JP3974040B2 - ジッタ測定装置およびジッタ測定方法 - Google Patents

ジッタ測定装置およびジッタ測定方法 Download PDF

Info

Publication number
JP3974040B2
JP3974040B2 JP2002573360A JP2002573360A JP3974040B2 JP 3974040 B2 JP3974040 B2 JP 3974040B2 JP 2002573360 A JP2002573360 A JP 2002573360A JP 2002573360 A JP2002573360 A JP 2002573360A JP 3974040 B2 JP3974040 B2 JP 3974040B2
Authority
JP
Japan
Prior art keywords
jitter
sequence
signal
under measurement
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002573360A
Other languages
English (en)
Other versions
JP2004519678A (ja
Inventor
隆弘 山口
雅裕 石田
ソーマ マニ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Publication of JP2004519678A publication Critical patent/JP2004519678A/ja
Application granted granted Critical
Publication of JP3974040B2 publication Critical patent/JP3974040B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/02Measuring characteristics of individual pulses, e.g. deviation from pulse flatness, rise time or duration
    • G01R29/027Indicating that a pulse characteristic is either above or below a predetermined value or within or beyond a predetermined range of values
    • G01R29/0273Indicating that a pulse characteristic is either above or below a predetermined value or within or beyond a predetermined range of values the pulse characteristic being duration, i.e. width (indicating that frequency of pulses is above or below a certain limit)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/26Measuring noise figure; Measuring signal-to-noise ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/205Arrangements for detecting or preventing errors in the information received using signal quality detector jitter monitoring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Manipulation Of Pulses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ジッタ測定装置およびジッタ測定方法に関する。特に本発明は、例えばマイクロプロセッサのクロックのジッタの測定に適用され、周期ジッタの測定装置および方法に関する。
【0002】
【従来の技術】
従来、周期ジッタの測定には、タイムインターバルアナライザやオシロスコープが用いられている。これらは、ゼロクロス方式と呼ばれ、図1に示すように、例えば被試験PLL(Phase-Locked Loop)11からのクロック信号(被測定信号)x(t)がタイムインターバルアナライザ12へ供給される。被測定信号x(t)は、1つの立ち上がりに対して次の立ち上がりが点線のように揺らぎ、両立ち上がりの間隔Tp、つまり周期が揺らぐ。ゼロクロス方式は、被測定信号のゼロクロス間の時間間隔(周期)を測定し、周期の揺らぎをヒストグラム解析(histogram analysis)により測定し、そのヒストグラムを図2に示すように表示する。タイムインターバルアナライザについては、例えば、D.Chu, "Phase Digitizing Sharpens Timing Measurements" IEEE Spectrum, pp. 28-32, 1988、およびJ. Wilstrup, "A Method of Serial Data Jitter Analysis Using One-Shot Time Interval Measurements", Proceedings of IEEE International Test Conference, pp. 819-823, 1998に記載されている。
【0003】
また、Tektronix社やLeCroy社は、近年、補間法を用いてジッタ測定を行うことができるデジタルオシロスコープを提供している。この補間法を用いたジッタ測定方法(補間ベース・ジッタ測定方法)は、サンプリングされた被測定信号の測定データのうち信号値がゼロクロスに近いデータ間を補間し、ゼロクロスのタイミングを推定する。即ち、データ補間によりゼロクロス間の時間間隔(周期)を小さな誤差で推定し、周期の揺らぎを推定する。
【0004】
つまり、図3に示すように、被試験PLL11からの被測定信号x(t)はデジタルオシロスコープ14へ入力される。デジタルオシロスコープ14内で図4に示すように入力された被測定信号x(t)は、アナログデジタル変換器15でデジタルデータ列に変換される。このデジタルデータ列に対して、補間器16において、そのデジタルデータ列中の信号値がゼロクロスに近いデータ間にデータ補間が行われる。そのデータ補間されたデジタルデータ列について、周期推定器17でゼロクロス間の時間間隔が測定される。その測定値のヒストグラムがヒストグラム推定器18に表示され、また、測定された時間間隔の揺らぎの2乗平均値およびピークツゥピーク値がRMS・ピークツゥピーク検出器19で求められる。例えば、被測定信号x(t)が図5(A)に示す波形を有する場合に、その周期ジッタは図5(B)に示すように測定される。
【0005】
タイムインターバルアナライザ方式によるジッタ測定方法は、ゼロクロス間の時間間隔を測定するものであるから、正しい測定を行うことができる。しかしながら、この方法は繰り返しジッタを測定するが、測定と測定との間に中間デッドタイムを有しており、ヒストグラム解析に必要な数のデータを得るのに時間がかかるという問題がある。また、広帯域のオシロスコープと補間法とを組み合わせた補間ベース・ジッタ測定方法では、ジッタヒストグラムを正しく推定できず、ジッタ値を過大評価(overestimation)するという問題があった。例えば400MHzのクロック信号に対して、タイムインターバルアナライザ法ではジッタの2乗平均値は7.72psと測定されるのに対して、補間法では8.47psの2乗平均値が得られ、タイムインターバルアナライザ法で得られる値より大きな値になった。
【0006】
これに対し、本願発明者らは、T. J. Yamaguchi, M. Soma, M. Ishida, and T. Ohmi, "Extraction of Peak-to-Peak and RMS Sinusoidal Jitter Using an Analytic Signal Method," Proceedings of 18th IEEE VLSI Test Symposium, pp. 395-402, 2000において以下に述べるジッタ測定方法を提案した。即ち、図6に示すように、被試験PLL回路11からのアナログのクロック波形は、アナログデジタル変換器22でデジタルのクロック信号xc(t)に変換され、デジタルのクロック信号xc(t)は解析信号変換手段23としてのヒルベルト変換対発生器24へ供給されて、そこで解析信号zc(t)に変換される。
【0007】
いま、クロック信号xc(t)を
【数1】
Figure 0003974040
と定義する。Acおよびfcは、それぞれ、クロック信号の振幅および周波数の公称値であり、θcは初期位相角である。また、Δφ(t)は位相の揺らぎであり、瞬時位相雑音と呼ばれる。
【0008】
ヒルベルト変換対発生器24内において、クロック信号xc(t)の基本周波数付近の信号成分が帯域通過フィルタ(図示せず)により取り出されて、ヒルベルト変換器25によりヒルベルト変換され、次の式が得られる。
【数2】
Figure 0003974040
【0009】
そして、xc(t)とxc(t)虚数部とをそれぞれ複素数の実数部と虚数部とする解析信号zc(t)が次のように得られる。
【数3】
Figure 0003974040
この解析信号zc(t)からは、クロック信号xc(t)の瞬時位相θ(t)が瞬時位相推定器26によって推定される。
【数4】
Figure 0003974040
この瞬時位相θ(t)からリニア位相除去器27によってリニア位相が除去されて、位相雑音波形Δθ(t)が得られる。つまり、リニア位相除去器27において、瞬時位相θ(t)に対し連続位相変換部28で位相アンラップ法を適用して連続な瞬時位相θ(t)が次式のように得られる。
【数5】
Figure 0003974040
【0010】
位相アンラップ法は、Jose M. Tribolet, "A New Phase Unwrapping Algorithm," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-25, pp. 170-177, 1977およびKuno P. Zimmermann, "On Frequency-Domain and Time-Domain Phase Unwrapping," Proc. IEEE. vol. 75, pp. 519-520, 1987に示されている。
【0011】
連続瞬時位相θ(t)の瞬時リニア位相、つまり、ジッタのない理想信号のリニア瞬時位相[2πfct+θc]は、リニア位相評価器29で線形トレンド推定法を用いて推定される。即ち、連続瞬時位相θ(t)の瞬時リニア位相は、上記連続位相θ(t)に対して最小2乗法による直線適合を行うことによって推定される。この推定されたリニア位相[2πfct+θc]を引算器31によって連続位相θ(t)から減じて、瞬時位相θ(t)の変動項Δφ(t)、つまり瞬時位相雑音波形
【数6】
Figure 0003974040
を得る。このようにして得られた瞬時位相雑音波形Δφ(t)がゼロクロスサンプラ43でサンプリングされて、タイミングジッタ系列Δφ[n]としてピークツゥピーク検出器32に入力され、ここでΔφ(t)(=Δφ(nT))の最大ピーク値max(Δφ[k])と最小ピーク値min(Δφ[k])との差をとることによりタイミングジッタのピーク値(ピークツゥピーク値)Δφppが求められる。
【0012】
【数7】
Figure 0003974040
また、タイミングジッタ系列Δφ[n]はRMS検出器33にも入力され、そこで次式を用いてタイミングジッタ系列Δφ[n]の2乗平均(RMS)が計算されて、
【数8】
Figure 0003974040
タイミングジッタの2乗平均値ΔφRMSが求められる。
【0013】
この方法は、タイミングジッタのピーク値(ピークツゥピーク値)、およびタイミングジッタの2乗平均値を、瞬時位相雑音波形Δφ(t)から求めるので、Δφ法と呼ばれる。
なお瞬時位相雑音波形Δφ(t)を瞬時位相雑音Δφ(t)、あるいは位相雑音波形Δφ(t)と書くこともある。
このΔφ法によれば、タイミングジッタを高速に、かつ比較的高い精度で測定することができる。
【0014】
【発明が解決しようとする課題】
そこで本発明は、上記の課題を解決することのできるジッタ測定装置およびジッタ測定方法を提供することを目的とする。具体的には、本発明の目的は、周期ジッタを短時間で、かつ高い精度で測定することができるジッタ測定装置およびジッタ測定方法、つまり従来のタイムインターバルアナライザ方式で測定されるジッタ値と互換性のあるジッタ値を測定することができるジッタ測定装置およびその方法を提供することにある。この目的は特許請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。
【0015】
【課題を解決するための手段】
本発明によると、被測定信号の瞬時位相雑音波形を得ることができる。瞬時位相雑音波形を被測定信号の各ゼロクロス点(近似ゼロクロス点)に近いタイミングでサンプリングして、被測定信号のタイミングジッタ系列を推定し、このタイミングジッタ系列の差分系列を計算して周期ジッタ系列を測定し、この周期ジッタ系列の値を、被測定信号の基本周期と近似ゼロクロス点間の時間間隔との比を乗算することによって補正する。
【0016】
以下に本発明の原理を説明する。入力信号(以下、被測定信号と書くこともある)の基本コサイン波x(t)の解析信号は、次式(1)によって与えられる。
【数9】
Figure 0003974040
ここで、f0は被測定信号の基本周波数であり、f0=1/T0である。T0は被測定信号の基本周期である。z(t)の瞬時周波数は、
【数10】
Figure 0003974040
となる。したがって、次式が得られる。
【数11】
Figure 0003974040
瞬時位相雑音波形Δφ(t)を解析信号z(t)の実数部x(t)の各ゼロクロス点に最も近いタイミング(近似ゼロクロス点と呼ぶ)でサンプリングすることによってタイミングジッタ系列が求められ、その近似ゼロクロス点のサンプリング間隔Tk,k+1が基本周期T0に等しいと仮定する。この場合、周期ジッタJは、次式のようにタイミングジッタ系列の差分系列として求められる。
【数12】
Figure 0003974040
ここで、2π/T0での割り算は単位ラジアンを秒に変換するためである。
【0017】
瞬時位相雑音波形Δφ(t)は、理想ゼロクロス点に最も近いサンプリング点でサンプリングされているので、瞬時位相雑音波形Δφ(t)がサンプリングされた近似ゼロクロス点×は、図7に示すように、被測定信号の対応する理想ゼロクロス点○からずれたものとなる。つまり、近似ゼロクロス点×間の時間間隔は基本周期T0とは異なることになる。従って、式(4)を用いると、周期ジッタを高い精度で推定することはできない。特にサンプリング周期が大きく、過剰標本化比(oversampling ratio)が小さい場合には、周期ジッタの測定誤差が大きくなる。この測定誤差を小さくするためには、1周期T0当たり10ポイント(過剰標本化比5)程度以上のデータを必要とする。
【0018】
本発明によると、式(5)を用いて、近似ゼロクロス点の間隔Tk,k+1に対する基本周期T0の比を式(4)に乗算することによって補正を行う。
【数13】
Figure 0003974040
ここで、T0/Tk,k+1は、差分による瞬時位相雑音微分の近似(式(4))に対する補正項である。この補正項により、高い精度で周期ジッタを求めることができる。近似ゼロクロス点の時間間隔Tk,k+1は、図7に示すように、近似ゼロクロス点でのタイミング系列t[k]を求め、その差分をとることによる求めることができる。
【数14】
Figure 0003974040
また、被測定信号の基本周期T0は、上記リニア瞬時位相の傾き2π/T0から求めてもよいし、被測定信号から直接求めてもよい。
【0019】
上記補正項によりJ[K]を補正すると、図8に示すように、周期ジッタのRMS値JRMSとピークツゥピーク値JPPのいずれについても、ジッタ推定値と理論値との推定誤差(括弧中に示す)を小さくすることができる。図8に示すデータは、サイン波ジッタをもつ信号に対する計算機シミュレーションから得られた。特に、過剰標本化比が小さいとき、その効果は大きくなる。図8において、「従来のΔφ法」はT0/Tk,k+1による補正を行わない場合を示し、「補正されたΔφ法」はT0/Tk,k+1による補正を行う場合を示す。実波形を用いた実験結果を図9に示す。図9は周期T0にあたりの標本点の数を変えたときのジッタ測定値を示している。T0/Tk,k+1による補正を行わないΔφ法(×で示す)の場合は、過剰標本化比が小さくなるにつれて、特に周期ジッタのピークツゥピーク値を過大評価する。これに対し、本発明によれば、上記補正項を用いることにより周期ジッタのピークツゥピーク値を正確に求めることができる。特に、過剰標本化比が小さいとき、その効果は大きくなる。例えば、図9(B)の例では、1周期あたり8ポイント(過剰標本化比4)のとき約8%、3ポイント(過剰標本化比1.5)のときは約18%の誤差を補正することができる。この結果、本発明によれば、Δφ法を用いて1.5の過剰標本化比まで周期ジッタを求めることが可能となった。このことは、標本化周期が同一であれば、より高い周波数の被測定信号のジッタを精度よく測定できることを意味している。
【0020】
また、周期ジッタを求めるときの周期は、m周期(m=0.5,1,2,3,...)としてもよい。つまり、m=0.5周期として、立ち上がり(または立ち下がり)ゼロクロス点と次の立ち下がり(立ち上がり)ゼロクロス点とにおけるタイミングジッタ値の差を求めてもよいし、m=2周期として、立ち上がり(または立ち下がり)ゼロクロス点とこのゼロクロス点から2つ後の立ち上がり(または立ち下がり)ゼロクロス点とにおけるタイミングジッタ値の差を求めてもよい。このようにして測定された周期ジッタデータの2乗平均および最大値と最小値との差を計算することにより、周期ジッタのRMS値JRMSとピークツゥピーク値JPPをそれぞれ次式で求めることができる。
【数15】
Figure 0003974040
【数16】
Figure 0003974040
ここで、Mは測定された周期ジッタデータの標本数である。図10に、補正されたΔφ法で測定した周期ジッタのヒストグラム(図10(B))と、従来のタイムインターバルアナライザで測定したヒストグラム(図10(A))とを示す。したがって、補正されたΔφ法で推定されたヒストグラムを従来のタイムインターバルアナライザのヒストグラムと比較することができる。また図11に、補正されたΔφ法で測定した周期ジッタのRMS値とピークツゥピーク値を示す。補正されたΔφ法は、タイムインターバルアナライザ法に匹敵するピークツゥピークジッタ値およびRMSジッタ値の両方の測定値を与える。ここで、観測される周期ジッタのピークツゥピーク値JPPは、イベント数(ゼロクロス数)の対数の平方根にほぼ比例する。例えば、5000イベント程度においてはJPP=45psが正しい値である。図11におけるJPPの誤写45psを真値とした。図10(A)、(B)および図11に示すように、補正されたΔφ法は、従来法と互換性のあるジッタ測定値を得ることができる。
【0021】
さらに、Δφ法は、サイクルツゥサイクル周期ジッタを同時に測定することができる。サイクルツゥサイクル周期ジッタJCCは連続するサイクル間の周期変動であり、
【数17】
Figure 0003974040
で表される。したがって、上で測定された周期ジッタデータの差分をとり、その2乗平均および最大値と最小値との差を計算することにより、サイクルツゥサイクル周期ジッタのRMS値JCC,RMSとピークツゥピーク値JCC,PPをそれぞれ下記式により求めることができる。
【数18】
Figure 0003974040
【数19】
Figure 0003974040
ここで、Lは測定されたサイクルツゥサイクル周期ジッタデータの標本数である。
【0022】
【発明の実施の形態】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態はクレームにかかる発明を限定するものではなく、又実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0023】
図12に本発明の実施形態を示し、図6と対応する部分には同一の参照符号を付けて重複説明を省略する。本発明では、被測定信号xc(t)がタイミングジッタ推定器39に入力され、被測定信号のタイミングジッタ系列が求められる。本実施形態では、リニア位相除去器27から得られた瞬時位相雑音波形Δφ(t)がゼロクロスサンプラ43において解析信号zc(t)の実数部xc(t)のゼロクロス点に最も近いタイミングでサンプリングされてタイミングジッタ系列が求められる。このため、解析信号変換部23からの解析信号の実数部xc(t)がゼロクロス点検出器45に入力される。
【0024】
ゼロクロス点検出部45において近似ゼロクロス点が検出される。つまり、入力される実数部xc(t)の波形の最大値を100%レベル、最小値を0%レベルとし、ゼロクロスのレベルとして、前記100%レベルと前記0%レベルとの差である50%レベルV(50%)を算出する。xc(t)の隣り合うサンプル値のそれぞれに対して、50%レベルV(50%)との差(xc(j-1)-V(50%))および(xc(j)-V(50%))を求め、さらにこれらの積(xc(j-1)-V(50%))×(xc(j)-V(50%))を計算する。xc(t)が50%レベル、つまりゼロレベルを横切る時は、これらサンプル値(xc(j-1)-V(50%))および(xc(j)-V(50%))の符号が負から正、または正から負に変わるから、前記積が負となったときはxc(t)がゼロレベルを横切ったことになり、その時点におけるサンプル値xc(j-1),xc(j)の絶対値の小さい方の時刻(j−1)またはjが近似ゼロクロス点として求められる。この近似ゼロクロス点でサンプリングパルスをゼロクロスサンプラ43へ供給する。
【0025】
ゼロクロスサンプラ43から出力されるサンプル値系列、つまりタイミングジッタ系列は差分計算部46に入力され、タイミングジッタ系列の差分系列が計算される。つまり入力されるΔφ[k]とΔφ[k+1]について式(4)が計算され、kの更新ごとに式(4)が計算され、周期ジッタ系列が推定される。また、ゼロクロスサンプラ43における各サンプリング時刻のタイミング系列t[k]がゼロクロス間隔計算部47に入力され、式(6)の計算により近似ゼロクロス点の時間間隔Tk,k+1が求められる。
【0026】
また、リニア位相除去部27からのリニア瞬時位相、つまり図6におけるリニア位相推定部29からのリニア位相成分が基本周期推定部48に入力され、そのリニア瞬時位相の傾き2π/T0から基本周期T0が求められる。この基本周期T0は、基本周期推定部48にAD変換器22からの被測定信号を入力し、被測定信号自体から求めてもよい。あるいは被測定信号の基本周期T0があらかじめ知られている場合には、その値T0を基本周期推定部48に記憶しておいてもよい。
【0027】
差分計算部46よりの周期ジッタ系列と、ゼロクロス間隔計算部47からの近似ゼロクロス点間隔Tk,k+1と、基本周期推定部48からの基本周期T0とが補正部49に入力されて、周期ジッタ系列の各周期ジッタに対してT0/Tk,k+1が乗算されて補正された周期ジッタ系列が得られる。つまり式(5)を計算することにより、補正された周期ジッタ系列が得られる。
【0028】
この補正された周期ジッタ系列は、サイクルツゥサイクル周期ジッタ推定部52に直接供給されるとともに、その系列の1要素(1周期ジッタ)遅延された補正周期ジッタ系列もサイクルツゥサイクル周期ジッタ推定部52に供給される。サイクルツゥサイクル周期ジッタ推定部52は、式(9)を各時刻kについて行うことにより、周期ジッタ系列の差分系列を計算し、サイクルツゥサイクル周期ジッタ系列を求める。
【0029】
本実施形態では、補正部49からの補正された周期ジッタ系列と、サイクルツゥサイクル周期ジッタ系列とを、切替スイッチ53を切り替えて選択的にジッタ検出部54へ供給することができるようにした場合である。
また、ジッタ検出部54には、入力されたジッタ系列における最大値と最小値との差を求めるピークツゥピーク検出部32、入力されたジッタ系列の2乗平均(RMS)値を計算するRMS検出部33、および入力されたジッタ系列のヒストグラムを求めるヒストグラム推定部18が設けられている。
【0030】
切替スイッチ53が補正部49の出力側に接続されている状態では、補正された周期ジッタ系列がジッタ検出部54に入力され、その周期ジッタ系列に対してピークツゥピーク検出部32で式(8)が計算されて周期ジッタのピークツゥピーク値JPPが求められ、RMS検出部33で式(7)が計算されて周期ジッタのRMS値JRMSが求められ、ヒストグラム推定部18で周期ジッタのヒストグラムが求められる。求められた周期ジッタのピークツゥピーク値JPPおよびRMS値JRMSならびにヒストグラムは出力されて、例えば図に示していないが表示部に表示される。
【0031】
切替スイッチ53がピークツゥピーク周期ジッタ推定部52の出力側に接続されている状態では、ピークツゥピーク周期ジッタ系列がジッタ検出部54に入力され、ピークツゥピーク検出部32で式(11)が計算されてサイクルツゥサイクル周期ジッタのピークツゥピーク値Jcc,ppが求められ、RMS検出部33で式(10)が計算されてサイクルツゥサイクル周期ジッタのRMS値Jcc,RMSが求められ、さらにヒストグラム推定部18でサイクルツゥサイクル周期ジッタのヒストグラムが推定される。求められたサイクルツゥサイクル周期ジッタのピークツゥピーク値Jcc,ppおよびRMS値Jcc,RMS、ならびにヒストグラムもまた出力され、必要に応じて表示部に表示される。
【0032】
図12に示した構成において、サイクルツゥサイクル周期ジッタ推定部52および切替スイッチ53を省略して、補正部49からの補正された周期ジッタ系列をジッタ検出部54へ直接供給してもよい。また、切替スイッチ53を省略して、サイクルツゥサイクル周期ジッタ推定部52からのサイクルツゥサイクル周期ジッタ系列をジッタ検出部54へ直接供給してもよい。さらに、ジッタ検出部54は、ピークツゥピーク検出部32、RMS検出部33、ヒストグラム推定部18のいずれか一つまたは二つのみを有していてもよい。瞬時位相雑音Δφ(t)をサンプリングするための近似ゼロクロス点を検出するために、その実数部の信号を利用する場合に限らず、被測定信号自体あるいはその基本波成分を利用してもよい。
【0033】
図12中に波線で示すように、被試験PLL回路11からのクロック信号を波形クリッパ56を通してAD変換器22へ供給して、クロック信号の振幅を一定とすることもできる。この構成では、振幅変調成分により位相雑音波形Δφ(t)が影響を受けることなく、正確にジッタを測定することができる。この振幅変調成分を入力信号から除去して入力信号を一定振幅とする処理は、AD変換器22の出力側で行ってもよい。
入力信号を解析信号zc(t)に変換する処理は、図13に示すように、AD変換器22からのデジタル入力信号を周波数領域変換部61によって、例えば高速フーリエ変換(FFT)により周波数領域の両側スペクトル信号に変換し、その両側スペクトル信号から、帯域通過フィルタ62により負の周波数成分を遮断するとともに、入力クロック信号の正の基本周波数付近の周波数成分のみを取り出す。必要に応じて、負の周波数成分を遮断した分のエネルギーを補正するため抽出した周波数成分のレベルを2倍にする。帯域通過フィルタ62の出力を時間領域変換部63により、例えば、逆フーリエ変換(IFFT)処理して時間領域信号に変換して解析信号zc(t)を得る。
【0034】
さらに、解析信号変換部23の他の例を、図14を参照しながら説明する。
デジタル化された入力信号がバッファメモリ71に蓄積される。バッファメモリ71に蓄積された信号の一区間を信号取り出し部72によって、今回取り出される区間が前回取り出された区間と一部重なるように順次取り出す。取り出された信号は窓関数乗算部73によって窓関数を乗算され、窓関数乗算部73からの出力信号は周波数領域変換部74によって高速フーリエ変換と用いて周波数領域の両側スペクトル信号に変換される。この両側スペクトル信号の負の周波数成分をゼロにすることによって、片側スペクトル信号が得られる。さらに、この片側スペクトル信号について、帯域制限部75によって、入力信号の基本周波数付近の成分を残して他の周波数成分をゼロとする処理を行う。この帯域制限された信号を逆FFTを用いて時間領域変換部75によって時間領域の信号に変換し、変換された信号に振幅補正部77によって逆窓関数を乗算して、懐石信号を得る。
【0035】
本発明の入力周波数域は、図13に破線で示すように、分周器81を用いて拡大することができる。また、分周されたクロック信号を解析信号変換部23に供給してもよい。あるいは図に示していないが、ジッタが実質的にない局部信号を用いてクロック信号(被測定信号)をこれらの信号の差周波数を有する信号に変換して解析信号変換部23に供給してもよい。
【0036】
図12に波線で示すように、リニア位相除去部27の出力側に低周波成分除去部82を直列に挿入して、瞬時位相雑音Δφ(t)の低周波成分を除去して瞬時位相雑音Δφ(t)をゼロクロスサンプラ43に供給するようにすることもできる。このようにして入力信号x(t)の周波数f0と比べて十分低い、例えば10MHzのくロックの場合には数kHz程度の周波数成分を除去して、ピークツゥピークジッタが過大評価されることがないようにすることが望ましい。
【0037】
次に、本発明に一実施形態による方法を説明する。図15に本実施形態による方法のフローチャートを示す。これは、例えば図12に示した装置を用いる測定方法の例である。まずステップ201において解析信号変換部23により入力信号(被測定信号)を帯域制限された解析信号に変換する。次に、ステップ202において解析信号を用いて入力信号の瞬時位相を瞬時位相推定部26で推定し、ステップ203において、リニア位相推定部29(図6)により、この瞬時位相から理想的なクロック信号に対応するリニア瞬時位相を推定するとともに、基本周期推定部48によりリニア瞬時位相の傾きから被測定信号の基本周期T0を求める。ステップ204において、リニア位相除去部27により瞬時位相からリニア位相成分を除去して、入力信号の瞬時位相雑音Δφ(t)を推定する。
【0038】
ステップ205において、ゼロクロスサンプラ43で瞬時位相雑音Δφ(t)の、解析信号の実数部のゼロクロスタイミングに近いデータをサンプリングし、入力信号のタイミングジッタ系列を推定する。ステップ206において、ゼロクロス間隔計算部47によりゼロクロス点推定部45からの近似ゼロクロス点間の差分を計算してゼロクロス時間間隔系列を推定する。
ステップ207において、差分器46によってタイミングジッタ系列の差分系列を計算して、被測定信号の周期ジッタ系列を推定する。ステップ208において、補正器49によって周期ジッタ系列に対して基本周期T0とゼロクロス時間間隔Tk,k+1の比を乗算して、差分に基づく周期ジッタ系列を補正する。ステップ209において、スイッチ53を補正部49の出力側に接続した状態で、補正された周期ジッタ系列から被測定信号の周期ジッタを求める。
【0039】
ステップ209において、ピークツゥピーク検出部32は式(8)を用いて周期ジッタのピークツゥピーク値Jppを求め、RMS検出部33は式(7)を用いて周期ジッタのRMS値JRMSを求め、ヒストグラム推定部18は周期ジッタ系列からヒストグラムを求める。
ステップ210において、スイッチ53がサイクルツゥサイクル周期ジッタ推定部52の出力側に接続された状態で、サイクルツゥサイクル周期ジッタ推定部52により、補正された周期ジッタ系列の差分系列を計算して被測定信号のサイクルツゥサイクル周期ジッタ系列を求める。ステップ211において、ジッタ検出部54により、サイクルツゥサイクル周期ジッタ系列から被測定信号のサイクルツゥサイクル周期ジッタを求める。この場合、ピークツゥピーク検出部32は式(11)を用いてサイクルツゥサイクル周期ジッタのピークツゥピーク値Jcc,ppを求め、RMS検出部33は式(10)を用いてサイクルツゥサイクル周期ジッタのRMS値Jcc,RMSを求め、ヒストグラム推定部18はサイクルツゥサイクル周期ジッタのヒストグラムを求める。
【0040】
ステップ203における基本周期T0の推定、およびステップ206におけるゼロクロス時間間隔Tk,k+1の計算は、ステップ208における補正前に行われればよく、上述した順番に限られるものではない。また基本周期T0の推定は被測定信号から直接求めてもよい。周期ジッタのみを測定する場合は、ステップ210および211を省略してもよい。サイクルツゥサイクル周期ジッタのみを測定する場合は、ステップ209を省略してもよい。ステップ209および211においては、ピークツゥピーク値、RMS値、ヒストグラムのいずれか一つまたは二つを求めてもよい。
【0041】
上記説明では被測定信号(入力信号)として、主としてマイクロプロセッサのクロック信号について述べたが、他の機器に用いられるクロック信号や、他の機器から発生する、正弦波信号などの周期性がある信号の周期ジッタおよび/またはサイクルツゥサイクル周期ジッタの測定にも本発明を適用することができる。また入力信号を直ちにAD変換器を用いてデジタル信号に変換することなく、アナログ信号のまま処理し、その後で適当な段階でデジタル信号に変換して処理してもよい。図12に示した装置はコンピュータにおいてプログラムを実行させることによって機能させてもよい。
上記説明では瞬時位相雑音Δφ(t)を近似ゼロクロス点でサンプリングしてタイミングジッタ系列Δφ[n]を求めている。しかしながらリニア位相除去器27は図6中に示した構成を有しているため、近似ゼロクロス点でのサンプリングを、例えば図16に破線で示すように、瞬時位相推定器26と連続位相変換器28との間に直列に挿入してもよい。あるいは、近似ゼロクロス点でのサンプリングを、連続位相変換器28とリニア位相推定器29および減算器31との間に直列に挿入してもよい。これらの構成の1つによっても減算器31からタイミングジッタ系列Δφ[n]を得ることができる。
【0042】
また、瞬時位相からの瞬時位相雑音Δφ(t)の推定には、図6に示すリニア位相除去器27の構成により行われる。したがって、その処理手順は図17に示すように、図15中のステップ202で瞬時位相を求めた後、ステップ203aで連続位相変換器28によって瞬時位相を連俗な瞬時位相に変換し、ステップ203bでリニア位相推定器29によって連続位相からその瞬時リニア位相を推定し、その後、ステップ204で減算器31によって連続瞬時位相から瞬時リニア位相を除去して瞬時雑音位相Δφ(t)を求めることになる。
したがって、図16に示した手順と同様に、近似ゼロクロスサンプリングを、図17に示すようにステップ202の後に、ステップ301で瞬時位相に対して行い、瞬時位相のサンプル系列を求めて、そしてステップ203aにうつり、そのサンプル系列を連続な瞬時位相に変換するようにしてもよい。
【0043】
あるいはステップ203aで得られた連続瞬時位相を、近似ゼロクロス点でサンプリングして連続瞬時位相のサンプル系列を求めて、ステップ203bにうつって、その連続瞬時位相のサンプル系列から瞬時リニア位相を推定してもよい。いずれの場合も、ステップ204において瞬時雑音位相を近似ゼロクロス点でサンプリングしたタイミングジッタ系列Δφ[n]が得られる。
【0044】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることができる。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【0045】
【発明の効果】
以上述べたように、本発明によると、近似ゼロクロス点におけるサンプリングにより生じる誤差を小さくすることができ、従来のインターバルアナライザ法と互換性のある測定結果を得ることができ、しかも従来のインターバルアナライザ法よりも短時間で測定を行うことができる。
【図面の簡単な説明】
【図1】 従来のタイムインターバルアナライザによる周期ジッタの測定を示す図である。
【図2】 図1の測定における測定値のヒストグラムを示す図である。
【図3】 従来のデジタルオシロスコープによるジッタ測定を示す図である。
【図4】 図3中のジッタ測定部分の構成を示す図である。
【図5A】 被測定信号の波形を示す図である。
【図5B】 図5(A)の被測定信号の測定した周期ジッタを示す図である。
【図6】 本願発明者らが先に提案したΔφ法によるジッタ測定装置の機能構成を示す図である。
【図7】 近似ゼロクロス点のずれを示す図である。
【図8】 Δφ法とその周期ジッタを補正した方法(本願発明の方法)とによりそれぞれ求めた周期ジッタ2乗平均値およびピークツゥピークジッタ値の比較を示す図である。
【図9A】 RMS周期ジッタ推定に対する補正項の効果の例を示す図である。
【図9B】 ピークツゥピーク周期ジッタ測定に対する補正項の効果の例を示す図である。
【図10A】 従来のタイムインターバルアナライザ法で測定した周期ジッタのヒストグラムを示す図である。
【図10B】 本発明の補正したΔφ法で測定した周期ジッタのヒストグラムを示す図である。
【図11】 タイムインターバルアナライザ法および補正したΔφ法でそれぞれ測定した周期ジッタのRMS値とピークツゥピーク値とを示す図である。
【図12】 本発明の実施例の機能構成を示すブロック図である。
【図13】 本発明の一部の変形例の機能構成を示す図である。
【図14】 解析信号変換部23の他の具体的機能構成を示す図である。
【図15】 本発明による方法の実施例の手順を示すフローチャートである。
【図16】 本発明による装置の他の実施例の一部を示すブロック図である。
【図17】 本発明による方法の他の実施形の一部を示すフローチャートである。
【符号の説明】
11 被試験PLL回路
12 タイムインターバルアナライザ
18 ヒストグラム推定器
22 AD変換器
23 解析信号変換手段
27 リニア位相除去器
29 リニア位相評価器
32 ピークツゥピーク検出部
33 RMS検出部
43 ゼロクロスサンプラ
45 ゼロクロス点推定部
46 差分器
47 ゼロクロス間隔計算部
48 基本周期推定部
49 補正部
52 ピークツゥピーク周期ジッタ推定部
53 切替スイッチ
56 波形クリッパ

Claims (14)

  1. 被測定信号のジッタを測定する装置であって、
    前記被測定信号が入力され、そのタイミングジッタ系列を求めるタイミングジッタ推定器と、
    前記タイミングジッタ系列が入力され、その差分系列を計算して周期ジッタ系列を出力する第1差分器と、
    前記周期ジッタ系列が入力され、前記被測定信号の基本周期T0と近似ゼロクロス点間隔Tk,k+1との比T0/Tk,k+1を前記周期ジッタ系列に乗算して、補正された周期ジッタ系列を出力する補正部と、
    前記補正された周期ジッタ系列が入力され、前記被測定信号のジッタを求めるジッタ検出部と
    を備えていることを特徴とする装置。
  2. 前記補正部と前記ジッタ検出部との間に挿入されており、前記補正された周期ジッタ系列が入力され、その差分系列を計算してサイクルツゥサイクル周期ジッタとして前記差分系列を前記ジッタ検出部へ出力する第2差分器をさらに備えていることを特徴とする、請求項1に記載の装置。
  3. 解析信号の実数部が入力され、そのゼロクロスタイミングに近い点を求めてサンプリングタイミング系列を出力するゼロクロス点検出部をさらに備えている装置であって、
    前記タイミングジッタ推定器は、
    前記被測定信号が入力され、前記被測定信号を複素数の解析信号に変換する解析信号変換部と、
    前記解析信号が入力され、前記解析信号の瞬時位相を求める瞬時位相推定部と、
    前記瞬時位相を連続瞬時位相に変換する連続位相変換器と、
    前記連続瞬時位相が入力され、前記連続瞬時位相のリニア位相を求めるリニア位相推定部と、
    前記リニア位相および前記連続瞬時位相が入力され、前記連続瞬時位相から前記リニア位相を除去して瞬時位相雑音を求める減算部と、
    前記瞬時位相推定部と前記連続位相変換部との間、前記連続位相変換部と前記リニア位相推定部と前記減算部との間、および前記減算部と前記第1差分器との間のいずれか一つの位置に直列に挿入されており、入力された信号を前記サンプリングタイミング系列を用いてサンプリングして、サンプリングされた信号を出力するゼロクロスサンプラと
    を備えている、請求項1または2に記載の装置。
  4. 前記ゼロクロス点検出部から前記サンプリングタイミング系列の出力タイミング系列が入力され、その差分系列を計算して前記近似ゼロクロス点間隔Tk,k+1を順次求め、前記近似ゼロクロス点間隔Tk,k+1を前記補正部へ出力するゼロクロス間隔計算部をさらに備えていることを特徴とする、請求項3に記載の装置。
  5. 前記リニア位相推定部から前記リニア位相が入力され、その傾きから前記基本周期T0を求めて前記補正部へ出力する基本周期推定部をさらに備えていることを特徴とする、請求項4に記載の装置。
  6. 前記被測定信号が入力され、その基本周期T0を求めて前記補正部へ出力する基本周期推定部をさらに備えていることを特徴とする、請求項4に記載の装置。
  7. 前記被測定信号が入力され、その位相変調成分を保持した状態でその振幅変調成分を除去し、前記振幅変調成分が除去された前記被測定信号を前記瞬時位相雑音検出部へ出力する波形クリッパをさらに備えていることを特徴とする、請求項3に記載の装置。
  8. 被測定信号のジッタを測定する方法であって、
    前記被測定信号のタイミングジッタ系列を求めるステップと、
    前記タイミングジッタ系列の差分系列を計算して周期ジッタ系列を生成するステップと、
    前記被測定信号の基本周期T0と近似ゼロクロス点間隔Tk,k+1との比T0/Tk,k+1を前記周期ジッタ系列に乗算して、補正された周期ジッタ系列を求めるステップと、
    前記補正された周期ジッタ系列から前記被測定信号の周期ジッタを求めるステップとを包含することを特徴とする、方法。
  9. 被測定信号のジッタを測定する方法であって、
    前記被測定信号のタイミングジッタ系列を求めるステップと、
    前記タイミングジッタ系列の差分系列を計算して周期ジッタ系列を生成するステップと、
    前記周期ジッタ系列に対し、前記被測定信号の基本周期と近似ゼロクロス点間隔Tk,k+1との/Tk,k+1を乗算して、補正された周期ジッタ系列を求めるステップと、
    前記補正された周期ジッタ系列の差分系列を計算してサイクルツゥサイクル周期ジッタ系列を求めるステップと、
    前記サイクルツゥサイクル周期ジッタ系列から前記被測定信号のサイクルツゥサイクル周期ジッタを求めるステップと
    を包含することを特徴とする、方法。
  10. 解析信号の実数部のゼロクロスタイミングに近い点を求めて、前記近似ゼロクロス点を求めるステップをさらに包含しており、
    前記タイミングジッタを推定するステップは、
    前記被測定信号を複素数の解析信号に変換するステップと、
    前記解析信号から前記被測定信号の瞬時位相を求めるステップと、
    前記瞬時位相を連続瞬時位相に変換するステップと、
    前記連続瞬時位相からリニア位相を求めるステップと、
    前記連続瞬時位相から前記リニア位相を除去して瞬時位相雑音を求めるステップと、
    前記瞬時位相、前記連続瞬時位相および前記瞬時位相雑音のいずれか1つを前記近似ゼロクロス点でサンプリングするステップと
    を有していることを特徴とする、請求項8または9に記載の方法。
  11. 前記近似ゼロクロス点を示すタイミング系列の差分系列を計算して、前記近似ゼロクロス点間隔Tk,k+1を順次得るステップをさらに包含していることを特徴とする、請求項10に記載の方法。
  12. 前記リニア位相の傾きから前記基本周期T0を求めるステップをさらに包含することを特徴とする、請求項11に記載の方法。
  13. 前記被測定信号から前記基本周期T0を求めるステップをさらに包含することを特徴とする、請求項11に記載の方法。
  14. 前記被測定信号の位相変調成分を保持した状態で、前記被測定信号の振幅変調成分を除去して前記タイミングジッタを推定するステップへうつるステップをさらに包含することを特徴とする、請求項10に記載の方法。
JP2002573360A 2001-03-16 2002-03-08 ジッタ測定装置およびジッタ測定方法 Expired - Fee Related JP3974040B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/811,153 US6922439B2 (en) 2001-03-16 2001-03-16 Apparatus for and method of measuring jitter
PCT/JP2002/002163 WO2002076008A2 (en) 2001-03-16 2002-03-08 Apparatus for and method of measuring jitter

Publications (2)

Publication Number Publication Date
JP2004519678A JP2004519678A (ja) 2004-07-02
JP3974040B2 true JP3974040B2 (ja) 2007-09-12

Family

ID=25205714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002573360A Expired - Fee Related JP3974040B2 (ja) 2001-03-16 2002-03-08 ジッタ測定装置およびジッタ測定方法

Country Status (4)

Country Link
US (1) US6922439B2 (ja)
JP (1) JP3974040B2 (ja)
DE (1) DE10291162B4 (ja)
WO (1) WO2002076008A2 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7471735B2 (en) 2001-04-27 2008-12-30 The Directv Group, Inc. Maximizing power and spectral efficiencies for layered and conventional modulations
US7209524B2 (en) * 2001-04-27 2007-04-24 The Directv Group, Inc. Layered modulation for digital signals
US7423987B2 (en) 2001-04-27 2008-09-09 The Directv Group, Inc. Feeder link configurations to support layered modulation for digital signals
US7822154B2 (en) 2001-04-27 2010-10-26 The Directv Group, Inc. Signal, interference and noise power measurement
US8005035B2 (en) 2001-04-27 2011-08-23 The Directv Group, Inc. Online output multiplexer filter measurement
US7778365B2 (en) * 2001-04-27 2010-08-17 The Directv Group, Inc. Satellite TWTA on-line non-linearity measurement
WO2004004193A2 (en) * 2002-07-01 2004-01-08 The Directv Group, Inc. Improving hierarchical 8psk performance
EP1529347B1 (en) 2002-07-03 2016-08-24 The Directv Group, Inc. Method and apparatus for layered modulation
US7463676B2 (en) * 2002-10-25 2008-12-09 The Directv Group, Inc. On-line phase noise measurement for layered modulation
EP1563620B1 (en) * 2002-10-25 2012-12-05 The Directv Group, Inc. Lower complexity layered modulation signal processor
US7339985B2 (en) * 2003-01-08 2008-03-04 National Instruments Corporation Zero crossing method of symbol rate and timing estimation
JP5143341B2 (ja) * 2004-02-18 2013-02-13 株式会社アドバンテスト ジッタ測定装置、ジッタ測定方法およびプログラム
US7778315B2 (en) * 2004-04-14 2010-08-17 Tektronix, Inc. Measuring instantaneous signal dependent nonlinear distortion in response to varying frequency sinusoidal test signal
US8073042B1 (en) * 2005-04-13 2011-12-06 Cypress Semiconductor Corporation Recursive range controller
US7460592B2 (en) * 2005-05-04 2008-12-02 Advantest Corporation Apparatus for measuring jitter and method of measuring jitter
US7912117B2 (en) * 2006-09-28 2011-03-22 Tektronix, Inc. Transport delay and jitter measurements
US20070140306A1 (en) * 2005-12-16 2007-06-21 International Business Machines Corporation Identifying existence and rate of jitter during real-time audio and video streaming
US7945009B1 (en) * 2006-08-22 2011-05-17 Marvell International Ltd. Jitter measurement
US20080279268A1 (en) * 2007-05-10 2008-11-13 Agilent Technologies, Inc. Method for measuring noise, apparatus for measuring noise, and program for measuring noise
US7620861B2 (en) * 2007-05-31 2009-11-17 Kingtiger Technology (Canada) Inc. Method and apparatus for testing integrated circuits by employing test vector patterns that satisfy passband requirements imposed by communication channels
JP2009250644A (ja) * 2008-04-02 2009-10-29 Nippon Telegr & Teleph Corp <Ntt> ジッタ検出回路
CN101833036B (zh) * 2010-04-15 2012-09-26 南京邮电大学 一种交流电的瞬时相位测量方法
US20180328764A1 (en) * 2017-05-11 2018-11-15 Craig Alan D'Ambrosio Method of Analyzing Signal Quality in Order to Determine the Operational Characteristics of a Measuring Device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426713C2 (de) * 1994-07-21 1997-03-27 Siemens Ag Verfahren zum Messen des Phasenjitters eines Datensignals
US6240130B1 (en) * 1997-07-30 2001-05-29 Texas Instruments Incorporated Method and apparatus to measure jitter.
FR2775789B1 (fr) * 1998-03-09 2001-10-12 Sgs Thomson Microelectronics Test numerique de signal periodique
US6295315B1 (en) * 1999-04-20 2001-09-25 Arnold M. Frisch Jitter measurement system and method

Also Published As

Publication number Publication date
DE10291162T1 (de) 2003-09-04
US20020163958A1 (en) 2002-11-07
WO2002076008A2 (en) 2002-09-26
DE10291162B4 (de) 2008-11-27
US6922439B2 (en) 2005-07-26
JP2004519678A (ja) 2004-07-02
WO2002076008A3 (en) 2002-12-12

Similar Documents

Publication Publication Date Title
JP3974040B2 (ja) ジッタ測定装置およびジッタ測定方法
JP4774543B2 (ja) ジッタ推定装置及び推定方法
JP5218783B2 (ja) 実時間スペクトラム・トリガ発生器
JP4295989B2 (ja) クロックスキューの測定装置および方法、クロックスキューの確率推定装置および方法、ならびにプログラム
JP3967682B2 (ja) 信号間の相互相関係数を測定する装置および方法
US6598004B1 (en) Jitter measurement apparatus and its method
JP3609740B2 (ja) 位相雑音波形の品質尺度測定装置及びその測定方法
JP4090989B2 (ja) ジッタ測定装置、及びジッタ測定方法
JP5066073B2 (ja) 測定装置、測定方法、試験装置、試験方法、及び電子デバイス
US20050185708A1 (en) Apparatus for measuring jitter, method of measuring jitter and computer-readable medium storing a program thereof
US6525523B1 (en) Jitter measurement apparatus and its method
JP4171699B2 (ja) クロック・スキュー測定装置、クロック・スキュー測定方法
US6775321B1 (en) Apparatus for and method of measuring a jitter
US7263150B2 (en) Probability estimating apparatus and method for peak-to-peak clock skews
US7783456B2 (en) Wave detection device, method, program, and recording medium
JPS63103979A (ja) ベクトル領域への変換によるデジタル信号の分析方法および装置
WO2002037127A1 (fr) Appareil de mesure de gigue, procede de mesure de gigue et dispositif de test
JPH0356892A (ja) サンプル時間測定方法及び装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees