることにより、前記出力信号がジッタを有さない場合の瞬時位相であるリニア瞬時位相を算出するリニア瞬時位相推定器と、
    前記出力信号の信号値が予め定められた信号値となるタイミングを算出するタイミング推定器と、
    前記タイミング推定器が算出した前記タイミングにおける、前記出力信号の瞬時位相の位相値と、前記リニア瞬時位相の位相値との差であるタイミングジッタ系列を算出するタイミングジッタ推定器と、
    前記タイミングジッタ系列に基づいて、前記出力信号のジッタを算出するジッタ検出器
    を有し、
    前記タイミング推定器は、
    離散化された前記被測定信号の信号値データであって、予め定められた信号値より大きい前記信号値データのうち、前記予め定められた信号値に最も近い信号値データと、前記予め定められた信号値より小さい前記信号値データのうち、前記予め定められた信号値に最も近い信号データとの間をデータ補間する補間器と、
    前記データ補間された前記被測定信号の信号値データのうち、前記予め定められた信号値に最も近い信号値データを検出する値検出器と、
    前記値検出器が検出した前記信号値データの、時間軸におけるタイミングを算出する推定器と
    を有することを特徴とする試験装置。
  22. 被測定信号のジッタを測定するジッタ測定方法であって、
    前記被測定信号を複素解析信号に変換する解析信号変換ステップと、
    前記解析信号変換ステップにおいて変換した前記複素解析信号に基づいて、前記被測定信号の瞬時位相を算出する瞬時位相推定ステップと、
    前記瞬時位相推定ステップにおいて算出した前記瞬時位相の近似直線を求めることにより、前記被測定信号がジッタを有さない場合の瞬時位相であるリニア瞬時位相を算出するリニア瞬時位相推定ステップと、
    前記リニア瞬時位相が予め定められた位相となるタイミングを算出するタイミング推定ステップと、
    前記タイミング推定ステップにおいて算出した前記タイミングにおける、前記被測定信号の瞬時位相の位相値と、前記リニア瞬時位相の位相値との差であるタイミングジッタ系列を算出するタイミングジッタ推定ステップと、
    前記タイミングジッタ系列に基づいて、前記被測定信号のジッタを算出するジッタ検出ステップと
    を備え、
    前記タイミング推定ステップは、
    前記リニア瞬時位相の位相データであって、予め定められた位相値より大きい前記位相データのうち、前記予め定められた位相値に最も近い位相データと、前記予め定められた位相値より小さい前記位相データのうち、前記予め定められた位相値に最も近い位相データとの間をデータ補間するリニア瞬時位相補間ステップと、
    前記データ補間された前記リニア瞬時位相の位相データのうち、前記予め定められた位相値に最も近い位相データを検出する値検出ステップと、
    前記値検出ステップにおいて検出した前記位相データの、時間軸におけるタイミングを算出する推定ステップと
    を有することを特徴とするジッタ測定方法。
  23. 被測定信号のジッタを測定するジッタ測定方法であって、
    前記被測定信号を複素解析信号に変換する解析信号変換ステップと、
    前記解析信号変換ステップにおいて変換した前記複素解析信号に基づいて、前記被測定信号の瞬時位相を算出する瞬時位相推定ステップと、
    前記瞬時位相推定ステップにおいて算出した前記瞬時位相の近似直線を求めることにより、前記被測定信号がジッタを有さない場合の瞬時位相であるリニア瞬時位相を算出するリニア瞬時位相推定ステップと、
    前記被測定信号の前記瞬時位相が予め定められた位相となるタイミングを算出するタイミング推定ステップと、
    前記タイミング推定ステップにおいて算出した前記タイミングにおける、前記被測定信号の瞬時位相の位相値と、前記リニア瞬時位相の位相値との差であるタイミングジッタ系 列を算出するタイミングジッタ推定ステップと、
    前記タイミングジッタ系列に基づいて、前記被測定信号のジッタを算出するジッタ検出ステップと
    を備え、
    前記タイミング推定ステップは、
    前記瞬時位相の位相データであって、予め定められた位相値より大きい前記位相データのうち、前記予め定められた位相値に最も近い位相データと、前記予め定められた位相値より小さい前記位相データのうち、前記予め定められた位相値に最も近い位相データとの間をデータ補間する瞬時位相補間ステップと、
    前記データ補間された前記瞬時位相の位相データのうち、前記予め定められた位相値に最も近い位相データを検出する値検出ステップと、
    前記値検出ステップにおいて検出した前記位相データの、時間軸におけるタイミングを算出する推定ステップと
    を有することを特徴とするジッタ測定方法。
  24. 被測定信号のジッタを測定するジッタ測定方法であって、
    前記被測定信号を複素解析信号に変換する解析信号変換ステップと、
    前記解析信号変換ステップにおいて変換した前記複素解析信号に基づいて、前記被測定信号の瞬時位相を算出する瞬時位相推定ステップと、
    前記瞬時位相推定ステップにおいて算出した前記瞬時位相の近似直線を求めることにより、前記被測定信号がジッタを有さない場合の瞬時位相であるリニア瞬時位相を算出するリニア瞬時位相推定ステップと、
    前記被測定信号の信号値が予め定められた信号値となるタイミングを算出するタイミング推定ステップと、
    前記タイミング推定ステップにおいて算出した前記タイミングにおける、前記被測定信号の瞬時位相の位相値と、前記リニア瞬時位相の位相値との差であるタイミングジッタ系列を算出するタイミングジッタ推定ステップと、
    前記タイミングジッタ系列に基づいて、前記被測定信号のジッタを算出するジッタ検出ステップと
    を備え、
    前記タイミング推定ステップは、
    離散化された前記被測定信号の信号値データであって、予め定められた信号値より大きい前記信号値データのうち、前記予め定められた信号値に最も近い信号値データと、前記予め定められた信号値より小さい前記信号値データのうち、前記予め定められた信号値に最も近い信号値データとの間をデータ補間する波形データ補間ステップと、
    前記データ補間された前記被測定信号の信号値データのうち、前記予め定められた信号値に最も近い信号値データを検出する値検出ステップと、
    前記値検出器が検出した前記信号値データの、時間軸におけるタイミングを算出する推定ステップと
    を有することを特徴とするジッタ測定方法。
  25. 前記リニア瞬時位相推定ステップは、前記近似直線として、前記瞬時位相の最小二乗直線を求めることを特徴とする請求項22から24のいずれかに記載のジッタ測定方法。
  26. 前記タイミング推定ステップは、前記被測定信号の信号値、前記被測定信号の前記瞬時位相、又は前記リニア瞬時位相のいずれかに基づいて、前記被測定信号のゼロクロスタイミングを算出することを特徴とする請求項22から24のいずれかに記載のジッタ測定方法。
  27. 前記タイミングジッタ推定ステップは、複数の前記タイミングのそれぞれに対応するデータを有する前記タイミングジッタ系列を算出し、
    前記ジッタ測定方法は、
    前記タイミングジッタ系列の隣接するデータの差分である、周期ジッタ系列を算出する周期ジッタ推定ステップを更に備え、
    前記ジッタ検出ステップは、前記周期ジッタ系列に更に基づいて、前記被測定信号のジッタを検出することを特徴とする請求項22から24のいずれかに記載のジッタ測定方法。
  28. 前記周期ジッタ系列の隣接するデータの差分である、サイクルツゥサイクル周期ジッタ系列を算出するサイクルツゥサイクル周期ジッタ推定ステップを更に備え、
    前記ジッタ検出ステップは、前記サイクルツゥサイクル周期ジッタ系列に更に基づいて、前記被測定信号のジッタを検出することを特徴とする請求項22から24のいずれかに記載のジッタ測定方法。
  29. 前記タイミング推定ステップは、多項式補間法に基づいて、前記データ補間を行うことを特徴とする請求項22から24のいずれかに記載のジッタ測定方法。
  30. 前記タイミング推定ステップは、3次スプライン補間法に基づいて、前記データ補間を行うことを特徴とする請求項22から24のいずれかに記載のジッタ測定方法。
  31. 前記タイミング推定ステップは、前記リニア瞬時位相データ、前記瞬時位相の位相データ、又は前記被測定信号の信号値データのいずれかに対して、複数のデータに基づいて、逆補間法により前記タイミングを算出することを特徴とする請求項22から24のいずれかに記載のジッタ測定方法。
  32. 前記解析信号変換ステップは、
    前記被測定信号から、所望の周波数成分を取り出す帯域制限ステップと、
    前記帯域制限ステップにおいて帯域制限された前記被測定信号のヒルベルト変換対を生成するヒルベルト変換ステップと
    を有することを特徴とする請求項22から24のいずれかに記載のジッタ測定方法。
  33. 前記解析信号変換ステップは、
    前記被測定信号を周波数領域の信号に変換する周波数領域変換ステップと、
    前記周波数領域の信号に変換された前記被測定信号から、所望の周波数成分を取り出す帯域制限ステップと、
    前記帯域制限ステップにおいて帯域制限された前記周波数領域の信号を、時間領域の信号に変換する時間領域変換ステップと
    を有することを特徴とする請求項22から24のいずれかに記載のジッタ測定方法。
  34. 前記解析信号変換ステップは、
    前記被測定信号を格納するデータ蓄積ステップと、
    前記データ蓄積ステップにおいて格納したデータを順次取り出すデータ選択ステップと、
    前記データ選択ステップにおいて選択したデータに、所定の窓関数を乗算する窓関数乗算ステップと、
    前記窓関数が乗算された前記データを、周波数領域の信号に変換する周波数領域変換ステップと、
    前記周波数領域の信号から所望の周波数成分を取り出す帯域制限ステップと、
    前記帯域制限ステップにおいて取り出した前記周波数成分を、時間領域の信号に変換する時間領域変換ステップと、
    前記時間領域変換ステップが時間領域の信号に変換した信号に、前記窓関数の逆数を乗算する振幅補正ステップと
    を有することを特徴とする請求項22から24のいずれかに記載のジッタ測定方法
  35. 前記帯域制限ステップは、前記被測定信号から、前記被測定信号の基本周波数を含む周波数成分を取り出すことを特徴とする請求項32から34のいずれかに記載のジッタ測定方法。
  36. 前記ジッタ検出ステップは、前記タイミングジッタ系列に基づいて、前記被測定信号のジッタのピーク値を算出するピーク値算出ステップを有することを特徴とする請求項22から24のいずれかに記載のジッタ測定方法。
  37. 前記ジッタ検出ステップは、前記タイミングジッタ系列に基づいて、前記被測定信号のジッタの実効値を算出する実効値算出ステップを有することを特徴とする請求項22から24のいずれかに記載のジッタ測定方法。
  38. 前記ジッタ検出ステップは、前記タイミングジッタ系列に基づいて、前記被測定信号のジッタのヒストグラムを生成するヒストグラム生成ステップを有することを特徴とする請求項22から24のいずれかに記載のジッタ測定方法。
JP2002539830A 2000-10-31 2001-10-31 ジッタ測定装置、ジッタ測定方法、及び試験装置 Expired - Fee Related JP3650767B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/703,469 2000-10-31
US09/703,469 US6775321B1 (en) 2000-10-31 2000-10-31 Apparatus for and method of measuring a jitter
US09/722,167 2000-11-24
US09/722,167 US6525523B1 (en) 2000-11-24 2000-11-24 Jitter measurement apparatus and its method
PCT/JP2001/009553 WO2002037127A1 (fr) 2000-10-31 2001-10-31 Appareil de mesure de gigue, procede de mesure de gigue et dispositif de test

Publications (2)

Publication Number Publication Date
JPWO2002037127A1 JPWO2002037127A1 (ja) 2004-03-11
JP3650767B2 true JP3650767B2 (ja) 2005-05-25

Family

ID=27107145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002539830A Expired - Fee Related JP3650767B2 (ja) 2000-10-31 2001-10-31 ジッタ測定装置、ジッタ測定方法、及び試験装置

Country Status (3)

Country Link
JP (1) JP3650767B2 (ja)
DE (1) DE10194690B4 (ja)
WO (1) WO2002037127A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143341B2 (ja) * 2004-02-18 2013-02-13 株式会社アドバンテスト ジッタ測定装置、ジッタ測定方法およびプログラム
US7317309B2 (en) * 2004-06-07 2008-01-08 Advantest Corporation Wideband signal analyzing apparatus, wideband period jitter analyzing apparatus, and wideband skew analyzing apparatus
US7778785B2 (en) * 2008-02-14 2010-08-17 Advantest Corporation Signal-to-noise ratio measurement for discrete waveform

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW559668B (en) * 1999-02-08 2003-11-01 Advantest Corp Apparatus for and method of measuring a jitter

Also Published As

Publication number Publication date
DE10194690T1 (de) 2003-11-20
DE10194690B4 (de) 2007-06-21
WO2002037127A1 (fr) 2002-05-10
JPWO2002037127A1 (ja) 2004-03-11

Similar Documents

Publication Publication Date Title
JP2002107392A (ja) ジッタ測定装置、ジッタ測定方法、試験装置
JP4934775B2 (ja) クロックスキューの測定装置および方法、ならびにクロックスキューの確率推定装置および方法
US7856330B2 (en) Measuring apparatus, testing apparatus, and electronic device
JP3974040B2 (ja) ジッタ測定装置およびジッタ測定方法
JP5066073B2 (ja) 測定装置、測定方法、試験装置、試験方法、及び電子デバイス
US6525523B1 (en) Jitter measurement apparatus and its method
JP2005503046A (ja) 信号間の相互相関係数を測定する装置および方法
US6775321B1 (en) Apparatus for and method of measuring a jitter
US20050185708A1 (en) Apparatus for measuring jitter, method of measuring jitter and computer-readable medium storing a program thereof
JP4171699B2 (ja) クロック・スキュー測定装置、クロック・スキュー測定方法
JP4090989B2 (ja) ジッタ測定装置、及びジッタ測定方法
US7263150B2 (en) Probability estimating apparatus and method for peak-to-peak clock skews
JP3650767B2 (ja) ジッタ測定装置、ジッタ測定方法、及び試験装置
CN107942139B (zh) 一种电力谐波参数软件同步采样方法
CN109716720B (zh) 时间顺序频谱拼接
KR102133126B1 (ko) 주파수 추정 장치 및 방법
CN103592513B (zh) 电力信号谐波分析方法和装置
EP3359972B1 (en) Method and system for determining phasor components of a periodic waveform
RU2591742C1 (ru) Способ измерения частоты гармонического сигнала и устройство для его осуществления
Lindenthaler et al. Evaluation of Uncertainty in AC Power Calculation with Asynchronously Sampled Data
WO2023086268A9 (en) Sampling rate converter with line frequency and phase locked loops for energy metering
CN116953596A (zh) 一种非整周期的电参量计算方法及装置
CN115407129A (zh) 一种宽频电压相位差测量方法及其测量装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees