JP3608232B2 - Nb3Sn超電導線材 - Google Patents

Nb3Sn超電導線材 Download PDF

Info

Publication number
JP3608232B2
JP3608232B2 JP27679794A JP27679794A JP3608232B2 JP 3608232 B2 JP3608232 B2 JP 3608232B2 JP 27679794 A JP27679794 A JP 27679794A JP 27679794 A JP27679794 A JP 27679794A JP 3608232 B2 JP3608232 B2 JP 3608232B2
Authority
JP
Japan
Prior art keywords
wire
superconducting wire
cross
superconducting
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27679794A
Other languages
English (en)
Other versions
JPH08138468A (ja
Inventor
隆好 宮崎
孝之 宮武
雅生 嶋田
康彦 井上
秀文 倉橋
功和 枩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27679794A priority Critical patent/JP3608232B2/ja
Publication of JPH08138468A publication Critical patent/JPH08138468A/ja
Application granted granted Critical
Publication of JP3608232B2 publication Critical patent/JP3608232B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、超電導マグネットの構成素材に用いられるNb Sn超電導線材およびその製造方法に関し、特に安定した高磁場臨界電流特性を備えたNb Sn超電導線材およびその様な線材を得る為の有用な方法に関するものである。
【0002】
【従来の技術】
超電導物質によって実現される永久電流現象を利用し、電力を消費せずに大電流を流し、コイル状にして磁場を発生させる超電導マグネットは、核磁気共鳴(NMR)装置等の各種物性測定装置の他、磁場浮上列車や核融合装置等への応用が進められている。そして上記の様な超電導マグネットの構成素材としては、従来からNb Sn超電導線材が代表的なものとして使用されている。
【0003】
Nb Sn超電導線材を製造する方法としては、内部拡散法、チューブ法、インサイチュー(in−situ)法、粉末法およびブロンズ法等が知られているが、最も代表的な方法は、いわゆるブロンズ法と呼ばれる複合加工法である。上記ブロンズ法の一般的方法を、図面を用いて更に詳細に説明する。
【0004】
まず図1に示す様に、Cu−Sn基合金製管2にNb線1を埋設し、断面減少加工を施して六角形に成形した単芯線3を製造し、この単芯線3を複数束ねてCu−Sn基合金製線状母材4に挿入し、断面減少加工を施して六角形に成形して一次スタック材5を構成する。次に、上記一次スタック材5を複数本円筒状に束ねて線材群10とし、図示する様に、CuやCu−Sn合金からなる略円筒状の外層ケース9(最外層)に挿入し、最終形状において3000〜10000本のNb線2が含まれた二次スタック材11を構成する。尚二次スタック材11では、図1に示した様に、その中央部に安定化材となる線・棒状の無酸素銅6(安定化銅)が組み込まれており、前記スタック材5の線材群10と無酸素銅6の間には、Cu−Sn基合金からなる円筒状の内部層7、およびNb Sn生成のための拡散熱処理時にSnの拡散バリア層となる円筒状のNb層またはTa層8が形成されている。このうち、拡散バリア層8は前記無酸素銅6がSnによって汚染されることを防ぐ作用を発揮する。最後に、熱処理によりSnを拡散させ、Nb線1の表面近傍(即ち、Cu−Sn基合金製管2とNb線1の界面に)に、Nb Snを生成させてNb Sn超電導線材とする。
【0005】
上記構成では、単芯線3を複数束ねてCu−Sn基合金製線状母材4に挿入して一次スタック材5を構成する様にする場合について示したが、例えば図2に示す様に、複数のNb線1をCu−Sn基合金製線状母材4に直接的に埋設して一次スタック材5を構成し、以下同様にしてNb線1の表面近傍(この場合は、Cu−Sn基合金製線状母材4とNb線1の界面に)に、Nb Snを生成させてNb Sn超電導線材とする場合もある。
【0006】
いずれの構成を採用するにしても、上記一次スタック材5やそれに埋設されるNb線1は、二次スタック材11中において等しい断面積とされるのが一般的である。またCu−Sn基合金製管2やCu−Sn基合金製線状母材4としては、Cu−Sn合金やCu−Sn−Ti合金等が用いられるのが一般的である。
【0007】
【発明が解決しようとする課題】
上記した様に、ブロンズ法は、Cu−Sn基合金製管2やCu−Sn基合金製線状母材4中のSnをNb線1に拡散させることによって、Nb線1の表面近傍にNb Snを生成させるものであるが、このときNb線1の全てを完全にNb Sn化させずに、Nb線1の中央部に延性で強度の高い残存Nb芯を残留させ、周囲のみNb Sn化させる手法が用いられる。即ち、超電導マグネットで磁場を発生させる場合、マグネットを構成する超電導線材にはフープ力と呼ばれる外向きの力が働き、Nb線1の全体を全てNb Snに反応させた場合、このNb Snは金属間化合物で脆いため、ときにはフープ力によりNb Snに割れが発生し、超電導線材ひいてはマグネットの特性を大きく劣化させることがある。このような劣化を防ぐため、Nb線1の全てを完全にNb Sn化させずに、Nb線1の中央部に延性で強度の高い残存Nb芯を残留させ、周囲のみNb Sn化させる手法を用いているのである。
【0008】
上記残存Nb芯は、線材断面内での残留の仕方が不均一であれば、電磁応力等の外力によって生じる歪みのために、臨界電流密度Jcやn値等の劣化が著しくなり、最終的には超電導マグネットの永久電流モードにおける運転電流減衰を招くことになる。従って、この残存Nb芯の残留量は、線材断面において均一であることが望ましい。
【0009】
しかしながら、従来の様に最終熱処理前に均一な断面積のNb線1を埋設した線材では、内方側と外方側の夫々のNb線1における周囲のSn量が異なっているので、Sn量の多い外方側では残存Nb芯が少なくなるかほとんど残らず、最終熱処理後に残存Nb芯を均一にすることは困難であった。
【0010】
ところでNMR装置に用いられる超電導マグネットは、極めて高い精度の磁場の空間的均一度と時間的安定度が要求される。前者はマグネットの設計に依存する課題であり、後者は使用する超電導線材の性能に大きく依存する事項である。即ち、磁場の時間的不安定性は、超電導線材中に流れる永久電流の減衰によって生じるからである。このような現象は、NbTi超電導線材に比べてより高磁場で使用されるNb Sn線材でより顕著になっている。一般に使用されるNb Sn超電導線材における約0.1〜100ppm /h 程度の減衰は、これまでの応用機器にとってはそれほど問題にならなかったのであるが、特にNMR装置においてはわずかな減衰であっても、分析機器としての性能を大きく劣化させることになり、極めて重大な問題である。この欠点は、NMR装置の超電導マグネットにおいては永久電流の減衰、すなわち磁場のわずかな減衰(約0.1〜100ppm /h )として現れることが判明した。ところが、上述した如くこの減衰が分析機器としての性能を大きく劣化させることになり、これまでのNb Sn超電導線材はNMR装置用超電導線材として若干の問題を有している。
【0011】
本発明は、上記の様な従来のNb Sn超電導線材の有する技術的課題を解決する為になされたものであって、その目的は、最終熱処理後に強度メンバーとしての残存Nb芯を均一に分散させることによって、臨界電流密度Jcやn値等の劣化を防ぎ、ひいては永久電流の減衰等の問題を生じることのない様な、NMR装置用超電導マグネットの素材として有用なNb Sn超電導線材、およびその様なNb Sn超電導線材を製造する為の有用な方法を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成し得た本発明方法とは、線・棒状の安定化銅、円筒状の拡散バリア層、略円筒状のCu−Sn基合金製内部層、Cu−Sn基合金製線状母材に複数のNb線を埋設した一次スタック材を円筒状に複数束ねた線材群、および円筒状のCuまたはCu−Sn基合金製最外層を、半径方向中心側から外側に向かって上記々載順序で配置して二次スタック材を構成し、該二次スタック材を伸線加工した後、熱処理して前記Nb線の表面近傍にNb Snを生成させるNb Sn超電導線材の製造方法において、中心からr ,r (但し、r >r )の距離にある一次スタック材に埋設されたNb線の断面積比を、夫々t(r ),t(r )とすると共に、中心から最外方側および最内方側までの夫々の距離rout ,rinにある一次スタック材に埋設されたNb線の断面積比を、夫々t(rout),t(rin)としたとき、これらが下記(1)式および(2)式を満足する様に二次スタック材を構成して前記熱処理を行なう点に要旨を有するNb Sn超電導線材の製造方法である。
t(r )≧t(r ) …(1)
t(rout )>t(rin) …(2)
【0013】
また上記目的を達成し得た本発明のNb Sn超電導線材とは、Nb Sn超電導線材中に分散して存在する残存Nb芯が下記(3)式を満足する点に要旨を有するものであり、このようなNb Sn超電導線材は、例えば上記のような方法によって得られる。
0.05≦σ/x≦0.4 …(3)
但し、σ:残存Nb芯の直径の標準偏差
x:残存Nb芯の直径の平均値
【0014】
【作用】
本発明は上述の如く構成されるが、要するに、周囲にSn量の少ない内方側にNb線1の断面積比の小さくする様にすると共に、Sn量の多い外方側にNb線1の断面積比が大きくなる様にして一次スタック材を配置して、二次スタック材を構成し、この二次スタック材を最終熱処理すれば、残存Nb芯をできるだけ均一に残したNb Sn超電導線材が製造でき、この超電導線材は希望する特性を具備していることを見いだし、本発明を完成したものである。
【0015】
本発明は上記の如く、基本的には外方側になるにつれて断面積比が大きくなる様にしたものであるが、線材の全ての領域においてこの要件を満足させることは、その構成を達成する為の工程が複雑になる恐れがある。そこで本発明では、後記実施例に示す様に、例えば内部層、中間層および外層部の3つの部分に別けた如くに見られる様に、距離r ,r が違っていても同一断面積比であり得ることを想定し、上記(1)式で等記号(=)についても含めた。但し、この場合においても、最終的には上記(2)式を満足する必要があるので、本発明の要件として上記(2)式を規定した。
【0016】
尚上記「Nb線の断面積比」とは、一次スタック材5中に占めるNb線の断面積比を意味し、中心からrの位置にある一次スタック材5におけるCu−Sn基合金部分(Cu−Sn基合金製管2を用いる場合はその部分も含む)の断面積をSBZ(r)、Nb線1の断面積をSNB(r)としたときに、下記(4)式で定義つけられるものである。
t(r)=SNB(r)/[SNB(r)+SBZ(r)] …(4)
【0017】
従来法によって製造したNb Sn超電導線材におけるSn濃度の半径方向の分布を図3に示す。ここでは、線材群10を、内層部、中層部および外層部の3つの部分に分割した。反応後の線材群10のSn濃度を見ると、内層部から外層部になるにつれてSn濃度が増加していることがわかる。従って、生成されるNb Snの量も外層部の方が内層部よりも多くなり、残存Nb芯は外層部の方が少なくなっている。
【0018】
本発明法によって製造したNb Sn超電導線材における典型的なSn濃度の半径方向の分布を図4に示す。本発明法では、一次スタック材5のNb線の断面積比に半径方向で分布をもたせているので、反応前(最終熱処理前)の線材群10におけるSn濃度に勾配が形成されている。この為に、反応後(最終熱処理後)には、線材群10内でのSn濃度分布はほぼ均一になっていることがわかる。
【0019】
また、Nb Sn超電導線材中に分散して存在する残存Nb芯が前記(3)式を満足する様な残存Nb芯の分散度合いが均一なNb Sn超電導線材が得られ、この様な線材は希望する超電導特性を発揮するのである。
【0020】
このように本発明によれば、最終熱処理後の残存Nb芯の断面積を均一にすることができ、マグネット化後に励磁によって超電導線材に付加される応力が線材内の残存Nb芯に均一に分担されるので、Nb Snフィラメントの断線率を低く抑えることができる様になる。このことは、超電導線材に発生する歪みによる臨界電流密度Jcやn値等の劣化を防ぎ、特に永久電流の減衰等の問題を生じることなく、大きな電磁応力の印加される高磁場でのNb Sn超電導線材の使用を容易にすることを意味する。
【0021】
尚前記n値は超電導状態から、常電導への転移の鋭さを示す量であり、この値はフィラメントの均一加工の度合いを反映し、大きい方が特性的に優れていると言われているものである。即ち、超電導線材に電流を流していくと、ある電流値(臨界電流)以上では抵抗が発生し、電圧を生じるのであるが、このときの電流と発生電圧の関係は経験的に下記(5)式の様な近似式で表わされ、この式の中のnの値をn値と呼ぶ。
V=V (I/Ic) …(5)
但し、V :発生電圧
:定数
Ic:臨界電流
【0022】
以下本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
【0023】
【実施例】
実施例1
図5に示す手順によって本発明の超電導線材を作成した。まずCu−13%Sn−0.3%Tiの組成をもつCu−Sn基合金管2にNb線1を埋設して、断面減少加工を施した後、六角形に成形して単芯線3を作製した。このとき、前記(4)式で規定される断面積比t(r)が、0.22,0.42,0.54の3種類のものを作製した。これを複数本づつスタック(一次スタック)し、Cu−13%Sn−0.3%Tiの組成をもつCu−Sn基合金製母材4に埋設して、断面減少加工を施した後、六角形に成形して一次スタック材5を作製した。
【0024】
次に、複数の一次スタック材5をCu−13%Sn−0.3%Tiの組成をもつCu−Sn基合金管(最外層9)に挿入して、二次スタック材11を組み立てた。ここで中心部の3層構造部材は、Cu−13%Sn−0.3%Ti組成の合金パイプ(内部層7)に、Taパイプ(拡散バリア層8)および無酸素銅(安定化銅6)を挿入したものを用いた。また一次スタック材5は、図5に示す様に、内層部に断面積比t(r)が0.22のものを、中層部に断面積比t(r)が0.42のものを、外層部に断面積比t(r)が0.54のものを夫々配置した。得られた二次スタック材11に断面減少加工を施し、線径0.7mmφの線材とした。
【0025】
一方、比較の為に、図6に示す様な従来と同様の方法によって、二次スタック材11を組み立てた。即ち、前記断面積比t(r)が0.42の単芯線3を複数本スタックして一次スタック材5を作製する以外は、上記と同様にして二次スタック材11を組み立てた。そして、これに断面減少加工を施して線径0.7mmφの線材とした。
【0026】
これらの線材に、680℃で50時間の最終熱処理(Nb Sn生成熱処理)を施した後、各層内の残存Nb芯の直径を電子顕微鏡で観察した。その結果を、下記表1に示すが、従来法に比べて本発明法によって作製した線材に方が残存Nb芯の分布が均一であることがわかる。
【0027】
【表1】
Figure 0003608232
【0028】
次に、超電導線材の臨界電流密度Jcやn値等に及ぼす歪みの影響について測定を行った。その結果を従来法で作製した線材と比較して図7に示すが、本発明法によって作製した超電導線材は、従来の方法によって作製した超電導線材に比べ、臨界電流密度Jcやn値等の超電導特性が向上すると共に、耐歪み特性が向上していることがわかる。
【0029】
更に、これらに2種類の線材を用いてマグネットを構成し、永久電流モードでの電流減衰の程度(ドリフト量)を測定した。その結果、従来法によって作製した線材で構成したマグネットのドリフト量は0.045ppm/hであったのに対し、本発明法によって作製した線材によって構成したマグネットではドリフト量は0.008ppm/hであった。このことから、本発明方法は、超電導マグネットの永久電流モードでの運転電流減衰の低減に有効であることがわかる。
【0030】
実施例2
図8に示す手順によって本発明の超電導線材を作製した。まずCu−13%Sn−0.3%Tiの組成をもつCu−Sn基合金製線状母材4に、複数のNb線1を埋設して、断面減少加工を施した後、六角形に成形して一次スタック材5を作製した。このとき、前記(4)式で規定される断面積比t(r)が、0.22,0.42,0.54の3種類のものを作製した。
【0031】
次に、複数の一次スタック材5をCu−13%Sn−0.3%Tiの組成をもつCu−Sn基合金管(最外層9)に挿入して、二次スタック材11を組み立てた。ここで中心部の3層構造部材は、Cu−13%Sn−0.3%Ti組成の合金パイプ(内部層7)に、Taパイプ(拡散バリア層8)および無酸素銅(安定化銅6)を挿入したものを用いた。また一次スタック材5は、図8に示す様に、内層部に断面積比t(r)が0.22のものを、中層部に断面積比t(r)が0.42のものを、外層部に断面積比t(r)が0.54のものを夫々配置した。得られた二次スタック材11に断面減少加工を施し、線径0.7mmφの線材とした。
【0032】
一方、比較の為に、図9に示す様な従来と同様の方法によって、二次スタック材11を組み立てた。即ち、前記断面積比t(r)が0.42の一次スタック材5を用いる以外は、上記と同様にして二次スタック材11を組み立てた。そして、これに断面減少加工を施して線径0.7mmφの線材とした。。
【0033】
これらの線材に、680℃で50時間の最終熱処理(Nb Sn生成熱処理)を施した後、各層内の残存Nb芯の直径を電子顕微鏡で観察した。その結果を、下記表2に示すが、従来法に比べて本発明法によって作製した線材に方が残存Nb芯の分布が均一であることがわかる。
【0034】
【表2】
Figure 0003608232
【0035】
次に、これらに2種類の線材を用いてマグネットを構成し、永久電流モードでの電流減衰の程度(ドリフト量)を測定した。その結果、従来法によって作製した線材で構成したマグネットのドリフト量は0.025ppm/hであったのに対し、本発明法によって作製した線材によって構成したマグネットではドリフト量は0.007ppm/hであった。このことから、本発明方法は、超電導マグネットの永久電流モードでの運転電流減衰の低減に有効であることがわかる。
【0036】
実施例3
図10および11に示す手順で本発明による超電導線材を作製した。まずCu−13%Sn−0.3%Tiの組成をもつCu−Sn基合金製線状母材4に、複数のNb線1を埋め込み断面減少加工した後、六角成形した一次スタック材5を作製した。このとき、図10に示す様に、前記断面積比t(r)が0.20,0.45,0.60の3種類の組のもの(これを本発明法Aと呼ぶ)と、図11に示す様に、前記断面積比t(r)が0.22,0.47,0.55の3種類の組のもの(これを本発明法Bと呼ぶ)の2組を作製した。
【0037】
これら2組の一次スタック材を、Cu−13%Sn−0.3%Tiの組成をもち内径の異なる2つの合金管(最外層9および内部層7)中に、内層部から外層部にかけて断面積比t(r)の小さいものから順にスタックし(図10および図11参照)、中央部に無酸素銅(安定化銅)を、またその周囲にTaからなる拡散バリヤ層8を設けて断面減少加工を施し、線径0.7mmの線材とした。これら2種類の線材に680℃で50時間の熱処理を施し、各線材の各層内の残存Nb芯を電子顕微鏡で観察した。その結果を表3に示す。
【0038】
【表3】
Figure 0003608232
【0039】
また、これらの線材を用いてマグネットを作製してドリフト量を測定した。以上の結果を上記実施例1、2の結果とあわせて図12に示す。このグラフから、比の値(σ/x)が0.05〜0.4の範囲内ではドリフト量0.01ppm/hという極めて高い磁場安定度が実現できていることがわかる。この結果から、本発明法は超電導マグネットの永久電流モードでの電流減衰の低減に有効な線材の提供を可能にすることがわかる。
【0040】
【発明の効果】
本発明は以上の様に構成されており、最終熱磁処理後の超電導線材の残存Nb芯の分布を均一にすることができる様になった。これによって、Nb Snの超電導線材強度を高め、歪みによる臨界電流密度Jcやn値の劣化を防止することができると共に、臨界電流密度Jcやn値自体の向上も達成することができる様になる。また本発明の超電導線材は、優れた超電導マグネットの構成素材となり得るものであり、これによって分析、医療等の幅広い分野における機器の性能向上が期待できる。
【図面の簡単な説明】
【図1】ブロンズ法の手順を説明する為の概略図である。
【図2】ブロンズ法の他の手順説明する為の概略図である。
【図3】従来法によって製造したNb Sn超電導線材におけるSn濃度の半径方向の分布を示すグラフである。
【図4】本発明法によって製造したNb Sn超電導線材における典型的なSn濃度の半径方向の分布を示すグラフである。
【図5】実施例1で行なった本発明法の手順を説明する為の概略図である。
【図6】実施例1で行なった従来法の手順を説明する為の概略図である。
【図7】超電導線材の臨界電流密度Jcやn値等に及ぼす歪みの影響について示したグラフである。
【図8】実施例2で行なった本発明法の手順を説明する為の概略図である。
【図9】実施例2で行なった従来法の手順を説明する為の概略図である。
【図10】実施例3で行なった本発明法Aの手順を説明する為の概略図である。
【図11】実施例3で行なった本発明法Bの手順を説明する為の概略図である。
【図12】σ/xとドリフト量の関係を示すグラフである。
【符号の説明】
1 Nb線
2 Cu−Sn基合金製管
3 単芯線
4 Cu−Sn基合金製線状母材
5 一次スタック材
6 無酸素銅(安定化銅)
7 内部層
8 NbまたはTa層(拡散バリア層)
9 外層ケース(最外層)
10 線材群
11 二次スタック材

Claims (1)

  1. NbSn超電導線材中に分散して存在する残存Nb芯が下記(3)式を満足することを特徴とするNbSn超電導線材。
    0.05≦σ/x≦0.4 ・・・(3)
    但し、σ:残存Nb芯の直径の標準偏差
    x:残存Nb芯の直径の平均値
JP27679794A 1994-11-10 1994-11-10 Nb3Sn超電導線材 Expired - Fee Related JP3608232B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27679794A JP3608232B2 (ja) 1994-11-10 1994-11-10 Nb3Sn超電導線材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27679794A JP3608232B2 (ja) 1994-11-10 1994-11-10 Nb3Sn超電導線材

Publications (2)

Publication Number Publication Date
JPH08138468A JPH08138468A (ja) 1996-05-31
JP3608232B2 true JP3608232B2 (ja) 2005-01-05

Family

ID=17574519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27679794A Expired - Fee Related JP3608232B2 (ja) 1994-11-10 1994-11-10 Nb3Sn超電導線材

Country Status (1)

Country Link
JP (1) JP3608232B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109961901B (zh) * 2017-12-25 2021-06-01 西部超导材料科技股份有限公司 一种多芯高锡青铜/Nb复合棒的制备方法

Also Published As

Publication number Publication date
JPH08138468A (ja) 1996-05-31

Similar Documents

Publication Publication Date Title
JP2013062239A (ja) Nb3Sn超電導線材及びその製造方法
JP2008091136A (ja) NbTi系超電導線材
JPH0268820A (ja) ワイヤ又はケーブル形態の電気導線
JP2009211880A (ja) 内部Sn法Nb3Sn超電導線材およびそのための前駆体
JP4185548B1 (ja) Nb3Sn超電導線材およびそのための前駆体
JP4227143B2 (ja) Nb3Sn超電導線材およびそのための前駆体
EP2466660B1 (en) Precursor for a Nb3Sn superconductor wire, method for manufacturing the same, and Nb3Sn superconductor wire
JP6247813B2 (ja) NbTi系超電導線材
JP6585519B2 (ja) Nb3Sn超電導線材製造用前駆体、およびNb3Sn超電導線材の製造方法
JP2007128686A (ja) 内部拡散法Nb3Sn超電導線材
JP3608232B2 (ja) Nb3Sn超電導線材
JP2014072039A (ja) Nb3Sn超電導線材製造用前駆体およびNb3Sn超電導線材
JP2910586B2 (ja) Nb▲3▼Sn超電導線材
JP2009059652A (ja) ブロンズ法Nb3Sn超電導線材およびその前駆体
JP3754522B2 (ja) Nb▲3▼Sn超電導線材
JP5164815B2 (ja) Nb3Sn超電導線材製造用前駆体およびNb3Sn超電導線材
JP4045082B2 (ja) 超電導線材
JP3182978B2 (ja) 永久電流で運転されるマグネット用Nb▲3▼Sn超電導線材およびその製造方法
JP2019179674A (ja) Nb3Sn超電導線材用前駆体、Nb3Sn超電導線材及びモジュール
JP2018163738A (ja) NbTi系超電導線材、及びNbTi系超電導線材の製造方法
JP2004152677A (ja) 高強度超電導線材
JPH10321058A (ja) 交流用超電導導体
JPH11353961A (ja) Nb3Sn化合物超電導体の前駆線材およびその製造方法、Nb3Sn化合物超電導導体の製造方法、並びにNb3Sn化合物超電導コイルの製造方法
JP6078501B2 (ja) Nb3Sn超電導線材製造用前駆体
Scanlan et al. Multifilamentary Nb 3 Sn for superconducting generator applications

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees