JP3592973B2 - 熱処理装置 - Google Patents

熱処理装置 Download PDF

Info

Publication number
JP3592973B2
JP3592973B2 JP30252899A JP30252899A JP3592973B2 JP 3592973 B2 JP3592973 B2 JP 3592973B2 JP 30252899 A JP30252899 A JP 30252899A JP 30252899 A JP30252899 A JP 30252899A JP 3592973 B2 JP3592973 B2 JP 3592973B2
Authority
JP
Japan
Prior art keywords
radiation intensity
reflectance
heat treatment
substrate
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30252899A
Other languages
English (en)
Other versions
JP2001127000A (ja
Inventor
仁秀 野崎
清 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP30252899A priority Critical patent/JP3592973B2/ja
Publication of JP2001127000A publication Critical patent/JP2001127000A/ja
Application granted granted Critical
Publication of JP3592973B2 publication Critical patent/JP3592973B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板、液晶表示装置用ガラス基板、フォトマスク用ガラス基板、光ディスク用基板等(以下、「基板」と称する)に対し熱処理を行う熱処理装置に関する。
【0002】
【従来の技術】
従来より、基板の製造工程においては、種々の熱処理が行われている。基板に対して熱処理を行う熱処理装置としては、例えば、光照射によって基板の加熱を行う光照射型の熱処理装置(いわゆるランプアニール)が用いられている。
【0003】
このような光照射型の熱処理装置において基板の温度を測定する際には、基板と反射板との間の多重反射効果により増幅した光を放射温度計で計測し、その光量から温度を決定する方法が主流となっている。そのときに問題となるのが測定対象、すなわち熱処理中の基板の放射率である。基板の放射率は、その材質や処理内容に依存するものであるため、温度測定の都度求めることが望ましい。
【0004】
このため、本発明者は、反射板側の反射率を異ならすことで2つの状態を作り出し、その2つの状態から基板の放射率と温度とを未知数とした連立方程式を作成し、これを解くことにより基板の温度を算出する技術を提案している。
【0005】
【発明が解決しようとする課題】
かかる技術においては、後述するような異なる2つの反射率領域を有する回転式セクタを回転させ、放射温度計がいずれの反射率領域に対向するかによって反射板側の実効反射率を変化させ、異なる2つの状態を作り出している。
【0006】
しかしながら、従来においては、光量の計測時に放射温度計が対向する回転式セクタ内の位置を常に一定にしておくことが困難であったため、計測の都度放射温度計が対向する回転式セクタ内の位置が異なって測定条件が変化し、これに起因して測定結果である温度にも誤差が生じるという問題があった。
【0007】
本発明は、上記課題に鑑みてなされたものであり、安定した測定条件の下で基板の温度を計測することができる熱処理装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するため、請求項1の発明は、基板に熱処理を施す熱処理装置において、基板を保持する保持手段と、前記保持手段に保持された基板を加熱する熱源と、前記保持手段に保持された基板に対向して配置されるとともに、穴を備え、かつ基板からの熱放射を反射する反射板と、前記穴に対して基板と反対側または前記穴の内部に設けられているとともに、基板と前記反射板との間の熱放射を受けて放射強度を計測する放射強度計測手段と、前記保持手段に保持された基板に対向する前記穴の開口部と前記放射強度計測手段との間に設けられるとともに、反射率の異なる複数の反射率領域を有し、前記複数の反射率領域のうちのいずれが前記放射強度計測手段に対向するかによって前記反射板の実効反射率を複数の実効反射率の間で切り替える実効反射率切替板と、前記実効反射率切替板を回転させることによって、前記複数の反射率領域のそれぞれを順次に前記放射強度計測手段に対向させる回転手段と、前記放射強度計測手段が対向している前記実効反射率切替板内の反射率領域を検知する対向領域検知手段と、前記対向領域検知手段による検知内容に基づいて、前記放射強度計測手段が前記実効反射率切替板内の所定の計測位置に対向しているときに放射強度を計測するように前記放射強度計測手段を制御し、前記放射強度計測手段に前記複数の実効反射率のそれぞれについて放射強度を計測させる制御手段と、前記放射強度計測手段によって前記複数の実効反射率のそれぞれについて計測された複数の放射強度に基づいて基板の温度を算出する温度算出手段と、を備えている。
【0009】
また、請求項2の発明は、請求項1の発明に係る熱処理装置において、前記対向領域検知手段に、前記回転手段によって回転される前記実効反射率切替板内の所定の反射率領域に前記放射強度計測手段が対向しているときにタイミング信号を活性化させ、前記制御手段に、前記タイミング信号が活性化されてから所定時間の経過後に前記放射強度計測手段に放射強度を計測させている。
【0010】
また、請求項3の発明は、請求項2の発明に係る熱処理装置において、前記実効反射率切替板に、高反射率領域およびそれよりも反射率の低い低反射率領域を有させ、前記対向領域検知手段に、前記回転手段によって回転される前記実効反射率切替板内の前記高反射率領域または前記低反射率領域のいずれかに前記放射強度計測手段が対向しているときにタイミング信号を活性化させている。
【0011】
また、請求項4の発明は、請求項3の発明に係る熱処理装置において、前記高反射率領域および前記低反射率領域のそれぞれにスリットを有させ、前記制御手段に、前記タイミング信号が活性化されてから第1の時間が経過後に前記放射強度計測手段が前記高反射率領域のスリットに対向しているときの放射強度を前記放射強度計測手段に計測させ、第2の時間が経過後に前記放射強度計測手段が前記実効反射率切替板内のスリット以外の部分に対向しているときの放射強度を前記放射強度計測手段に計測させ、第3の時間が経過後に前記放射強度計測手段が前記低反射率領域のスリットに対向しているときの放射強度を前記放射強度計測手段に計測させている。
【0012】
また、請求項5の発明は、請求項2から請求項4のいずれかの発明に係る熱処理装置において、前記制御手段に、前記放射強度計測手段に放射強度を複数回計測させた後、その計測結果を平均化させている。
【0013】
また、請求項6の発明は、請求項2から請求項5のいずれかの発明に係る熱処理装置において、前記実効反射率切替板の回転数が一定の値となるように前記回転手段を制御する回転数制御手段をさらに備えている。
【0014】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。
【0015】
<1.熱処理装置の全体構成>
図1は本発明にかかる熱処理装置の一例を示す縦断面図である。熱処理装置1は主に炉体10、ランプ20、石英ガラス30、基板保持回転部40、温度計測部50、制御部60、ランプドライバ80、モータドライバ90を備えている。
【0016】
炉体10は上部をリフレクタ110、下部をハウジング120とする円筒形状の炉体であり、それらの内部等には冷媒を通して冷却する多数の冷却管130が設けられている。また、炉体10の側面には基板搬出入口EWが設けられており、加熱処理の際には図示しない外部搬送装置により基板Wの搬出入が行われる。
【0017】
ランプ20は「熱源」に相当し、リフレクタ110の下面に多数設けられ(図1には一部にのみ参照番号を記載)、点灯時にはその熱放射により基板Wを加熱する。
【0018】
石英ガラス30はランプ20の下方に設けられ、その熱放射による放射光を透過する。
【0019】
基板保持回転部40は、基板Wの周縁部分を全周に渡って保持する保持リング410が、その直径より大きな内径の円筒の支持脚420により支持されるとともに、それら支持脚420の下端には、その外周に沿ってベアリング430が設けられている。そして、ベアリング430の外周に設けられたギアに基板回転モータ440の回転軸のギア441がかみ合っており、その駆動により保持リング410が鉛直方向を軸として回転可能となっている。なお、本実施形態では、基板保持回転部40が保持手段に相当する。
【0020】
温度計測部50は、基板Wからの熱放射の多重反射を考慮した放射強度(放射エネルギー)を計測し、それを基に基板温度等を求め、それらの信号を制御部60に送る。なお、温度計測部50による基板温度測定の具体的な内容については後に詳述する。
【0021】
制御部60は内部にCPU、数値演算プロセッサ、A/D,D/Aコンバータおよびメモリを備え、ランプドライバ80にランプ20の温度制御信号を送ったり、モータドライバ90に所定のタイミングで駆動信号を送ったりする。また、制御部60は温度計測部50と電気的に接続されており、プローブ526を制御して温度計測を行わせるが、この具体的な内容についても後に詳述する。
【0022】
ランプドライバ80は制御部60からの温度制御信号を受けて、それに応じた電力をランプ20に供給する。
【0023】
モータドライバ90は制御部60からの駆動信号を受けて、それに応じた電力を基板回転モータ440に供給する。
【0024】
次に、温度計測部50の構成についてさらに詳細に説明する。図1に示すように、温度計測部50は主に、反射板510、計測ユニット520、センサユニット528、モータドライバ530、演算部550を備えている。
【0025】
図2は温度計測部50における計測ユニット520付近の断面模式図である。温度計測部50においてハウジング120上面には、基板保持回転部40に保持された基板Wに対向して反射板510が配置されており、その反射板510には、それを貫通する円筒形状の穴510aが設けられている。さらに、その穴510aの下方のハウジング120内には計測ユニット520のケーシング521が取り付けられ、そのケーシング521の上部が穴510a内面に密着するとともに、ケーシング521の上部には円筒状の空洞部CPが設けられている。
【0026】
また、ケーシング521内面は全面にアルミニウム等の金属を蒸着することにより反射率が高められているとともに、ケーシング521の内部にはハウジング120内部に設けられているものと同様の冷却管130が設けられており、これらによりケーシング521内部の温度上昇を抑えて、基板温度の測定精度を高めている。
【0027】
また、空洞部CPの上端部には石英ガラス板522が設けられ、その石英ガラス板522の下面にフィルタ523が密着して設けられている。フィルタ523は石英ガラス板522の下面全体にTiO等の金属酸化物を蒸着したものである。フィルタ523は、測定波長の近傍の波長域の放射光のみ透過し、他の波長域の放射光はほぼ完全に反射する性質を有している。これにより、熱放射による放射光のケーシング521内への進入を必要最小限とすることができるので、ケーシング521内部やプローブ526が熱せられにくく、高い測定精度を実現することができる。
【0028】
なお、前述のように、基板保持回転部40の支持脚420は円筒状であるので、保持リング410により基板Wを保持する際には、それらと反射板510との間に閉空間を形成する。そのため、ランプ20からの熱放射が直接またはハウジング120の内面等により反射し、基板Wを経ないで穴510aに進入してプローブ526に至るのを防いでいる。これにより、プローブ526による放射強度の計測を正確なものにしている。
【0029】
また、図2に示すように、ケーシング521内の空洞部CPの下端近傍には回転式セクタ524がその板面をほぼ水平にして、図示しない支持部材によりケーシング521内に支持されたモータ525に取り付けられている。そして、回転式セクタ524は反射板510の穴510aの開口部とプローブ526との間に設けられている。なお、本実施形態においては、回転式セクタ524が「実効反射率切替板」に相当し、モータ525が「回転手段」に相当する。
【0030】
図3は回転式セクタ524の一例を示す平面図である。本実施形態における回転式セクタ524は円盤形状であり、その主面が直交する2本の直径によって4つの領域に等分に分割されている。4つの領域のうち隣り合わない2つの扇形部分である反射部RPには鏡面処理が施されるとともに、弧状のスリットSLが設けられている。一方、他の2つの扇形部分である吸収部NPには黒化処理が施されるとともに、上記と同様の弧状のスリットSLが設けられている。鏡面処理が施された反射部RPは光を良好に反射する高反射率領域であり、黒化処理が施された吸収部NPは光を吸収する低反射率領域である。従って、回転式セクタ524は、その形状は4つの領域に分割されているものの、反射率という観点からは実質的に高反射率領域と低反射率領域との2つの反射率領域に分割されているものである。
【0031】
回転式セクタ524の中心は、モータ525の回転軸525aに取り付けられている(図2参照)。そのため、モータ525の回転により回転式セクタ524は、その板面に平行な平面内で回転自在となっている。モータ525はモータドライバ530に電気的に接続され、モータドライバ530は制御部60に電気的に接続されている。モータドライバ530は制御部60からの駆動信号を受けて、それに応じた電力をモータ525に供給し、回転式セクタ524の回転数を調整する。すなわち、モータドライバ530は「回転数制御手段」に相当する。
【0032】
モータドライバ530からの指示に従ったモータ525の駆動により回転式セクタ524が回転すると、空洞部CPの下方に反射部RPが位置する状態と、吸収部NPが位置する状態とが交互に生じる。そして反射部RPまたは吸収部NPのいずれが空洞部CPの下方に位置するかによって、穴510aに進入した放射光の上方への反射の状況が異なるため、反射部のRPのスリットSLを通る光量と吸収部NPのスリットSLを通る光量に差ができる、すなわち後述する実効反射率が異なるものとなる。
【0033】
図3に示すように、本実施形態における回転式セクタ524は回転対称の形状であるため回転の安定性が高い。そして、回転式セクタ524が回転することによって熱放射による放射光の透過および反射の状況が交互に入れ替わる。なお、回転式セクタ524は図3に示した形態に限定されるものではなく、熱放射による放射光の透過および反射の状況を異ならせることが可能な形態であれば良い。例えば、黒化処理のなされたベース面上に切り欠き部を有する回転可能なセクタを配置するようにしても良い。また、回転式セクタ524は4つの領域に分割されているものに限定されず、例えば6分割等の他の複数の領域に分割されているものであっても良い。
【0034】
図2に戻り、プローブ526は、いわゆる放射温度計ロッドであり、入射した放射光を電圧、すなわち放射強度を表す電気信号に変換して出力し、演算部550に送る(図1参照)。プローブ526は、穴510aに対して基板Wと反対側に設けられている。そして、回転式セクタ524がモータ525によって回転されると、プローブ526は反射部RPのスリットSL、スリットSLが存在しない遮光部分CL、吸収部NPのスリットSLに順次に対向するように構成されている(図3参照)。
【0035】
また、タイミングセンサ529は、色の差を検出することが可能であり、検出した色の差をセンサユニット528に伝達し、センサユニット528は、それを電気信号に変換する(図1参照)。すなわち、タイミングセンサ529は、回転式セクタ524のいずれの反射率領域に対向しているかを検知することができる。センサユニット528は、タイミングセンサ529からの信号に応じてタイミング信号を発生して制御部60に伝達する。なお、タイミングセンサ529は、色の差を検出するものに限らず、反射率の差を検出するものであっても良い。
【0036】
タイミングセンサ529は、プローブ526とタイミングセンサ529とを結ぶ線が回転式セクタ524の中心を通過するように、回転式セクタ524の下方に設けられている。但し、回転式セクタ524の中心からタイミングセンサ529までの距離とプローブ526までの距離とは異なる。すなわち、タイミングセンサ529は、回転式セクタ524の中心に対してプローブ526と点対称な位置から若干外側(または内側)に配置されている。このようにしているのは、プローブ526と点対称な位置に配置すると、タイミングセンサ529がスリットSLに対向することとなり、回転式セクタ524の色(または反射率)を正確に検出することができなくなるためである。
【0037】
図3に示すように、回転式セクタ524が直交する2本の直径によって4つの領域に等分に分割されているとともに、プローブ526とタイミングセンサ529とを結ぶ線が回転式セクタ524の中心を通過するため、プローブ526とタイミングセンサ529とは常に同じ反射率領域に対向することとなる。従って、タイミングセンサ529が高反射率領域である反射部RPを検出したときには、プローブ526も高反射率領域である反射部RPに対向している。一方、タイミングセンサ529が低反射率領域である吸収部NPを検出したときには、プローブ526も低反射率領域である吸収部NPに対向している。すなわち、タイミングセンサ529によってプローブ526が対向している回転式セクタ524の反射率領域を検知できるのである。なお、タイミングセンサ529の配置は本実施形態で説明したものに限定されず、プローブ526が対向している回転式セクタ524の反射率領域を検知できる配置であれば良く、例えば、回転式セクタ524の中心に対してプローブ526と90°の位置に配置しても良いし、また、回転式セクタ524の領域分割の態様に応じて適当な位置に配置すれば良い。
【0038】
演算部550はCPUおよびメモリ551を備えており、プローブ526が検出した基板Wについての放射強度をもとに基板温度を算出する。なお、本実施形態においては、プローブ526が放射強度計測手段に相当し、タイミングセンサ529およびセンサユニット528が対向領域検知手段に相当する。また、処理用プログラムによって実現される演算部550の処理内容が温度算出手段に相当する。
【0039】
<2.熱処理装置における温度計測の原理>
次に、上記構成を有する熱処理装置1における基板Wの温度計測の原理について説明する。
【0040】
一般に、温度Tの灰色体の放射強度L(T)と黒体エネルギーすなわち黒体の放射強度L(T)との関係は次式で表される。
【0041】
【数1】
Figure 0003592973
【0042】
ここで、εは灰色体の放射率であり、一般にε<1である。従って、基板Wの放射率をεとすると、温度Tの基板Wの放射強度L(T)は次式のようになる。
【0043】
【数2】
Figure 0003592973
【0044】
基板Wからの熱放射による放射光は、図4に示すように、基板Wと反射板510との間で反射を繰り返し、いわゆる多重反射が生じる。このとき、計測ユニット520の側から、多重反射による放射強度を計測する場合について考えると、下向きの光(基板Wから反射板510へと向かう光)の光量を合計した値に相当する強度が計測されることとなる。すなわち、反射板510の反射率をR、基板Wの反射率をρとすると、図4からも明らかなように、計測される放射強度Iは次式のような等比級数として表される。
【0045】
【数3】
Figure 0003592973
【0046】
従って、放射強度Iは次式で表される。
【0047】
【数4】
Figure 0003592973
【0048】
数4において、反射板510の反射率Rおよび基板Wの反射率ρはともに0より大きく1よりも小さいため、0<Rρ<1となる。よって、n→∞にすると次式が得られる。
【0049】
【数5】
Figure 0003592973
【0050】
また、基板Wが熱放射による放射光を透過しないと考えると次式が成立する。
【0051】
【数6】
Figure 0003592973
【0052】
従って、結局、計測される強度Iは次式のように表される。
【0053】
【数7】
Figure 0003592973
【0054】
ここで、上述のように、Rは反射板510の反射率であるが、この値は反射板510の形状や表面状態に大きく依存する。このような形状や表面状態等による影響をも総合的に考慮した反射率を実効反射率と称する。実際に計測される放射強度Iは、この実効反射率と、基板Wの放射率および基板Wの温度によって規定されることとなる。特に、反射板510の穴510aの下方に設けられたプローブ526によって計測される放射強度Iを支配する実効反射率を反射板510の実効反射率と呼び、本明細書において単に実効反射率と言うときには反射板510の実効反射率を示すものとする。
【0055】
熱処理装置1において基板Wの温度を計測するときには、実効反射率を異なる2つの値R,Rとすることにより以下に示される2つの強度I,Iをプローブ526によってそれぞれ計測する。
【0056】
【数8】
Figure 0003592973
【0057】
【数9】
Figure 0003592973
【0058】
数8および数9において2つの実効反射率R,Rは装置定数として定められた値である。また、黒体の温度とその黒体エネルギーとの関係を示す関数L(T)についても予め正確に校正されている。従って、プローブ526によって2つの放射強度I,Iを計測すれば、数8および数9は基板Wの温度Tと放射率εについての2元連立方程式となり、これを解くことによって基板Wの温度Tが求められる。
【0059】
ところで、熱処理装置1において、実効反射率を異なる2つの値R,Rとするのは、回転式セクタ524およびモータ525によって実現すれば良い。すなわち、既述したように、モータ525によって回転式セクタ524が回転すると、熱放射による放射光の上方への反射の状況が異なるため、反射部のRPのスリットSLを通る光量と吸収部NPのスリットSLを通る光量に差が生じ、実効反射率が異なる2つの値R,Rの間で切り替わる。
【0060】
2つの実効反射率R,Rが装置定数として定まれば、あとはプローブ526によって2つの放射強度I,Iを正確に計測することが重要となる。そこで、本発明にかかる熱処理装置1においては、基板Wの温度測定を行うの際して、以下に示すようにして測定条件を安定なものとし、放射強度I,Iを正確に計測しているのである。
【0061】
<3.熱処理装置における温度計測方法>
次に、熱処理装置1における基板Wの温度計測方法について説明する。図5は、熱処理装置1における基板Wの温度計測の手順を示すフローチャートである。基板Wの温度計測についての基本的な原理は上述した通りであり、熱処理装置1には既に基板Wが搬入されているものとし、その基板Wの温度を計測する方法について説明する。
【0062】
まず、モータドライバ530からの指示に従ったモータ525の駆動により回転式セクタ524が一定速度で回転する(ステップS1)。回転式セクタ524が回転することにより、プローブ526上を高反射率領域である反射部RPと低反射率領域である吸収部NPとが交互に通過する。より厳密に言えば、反射部RPのスリットSL、スリットSLが存在しない遮光部分CL、吸収部NPのスリットSLにプローブ526が順次に対向することとなる。
【0063】
同様に、タイミングセンサ529も反射部RPと吸収部NPとに順次に対向することとなる。なお、タイミングセンサ529が対向する反射率領域とプローブ526が対向する反射率領域とが同じであることは上述したとおりである。
【0064】
タイミングセンサ529は、回転式セクタ524の色の差を検出し、そのときに対向しているのが反射部RPであるか吸収部NPであるかをセンサユニット528に伝達する。そして、センサユニット528は、タイミングセンサ529が反射部RPに対向しているときに、タイミング信号を活性化して制御部60に伝達する。
【0065】
図6は、放射強度の計測手法を説明するためのタイミングチャートである。図6の上部はセンサユニット528によるタイミング信号を示しており、下部はプローブ526による出力信号を示している。同図では、タイミングセンサ529が対向する領域が低反射率領域である吸収部NPから高反射率領域である反射部RPに移り、タイミング信号が活性化される時刻を”0”としている。タイミング信号が活性化されることは、プローブ526が対向する領域が低反射率領域である吸収部NPから高反射率領域である反射部RPに移ったことを意味している。
【0066】
次に、制御部60が活性化されたタイミング信号を検出する(ステップS2)。図6の例では、時刻”0”に制御部60が活性化されたタイミング信号を検出することとなる。この時点では、プローブ526は吸収部NPと反射部RPとの境界に対向、すなわちスリットSLが存在しない遮光部分CLに対向しているため、プローブ526からの出力(放射強度の計測値)は実質的に”0”である。
【0067】
回転式セクタ524が回転するにつれて、やがてプローブ526は高反射率領域である反射部RPのスリットSLに対向する。そして、プローブ526は反射部のRPのスリットSLを通る光量を検出し、信号として出力する。
【0068】
次に、タイミング信号が活性化されてから時間T1が経過したときに、制御部60からの指示に基づいてプローブ526がその出力V1をサンプリングする(ステップS3)。出力V1は、プローブ526が回転式セクタ524の高反射率領域に対向しているとき、すなわち例えば反射板510の実効反射率が値Rであるときのプローブ526の出力である。時間T1は、タイミング信号が活性化されてからその時間T1が経過したときにプローブ526が反射部RPのスリットSLに対向している状態となるように予め設定され、制御部60内に記憶されている。本実施形態においては、時間T1経過後サンプリングを50回行い、それらを平均することによってプローブ526が反射部RPのスリットSLに対向するときの出力V1としている。このように複数回のサンプリングを行って、それらを平均することによりプローブ526からの出力V1は安定した値となる。
【0069】
なお、サンプリングの回数は50回に限定されるものではなく、出力値の安定に必要な適当な回数とすれば良い。また、時間T1は、複数回のうちの最終回のサンプリングを行う時点においてもなおプローブ526が反射部RPのスリットSLに対向している状態となるように設定しておく必要がある。
【0070】
その後、回転式セクタ524がさらに回転するにつれて、プローブ526はスリットSLが存在しない遮光部分CLに対向するようになる。また、タイミングセンサ529が対向する領域が高反射率領域である反射部RPから低反射率領域である吸収部NPに移り、タイミング信号の活性化状態は終了する。
【0071】
そして、タイミング信号が活性化されてから時間T2が経過したときに、制御部60からの指示に基づいてプローブ526がその出力V0をサンプリングする(ステップS4)。時間T2は、タイミング信号が活性化されてからその時間T2が経過したときにプローブ526がスリットSLが存在しない遮光部分CLに対向している状態となるように予め設定され、制御部60内に記憶されている。このときにも、時間T2経過後サンプリングを50回行い、それらを平均化することによってプローブ526が遮光部分CLに対向するときの出力V0としている。なお、時間T2は、複数回のうちの最終回のサンプリングを行う時点においてもなおプローブ526が遮光部分CLに対向している状態となるように設定しておく必要があるのは上記と同様である。また、出力V0は、プローブ526が遮光部分CLに対向しているときの出力であるため実質的には”0”に等しい。
【0072】
その後、回転式セクタ524がさらに回転するにつれて、プローブ526は低反射率領域である吸収部NPのスリットSLに対向するようになる。そして、タイミング信号が活性化されてから時間T3が経過したときに、制御部60からの指示に基づいてプローブ526がその出力V2をサンプリングする(ステップS5)。出力V2は、プローブ526が回転式セクタ524の低反射率領域に対向しているとき、すなわち例えば反射板510の実効反射率が値Rであるときのプローブ526の出力である。時間T3は、タイミング信号が活性化されてからその時間T3が経過したときにプローブ526が吸収部NPのスリットSLに対向している状態となるように予め設定され、制御部60内に記憶されている。
【0073】
また、上記と同様に、時間T3経過後サンプリングを50回行い、それらを平均することによってプローブ526が吸収部NPのスリットSLに対向するときの出力V2としている。なお、時間T3も、複数回のうちの最終回のサンプリングを行う時点においてもなおプローブ526が吸収部NPのスリットSLに対向している状態となるように設定しておく必要がある。
【0074】
以上のようにして3つの出力V1,V0,V2が得られた後、それらに基づいて演算部550が基板Wの温度を算出する演算を行う(ステップS6〜ステップS8)。
【0075】
まず、(V1−V0)を反射板510の実効反射率が値Rであるときの放射強度Iとし(ステップS6)、(V2−V0)を反射板510の実効反射率が値Rであるときの放射強度Iとする(ステップS7)。出力V0は、プローブ526が遮光部分CLに対向しているときの出力であって、言うなれば0レベルの基準信号(バックグラウンドの出力信号)である。従って、(V1−V0)を実効反射率Rについての放射強度Iとし、(V2−V0)を実効反射率Rについての放射強度Iとすることにより、0レベルによる補正(零点補正)を行っているのである。出力V1をそのまま実効反射率Rについての放射強度とし、出力V2をそのまま実効反射率Rについての放射強度としても良いのであるが、本実施形態のようにした方が0レベルの基準信号による補正、すなわちバックグラウンドによる影響を無くす補正を行っているので、より正確な放射強度を求めることができる。
【0076】
次に、上記の放射強度I、Iに基づいて演算部550が基板Wの温度Tと放射率εとを算出する(ステップS8)。実効反射率R,Rは装置定数として定まっているため、放射強度I、Iが求められれば、上述した数8および数9から基板Wの温度Tと放射率εとを算出することができる。
【0077】
算出された基板Wの温度Tは制御部60に伝達され、制御部60はそれに基づいてランプドライバ80に温度制御信号を送り、ランプ20に供給する電力を調整して基板温度を制御する。
【0078】
その後、さらに回転式セクタ524が回転すると、再びプローブ526が対向する領域が低反射率領域である吸収部NPから高反射率領域である反射部RPに移り、タイミング信号が活性化されて上記と同様の手順が繰り返され(ステップS2〜ステップS8)、新たな基板Wの温度Tが算出される。
【0079】
ところで、回転式セクタ524が一回転するときのタイミング信号のパルス数は一定である。例えば、本実施形態(図3)の場合はパルス数”2”となる。従って、所定のパルス数が検出されるのに要する経過時間を計測することにより、単位時間あたりの回転式セクタ524の回転数を求めることができる。
【0080】
制御部60は、タイミング信号のパルス数をカウントするとともに、その経過時間を計測し、単位時間あたりの回転式セクタ524の回転数を求めてモータドライバ530に伝達する。モータドライバ530は伝達された回転数が予め定められている所定の回転数よりも多い場合はモータ525に供給する電力を減じて回転数を下げ、所定の回転数よりも少ない場合はモータ525に供給する電力を増加して回転数を上げ、回転式セクタ524の回転数が一定の値となるようにモータ525を制御する。これによって、回転式セクタ524の回転数は常に一定に保たれることとなる。
【0081】
以上のようにすれば、タイミング信号が活性化されてから、すなわちプローブ526が対向する領域が低反射率領域である吸収部NPから高反射率領域である反射部RPに移ってから所定時間の経過後にプローブ526からの出力をサンプリングするようにしているので、プローブ526が回転式セクタ524内の常に同じ位置に対向しているときに放射強度が計測されることとなり、測定条件が安定することとなる。従って、基板Wの温度Tの測定結果も誤差の少ないものとすることができる。
【0082】
また、回転式セクタ524の回転数を監視するとともに、モータドライバ530によって回転式セクタ524の回転数が一定の値となるようにしているため、タイミング信号が活性化されてから所定時間の経過後にプローブ526が対向する回転式セクタ524内の位置は常に一定となる。従って、プローブ526が回転式セクタ524内の常に同じ位置に対向しているときに放射強度が計測されることとなり、測定条件が安定する。
【0083】
また、複数回のサンプリングを行って、それらの平均値をプローブ526からの出力値としているため、出力値は安定したものとなり、測定条件が安定することにつながる。
【0084】
さらに、プローブ526が遮光部分CLに対向しているときの出力V0を計測して0レベルの基準信号としているため、バックグラウンドによる影響の無い、より正確な放射強度を求めることができる。
【0085】
<4.変形例>
以上、本発明の実施の形態について説明したが、この発明は上記の例に限定されるものではない。例えば、上記実施形態においては、穴510aに対して基板Wと反対側に放射強度計測手段たるプローブ526を設けていたが、プローブ526は穴510aの内部に設けるようにしても良い。
【0086】
また、上記実施形態においては、タイミングセンサ529が高反射率領域である反射部RPに対向しているときに、タイミング信号を活性化するようにしていたが、これを逆にしてタイミングセンサ529が低反射率領域である吸収部NPに対向しているときに、タイミング信号を活性化するようにしても良い。
【0087】
また、上記実施形態における熱処理装置1は光照射型の熱処理装置であったが、これに限らず、他の方式の熱処理装置であって、多重反射による放射光を測定して基板の温度を計測する装置であれば、本発明にかかる技術を適用することができる。
【0088】
【発明の効果】
以上、説明したように、請求項1の発明によれば、対向領域検知手段による検知内容に基づいて、放射強度計測手段が実効反射率切替板内の所定の計測位置に対向しているときに放射強度を計測するようにしているため、放射強度計測手段が実効反射率切替板内の常に同じ位置に対向しているときに放射強度が計測されることとなり、安定した測定条件の下で基板の温度を計測することができる。
【0089】
また、請求項2の発明によれば、タイミング信号が活性化されてから所定時間の経過後に放射強度計測手段に放射強度を計測させているため、請求項1の発明と同様の効果を確実に得ることができる。
【0090】
また、請求項3の発明によれば、実効反射率切替板内の高反射率領域または低反射率領域のいずれかに放射強度計測手段が対向しているときにタイミング信号を活性化させているため、請求項1の発明と同様の効果を得ることができる。
【0091】
また、請求項4の発明によれば、タイミング信号が活性化されてから第1の時間が経過後に放射強度計測手段が高反射率領域のスリットに対向しているときの放射強度を放射強度計測手段に計測させ、第2の時間が経過後に放射強度計測手段が実効反射率切替板内のスリット以外の部分に対向しているときの放射強度を放射強度計測手段に計測させ、第3の時間が経過後に放射強度計測手段が低反射率領域のスリットに対向しているときの放射強度を放射強度計測手段に計測させているため、0レベルの基準信号を得ることができ、より正確な放射強度を求めることができる。
【0092】
また、請求項5の発明によれば、放射強度計測手段に放射強度を複数回計測させた後、その計測結果を平均化させているため、測定条件をより安定したものにすることができる。
【0093】
また、請求項6の発明によれば、実効反射率切替板の回転数が一定の値となるようにしているため、タイミング信号が活性化されてから所定時間の経過後に放射強度計測手段が実効反射率切替板内の同じ位置に確実に対向することとなり、請求項2の発明と同様の効果を確実に得ることができる。
【図面の簡単な説明】
【図1】本発明にかかる熱処理装置の一例を示す縦断面図である。
【図2】図1の温度計測部における計測ユニット付近の断面模式図である。
【図3】図2の回転式セクタの一例を示す平面図である。
【図4】基板と反射板との間の多重反射を示す図である。
【図5】図1の熱処理装置における基板の温度計測の手順を示すフローチャートである。
【図6】プローブによる放射強度計測手法を説明するためのタイミングチャートである。
【符号の説明】
1 熱処理装置
20 熱源
40 基板保持回転部
50 温度計測部
60 制御部
510 反射板
510a 穴
524 回転式セクタ
525 モータ
526 プローブ
528 センサユニット
529 タイミングセンサ
530 モータドライバ
550 演算部
551 メモリ
W 基板

Claims (6)

  1. 基板に熱処理を施す熱処理装置であって、
    基板を保持する保持手段と、
    前記保持手段に保持された基板を加熱する熱源と、
    前記保持手段に保持された基板に対向して配置されるとともに、穴を備え、かつ基板からの熱放射を反射する反射板と、
    前記穴に対して基板と反対側または前記穴の内部に設けられているとともに、基板と前記反射板との間の熱放射を受けて放射強度を計測する放射強度計測手段と、
    前記保持手段に保持された基板に対向する前記穴の開口部と前記放射強度計測手段との間に設けられるとともに、反射率の異なる複数の反射率領域を有し、前記複数の反射率領域のうちのいずれが前記放射強度計測手段に対向するかによって前記反射板の実効反射率を複数の実効反射率の間で切り替える実効反射率切替板と、
    前記実効反射率切替板を回転させることによって、前記複数の反射率領域のそれぞれを順次に前記放射強度計測手段に対向させる回転手段と、
    前記放射強度計測手段が対向している前記実効反射率切替板内の反射率領域を検知する対向領域検知手段と、
    前記対向領域検知手段による検知内容に基づいて、前記放射強度計測手段が前記実効反射率切替板内の所定の計測位置に対向しているときに放射強度を計測するように前記放射強度計測手段を制御し、前記放射強度計測手段に前記複数の実効反射率のそれぞれについて放射強度を計測させる制御手段と、
    前記放射強度計測手段によって前記複数の実効反射率のそれぞれについて計測された複数の放射強度に基づいて基板の温度を算出する温度算出手段と、
    を備えることを特徴とする熱処理装置。
  2. 請求項1記載の熱処理装置において、
    前記対向領域検知手段は、
    前記回転手段によって回転される前記実効反射率切替板内の所定の反射率領域に前記放射強度計測手段が対向しているときにタイミング信号を活性化し、
    前記制御手段は、
    前記タイミング信号が活性化されてから所定時間の経過後に前記放射強度計測手段に放射強度を計測させることを特徴とする熱処理装置。
  3. 請求項2記載の熱処理装置において、
    前記実効反射率切替板は、高反射率領域およびそれよりも反射率の低い低反射率領域を有し、
    前記対向領域検知手段は、前記回転手段によって回転される前記実効反射率切替板内の前記高反射率領域または前記低反射率領域のいずれかに前記放射強度計測手段が対向しているときにタイミング信号を活性化することを特徴とする熱処理装置。
  4. 請求項3記載の熱処理装置において、
    前記高反射率領域および前記低反射率領域のそれぞれはスリットを有し、
    前記制御手段は、
    前記タイミング信号が活性化されてから第1の時間が経過後に前記放射強度計測手段が前記高反射率領域のスリットに対向しているときの放射強度を前記放射強度計測手段に計測させ、第2の時間が経過後に前記放射強度計測手段が前記実効反射率切替板内のスリット以外の部分に対向しているときの放射強度を前記放射強度計測手段に計測させ、第3の時間が経過後に前記放射強度計測手段が前記低反射率領域のスリットに対向しているときの放射強度を前記放射強度計測手段に計測させることを特徴とする熱処理装置。
  5. 請求項2から請求項4のいずれかに記載の熱処理装置において、
    前記制御手段は、前記放射強度計測手段に放射強度を複数回計測させた後、その計測結果を平均化させることを特徴とする熱処理装置。
  6. 請求項2から請求項5のいずれかに記載の熱処理装置において、
    前記実効反射率切替板の回転数が一定の値となるように前記回転手段を制御する回転数制御手段をさらに備えることを特徴とする熱処理装置。
JP30252899A 1999-10-25 1999-10-25 熱処理装置 Expired - Fee Related JP3592973B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30252899A JP3592973B2 (ja) 1999-10-25 1999-10-25 熱処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30252899A JP3592973B2 (ja) 1999-10-25 1999-10-25 熱処理装置

Publications (2)

Publication Number Publication Date
JP2001127000A JP2001127000A (ja) 2001-05-11
JP3592973B2 true JP3592973B2 (ja) 2004-11-24

Family

ID=17910061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30252899A Expired - Fee Related JP3592973B2 (ja) 1999-10-25 1999-10-25 熱処理装置

Country Status (1)

Country Link
JP (1) JP3592973B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646354B2 (ja) * 2000-04-21 2011-03-09 東京エレクトロン株式会社 熱処理装置及び方法
NL1018086C2 (nl) * 2001-05-16 2002-11-26 Asm Int Werkwijze en inrichting voor het thermisch behandelen van substraten.
JP5562572B2 (ja) * 2009-03-30 2014-07-30 大日本スクリーン製造株式会社 熱処理装置および熱処理方法
JP2010238767A (ja) * 2009-03-30 2010-10-21 Dainippon Screen Mfg Co Ltd 熱処理装置および熱処理方法
JP5819633B2 (ja) * 2011-05-13 2015-11-24 株式会社Screenホールディングス 熱処理装置および熱処理方法
CN114636477A (zh) * 2022-04-07 2022-06-17 北京北方华创微电子装备有限公司 发射率测量装置及方法、半导体加工设备及红外测温方法

Also Published As

Publication number Publication date
JP2001127000A (ja) 2001-05-11

Similar Documents

Publication Publication Date Title
JP5436428B2 (ja) 較正基板および較正方法
KR100342796B1 (ko) 기판온도 측정방법 및 장치
JP4523181B2 (ja) 熱処理チャンバにおけるパイロメータを較正するためのシステムおよび方法
TWI515416B (zh) 檢測溫度的裝置和方法以及用於處理基板的裝置
JPH06341905A (ja) ウエハ温度の測定方法
JP3592973B2 (ja) 熱処理装置
JPH1038699A (ja) 自己較正温度プローブ
KR102045393B1 (ko) 기판의 온도를 판정하기 위한 장치 및 기판을 열처리하기 위한 방법
JPWO2018142958A1 (ja) 熱処理装置、熱処理方法および半導体装置の製造方法
CN105027270B (zh) 用于热处理腔室的高温测量过滤器
JP3594792B2 (ja) 熱処理装置
JP3592966B2 (ja) 熱処理装置および熱処理方法
JP3592949B2 (ja) 基板熱処理装置および基板熱処理方法
JP2000266603A (ja) 放射温度測定方法及び放射温度測定装置
JP4186365B2 (ja) 温度測定方法、温度制御方法及び熱処理装置
JP3554182B2 (ja) 温度測定装置および基板熱処理装置
JPH04130746A (ja) ウエハ温度測定用の放射温度計およびウエハ温度測定方法
JPH11260748A (ja) 熱処理装置および熱処理方法
CN116124292A (zh) 热处理系统及温度测量方法
JPH1140510A (ja) 温度計測装置および温度計測方法ならびに基板熱処理装置
JP2000277446A (ja) 反射率計測装置、温度計測装置および基板熱処理装置ならびに反射率計測方法、温度計測方法および基板熱処理方法
JP4429405B2 (ja) 基板処理装置および基板温度計測方法
JP2002107228A (ja) 校正用基板、熱処理装置および熱処理方法
JP2000260726A (ja) 基板熱処理装置の校正方法および、そのための校正装置
JPH1197367A (ja) 基板熱処理装置およびそれを用いた基板熱処理方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040826

R150 Certificate of patent or registration of utility model

Ref document number: 3592973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees