JP3628041B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP3628041B2
JP3628041B2 JP14804694A JP14804694A JP3628041B2 JP 3628041 B2 JP3628041 B2 JP 3628041B2 JP 14804694 A JP14804694 A JP 14804694A JP 14804694 A JP14804694 A JP 14804694A JP 3628041 B2 JP3628041 B2 JP 3628041B2
Authority
JP
Japan
Prior art keywords
film
bst
capacitor
ferroelectric
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14804694A
Other languages
English (en)
Other versions
JPH0817939A (ja
Inventor
泰城 西岡
Original Assignee
テキサス インスツルメンツ インコーポレイテツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テキサス インスツルメンツ インコーポレイテツド filed Critical テキサス インスツルメンツ インコーポレイテツド
Priority to JP14804694A priority Critical patent/JP3628041B2/ja
Priority to US08/485,343 priority patent/US5635420A/en
Publication of JPH0817939A publication Critical patent/JPH0817939A/ja
Application granted granted Critical
Publication of JP3628041B2 publication Critical patent/JP3628041B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/75Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、半導体装置に関し、特に、リ−ク電流を小さくし得る強誘電体薄膜を含む半導体装置及び製造方法に適用して有効な技術に関するものである。
【0002】
【従来技術】
従来、半導体装置の高集積化に伴ってその構成要素の微細化が進んでいる。特に、微細かつ高容量のキャパシタが必要なダイナミックメモリ(DRAM)において、比誘電率が極めて大きい強誘電体の薄膜が注目されている。公知例としては、例えば(P. J. Bhattacharya等、Jpn. J. Appl. Phys. Vol.32 (1993) pp.4103−4106)等が上げられる。
【0003】
【発明が解決しようとする課題】
ところが、上述のBhattacharya等の開示によると、Pt基板上に(Ba、Sr)TiO(以下、「BST」と略称する。)膜を形成したところ、この膜の結晶は柱状に成長して、高い比誘電率約300を確保できることが分かっている。しかしながら、これらの薄膜を用いてキャパシタを形成したところ、非常に絶縁性の優れたキャパシタを形成できる一方、リ−ク電流の大きいものが多く、DRAM等の超LSIの量産に適する程度の歩留りを確保するには十分でなかった。この原因を詳細に検討した結果、誘電体薄膜の結晶粒界を通じてリーク電流が生じていることが推測できる。本発明の目的は超LSIに応用できる程度の歩留りを十分確保できるキャパシタ用強誘電体薄膜を含む半導体装置及びその製造方法を提供することにある。
【0004】
また、半導体装置、特にDRAMでは小面積のキャパシタが必要になっている。このキャパシタを実現するため、きわめて比誘電率の大きい(Ba、Sr)TiOやPb(Zr、Ti)O等の強誘電体薄膜が注目されている。この薄膜を用いてキャパシタを形成すると非常に絶縁性の優れたキャパシタを形成できるが、その一方でリ−ク電流の大きいものが多く、DRAM等のULSIに応用できる程度の歩留りを確保できない。本発明の目的はULSIに応用できる程度に量産可能な歩留りを確保できる電荷蓄積用キャパシタの強誘電体薄膜及びその製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本願発明においては、強誘電体薄膜の形成途中または形成前に、金属物質を島状または層状に形成する工程を含む。
【0006】
【作用】
上述の発明によれば、DRAM等のキャパシタに蓄積された電荷のリークを最小限にできるので、従来に比してDRAMのリフレッシュ・サイクルを長期にすることができる。また、従来と同様のリフレッシュ・サイクルを保持したまま、メモリ・セルの面積を小さくできるため、ウエハー当りの歩留まりが向上し、量産性に適した半導体メモリ装置を提供することが可能となる。
【0007】
【実施例】
図1を使用して本願発明の前提を説明する。単結晶シリコン基板1の表面に酸化シリコン層2が形成され、その表面に接着層として機能するTi膜3をスパッタ法によって約50nm形成する。そして、200nmの膜厚のPt4をスパッタ法によって形成して、BST膜5をBSTセラミックスのタ−ゲット材を用いてO /Ar混合ガス中で約200nmの膜厚に堆積する。基板温度は、約650℃で膜形成を行い、BST膜を結晶化させる。これは、500度℃以下で形成される非晶質BSTの比誘電率が約18と、結晶化させたBSTの比誘電率約300に比べて小さいためである。最後に、Ptの上部電極8を形成してキャパシタを完成させる。その電気的特性は、結晶BST膜のリ−ク電流が非常に大きくDRAM用キャパシタ絶縁膜として利用することは事実上難しいことが分かった。このBST膜の透過型電子顕微鏡(TEM)を用いた解析や電気的特性の詳しい解析の結果、BST膜のリ−ク電流は、BST膜5の結晶粒界を通じて発生している可能性が高いことが分かった。さらに、このBST膜の結晶粒は図1に模式的に示すように柱状をしており、この結晶粒の大きさはPt4の結晶粒径とほぼ同じ大きさであることも分かった。これにより、BSTの柱状結晶は、下地の結晶構造に影響される性質を持つと考えられる。したがって、本発明の実施例であるキャパシタ誘電膜の製造法は、この下地からの結晶成長を制御することによって、柱状結晶の成長を抑制し、BST膜のリ−ク電流を低減させることにある。
【0008】
図2及び図3を用いて本発明の一実施例を説明する。図2は、BST膜表面に島状のTiを堆積させた状態を示す。より詳述すると、酸化シリコン層2の表面に接着層として機能するTi膜3をスパッタ法によって約50nm形成した後、200nmの膜厚のPt4をスパッタ法によって形成する。その後、BST膜5をBSTセラミックスタ−ゲットを用いてO/Ar混合ガス中で約100nmの膜厚に堆積する。その際の基板温度は約650℃に保ちBST膜5を結晶化させる。更に、650℃でチタン膜Ti6を極めて薄く、約3nm相当に堆積させる過程で、Ti6は、非常に多数の島状に形成される。
【0009】
図3は、強誘電体薄膜となる残りのBST膜7を更にO/Ar混合ガス中で約100nmの膜厚に堆積する工程図を示す。図示の如くBST膜の柱状結晶の成長は起こらない。これは、島状のTi6がその後のBST膜の結晶が成長する際の核(CORE)となったものと推定されるからである。島状のTi6は、通常650℃のBST膜7の形成工程で、5または7のBST膜に吸収されることが多く、図3に示すような構造となる。図示したように柱状結晶の成長は抑制され、円形状の結晶粒を形成することができる。この膜を用いてキャパシタを形成して電気的特性を評価すると、従来の方法、即ち、図1の構造の膜に比較して著しいリ−ク電流の減少が認められる。
【0010】
図4に、本実施例における強誘電膜キャパシタの電圧対電流特性の比較を示す。(a)は、従来方法で形成した電気的特性を示し、また、(b)は、本発明の実施例により形成した膜の電気的特性を示す。特に、従来の膜では印加電圧1.5ボルトで4×10μA/cmであり、本発明の実施例では、同等の印加電圧に対して1μA/cmのリ−ク電流と著しく小さい。
【0011】
図5乃至図7は、本発明の別の実施例を示す。上記実施例では、島状のTi6を形成した後、BST膜7を650℃という結晶化が起こる温度で形成した。本実施例では、このBST膜をまず非晶質の状態で形成した後に熱処理をすることで、リ−ク電流がより少いキャパシタ膜を形成することができる。詳述すれば、酸化シリコン層2の表面に接着層として機能するTi膜3をスパッタ法によって約50nm形成して、その上に200nmの膜厚のPt4をスパッタ法によって形成する。その後、BST膜5をBSTセラミックスタ−ゲットを用いてO/Ar混合ガス雰囲気中で約100nmの膜厚に堆積する。その際、基板温度は約650℃に保ちBST膜5を結晶化させる。更に、650℃でチタン膜Ti6を極めて薄く、約3nm相当堆積させる過程で、Ti6は非常に多数の島状に形成される。
【0012】
図6は、その後、残りのBST膜9を500℃の結晶化が起こらない温度で、O/Ar混合ガス雰囲気中で約100nmの膜厚に堆積した構造を示す。更に、650℃の酸素雰囲気中で約30分間熱処理すると、上記実施例に比してより小さな結晶粒を有するBST膜10を形成した構造を図7に示す。島状のTi6がその後のBST膜の結晶が成長する際の核となりさらに非晶質のBST膜形成後の結晶化工程より微細な結晶粒が同時に形成されたものと推定される。その際、島状のTi6は通常、その後の650℃のBST10の熱処理工程で、5または10のBST膜に吸収される。柱状結晶の成長は抑制され、円形状の結晶粒を形成することができる。この膜を用いてキャパシタを完成させて電気的特性を評価すると、従来方法のものに比較して著しくリ−ク電流を減少させることが十分理解できる。
【0013】
図8には、上記実施例と同様の方法で形成したPt膜4の表面に、500℃で非晶質BST膜9を約100nm形成した構造を示す。この状態から、図9及び図10を用いて本発明の別の実施例を説明する。即ち、BSTキャパシタ膜のリ−ク電流を改善する第1層目のBSTを非晶質から形成することによっても得られるのである。
【0014】
図9は、このBST膜9を650℃の酸素雰囲気中で熱処理して結晶BST膜10を形成した構造を示し、この時点でBST膜10は柱状に成長せず結晶粒径も小さいことが分かる。更に、この表面に島状のTiを形成する。
【0015】
図10に、第2層目のBST7を650℃で形成して、柱状結晶がなくリ−ク電流の小さいBSTキャパシタを形成する構造を示す。このキャパシタ膜に上部電極を形成し、キャパシタを完成させる。
【0016】
図11及び図12は他の実施例を示し、図11は、接着層の表面に島状のTi膜6を形成した構造を示す。即ち、上記実施例においては、柱状結晶の成長を抑制するため、島状のTi膜6を強誘電体膜形成の中間工程に導入したが、同様な効果は、強誘電体膜を形成する前に島状のTi膜6を導入することによっても達成できる。シリコン基板1を酸化して酸化シリコン膜2の表面に接着層として機能するTi膜3をスパッタ法によって約50nm形成した後、200nmの膜厚のPt膜4をスパッタ法によって形成する。そして、400℃で島状のチタンTi膜6を約3nm相当堆積する。更に、BST膜5をBSTセラミックスのタ−ゲットを用いてO/Ar混合ガス雰囲気中で約200nmの膜厚に堆積する。基板温度は約650℃に保ち、BST膜5をこの条件で結晶化することで形成する。この島状のチタンTi膜6は、後に650℃のBST膜5の形成工程で、BST膜5に吸収される。その構造を図12に示す。特に、柱状結晶の成長は、抑制され円形状の結晶粒となることが分かる。この膜を用いてキャパシタを完成させ電気的特性を評価した所、従来方法の構造に比較して著しいリ−ク電流の減少がある。
【0017】
図13乃至図15に他の実施例を示す。図13は、上記実施例と同様に、Pt膜4の表面に400℃で島状のチタンTi膜6を約3nm相当堆積した構造を示し、本発明の別の実施例の出発工程とする。即ち、BSTキャパシタのリ−ク電流の改善は、BST膜を非晶質から形成することによっても得られる。
図14は、その後、500℃で非晶質のBST膜9を約100nm形成する。このBST膜9を650℃の酸素雰囲気中で熱処理して結晶化したBST膜10を得る。この時点でBST膜10は柱状に成長せず結晶粒径も小さい。更に、その表面に形成された島状のTiは、第2層目のBST膜10に吸収される。その結果、図15のように、柱状結晶を有しないBST膜は、リ−ク電流を低減するキャパシタの一部となる。
【0018】
上記の各実施例は、BST結晶成長の核となるTi6をスパッタ法等を用いて、Pt膜4の表面に成長させたが、Pt膜4の下地の接着層Ti(またはTiN)等からの粒界拡散を利用して形成させてもよい。図16に、その断面図を示し、また、図17にPt4の接着層の表面に形成されたTi核を示す。Ptの接着層4を約650℃の窒素雰囲気中で30分間熱処理する。この微小領域を分析可能な透過型電子顕微鏡(TEM)で解析すればPt膜4の結晶粒界部にTi核6が成長していることが確認できる。この領域の上に上記実施例に示した方法を用いてBST膜を柱状結晶にならないように形成することによって、リ−ク電流が極少のキャパシタを形成することができる。なお、本実施例のTi核6に代えて、図13のPt膜4を650℃の酸素雰囲気中で熱処理すると酸化チタンが結晶粒界に成長したが、これをBST膜の成長の核とすることによって、同等のBST膜を形成できる。また、本発明の実施例ではPtの結晶粒界に核を形成することを可能にする接着層としてTiやTiNを用いた例を示したが、同様な効果を有するZrやIr及びそれらの酸化物、導電性の酸化膜RuO3、SnO2等を用いてもよい。
【0019】
更に、本発明の別の実施例を示す。本発明の実施例においては、この下地からの結晶成長を妨げることによって、柱状結晶の成長を抑制し、BST膜のリ−ク電流の低減を可能とする。図18に、本実施例の半導体装置の断面を示す。酸化したシリコン基板1の上に接着層としてTi膜3をスパッタ法によって約50nm形成し、200nmの膜厚のPt4をスパッタ法によって形成する。その後、BST膜5をBSTセラミックスタ−ゲットを用いてO2/Ar混合ガス中で約100nmの膜厚に堆積させる。その際基板温度を約650℃に保ち、BST膜5を結晶化させる。その後、650℃でチタン酸化膜TiO2膜11を極めて薄く、約5nmほど堆積する。そして、再度、残りのBST膜7をO2/Ar混合ガス中で約100nmの膜厚に堆積する。その結果、このTiO2膜11は、通常、その後の650℃のBST7の形成工程で、BST膜5、7に吸収され、膜5と7の境界面から消滅するように見える。特に、強誘電体膜である柱状結晶の成長は、抑制され円形状の結晶粒となるので、粒界面に沿って流れる電流を抑止するのに効果的である。この膜を用いてキャパシタを形成して電気的特性を評価したところ、従来の方法の構造のものに比較して著しいリ−ク電流の減少がある。この実施例の効果は、上述の実施例で示した電圧対電流特性よりもリ−ク電流が著しく小さい。
【0020】
以上の実施例では、BSTの形成過程の途中にTiO2膜を形成することによって、Pt基板からの柱状結晶の形成を抑制することができる。この場合TiO2膜のTi元素は、もともとBST膜に含まれている元素であるために、その後の高温の工程でBST膜に吸収されてしまう。従って、ほとんど比誘電率の実効的減少をひき起こさない。よって、本発明の効果は、BST形成工程での中間挿入膜は、酸化バリウム膜や酸化ストロンチウム膜でも同様な改善効果をもたらす。更に、BSTの構成金属のBa、Sr、Ti等の金属薄膜を利用してもよい。
【0021】
また更に、BST以外の強誘電体材料に関しても当てはまる。すなわち、本発明における強誘電体薄膜は(Ba、Sr)TiO3、SrTiO3、BaTiO3、(Pb、La)(Zr、Ti)O3、Pb(Zr、Ti)O3、PbTiO3等を構成要素として含んでいても構わない。また、これらの膜の柱状結晶の成長を抑制するための挿入膜はこれら強誘電体を構成する元素またはその酸化物を含んでいてもよい。
【0022】
図19は、TiO2の挿入層を用いた他の実施例を示す。上記実施例では、柱状結晶の成長を抑制するために、挿入層11を強誘電体膜形成過程の途中に導入したが、同様な効果は、強誘電体膜の形成前に挿入層を導入することによっても達成できる。つまり、酸化したシリコン基板1の上に接着層としてTi膜3をスパッタ法によって約50nm形成し、200nmの膜厚のPt4をスパッタ法によって形成する。その後、650℃でチタン酸化膜TiO2膜11を極めて薄く、約5nmほど堆積する。更に、BST膜7をBSTセラミックスのタ−ゲットを用いてO2/Ar混合ガス中で約200nmの膜厚に堆積する。その際の基板温度を約650℃に保ちBST膜7結晶化させることで図19に示す構造となる。また、TiO2挿入層11は、BST膜7に吸収され、リーク電流の防止を有効に達成することができる。この時のリーク電流の減少は、従来法に比して著しく、上記TiO2の挿入層11と同等のレベルにある。
【0023】
以上の実施例は、BSTの形成過程の初期または途中に島状のTi膜やTiO2膜を形成することによって、Pt基板からの柱状結晶の形成を抑制することができる。この場合TiO2膜のTi元素は、本来的にBST膜に含まれている元素であるため、その後の高温の工程でBST膜に吸収されてしまう。よって、ほとんど比誘電率の実効的減少を生じない。また、本発明の効果はBST形成工程での中間挿入膜は、酸化バリウム膜や酸化ストロンチウム膜でも同様な改善効果をもたらす。更に、BSTの構成金属のBa、Sr、Tiの金属薄膜を利用してもよい。なお、本発明の実施例では、例えば、スパッタ法を用いて核形成を行なう方法を示したが、これには、CVD法若くは熱蒸着法並びにスピンコ−ト法を利用したゾルゲル法でも構わない。特に、ゾルゲル法を用いて強誘電体薄膜を形成する場合、通常非晶質の強誘電体を熱処理によって結晶化させる場合が多く本発明の効果が著しいことはいうまでもない。
【0024】
更にまた、本発明による作用効果は、BST以外の強誘電体材料に関しても当てはまる。即ち、本発明の実施例である半導体装置の強誘電体薄膜は、(Ba、Sr)TiO、SrTiO、BaTiO、(Pb、La)(Zr、Ti)O、Pb(Zr、Ti)O、PbTiO等を構成要素として含んでいても構わない。これらの膜の柱状結晶の成長を抑制するための挿入膜は、これら強誘電体を構成する元素またはその酸化物を含んでいても構わない。
【0025】
【発明の効果】
強誘電体薄膜における柱状結晶の成長が抑制され、リーク電流の小さいキャパシタを有する半導体装置を形成することができる。
【図面の簡単な説明】
【図1】本発明の前提を説明するための強誘電体(BST)キャパシタ構造の要部断面図である。
【図2】本発明の第1の実施例である強誘電体(BST)キャパシタ膜の中間工程の断面図である。
【図3】本発明の第1の実施例である強誘電体(BST)キャパシタ膜の要部断面図である。
【図4】本発明の第1の実施例である強誘電体(BST)キャパシタと従来法によるキャパシタの電圧対電流特性図である。
【図5】本発明の別の実施例である強誘電体(BST)キャパシタ膜の中間工程図である。
【図6】本発明の別の実施例である強誘電体(BST)キャパシタ膜の中間工程図である。
【図7】本発明の別の実施例である強誘電体(BST)キャパシタ膜の要部断面図である。
【図8】本発明の別の実施例である強誘電体(BST)キャパシタ膜の中間工程図である。
【図9】本発明の別の実施例である強誘電体(BST)キャパシタ膜の中間工程図である。
【図10】本発明の別の実施例である強誘電体(BST)キャパシタ膜の要部断面図である。
【図11】本発明の別の実施例である強誘電体(BST)キャパシタ膜の中間工程図である。
【図12】本発明の別の実施例である強誘電体(BST)キャパシタ膜の要部断面図である。
【図13】本発明の別の実施例である強誘電体(BST)キャパシタ膜の中間工程図である。
【図14】本発明の別の実施例である強誘電体(BST)キャパシタ膜の中間工程図である。
【図15】本発明の別の実施例である強誘電体(BST)キャパシタ膜の要部断面図である。
【図16】本発明の別の実施例である強誘電体(BST)キャパシタ膜の下地の断面図である。
【図17】本発明の別の実施例である強誘電体(BST)キャパシタ膜の下地の平面図である。
【図18】本発明の別の実施例である強誘電体(BST)キャパシタ膜の腰部断面図
【図19】本発明の別の実施例である強誘電体(BST)キャパシタ膜の腰部断面図
【符号の説明】
1 シリコン基板
2 酸化シリコン膜(SiO
3 Ti膜
4 Pt膜(下部電極)
5 強誘電体膜(BST)
6 島状のTi核
7 強誘電体膜(BST)
8 Pt層(上部電極)
9 非結晶の強誘電体膜(BST)
10 結晶化した強誘電体膜(BST)
11 酸化チタニウム層(TiO

Claims (1)

  1. 強誘電体薄膜を有する半導体装置の製造方法であって、
    半導体基板を用意し、この基板上に絶縁層を形成する工程と、
    前記絶縁層上に導電性の接着層を形成する工程と、
    前記接着層上に下部電極を形成する工程と、
    前記下部電極上に第1の強誘電体薄膜を形成する工程と、
    前記第1の強誘電体薄膜の表面結晶粒界上に金属物質を島状に形成する工程と、
    前記第1の強誘電体薄膜及び前記金属物質上に第2の強誘電体薄膜を形成する工程と、
    を含む半導体装置の製造方法。
JP14804694A 1994-06-29 1994-06-29 半導体装置の製造方法 Expired - Fee Related JP3628041B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14804694A JP3628041B2 (ja) 1994-06-29 1994-06-29 半導体装置の製造方法
US08/485,343 US5635420A (en) 1994-06-29 1995-06-07 Method of making a semiconductor device having a capacitive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14804694A JP3628041B2 (ja) 1994-06-29 1994-06-29 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JPH0817939A JPH0817939A (ja) 1996-01-19
JP3628041B2 true JP3628041B2 (ja) 2005-03-09

Family

ID=15443936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14804694A Expired - Fee Related JP3628041B2 (ja) 1994-06-29 1994-06-29 半導体装置の製造方法

Country Status (2)

Country Link
US (1) US5635420A (ja)
JP (1) JP3628041B2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040259113A1 (en) * 1993-07-22 2004-12-23 Mayo Foundation For Medical Education And Research, Hybritech Incorporated Method for detection of metastatic prostate cancer
US6177361B1 (en) * 1997-05-23 2001-01-23 Micron Technology, Inc. In-situ formation of metal oxide and ferroelectric oxide films
US5932905A (en) * 1997-11-26 1999-08-03 Lucent Technologies Inc. Article comprising a capacitor with non-perovskite Sr-Ba-Ti oxide dielectric thin film
US6277436B1 (en) 1997-11-26 2001-08-21 Advanced Technology Materials, Inc. Liquid delivery MOCVD process for deposition of high frequency dielectric materials
JP3092659B2 (ja) 1997-12-10 2000-09-25 日本電気株式会社 薄膜キャパシタ及びその製造方法
US7098503B1 (en) 1998-08-27 2006-08-29 Micron Technology, Inc. Circuitry and capacitors comprising roughened platinum layers
JP2000243931A (ja) * 1998-12-22 2000-09-08 Toshiba Corp 半導体装置及びその製造方法
US6194229B1 (en) * 1999-01-08 2001-02-27 Micron Technology, Inc. Method for improving the sidewall stoichiometry of thin film capacitors
JP2002170938A (ja) * 2000-04-28 2002-06-14 Sharp Corp 半導体装置およびその製造方法
US6534357B1 (en) * 2000-11-09 2003-03-18 Micron Technology, Inc. Methods for forming conductive structures and structures regarding same
KR20030002063A (ko) * 2001-06-30 2003-01-08 주식회사 하이닉스반도체 비에스티 박막의 형성 방법 및 그를 이용한 캐패시터의제조 방법
US6500678B1 (en) * 2001-12-21 2002-12-31 Texas Instruments Incorporated Methods of preventing reduction of IrOx during PZT formation by metalorganic chemical vapor deposition or other processing
WO2003100824A2 (en) * 2002-05-28 2003-12-04 Kabushiki Kaisha Toshiba Ferroelectric capacitor and method of manufacturing the same
US7031138B2 (en) * 2002-12-09 2006-04-18 Infineon Technologies Ag Ferroelectric capacitor and process for its manufacture
US20060073613A1 (en) * 2004-09-29 2006-04-06 Sanjeev Aggarwal Ferroelectric memory cells and methods for fabricating ferroelectric memory cells and ferroelectric capacitors thereof
JP4682769B2 (ja) * 2004-09-30 2011-05-11 Tdk株式会社 誘電体薄膜、薄膜誘電体素子及びその製造方法
US7329319B2 (en) * 2004-11-10 2008-02-12 Illinois Institute Of Technology Method for producing crystals and screening crystallization conditions
JP5267225B2 (ja) * 2009-03-09 2013-08-21 Tdk株式会社 誘電体素子の製造方法
JP6293575B2 (ja) * 2014-05-20 2018-03-14 日本特殊陶業株式会社 マイクロヒータ、及び、ガスセンサ
RU200183U1 (ru) * 2020-07-15 2020-10-08 Овсеп Гагикович Андреасян Островковый тонкоплёночный конденсатор
WO2022015201A1 (ru) * 2020-07-15 2022-01-20 Овсеп Гагикович АНДРЕАСЯН Островковый тонкоплёночный конденсатор

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940006708B1 (ko) * 1989-01-26 1994-07-25 세이꼬 엡슨 가부시끼가이샤 반도체 장치의 제조 방법
DE69014027T2 (de) * 1989-08-30 1995-06-01 Nippon Electric Co Dünnfilmkondensatoren und deren Herstellungsverfahren.
US5081559A (en) * 1991-02-28 1992-01-14 Micron Technology, Inc. Enclosed ferroelectric stacked capacitor

Also Published As

Publication number Publication date
JPH0817939A (ja) 1996-01-19
US5635420A (en) 1997-06-03

Similar Documents

Publication Publication Date Title
JP3628041B2 (ja) 半導体装置の製造方法
US6172385B1 (en) Multilayer ferroelectric capacitor structure
US5973911A (en) Ferroelectric thin-film capacitor
JP3989027B2 (ja) キャパシタ及びその製造方法
JP4020364B2 (ja) 金属強誘電体絶縁体半導体電界効果トランジスタおよびその製造方法
JP3363301B2 (ja) 強誘電体薄膜被覆基板及びその製造方法及び強誘電体薄膜被覆基板によって構成された不揮発性メモリ
US6150684A (en) Thin-film capacitor and method of producing same
JPH08239264A (ja) ホウ素を用いたチタン酸バリウム・ストロンチウム薄膜
JPH08340085A (ja) 強誘電体薄膜被覆基板、その製造方法、及びキャパシタ構造素子
KR20010031913A (ko) 유전체 소자와 그 제조 방법
US6207584B1 (en) High dielectric constant material deposition to achieve high capacitance
KR100378276B1 (ko) 절연 재료, 절연막 피복 기판, 그 제조 방법 및 박막 소자
US7009231B2 (en) Single-phase c-axis doped PGO ferroelectric thin films
JP2007184622A (ja) 高キャパシタンス薄膜キャパシタの製造方法
KR19990082374A (ko) 집적회로에 적용하기 위한 고유전율의 바륨-스트론튬-니오브
KR100269278B1 (ko) 강유전체박막을이용한커패시터제조방법
JP3294214B2 (ja) 薄膜キャパシタ
JP2658819B2 (ja) 薄膜キャパシタ
JPH05343617A (ja) 半導体記憶装置
US6327135B1 (en) Thin film capacitors on gallium arsenide substrate
US6440751B1 (en) Method of manufacturing thin film and thin film capacitor
JP2000150677A (ja) 強誘電体ゲートメモリおよびその製造方法
JP2002118236A (ja) 半導体装置およびその製造方法
JP2000067648A (ja) 強誘電体膜の形成方法
JPH10152398A (ja) 強誘電体薄膜の形成方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees