JP3589187B2 - Method for forming light emitting device - Google Patents

Method for forming light emitting device Download PDF

Info

Publication number
JP3589187B2
JP3589187B2 JP2001053511A JP2001053511A JP3589187B2 JP 3589187 B2 JP3589187 B2 JP 3589187B2 JP 2001053511 A JP2001053511 A JP 2001053511A JP 2001053511 A JP2001053511 A JP 2001053511A JP 3589187 B2 JP3589187 B2 JP 3589187B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
mold member
fluorescent substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001053511A
Other languages
Japanese (ja)
Other versions
JP2002118293A (en
Inventor
達憲 豊田
和浩 永峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2001053511A priority Critical patent/JP3589187B2/en
Publication of JP2002118293A publication Critical patent/JP2002118293A/en
Application granted granted Critical
Publication of JP3589187B2 publication Critical patent/JP3589187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/06102Disposition the bonding areas being at different heights
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は液晶のバックライト、照明光源、各種インジケータや交通信号灯などに利用可能な発光装置に係わり、半導体発光素子とそれよりも長波長の光が発光可能な蛍光物質とを有する長波長変換型発光装置及びその形成方法に関する。
【0002】
【従来技術】
今日、青色光が高輝度に発光可能な半導体発光素子である窒化物半導体(InGaAl1−x−yN、0≦x≦1、0≦y≦1)を利用したLEDチップが開発された。窒化物半導体を利用した発光素子は、他のGaAs、AlInGaP等の材料を利用した赤から黄緑色を発光する発光素子と比較して出力が高く、温度による色シフトが少ないなどの特徴を持っているものの、現在までのところ、緑色以上の波長を有する長波長領域で高出力を得られにくいという傾向がある。他方、このLEDチップ上にLEDチップから放出された青色光の少なくとも一部を吸収して、黄色が発光可能な蛍光物質であるYAG:Ce蛍光体等を配置させることによって白色系が発光可能な発光ダイオードが開発された。(国際公開番号WO98/5078号)
【0003】
この発光ダイオードは、例えばマウントリードのカップ内底部にLEDチップを配置させ、前記LEDチップと前記マウントリード及びインナーリードとを金線等により電気的に接続する。接続後、前記カップ内にLEDチップからの青色の光を吸収し補色関係にある黄色の光を発光する蛍光物質含有の透光性モールド樹脂を充填する。最後に両リードの先端部分に透光性の樹脂等にて凸レンズを形成する。このようにして、LEDチップと蛍光物質との光の混色からなる白色の光を凸レンズを介して発光するLEDランプが得られる。
【0004】
上記のLEDランプは、予めチップの周囲に蛍光物質含有の透光性モールド樹脂を設け、その後に透光性の樹脂等により凸レンズ部材を形成するものである。これによってチップからの光はカップ内に充填された蛍光物質含有の透光性モールド樹脂を通過した時点で所望の混色光となっている。従って、色変換された光を良好に正面方向に取り出すことができる。また、カップの形状を調整することで、光散乱の抑制、及び発光出力の向上を図ることができ、容易に所望の発光特性を得ることができる。
【0005】
【発明が解決しようとする課題】
しかしながら、このようなLEDランプは、小型化になるにつれて発光ムラや色度バラツキが目立ち歩留まり良く生産することが困難であった。
【0006】
そこで本発明は、生産性が良好で且つ光学特性の優れたチップタイプの長波長変換型発光装置とその形成方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
すなわち、本発明に係る発光装置は、基板上に半導体層を有する発光素子と、該発光素子からの光の一部を吸収してそれよりも長波長の光が発光可能な蛍光物質と、該蛍光物質を有し前記発光素子の表面を包囲する透光性モールド部材とを有する発光装置であって、前記発光素子の電極上に少なくとも1つのバンプを有し、該バンプの上面は前記透光性モールド部材の上面と略同一平面であることを特徴とする。これによって、信頼性が高く、且つ所望の混色光を均一に発光することが可能な発光装置が得られる。
【0008】
また、前記バンプの膜厚は5μm〜150μmである。これによって、高出力に発光することが可能な発光装置が得られる。また、前記バンプの上面、及び前記透光性モールド部材の上面からなる発光装置の上面は、基板側底面に対して略平行であることを特徴とする。これによって、良好な指向特性を有する発光装置が得られる。
【0009】
また、蛍光物質は、Ceで付活されたイットリウム・アルミニウム・ガーネット系蛍光物質、Eu及び/又はCrで付活された窒素含有CaO−Al−SiOから選択される1種であることを特徴とする。これによって、簡便で高輝度に混色発光可能な信頼性の高い発光装置が得られる。
【0010】
また、前記発光素子の少なくとも基板側に連続した反射膜を有することを特徴とする。これによって、発光効率が良好で且つ輝度ムラの少ない発光装置が得られる。
【0011】
また、本発明の請求項6に係る発光装置は、発光素子と、該発光素子からの光の一部を吸収して可視光が発光可能な蛍光物質が分散された透光性モールド部材とを備え、前記発光素子からの光と前記蛍光物質からの光との混色を発光可能な発光装置であって、前記発光素子は、n型窒化物半導体層およびp型窒化物半導体層が積層され、前記p型窒化物半導体層上に形成された正電極と、前記p型窒化物半導体層の一部を除去して露出されたn型窒化物半導体層の表面に形成された負電極と、前記負電極および前記正電極の各ボンディング面上に形成されたバンプとを有し、前記透光性モールド部材は前記発光素子の半導体層上面および側面に設けられ、前記バンプ側面に、前記蛍光物質が配置されていることを特徴とする。
【0012】
また、本発明に係る発光装置の形成方法は、基板上に半導体層を有する発光素子と、該発光素子からの光の一部を吸収してそれよりも長波長の光が発光可能な蛍光物質と、該蛍光物質を有し前記発光素子の表面を包囲する透光性モールド部材とを有する発光装置の形成方法であって、ウエハーの状態で前記発光素子の電極上にバンプを形成する第1の工程と、前記発光素子の半導体層側に前記バンプを覆うように前記透光性モールド部材となる材料を被覆させる第2の工程と、前記透光性モールド部材となる材料を硬化させた後、研磨により半導体層側から前記ウエハー底面と平行にバンプの上面を露出させる第3の工程と、前記ウエハーをダイシング且つスクライブすることにより切断する第4の工程とを有する。これによって量産性よく発光装置を形成することができる。
【0013】
また、前記第3の工程において、前記各バンプの膜厚が5μm〜150μmとなるように研磨される。これによって、前記第2の工程で形成されたモールド部材中の蛍光物質を破壊することなく良好に研磨することができ、信頼性が高く均一に発光することが可能な発光装置が得られる。
【0014】
また、前記第4の工程後、前記発光素子の少なくとも基板側に連続した透光性モールド部材を形成することを特徴とする。これによって得られる発光装置は、外部電極と電気的に接合されるバンプ上面以外の外周全面に蛍光物質含有の透光性モールド部材を有することができ、信頼性が高く且つ色純度の高い発光装置が得られる。
【0015】
また、前記第4の工程後、前記発光素子の少なくとも基板側に連続した反射膜を形成することを特徴とする。これによって、発光素子の基板側から放射される光を半導体層側へ導くことができ、更に色ムラが少なく且つ発光出力の高い発光装置が得られる。
【0016】
【発明の実施の形態】
本発明者は、種々実験の結果、素子を電気的に接続する前に色変換部材である蛍光物質含有の透光性モールド部材を設けることにより、後の実装工程が簡略化でき且つ信頼性の高い色変換型発光装置が得られることを見いだし本発明を成すに至った。
【0017】
従来、波長変換型LEDランプを形成する場合、素子分割された各素子に対して凸レンズ部材とは別に予め蛍光物質含有のモールド部材を設ける必要があった。具体的には次のような過程が必要となる。
【0018】
チップ状の各素子をマウントリードのカップ内底部に配置し、前記素子の各電極をリード電極とワイヤー等で電気的に接続した後、まず、素子とワイヤーを覆うようにカップ内にディスペンサ等により蛍光物質を含有させた樹脂を滴下注入し加熱硬化させて色変換部材を形成する。このようにして第1モールド部材が形成される。
【0019】
その後、凸レンズ部材の材料である樹脂をキャスティングケース内に流し込むと共に、色変換部材が形成されたリード先端部分を浸漬配置させる。これをオーブンに入れ加熱硬化させることにより第2モールド部材である凸レンズ部材が形成され、波長変換可能なLEDランプが形成される。
【0020】
このように1つの発光装置を形成するにあたり、各素子に対して樹脂を充填させ硬化させる工程が、2度必要となり、樹脂効果のための待留時間が比較的長く、更なる生産性の向上が望まれている。
【0021】
また、発光装置が小型化になるにつれて必然的に第1モールド部材量も少量となり、各素子に対して精度良く所望の混色光を得るために必要な蛍光物質量を配置させることは極めて困難であり、個々の発光装置において色度バラツキが生じ歩留まりが悪かった。
【0022】
また、前記発光装置は、発光素子を半導体層を上面として電気的に接続した後に色変換部材を設けるため、前記色変換部材中にワイヤー等を有する。このような電気接続部材が、蛍光物質の配置に悪影響を及ぼしたり前記蛍光物質及び発光素子の光取り出し効率を低下させ、色ムラや出力低下を引き起こすと考えられる。
【0023】
そこで本発明は、上記の問題を解決するため、発光素子自体に色変換部材を設けるものである。具体的には、個々の発光素子に分割される前のウエハー状態にて前記発光素子の電極部分を嵩上げし、発光素子周囲に色変換部材を設ける。このように構成することにより、十分に信頼性が高く且つ光学特性に優れた色変換型発光装置を生産性よく形成することができる。
【0024】
以下、図を参照にして本発明に係る実施の形態について説明する。
図1は本発明の一実施の形態に係る発光ダイオードの模式的断面図である。絶縁性基板上1に、少なくともn型窒化物半導体層2、活性層(図示されていない)、及びp型窒化物半導体層3が順に積層形成され、p型窒化物半導体層3のほぼ全面に形成された透明な第1正電極4と、第1正電極4上の一部に形成されたボンディング用の第2正電極5と、p型窒化物半導体層3側からエッチング等により露出されたn型窒化物半導体層2上に負電極6とを有し、各電極のボンディング面を除いて絶縁性保護膜7が形成されてなる発光素子を用いている。このような発光素子の各電極のボンディング面上にそれぞれバンプ8が設けられ、これらのバンプの上面を露出させて発光素子の半導体層側上面及び側面に蛍光物質含有の透光性モールド部材9を設けている。以下、本発明の各構成について詳述する。
【0025】
(発光素子)
本発明において、発光素子からの光は、蛍光物質から放出される光よりも短波長であると効率がよい。そのため、高効率に発光輝度の高い可視光を発光可能な半導体素子として、窒化物半導体(InGaAl1−x−yN、0≦x≦1、0≦y≦1)を活性層に利用したものが好適に挙げられる。窒化物半導体を利用した発光素子は、サファイア基板、スピネル(MgAi)基板、SiC、GaN単結晶等の上に形成させることができるが、量産性と結晶性を満たすにはサファイア基板を用いることが好ましい。よって、本発明では、n型及びp型の窒化物半導体層が絶縁性基板であるサファイア基板上に形成され、半導体層側に両電極を有する発光素子を用いている。
【0026】
さらに詳細に説明すると、発光素子は、サファイア基板1上に1又は2以上の層からなるn型窒化物半導体層2、活性層(図示せず)、1又は2以上の層からなるp型窒化物半導体層3が積層され、更に正及び負の電極が以下のように形成されている。すなわち、正電極は、p型窒化物半導体層のほぼ全面に形成された第1正電極4と該第1正電極上の一部に形成されたボンディング用の第2正電極5とからなり、負電極6はp型窒化物半導体層の一部をドライエッチング等により除去して露出させたn型窒化物半導体層の表面に形成されている。
【0027】
本発明において、n型窒化物半導体層2及びp型窒化物半導体層3は特に限定されず、いずれの層構成のものを用いても良い。
【0028】
本発明の発光装置において白色系を発光させる場合は、蛍光物質との補色関係や樹脂の劣化等を考慮して、発光素子の主発光ピークは400nm以上530nm以下が好ましく、より好ましくは420nm以上490nm以下である。発光素子と蛍光物質との効率をそれぞれ向上させるためには450nm以上470nm以下に主発光ピークを有する発光素子を用いることが更に好ましい。
【0029】
一方、本発明の発光装置において、発光素子の周囲に蛍光物質含有の透光性モールド部材を有する場合、比較的紫外線に強い樹脂やガラス等を使用し、400nm付近の短波長を主発光ピークとする紫外線が発光可能な発光素子を用いて白色系が発光可能な発光装置を得ることもできる。このような短波長の光により赤、青、及び緑に蛍光可能な蛍光物質、例えば赤色蛍光体としてYS:Eu、青色蛍光体としてSr(POCl:Eu、及び緑色蛍光体として(SrEu)O・Alを前記耐紫外線樹脂などに含有させ、短波長発光の発光素子の表面に色変換層として塗布することにより、白色光を得ることができる。
【0030】
本発明の一実施の形態では、発光素子の電極上に配置されたバンプの表面を開口部として前記発光素子の周囲全てに色変換層である透光性モールド部材を有する。これにより前記発光素子の四方八方から発光される光は、周囲に配置された蛍光物質により効率よく吸収され波長変換された後、放出される。このため、紫外線によって発光装置が劣化されることなく、信頼性の高い白色系発光装置が得られる。
【0031】
また白色光を得るために、紫外線が発光可能な発光素子と組み合わせて用いられる蛍光物質として、上記した他に、赤色蛍光体として3.5MgO・0.5MgF・GeO:Mn、MgAs11:Mn、Gd:Eu、LaOS:Eu、青色蛍光体としてRe(POCl:Eu(ただしReはSr、Ca、Ba、Mgから選択される少なくとも一種)、BaMgAl1627:Eu等が好適に用いられる。これらの蛍光物質は、紫外光による発光が飛躍的に優れているため、高輝度に発光可能な白色発光装置を得ることができる。
【0032】
本発明において第1正電極4は、p型窒化物半導体層とオーミック接触可能な電極材料であれば特に限定されない。例えば、Au、Pt、Al、Sn、Cr、Ti、Ni、Co等の1種類以上を用いることができる。また、第1正電極は、実装形態に合わせて、膜厚を調整することで透光性、不透光性に調整することができるが、本発明では第1正電極は透光性となるように膜厚を調整している。透光性となるためには、膜厚は10オングストローム〜500オングストローム、好ましくは10オングストローム〜200オングストロームに設定される。
【0033】
また、第2正電極5としては、Au、Pt、Al、Sn、Cr、Ti、Ni等の1種類以上の金属材料を用いることができる。第2正電極の膜厚は、1000オングストローム〜2μmに設定されるのが好ましい。
【0034】
本発明において負電極6は、n型窒化物半導体とオーミック接触が可能な電極材料であれば特に限定されない。例えば、Ti、Al、Ni、Au、W、V等の金属材料の1種類以上を用いることができるが、Ti、W、VをそれぞれベースとするTi/Al、W/Al/W/Au、W/Al/W/Pt/Au、V/Al等の多層構造とすることが好ましい。n型窒化物半導体層とオーミック接触が可能な電極材料を用いることによりVを低減させることができる。負電極7の膜厚は、2000オングストローム〜5μm、好ましくは5000オングストローム〜1.5μmに設定される。
【0035】
本発明において、正負の電極間の短絡を防止するため、各電極のバンプ形成面を開口部として、半導体層の表面に絶縁性保護膜7を設けることが好ましい。また、絶縁性保護膜を各電極の上面に少しかかるように形成すると、各電極が接している下地層とはがれるのを抑制することができ好ましい。絶縁性保護膜の材料としては、主波長において透過率が良好で、且つ第1正電極、第2正電極、及び負電極との接着性が良好であれば特に限定されない。また、短波長領域の光をカットする材料を用いると好ましい。例えば、ケイ酸アルカリガラス、ソーダ石灰ガラス、鉛ガラス、バリウムガラス等のガラス組成物、またはSiO、TiO、GeO、及びTa等の酸化物が好ましく形成される。また、膜厚は特に限定されるものではないが、主波長における透過率が90%以上に調整されることが好ましい。
【0036】
(バンプ)
本発明において、発光素子は電極上に少なくとも1つのバンプを有し、該バンプの上面は、前記バンプの側面に接して配置された透光性モールド部材の上面と略同一平面である。このように、バンプの上面及び透光性モールド部材の上面にて略同一平面を構成することにより、実装が容易で且つ信頼性の高い発光装置が得られる。
【0037】
前記バンプは、まず発光素子が個々に切断される前のウエハー状態において、各素子の電極のボンディング面上に形成される(第1の工程)。バンプの材料は、Au、Pt等の金属材料を用いると各電極との密着性及び導電性に優れたバンプを得ることができる。バンプボンダーにて前記金属材料を前記各ボンディング面上に圧着形成させる。バンプ上面の中央先端部分に生ずる突起部分をレベラーにて押圧し平坦化すると、底面側から上面側までほぼ等しい幅を有するバンプを形成することができる。また前記押圧を調整することでバンプの側面の形状を調整することができる。バンプの側面はテーパー形状であることが好ましく、透光性モールド部材中の蛍光物質及び発光素子から発光される光を前記側面にて良好に反射散乱させることで光の取り出し効率を向上させることができる。
【0038】
前記金属材料の場合、バンプは20〜50μmの高さで形成することが好ましい。また、バンプをメッキ等の材料を用いて厚膜に形成することも可能である。例えば、無電解Niメッキにて5〜150μmの高さで形成することができる。また、バンプを無電解Niメッキ上に無電解Auメッキを設けた2層構成にすることもできる。例えば、無電解Niメッキを5〜100μmの高さで形成し、前記無電解Niメッキ上に無電解Auメッキを5000オングストローム以下の高さで形成すると、ボンディング性が良好となり好ましい。このようにバンプが形成された素子の半導体層側に蛍光物質含有の透光性モールド部材を設け(第2の工程)、蛍光物質の粒径を考え、前記透光性モールド部材上面と前記バンプの上面が略同一平面を成すように、またバンプ全体の膜厚が5μm〜150μm、好ましくは5μm〜100μm、より好ましくは50μm〜100μmとなるように前記透光性モールド部材と前記バンプを同時に研磨してバンプの表面を露出させる(第3の工程)。このように、バンプの高さを前記範囲にすることにより色調ムラが抑制され、良好な光学特性を有する発光装置が得られる。
【0039】
また、本実施の形態で用いられた発光素子のように、同一面側に正負一対の電極を有し可視光を発光する発光素子の場合、負電極付近の電流密度が高くなり色ムラが生じる傾向にある。本発明では、前記発光素子の各電極上にバンプを設け、該バンプの上面が光取り出し面である透光性モールド部材上面と略同一平面となるように構成することにより、各電極間に生じる色ムラを改善することができ、均一に発光することが可能な発光装置が得られる。
【0040】
(蛍光物質)
本発明の発光装置に用いられる蛍光物質は、窒化物系半導体を発光層とする半導体発光素子から発光された光を励起させて発光できるセリウムで付活されたイットリウム・アルミニウム酸化物系蛍光物質をベースとしたものである。
具体的なイットリウム・アルミニウム酸化物系蛍光物質としては、YAlO:Ce、YAl12Y:Ce(YAG:Ce)やYAl:Ce、更にはこれらの混合物などが挙げられる。イットリウム・アルミニウム酸化物系蛍光物質にBa、Sr、Mg、Ca、Znの少なくとも一種が含有されていてもよい。また、Siを含有させることによって、結晶成長の反応を抑制し蛍光物質の粒子を揃えることができる。
【0041】
本明細書において、Ceで付活されたイットリウム・アルミニウム酸化物系蛍光物質は特に広義に解釈するものとし、イットリウムの一部あるいは全体を、Lu、Sc、La、Gd及びSmからなる群から選ばれる少なくとも1つの元素に置換され、あるいは、アルミニウムの一部あるいは全体をBa、Tl、Ga、Inの何れが又は両方で置換され蛍光作用を有する蛍光体を含む広い意味に使用する。
【0042】
更に詳しくは、一般式(YGd1−zAl12:Ce(但し、0<z≦1)で示されるフォトルミネッセンス蛍光体や一般式(Re1−aSmRe‘12:Ce(但し、0≦a<1、0≦b≦1、Reは、Y、Gd、La、Scから選択される少なくとも一種、Re’は、Al、Ga、Inから選択される少なくとも一種である。)で示されるフォトルミネッセンス蛍光体である。
【0043】
この蛍光物質は、ガーネット構造のため、熱、光及び水分に強く、励起スペクトルのピークを450nm付近にさせることができる。また、発光ピークも、580nm付近にあり700nmまですそを引くブロードな発光スペクトルを持つ。
【0044】
またフォトルミネセンス蛍光体は、結晶中にGd(ガドリニウム)を含有することにより、460nm以上の長波長域の励起発光効率を高くすることができる。Gdの含有量の増加により、発光ピーク波長が長波長に移動し全体の発光波長も長波長側にシフトする。すなわち、赤みの強い発光色が必要な場合、Gdの置換量を多くすることで達成できる。一方、Gdが増加すると共に、青色光によるフォトルミネセンスの発光輝度は低下する傾向にある。さらに、所望に応じてCeに加えTb、Cu、Ag、Au、Fe、Cr、Nd、Dy、Co、Ni、Ti、Euらを含有させることもできる。
【0045】
しかも、ガーネット構造を持ったイットリウム・アルミニウム・ガーネット系蛍光体の組成のうち、Alの一部をGaで置換することで発光波長が短波長側にシフトする。また、組成のYの一部をGdで置換することで、発光波長が長波長側にシフトする。
【0046】
Yの一部をGdで置換する場合、Gdへの置換を1割未満にし、且つCeの含有(置換)を0.03から1.0にすることが好ましい。Gdへの置換が2割未満では緑色成分が大きく赤色成分が少なくなるが、Ceの含有量を増やすことで赤色成分を補え、輝度を低下させることなく所望の色調を得ることができる。このような組成にすると温度特性が良好となり発光ダイオードの信頼性を向上させることができる。また、赤色成分を多く有するように調整されたフォトルミネセンス蛍光体を使用すると、ピンク等の中間色を発光することが可能な発光装置を形成することができる。
【0047】
このようなフォトルミネセンス蛍光体は、Y、Gd、Al、及びCeの原料として酸化物、又は高温で容易に酸化物になる化合物を使用し、それらを化学量論比で十分に混合して原料を得る。又は、Y、Gd、Ceの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウムとを混合して混合原料を得る。これにフラックスとしてフッ化バリウムやフッ化アンモニウム等のフッ化物を適量混合して坩堝に詰め、空気中1350〜1450°Cの温度範囲で2〜5時間焼成して焼成品を得、つぎに焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通すことで得ることができる。
【0048】
本願発明の発光ダイオードにおいて、このようなフォトルミネセンス蛍光体は、2種類以上のセリウムで付活されたイットリウム・アルミニウム・ガーネット蛍光体や他の蛍光体を混合させてもよい。
【0049】
他にも青色、青緑色や緑色を吸収して赤色が発光可能な蛍光体としては、Eu及び/又はCrで付活されたサファイア(酸化アルミニウム)蛍光体やEu及び/又はCrで付活された窒素含有Ca−Al−SiO蛍光体(オキシナイトライド蛍光硝子)等が挙げられる。これらの蛍光体を利用して発光素子からの光と蛍光体からの光の混色により白色光を得ることもできる。
【0050】
また、蛍光体が含有される透光性モールド部材の粘度や蛍光体の粒径が形成時の量産性に影響する。すなわち、透光性モールド部材となる材料の粘度が低い場合や、蛍光体の粒径が大きい場合は透光性モールド部材となる材料との比重差による分離沈降が促進する傾向にある。また、粉砕工程での結晶破壊などにより、無機蛍光体では粒径が小さくなると変換効率が低下する傾向にある。さらに、あまり小さくなりすぎると凝集体を構成するために透光性モールド部材中への分散性が低下し発光装置からの色ムラや輝度ムラを引き起こす傾向にある。そのため、透光性モールド部材の材料や蛍光体にもよるが、蛍光体の平均粒径は1〜100μmが好ましく、5〜50μmがより好ましい。ここで平均粒径とは、空気透過法を基本原理としてサブシーブサイザーにて測定された平均粒子径を示す。
【0051】
また、発光出力を向上させるためには、本発明で用いられる蛍光物質の平均粒径は10μm〜50μmが好ましく、より好ましくは15μm〜30μmである。このような粒径を有する蛍光物質は光の吸収率及び変換効率が高く且つ励起波長の幅が広い。このように、光学的に優れた特徴を有する大粒径蛍光物質を含有させることにより、発光素子の主波長周辺の光をも良好に変換し発光することが可能となり、発光装置の量産性が向上される。
【0052】
また、この平均粒径値を有する蛍光物質が頻度高く含有されていることが好ましく、頻度値は20%〜50%が好ましい。このように粒径のバラツキが小さい蛍光物質を用いることにより色ムラが抑制され良好な色調を有する発光装置が得られる。
【0053】
本発明に用いられる具体的蛍光物質として、Ceで付活されたYAG系蛍光体(Y、Lu、Sc、La、Gd及びSmから選ばれた少なくとも1つの元素と、Al、Ga、及びInからなる群から選ばれた少なくとも1つの元素とを含んでなるセリウムで付活されたガーネット系蛍光体)を挙げる。YAG系蛍光体は、Y、Gd、Ceの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で沈降させる。これを焼成して得られる共沈酸化物と酸化アルミニウムを混合して混合原料を得る。これにフラックスとしてフッ化アンモニウムを混合して坩堝に詰め、空気中1400℃の温度で170分焼成して焼成品が得られる。焼成品を水中でボールミルして洗浄、分離、乾燥、最後に篩を通してYAG系蛍光体を形成させることができる。
【0054】
同様に、本発明に用いられる他の具体的蛍光体として、Eu及び/又はCrで付活された窒素含有CaO−Al−SiO蛍光体が挙げられる。このEu及び/又はCrで付活された窒素含有CaO−Al−SiO蛍光体は、酸化アルミニウム、酸化イットリウム、窒化珪素及び酸化カルシウムなどの原料に希土類原料を所定比に混合した粉末を窒素雰囲気下において1300℃から1900℃(より好ましくは1500℃から1750℃)において溶融し成形させる。成形品をボールミルして洗浄、分離、乾燥、最後に篩を通して蛍光体を形成させることができる。これにより450nmにピークをもった励起スペクトルと約650nmにピークがある青色光により赤色発光が発光可能なEu及び/又はCrで付活されたCa−Al−Si−O−N系オキシナイトライド蛍光硝子とすることができる。
【0055】
なお、Eu及び/又はCrで付活されたCa−Al−Si−O−N系オキシナイトライド蛍光硝子の窒素含有量を増減することによって発光スペクトルのピークを575nmから690nmに連続的にシフトすることができる。同様に、励起スペクトルも連続的にシフトさせることができる。そのため、Mg、Znなどの不純物がドープされたGaNやInGaNを発光層に含む窒化ガリウム系化合物半導体からの光と、約580nmの蛍光体の光の合成光により白色系を発光させることができる。特に、約490nmの光が高輝度に発光可能なInGaNを発光層に含む窒化ガリウム系化合物半導体からなる発光素子との組合せに理想的に発光を得ることもできる。
【0056】
また、上述のCeで付活されたYAG系蛍光体とEu及び/又はCrで付活された窒素含有Ca−Al−Si−O−N系オキシナイトライド蛍光硝子とを組み合わせることにより青色系が発光可能な発光素子を利用してRGB(赤色、緑色、青色)成分を高輝度に含む極めて演色性の高い発光ダイオードを形成させることもできる。このため、所望の顔料を添加するだけで任意の中間色も極めて簡単に形成させることができる。本発明においては何れの蛍光体も無機蛍光体であり、有機の光散乱剤やSiOなどを利用して高コントラストと優れた量産性が両立した発光ダイオードを形成させることができる。
【0057】
(透光性モールド部材)
このような蛍光物質を透光性モールド部材に含有させる。透光性モールド部材の材料としては、発光素子及び蛍光物質からの光に対して耐光性が高く、透光性に優れたものが好ましい。また、発光素子を被覆する保護膜として働く場合には、ある程度の剛性が要求される。透光性モールド部材の材料として、具体的にはエポキシ樹脂、シリコーン樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、アクリルウレタン樹脂、ポリイミド樹脂等の無溶剤、あるいは溶剤タイプの液状透光性熱硬化樹脂が好適に挙げられる。同様に、アクリル樹脂、ポリカーボネート樹脂、ポリノルボルネン樹脂等の溶剤タイプの液状透光性熱可塑樹脂も利用することができる。更に、有機物だけでなく二酸化珪素などの無機物やゾル−ゲル法にて形成した二酸化珪素及びアクリル樹脂などを混合したハイブリッド樹脂も好適に利用することができる。また、凸レンズ部材など更に透光性モールド部材を樹脂等にて被覆する場合は、凸レンズ部材等との密着性を考慮して上述で記載した樹脂から選択利用することができる。
【0058】
本発明において、蛍光物質含有の透光性モールド部材9は、ウエハー状態の素子の上面及び側面に設けられる。このようにウエハーの状態で行うことで、後に研磨を行い好ましい膜厚に調整することができ、理想的な色調を有する発光装置を形成することができる。また、前記蛍光物質含有の透光性モールド部材は、素子の側面まで覆うように設けることにより、素子側面からの光を色変換させて放出することができ色調ムラを抑制することができる。また、本発明の発光ダイオードは、蛍光物質含有の透光性モールド部材中に、ワイヤー等電気的に接続するのに必要なものが存在しないため、光を遮断するものがなく、光取り出し効率は良好である。
【0059】
本発明において、発光面となる透光性モールド部材の上面は、発光素子の電極上にバンプの上面と略同一平面である。ここで、本明細書において略同一平面とは、前記バンプの側面全体が前記透光性モールド樹脂にて被膜されていればよく広義のものとする。このようにバンプの側面を露出させることなく前記透光性モールド部材にて被覆することにより、前記バンプと前記透光性モールド部材との界面から水分が吸収されてしまうのを防止することができ好ましい。また、前記モールド部材の上面の形状は特に限定されるものではなく、曲線を帯びていてもよいし凹凸を有していてもよく、このような構成の場合レンズ効果が得られ良好な指向特性が得られる。
【0060】
このようにして得られた発光装置は、バンプ8の上面及び蛍光物質含有の透光性モールド部材9とからなる発光装置の上面と発光装置の基板側底面とが略平行であると様々な実装が可能となり好ましい。更に前記発光装置が略直方体であると、容易に複数の発光装置を密に実装することができ好ましい。特に、同一面側に両電極を有する発光素子を用いる場合、前記各電極上にそれぞれバンプを設け、各正負の電極の導電接続部分が素子底面側から互いに等しい高さとすることで、リード電極等の外部電極と発光装置とをワイヤーにて導電をとる際に、各ワイヤーのループ形状及び進入角を等しくすることができる。これによりワイヤーの強度が向上され、外力等によるワイヤー切れを防止することができる。
【0061】
更に、図5に示すように、前記蛍光物質含有の透光性モールド部材を、発光素子の各電極上に設けられたバンプの上面を開口部として前記発光素子の周囲を覆うように四方八方に設けても良い。このように構成すると発光素子から発光される光を全て良好に変換することができ、均一に発光することが可能な発光装置が得られる。特に基板側底面にも蛍光物質含有の透光性モールド部材を設けるとフリップ実装が可能となり出力向上を図ることができる。一方、前記発光装置の基板側を実装基板に対向させダイボンド樹脂にて固定する場合、前記ダイボンド樹脂中に前記蛍光物質を含有させることで発光素子の基板底面側から発光される光を良好に変換し外部に取り出すことができる。
【0062】
(反射膜)
本発明に用いられる反射膜11は、基板側から発光される光が外部に放出されるのを抑制し光取り出し効率を向上させ、より良好な発光を得るためのものである。好ましい反射膜の材料として、多層膜で形成された酸化膜や種々の金属等が挙げられる。特に形成のしやすさの観点から金属膜を用いることが好ましい。金属膜として、具体的には反射率の高いAg、Al及びそれらの合金等が挙げられる。これらの金属膜はスパッタリング法や真空蒸着法等によって形成することができる。本発明において反射膜は、少なくとも基板の底面を覆うように形成されていればよく、好ましくはチップの側面及び底面を覆うように連続して形成される。
【0063】
【実施例】
以下、本発明に係る実施例の発光ダイオードについて説明する。なお、本発明は以下に示す実施例のみに限定されるものではない。
【0064】
[実施例1]
サファイア(C面)よりなる絶縁性基板1上に各半導体層2,3及び青色(470nm)が発光可能な発光層(図示していない)をMOVPE法により形成する。アニーリング後、ウエハーを反応容器から取り出し、最上層のp型窒化物半導体層の表面に所定のSiO等からなる絶縁膜を成膜した後、前記絶縁膜表面上に所定の形状のレジスト膜を形成し、RIE(反応性イオンエッチング)装置でp型窒化物半導体層側からエッチングを行い、負電極を形成するn型窒化物半導体層の表面を露出させる。次に、前記絶縁膜を酸により剥離した後、最上層にあるp型窒化物半導体層上のほぼ全面にNi/Auからなる第1正電極4を、470nmの波長の光透過率が40%で且つ表面抵抗率が2Ω/□となるように、膜厚200オングストロームで形成する。次に、前記第1正電極上に、リフトオフ法によりAuからなる第2正電極5を膜厚0.7μmで形成する。一方、エッチングにより露出させたn型窒化物半導体層の表面には、同じくリフトオフ法によりW/Al/W/Auからなる負電極6を膜厚0.8μmで形成し、LED素子とする。
【0065】
次に、パターニングにより、各電極のボンディング部のみを露出させ素子全体を覆うようにSiOよりなる絶縁性保護膜7を470nmの波長において光透過率が90%となるように膜厚2μmで形成する。
【0066】
以上のようして形成された窒化物半導体ウエハーにおいて、図3−(a)のように、ダイシングにより半導体層側面に蛍光物質含有の透光性モールド部材を設けるための凹部を形成する。このようにダイシングすることにより発光素子の発光層の側面に蛍光物質含有の透光性モールド部材を配置することができ色ムラを抑制することができ好ましい。またウエハーをスクライブする際、該ウエハーにかかる圧力を低減させることができ基板の反りや劈開を抑制することができる。ダイシング後、各電極の各ボンディング面上にバンプボンバーにてバンプ8の材料であるAuを高さ50μmで圧着させる。(第1の工程)。
【0067】
一方、蛍光物質として(Y0.8Gd0.2Al12:Ceを80重量部、エポキシ樹脂100重量部と酸無水物、硬化促進剤及び拡散剤としてSiOを65℃で十分に攪拌させ、蛍光物質含有の透光性モールド部材9となる材料を形成する。このときのエポキシ樹脂の粘度は700cpである。このように形成された蛍光物質含有の透光性モールド部材となる材料を、ディップにより前記バンプを覆うように膜厚150μmで被覆させる(第2の工程)。これを85℃180分の一次硬化、140℃240分の二次硬化によって硬化させる。
【0068】
次に、発光素子の発光面から該透光性モールド部材上面が40μmとなるように、各バンプ8及び蛍光物質含有の透光性モールド部材9を半導体層側から共に研磨してバンプ8の表面を露出させる(第3の工程)。また、基板を厚さが120μmとなるように基板側から研削・研磨する。
【0069】
最後に、窒化物半導体ウエハーの切断される位置の透光性モールド部材をダイシングにより除去した後、スクライバーによりスクライブラインを引き外力によって300μm角のチップ状に切断する(第4の工程)。
【0070】
以上のようにして形成された発光ダイオードを用いて白色LEDランプを形成すると、歩留まりは95%である。このように、本発明である発光ダイオードを使用することで、量産性良く発光装置を生産でき、信頼性が高く且つ色調ムラの少ない発光装置を提供することができる。
【0071】
(比較例1)
これに対して、絶縁膜を設けた後に窒化物半導体層半導体ウエハーをチップ状に切断し、個々の発光素子をマウントリードのカップ内底面に配置し、ワイヤーにより電気的に接続した後に、まず蛍光物質含有透光性モールド部材を発光素子を覆うようにカップ内に充填させ、その後透光性の凸レンズ部材を設ける以外は実施例1と同様にして発光ダイオードを形成すると、歩留まりは85%である。また、実施例1の発光ダイオードと比較すると色調にムラが見られる。
【0072】
(実施例2)
第4の工程後、個々の発光ダイオードにシート・エキスパンド10を用いてスパッタ法によりサファイア基板側に反射膜11を形成する第5の工程を行う以外は実施例1と同様にして発光ダイオードを形成すると、実施例1と同様の効果が得られる。また、端面の光を良好に発光面に取り出すことができ高出力の発光ダイオードが得られる。
【0073】
(実施例3)
第4の工程後、個々の発光ダイオードに、基板側から基板の周囲に蛍光物質含有の透光性モールド部材を形成する以外は実施例1と同様にして発光ダイオードを形成すると、発光素子上に設けられたバンプの露出面以外の全て外周に前記蛍光物質含有の透光性モールド部材を有する発光装置が得られ、実施例1と同様の効果が得られる他、発光素子の四方八方から発光される光を良好に色変換することができるため、色ムラが抑制され更に均一な発光が得られる。
【0074】
一方、蛍光物質として(Y0.8Gd0.2Al12:Ceを80重量部、シラノール(Si(OEt)3OH)100重量部、更に前記シラノールの2倍の重量でエタノールを混合してスラリーを形成し、該スラリーをノズルからウエハーに吐出させて蛍光物質含有の透光性モールド部材の材料と塗布した後、300℃にて3時間加熱してシラノールをSiO2とし、蛍光物質をウエハー上に固着させる以外は実施例1と同様にして発光装置を形成すると、実施例1と同様の効果が得られる。
【0075】
【発明の効果】
詳細に説明したように、本発明に係る発光装置は、ウエハーをチップ状に切断する前に、各電極上にバンプを形成して導電部分を嵩上げし、蛍光物質含有透光性モールド部材を半導体層側に設けることで、信頼性が高く且つ光学特性に優れた色変換型発光装置を効率よく生産することができる。
【0076】
また、本発明の発光装置は、バンプ露出面を開口部として発光素子の周囲全面に蛍光物質含有の透光性モールド部材を有するため、発光素子からの光を蛍光物質にて効率よく変換させることができ、所望とする色調を均一に発光することができる。このため、発光素子からの光による外部の劣化を抑制することができる

【0077】
また、基板側に連続した絶縁性反射膜を設けることにより、光取り出し効率が良好で発光ムラの少ない発光装置とすることができる。
【図面の簡単な説明】
【図1】本発明に係る実施の形態の発光ダイオードの模式的断面図である。
【図2】本発明に係る実施の形態の他の態様の発光ダイオードの模式的平面図である。
【図3】本発明に係る実施の形態の発光ダイオードの形成方法である。
【図4】本発明に係る実施の形態の他の発光ダイオードの形成方法の一工程である。
【図5】本発明に係る実施の形態の他の発光ダイオードの模式的断面図である

【符号の説明】
1・・・基板
2・・・n型窒化物半導体層
3・・・p型窒化物半導体層
4・・・第1正電極
5・・・第2正電極
6・・・負電極
7・・・絶縁膜
8・・・バンプ
9・・・蛍光物質含有の透光性モールド部材
10・・・シート・エキスパンド
11・・・反射膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting device that can be used for a liquid crystal backlight, an illumination light source, various indicators, traffic lights, and the like, and has a long wavelength conversion type including a semiconductor light emitting element and a fluorescent substance capable of emitting light of a longer wavelength than that. The present invention relates to a light emitting device and a method for forming the same.
[0002]
[Prior art]
Today, a nitride semiconductor (In) is a semiconductor light emitting device capable of emitting blue light with high luminance. x Ga y Al 1-xy N, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1) LED chips have been developed. Light-emitting devices using nitride semiconductors have features such as higher output and less color shift due to temperature compared to light-emitting devices that emit red to yellow-green light using other materials such as GaAs and AlInGaP. However, to date, there is a tendency that it is difficult to obtain high output in a long wavelength region having a wavelength of green or more. On the other hand, by disposing at least a part of the blue light emitted from the LED chip on the LED chip and disposing a YAG: Ce phosphor or the like, which is a fluorescent substance capable of emitting yellow light, white light can be emitted. Light emitting diodes were developed. (International publication number WO98 / 5078)
[0003]
In this light emitting diode, for example, an LED chip is arranged at the bottom of the cup of a mount lead, and the LED chip is electrically connected to the mount lead and the inner lead by a gold wire or the like. After the connection, the cup is filled with a translucent mold resin containing a fluorescent substance that absorbs blue light from the LED chip and emits complementary yellow light. Finally, a convex lens is formed at the tip portions of both leads with a translucent resin or the like. In this way, an LED lamp that emits white light composed of a mixture of light from the LED chip and the fluorescent substance via the convex lens is obtained.
[0004]
In the above-described LED lamp, a translucent mold resin containing a fluorescent substance is provided in advance around a chip, and then a convex lens member is formed of a translucent resin or the like. As a result, the light from the chip becomes a desired mixed color light when it passes through the translucent mold resin containing the fluorescent substance filled in the cup. Therefore, the color-converted light can be satisfactorily extracted in the front direction. In addition, by adjusting the shape of the cup, light scattering can be suppressed and light emission output can be improved, and desired light emission characteristics can be easily obtained.
[0005]
[Problems to be solved by the invention]
However, it has been difficult to produce such LED lamps with a high yield because the emission unevenness and chromaticity variation are conspicuous as the size of the LED lamp is reduced.
[0006]
Accordingly, an object of the present invention is to provide a chip-type long-wavelength conversion light emitting device having good productivity and excellent optical characteristics, and a method for forming the same.
[0007]
[Means for Solving the Problems]
That is, a light-emitting device according to the present invention includes a light-emitting element having a semiconductor layer over a substrate, a fluorescent substance capable of absorbing part of light from the light-emitting element and emitting light of a longer wavelength than the light-emitting element, A light-transmitting mold member having a fluorescent material and surrounding the surface of the light-emitting element, the light-emitting element having at least one bump on an electrode of the light-emitting element, and the upper surface of the bump is formed of the light-transmitting light. The upper surface of the conductive mold member. As a result, a light emitting device having high reliability and capable of uniformly emitting desired mixed light can be obtained.
[0008]
The thickness of the bump is 5 μm to 150 μm. Thus, a light emitting device capable of emitting light with high output is obtained. Further, an upper surface of the light emitting device including the upper surface of the bump and the upper surface of the translucent mold member is substantially parallel to the bottom surface on the substrate side. As a result, a light emitting device having good directivity characteristics can be obtained.
[0009]
The fluorescent substance is an yttrium-aluminum-garnet-based fluorescent substance activated by Ce, a nitrogen-containing CaO-Al activated by Eu and / or Cr. 2 O 3 -SiO 2 Is selected from the group consisting of: As a result, a highly reliable light-emitting device that can easily perform mixed-color light emission with high luminance can be obtained.
[0010]
Further, the light emitting device has a continuous reflection film on at least the substrate side. Thus, a light emitting device having good luminous efficiency and less luminance unevenness can be obtained.
[0011]
Further, the light emitting device according to claim 6 of the present invention includes a light emitting element and a translucent mold member in which a fluorescent substance capable of absorbing a part of light from the light emitting element and emitting visible light is dispersed. A light emitting device capable of emitting a mixed color of light from the light emitting element and light from the fluorescent substance, wherein the light emitting element has an n-type nitride semiconductor layer and a p-type nitride semiconductor layer laminated, A positive electrode formed on the p-type nitride semiconductor layer, a negative electrode formed on the surface of the n-type nitride semiconductor layer exposed by removing a part of the p-type nitride semiconductor layer, A bump formed on each bonding surface of the negative electrode and the positive electrode, wherein the translucent mold member is provided on the upper surface and side surfaces of the semiconductor layer of the light emitting element, and the fluorescent material is provided on the side surfaces of the bumps. It is characterized by being arranged.
[0012]
Further, a method for forming a light-emitting device according to the present invention includes a light-emitting element having a semiconductor layer over a substrate, and a fluorescent substance which can absorb part of light from the light-emitting element and emit light having a longer wavelength than the light-emitting element. And a light-transmitting mold member having the fluorescent substance and surrounding the surface of the light-emitting element, the method comprising: forming a bump on an electrode of the light-emitting element in a wafer state. And a second step of covering the semiconductor layer side of the light-emitting element with the material to be the light-transmissive mold member so as to cover the bumps; and after curing the material to be the light-transmissive mold member. A third step of exposing the upper surface of the bump in parallel with the bottom surface of the wafer from the semiconductor layer side by polishing, and a fourth step of cutting the wafer by dicing and scribing. Thus, a light-emitting device can be formed with high productivity.
[0013]
In the third step, each of the bumps is polished so as to have a thickness of 5 μm to 150 μm. Thereby, the fluorescent material in the mold member formed in the second step can be polished well without being destroyed, and a light emitting device that can emit light with high reliability and uniformity can be obtained.
[0014]
Further, after the fourth step, a continuous translucent mold member is formed on at least the substrate side of the light emitting element. The light emitting device thus obtained can have a translucent mold member containing a fluorescent substance on the entire outer peripheral surface other than the upper surface of the bump electrically connected to the external electrode, and has high reliability and high color purity. Is obtained.
[0015]
Further, after the fourth step, a continuous reflection film is formed on at least the substrate side of the light emitting element. Accordingly, light emitted from the substrate side of the light emitting element can be guided to the semiconductor layer side, and a light emitting device with less color unevenness and high light emission output can be obtained.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
As a result of various experiments, the present inventor provided a fluorescent substance-containing translucent mold member, which is a color conversion member, before electrically connecting elements, thereby simplifying a subsequent mounting process and improving reliability. The inventors have found that a high color conversion type light emitting device can be obtained, and have accomplished the present invention.
[0017]
Conventionally, when forming a wavelength conversion type LED lamp, it has been necessary to provide a fluorescent material-containing mold member in advance for each of the divided elements in addition to the convex lens member. Specifically, the following process is required.
[0018]
After disposing each chip-shaped element on the inner bottom of the cup of the mounting lead and electrically connecting each electrode of the element with a lead electrode and a wire, first, a dispenser or the like is inserted into the cup so as to cover the element and the wire. A resin containing a fluorescent substance is dropped and injected and cured by heating to form a color conversion member. Thus, the first mold member is formed.
[0019]
Thereafter, the resin as the material of the convex lens member is poured into the casting case, and the lead tip portion on which the color conversion member is formed is immersed. This is placed in an oven and heated and cured to form a convex lens member as a second mold member, thereby forming an LED lamp capable of wavelength conversion.
[0020]
In order to form one light emitting device in this way, a step of filling each element with a resin and curing the element is required twice, the waiting time for the resin effect is relatively long, and the productivity is further improved. Is desired.
[0021]
In addition, as the size of the light emitting device is reduced, the amount of the first mold member is inevitably reduced, and it is extremely difficult to arrange the amount of fluorescent substance necessary to obtain desired mixed light with high precision for each element. In some cases, chromaticity variation occurred in each light emitting device, and the yield was poor.
[0022]
Further, the light emitting device includes a wire or the like in the color conversion member in order to provide the color conversion member after the light emitting element is electrically connected with the semiconductor layer as the upper surface. It is considered that such an electrical connection member has an adverse effect on the arrangement of the fluorescent substance, reduces the light extraction efficiency of the fluorescent substance and the light emitting element, and causes color unevenness and output reduction.
[0023]
Therefore, in order to solve the above problem, the present invention provides a light-emitting element itself with a color conversion member. Specifically, the electrode portion of the light emitting element is raised in a wafer state before being divided into individual light emitting elements, and a color conversion member is provided around the light emitting element. With such a configuration, a color conversion light-emitting device having sufficiently high reliability and excellent optical characteristics can be formed with high productivity.
[0024]
An embodiment according to the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic sectional view of a light emitting diode according to one embodiment of the present invention. On an insulating substrate 1, at least an n-type nitride semiconductor layer 2, an active layer (not shown), and a p-type nitride semiconductor layer 3 are formed in this order, and are formed on almost the entire surface of the p-type nitride semiconductor layer 3. The formed transparent first positive electrode 4, the bonding second positive electrode 5 formed on a part of the first positive electrode 4, and the p-type nitride semiconductor layer 3 exposed by etching or the like from the p-type nitride semiconductor layer 3 side. A light emitting element having a negative electrode 6 on the n-type nitride semiconductor layer 2 and an insulating protective film 7 formed except for a bonding surface of each electrode is used. Bumps 8 are provided on the bonding surfaces of the respective electrodes of such a light emitting element, and the upper surfaces of these bumps are exposed, and a light-transmitting mold member 9 containing a fluorescent substance is formed on the upper surface and side surfaces of the light emitting element on the semiconductor layer side. Provided. Hereinafter, each configuration of the present invention will be described in detail.
[0025]
(Light emitting element)
In the present invention, light from a light-emitting element is more efficient if it has a shorter wavelength than light emitted from a fluorescent substance. Therefore, as a semiconductor element capable of efficiently emitting visible light with high emission luminance, a nitride semiconductor (In x Ga y Al 1-xy N, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1) are preferably used for the active layer. Light emitting devices using nitride semiconductors include sapphire substrates, spinels (MgAi 2 O 4 ) Although it can be formed on a substrate, SiC, GaN single crystal, or the like, it is preferable to use a sapphire substrate in order to satisfy mass productivity and crystallinity. Therefore, in the present invention, a light-emitting element in which n-type and p-type nitride semiconductor layers are formed on a sapphire substrate which is an insulating substrate and have both electrodes on the semiconductor layer side is used.
[0026]
More specifically, the light emitting device includes an n-type nitride semiconductor layer 2 composed of one or more layers, an active layer (not shown), and a p-type nitride composed of one or more layers on a sapphire substrate 1. The semiconductor layer 3 is stacked, and positive and negative electrodes are formed as follows. That is, the positive electrode is composed of the first positive electrode 4 formed on almost the entire surface of the p-type nitride semiconductor layer and the second positive electrode 5 for bonding formed on a part of the first positive electrode, The negative electrode 6 is formed on the surface of the n-type nitride semiconductor layer where a part of the p-type nitride semiconductor layer is removed by dry etching or the like and exposed.
[0027]
In the present invention, the n-type nitride semiconductor layer 2 and the p-type nitride semiconductor layer 3 are not particularly limited, and may have any layer configuration.
[0028]
When a white light is emitted in the light emitting device of the present invention, the main emission peak of the light emitting element is preferably 400 nm or more and 530 nm or less, more preferably 420 nm or more and 490 nm, in consideration of the complementary color relationship with the fluorescent substance and the deterioration of the resin. It is as follows. In order to improve the efficiency of the light emitting element and the efficiency of the fluorescent substance, it is more preferable to use a light emitting element having a main emission peak at 450 nm to 470 nm.
[0029]
On the other hand, in the light-emitting device of the present invention, when a light-transmitting mold member containing a fluorescent substance is provided around the light-emitting element, a resin or glass or the like which is relatively resistant to ultraviolet rays is used, and a short wavelength around 400 nm is a main emission peak. A light emitting device capable of emitting white light can be obtained using a light emitting element capable of emitting ultraviolet light. A fluorescent substance that can emit red, blue, and green light with such short wavelength light, for example, Y as a red fluorescent substance 2 O 2 S: Eu, Sr as blue phosphor 5 (PO 4 ) 3 Cl: Eu, and (SrEu) O.Al as a green phosphor 2 O 3 Is contained in the ultraviolet-resistant resin or the like, and is applied as a color conversion layer to the surface of a light-emitting element that emits short-wavelength light, whereby white light can be obtained.
[0030]
In one embodiment of the present invention, a light-transmissive mold member that is a color conversion layer is provided all around the light emitting element with the surface of the bump disposed on the electrode of the light emitting element as an opening. As a result, light emitted from all directions of the light emitting element is efficiently absorbed by a fluorescent substance disposed around the light emitting element, converted into a wavelength, and emitted. Therefore, a highly reliable white light emitting device can be obtained without deterioration of the light emitting device due to ultraviolet rays.
[0031]
In addition to the above-mentioned fluorescent substance used in combination with a light emitting element capable of emitting ultraviolet light to obtain white light, 3.5MgO.0.5MgF as a red fluorescent substance is used. 2 ・ GeO 2 : Mn, Mg 6 As 2 O 11 : Mn, Gd 2 O 2 : Eu, LaO 2 S: Eu, Re as blue phosphor 5 (PO 4 ) 3 Cl: Eu (where Re is at least one selected from Sr, Ca, Ba, and Mg), BaMg 2 Al 16 O 27 : Eu or the like is preferably used. Since these fluorescent materials are extremely excellent in light emission by ultraviolet light, a white light emitting device capable of emitting light with high luminance can be obtained.
[0032]
In the present invention, the first positive electrode 4 is not particularly limited as long as it is an electrode material that can make ohmic contact with the p-type nitride semiconductor layer. For example, one or more of Au, Pt, Al, Sn, Cr, Ti, Ni, Co and the like can be used. In addition, the first positive electrode can be adjusted to be light-transmitting or non-light-transmitting by adjusting the film thickness in accordance with the mounting mode. However, in the present invention, the first positive electrode is light-transmitting. The film thickness is adjusted as follows. In order to be translucent, the film thickness is set to 10 Å to 500 Å, preferably 10 Å to 200 Å.
[0033]
Further, as the second positive electrode 5, one or more kinds of metal materials such as Au, Pt, Al, Sn, Cr, Ti, and Ni can be used. It is preferable that the film thickness of the second positive electrode is set in the range of 1000 Å to 2 μm.
[0034]
In the present invention, the negative electrode 6 is not particularly limited as long as it is an electrode material that can make ohmic contact with the n-type nitride semiconductor. For example, one or more types of metal materials such as Ti, Al, Ni, Au, W, and V can be used, and Ti / Al, W / Al / W / Au, It is preferable to have a multilayer structure such as W / Al / W / Pt / Au and V / Al. By using an electrode material capable of ohmic contact with the n-type nitride semiconductor layer, V f Can be reduced. The film thickness of the negative electrode 7 is set to 2000 angstrom to 5 μm, preferably 5000 angstrom to 1.5 μm.
[0035]
In the present invention, in order to prevent a short circuit between the positive and negative electrodes, it is preferable to provide an insulating protective film 7 on the surface of the semiconductor layer with the bump formation surface of each electrode as an opening. Further, it is preferable to form the insulating protective film so as to slightly cover the upper surface of each electrode because it is possible to prevent the electrode from peeling off from the underlying layer in contact with the electrode. The material of the insulating protective film is not particularly limited as long as it has good transmittance at the main wavelength and good adhesion to the first positive electrode, the second positive electrode, and the negative electrode. It is preferable to use a material that cuts light in a short wavelength region. For example, a glass composition such as alkali silicate glass, soda-lime glass, lead glass, barium glass, or SiO 2 2 , TiO 2 , GeO 2 , And Ta 2 O 5 Is preferably formed. Further, the film thickness is not particularly limited, but the transmittance at the main wavelength is preferably adjusted to 90% or more.
[0036]
(bump)
In the present invention, the light emitting element has at least one bump on the electrode, and the upper surface of the bump is substantially flush with the upper surface of the translucent mold member disposed in contact with the side surface of the bump. As described above, by forming substantially the same plane on the upper surface of the bump and the upper surface of the translucent mold member, a light emitting device that is easy to mount and has high reliability can be obtained.
[0037]
The bump is first formed on the bonding surface of the electrode of each element in a wafer state before the light emitting elements are individually cut (first step). If a metal material such as Au or Pt is used as the material of the bump, a bump excellent in adhesion to each electrode and conductivity can be obtained. The metal material is pressure-formed on each of the bonding surfaces by a bump bonder. When the protrusion formed at the center front end of the bump upper surface is pressed by a leveler and flattened, a bump having substantially the same width from the bottom surface to the upper surface can be formed. The shape of the side surface of the bump can be adjusted by adjusting the pressure. The side surfaces of the bumps are preferably tapered, and the light emitted from the fluorescent substance and the light emitting element in the translucent mold member can be reflected and scattered on the side surfaces to improve the light extraction efficiency. it can.
[0038]
In the case of the metal material, the bumps are preferably formed with a height of 20 to 50 μm. Further, the bumps can be formed in a thick film by using a material such as plating. For example, it can be formed at a height of 5 to 150 μm by electroless Ni plating. Further, the bumps may have a two-layer structure in which electroless Au plating is provided on electroless Ni plating. For example, it is preferable to form the electroless Ni plating at a height of 5 to 100 μm and to form the electroless Au plating on the electroless Ni plating at a height of 5000 Å or less, since the bonding property becomes good. A translucent mold member containing a fluorescent substance is provided on the semiconductor layer side of the device on which the bumps are formed (second step), and the upper surface of the translucent mold member and the bumps are considered in consideration of the particle size of the fluorescent substance. The translucent mold member and the bumps are simultaneously polished so that the upper surfaces of the transparent mold members are substantially coplanar, and the thickness of the entire bumps is 5 μm to 150 μm, preferably 5 μm to 100 μm, and more preferably 50 μm to 100 μm. Then, the surface of the bump is exposed (third step). As described above, by setting the height of the bumps in the above range, the color tone unevenness is suppressed, and a light emitting device having good optical characteristics can be obtained.
[0039]
In the case of a light-emitting element that emits visible light having a pair of positive and negative electrodes on the same surface side, such as the light-emitting element used in this embodiment, the current density near the negative electrode increases and color unevenness occurs. There is a tendency. In the present invention, a bump is provided on each electrode of the light emitting element, and the upper surface of the bump is formed so as to be substantially flush with the upper surface of the light-transmissive mold member which is a light extraction surface. A light emitting device that can improve color unevenness and emit light uniformly can be obtained.
[0040]
(Fluorescent substance)
The fluorescent material used in the light emitting device of the present invention is a yttrium / aluminum oxide fluorescent material activated with cerium, which can emit light by exciting light emitted from a semiconductor light emitting element having a nitride semiconductor as a light emitting layer. It is based.
As a specific yttrium / aluminum oxide fluorescent substance, YAlO 3 : Ce, Y 3 Al 5 O 12 Y: Ce (YAG: Ce) or Y 4 Al 2 O 9 : Ce, and mixtures thereof. The yttrium / aluminum oxide-based fluorescent material may contain at least one of Ba, Sr, Mg, Ca, and Zn. Further, by containing Si, the reaction of crystal growth can be suppressed and the particles of the fluorescent substance can be made uniform.
[0041]
In the present specification, the yttrium-aluminum oxide-based fluorescent material activated by Ce shall be interpreted in a broad sense, and a part or the whole of yttrium is selected from the group consisting of Lu, Sc, La, Gd and Sm. It is replaced with at least one element, or a part or the whole of aluminum is used in a broad sense including a phosphor having a fluorescent action, which is replaced by any one or both of Ba, Tl, Ga and In.
[0042]
More specifically, the general formula (Y z Gd 1-z ) 3 Al 5 O 12 : Ce (where 0 <z ≦ 1), a photoluminescent phosphor represented by the general formula (Re) 1-a Sm a ) 3 Re ' 5 O 12 : Ce (where 0 ≦ a <1, 0 ≦ b ≦ 1, Re is at least one selected from Y, Gd, La, Sc, and Re ′ is at least one selected from Al, Ga, In.) Is a photoluminescent phosphor represented by the formula:
[0043]
Since this fluorescent substance has a garnet structure, it is resistant to heat, light and moisture, and can make the peak of the excitation spectrum near 450 nm. Also, the emission peak is near 580 nm and has a broad emission spectrum extending down to 700 nm.
[0044]
Further, the photoluminescent phosphor can increase the excitation light emission efficiency in a long wavelength region of 460 nm or more by containing Gd (gadolinium) in the crystal. As the Gd content increases, the emission peak wavelength shifts to a longer wavelength, and the overall emission wavelength shifts to the longer wavelength side. That is, when a reddish luminescent color is required, it can be achieved by increasing the replacement amount of Gd. On the other hand, as Gd increases, the emission luminance of photoluminescence due to blue light tends to decrease. Further, Tb, Cu, Ag, Au, Fe, Cr, Nd, Dy, Co, Ni, Ti, Eu, etc. can be contained in addition to Ce as required.
[0045]
Moreover, in the yttrium-aluminum-garnet-based phosphor having a garnet structure, the emission wavelength is shifted to a shorter wavelength side by partially replacing Al with Ga. Further, by substituting a part of Y in the composition with Gd, the emission wavelength shifts to the longer wavelength side.
[0046]
When a part of Y is substituted with Gd, it is preferable that the substitution with Gd is less than 10% and the content (substitution) of Ce is 0.03 to 1.0. If the substitution with Gd is less than 20%, the green component is large and the red component is small, but by increasing the content of Ce, the red component can be supplemented and a desired color tone can be obtained without lowering the luminance. With such a composition, the temperature characteristics are improved and the reliability of the light emitting diode can be improved. When a photoluminescent phosphor adjusted to have many red components is used, a light-emitting device capable of emitting an intermediate color such as pink can be formed.
[0047]
Such a photoluminescent phosphor uses an oxide or a compound that easily becomes an oxide at a high temperature as a raw material of Y, Gd, Al, and Ce, and sufficiently mixes them in a stoichiometric ratio. Get the raw materials. Alternatively, a mixed material obtained by mixing a coprecipitated oxide obtained by calcining a solution obtained by dissolving a rare earth element of Y, Gd, and Ce in an acid at a stoichiometric ratio with oxalic acid and aluminum oxide and aluminum oxide Get. An appropriate amount of a fluoride such as barium fluoride or ammonium fluoride is mixed as a flux into a crucible, and baked in air at a temperature in the range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a baked product. The product can be obtained by ball milling in water, washing, separating, drying and finally sieving.
[0048]
In the light emitting diode of the present invention, such a photoluminescent phosphor may be a mixture of two or more kinds of yttrium aluminum garnet phosphor activated with cerium and other phosphors.
[0049]
Other phosphors capable of absorbing blue, blue-green or green and emitting red light include sapphire (aluminum oxide) phosphor activated with Eu and / or Cr and activated with Eu and / or Cr. Ni-containing Ca-Al 2 O 3 -SiO 2 Phosphor (oxynitride fluorescent glass) and the like. Using these phosphors, white light can be obtained by mixing colors of light from the light emitting element and light from the phosphors.
[0050]
Further, the viscosity of the light-transmitting mold member containing the phosphor and the particle size of the phosphor affect mass productivity at the time of formation. That is, when the viscosity of the material forming the light-transmitting mold member is low or when the particle size of the phosphor is large, the separation and sedimentation due to the difference in specific gravity from the material forming the light-transmitting mold member tends to be promoted. In addition, when the particle size of the inorganic phosphor is reduced due to crystal destruction in the pulverizing step, the conversion efficiency tends to decrease. Further, when the particle size is too small, the dispersibility in the light-transmitting mold member is reduced due to the formation of the aggregate, which tends to cause color unevenness and luminance unevenness from the light emitting device. Therefore, although it depends on the material of the translucent mold member and the phosphor, the average particle size of the phosphor is preferably 1 to 100 μm, more preferably 5 to 50 μm. Here, the average particle size refers to an average particle size measured by a sub-sieve sizer based on the air transmission method as a basic principle.
[0051]
Further, in order to improve the light emission output, the average particle size of the fluorescent substance used in the present invention is preferably 10 μm to 50 μm, and more preferably 15 μm to 30 μm. A fluorescent substance having such a particle size has a high light absorption rate and a high conversion efficiency, and has a wide excitation wavelength. As described above, by including a large-diameter fluorescent substance having excellent optical characteristics, light around the main wavelength of the light-emitting element can be well converted and emitted, and mass productivity of the light-emitting device can be improved. Be improved.
[0052]
Further, it is preferable that the fluorescent substance having the average particle size is contained frequently, and the frequency value is preferably 20% to 50%. By using a fluorescent substance having a small variation in particle diameter, color unevenness is suppressed and a light-emitting device having a favorable color tone can be obtained.
[0053]
As a specific fluorescent substance used in the present invention, a YAG-based phosphor activated by Ce (at least one element selected from Y, Lu, Sc, La, Gd and Sm, and Al, Ga and In) And a garnet-based phosphor activated with cerium containing at least one element selected from the group consisting of: The YAG-based phosphor precipitates a solution obtained by dissolving rare earth elements of Y, Gd and Ce in an stoichiometric ratio in an acid with oxalic acid. A co-precipitated oxide obtained by calcining this and aluminum oxide are mixed to obtain a mixed raw material. This was mixed with ammonium fluoride as a flux, packed in a crucible, and fired in air at 1400 ° C. for 170 minutes to obtain a fired product. The fired product can be ball-milled in water, washed, separated, dried, and finally passed through a sieve to form a YAG phosphor.
[0054]
Similarly, another specific phosphor used in the present invention is a nitrogen-containing CaO—Al activated with Eu and / or Cr. 2 O 3 -SiO 2 Phosphors. Nitrogen-containing CaO-Al activated by Eu and / or Cr 2 O 3 -SiO 2 The phosphor is prepared by melting a powder obtained by mixing a rare earth material with a material such as aluminum oxide, yttrium oxide, silicon nitride, and calcium oxide at a predetermined ratio in a nitrogen atmosphere at 1300 ° C. to 1900 ° C. (more preferably 1500 ° C. to 1750 ° C.). And let it mold. The molded article can be ball-milled, washed, separated, dried, and finally passed through a sieve to form a phosphor. Thus, Ca-Al-Si-ON-based oxynitride fluorescence activated by Eu and / or Cr capable of emitting red light emission by an excitation spectrum having a peak at 450 nm and a blue light having a peak at about 650 nm. It can be glass.
[0055]
The peak of the emission spectrum is continuously shifted from 575 nm to 690 nm by increasing or decreasing the nitrogen content of the Ca-Al-Si-ON-based oxynitride fluorescent glass activated with Eu and / or Cr. be able to. Similarly, the excitation spectrum can be shifted continuously. Therefore, white light can be emitted by a combined light of a gallium nitride-based compound semiconductor containing GaN or InGaN doped with impurities such as Mg and Zn in a light-emitting layer and light of a phosphor of about 580 nm. In particular, light emission can be obtained ideally in combination with a light-emitting element made of a gallium nitride-based compound semiconductor containing InGaN in a light-emitting layer, which can emit light of about 490 nm with high luminance.
[0056]
Further, by combining the above-described YAG-based phosphor activated with Ce and the nitrogen-containing Ca-Al-Si-ON-based oxynitride fluorescent glass activated with Eu and / or Cr, a blue color is obtained. It is also possible to form a light-emitting diode having an extremely high color rendering property containing RGB (red, green, blue) components at high luminance by using a light-emitting element capable of emitting light. Therefore, an arbitrary intermediate color can be formed very simply by adding a desired pigment. In the present invention, any of the phosphors is an inorganic phosphor, and an organic light scattering agent or SiO 2 2 By utilizing such a method, a light emitting diode having both high contrast and excellent mass productivity can be formed.
[0057]
(Transparent mold member)
Such a fluorescent substance is contained in the translucent mold member. As a material of the translucent mold member, a material having high light resistance against light from a light emitting element and a fluorescent substance and having excellent translucency is preferable. In addition, when acting as a protective film for covering a light emitting element, a certain degree of rigidity is required. As a material of the light-transmitting mold member, specifically, a non-solvent such as an epoxy resin, a silicone resin, a urethane resin, an unsaturated polyester resin, an acrylic urethane resin, a polyimide resin, or a solvent-type liquid light-transmitting thermosetting resin is used. Preferred examples are given. Similarly, a solvent-type liquid translucent thermoplastic resin such as an acrylic resin, a polycarbonate resin, and a polynorbornene resin can be used. Furthermore, not only organic substances but also inorganic substances such as silicon dioxide, and hybrid resins obtained by mixing silicon dioxide formed by a sol-gel method and acrylic resin can be suitably used. Further, when the light-transmitting mold member such as a convex lens member is further covered with a resin or the like, the resin can be selected from the above-described resins in consideration of the adhesion to the convex lens member and the like.
[0058]
In the present invention, the translucent mold member 9 containing a fluorescent substance is provided on the top and side surfaces of the device in a wafer state. By performing the treatment in the state of a wafer in this manner, polishing can be performed later to adjust the film thickness to a preferable value, and a light-emitting device having an ideal color tone can be formed. Further, by providing the translucent mold member containing the fluorescent substance so as to cover up to the side surface of the element, light from the side surface of the element can be converted and emitted, thereby suppressing color tone unevenness. Further, the light-emitting diode of the present invention, in the light-transmitting mold member containing a fluorescent substance, because there is no thing necessary for electrical connection such as a wire, there is no light blocking, there is no light extraction efficiency. Good.
[0059]
In the present invention, the upper surface of the translucent mold member serving as the light emitting surface is substantially flush with the upper surface of the bump on the electrode of the light emitting element. In this specification, the term “substantially the same plane” has a broad meaning as long as the entire side surface of the bump is coated with the translucent mold resin. By covering the bump with the translucent mold member without exposing the side surface of the bump in this way, it is possible to prevent the absorption of moisture from the interface between the bump and the translucent mold member. preferable. Further, the shape of the upper surface of the mold member is not particularly limited, and may have a curved line or may have irregularities. In such a configuration, a lens effect is obtained and good directivity characteristics are obtained. Is obtained.
[0060]
The light emitting device thus obtained can be mounted in various ways if the upper surface of the light emitting device comprising the upper surface of the bump 8 and the translucent mold member 9 containing the fluorescent substance is substantially parallel to the lower surface of the light emitting device on the substrate side. Is possible and preferred. Further, it is preferable that the light emitting device is a substantially rectangular parallelepiped because a plurality of light emitting devices can be easily mounted densely. In particular, when a light-emitting element having both electrodes on the same surface side is used, a bump is provided on each of the electrodes, and the conductive connection portions of the positive and negative electrodes are at the same height from the element bottom side, so that lead electrodes and the like are provided. When conducting electrical connection between the external electrode and the light emitting device using wires, the loop shape and the approach angle of each wire can be made equal. As a result, the strength of the wire is improved, and breakage of the wire due to external force or the like can be prevented.
[0061]
Further, as shown in FIG. 5, the light-transmissive mold member containing the fluorescent substance is arranged in all directions so as to cover the periphery of the light emitting element with the upper surface of the bump provided on each electrode of the light emitting element as an opening. It may be provided. With such a structure, all the light emitted from the light emitting element can be favorably converted, and a light emitting device capable of emitting light uniformly can be obtained. In particular, when a translucent mold member containing a fluorescent substance is provided also on the bottom surface on the substrate side, flip mounting becomes possible and output can be improved. On the other hand, in the case where the substrate side of the light emitting device is fixed to the mounting substrate with the die bonding resin, the light emitted from the bottom surface side of the light emitting element is converted well by including the fluorescent substance in the die bonding resin. And can be taken out.
[0062]
(Reflection film)
The reflective film 11 used in the present invention is for suppressing light emitted from the substrate side from being emitted to the outside, improving light extraction efficiency, and obtaining better light emission. Preferred materials for the reflective film include an oxide film formed of a multilayer film and various metals. It is particularly preferable to use a metal film from the viewpoint of ease of formation. Specific examples of the metal film include Ag, Al, and their alloys having high reflectivity. These metal films can be formed by a sputtering method, a vacuum evaporation method, or the like. In the present invention, the reflection film may be formed so as to cover at least the bottom surface of the substrate, and is preferably formed continuously so as to cover the side surface and the bottom surface of the chip.
[0063]
【Example】
Hereinafter, a light emitting diode of an example according to the present invention will be described. Note that the present invention is not limited to only the following examples.
[0064]
[Example 1]
Semiconductor layers 2 and 3 and a light emitting layer (not shown) capable of emitting blue light (470 nm) are formed on an insulating substrate 1 made of sapphire (C plane) by MOVPE. After the annealing, the wafer is taken out of the reaction vessel, and the surface of the uppermost p-type nitride semiconductor 2 After forming an insulating film made of, for example, a resist film having a predetermined shape on the surface of the insulating film, etching is performed from the p-type nitride semiconductor layer side by an RIE (reactive ion etching) apparatus, and a negative electrode is formed. Is exposed. Next, after the insulating film is stripped with an acid, the first positive electrode 4 made of Ni / Au is formed on almost the entire surface of the uppermost p-type nitride semiconductor layer with a light transmittance of 470 nm of 40%. And a film thickness of 200 Å so that the surface resistivity is 2 Ω / □. Next, a second positive electrode 5 made of Au is formed on the first positive electrode with a thickness of 0.7 μm by a lift-off method. On the other hand, a negative electrode 6 of W / Al / W / Au having a thickness of 0.8 μm is formed on the surface of the n-type nitride semiconductor layer exposed by the etching by the lift-off method to obtain an LED element.
[0065]
Next, by patterning, SiO 2 is exposed so that only the bonding portion of each electrode is exposed and the entire device is covered. 2 The insulating protective film 7 is formed to a thickness of 2 μm so that the light transmittance at a wavelength of 470 nm is 90%.
[0066]
In the nitride semiconductor wafer formed as described above, as shown in FIG. 3A, a concave portion for forming a phosphor-containing translucent mold member is formed on the side surface of the semiconductor layer by dicing. Dicing in this manner is preferable because a translucent mold member containing a fluorescent substance can be disposed on the side surface of the light emitting layer of the light emitting element, and color unevenness can be suppressed. In addition, when the wafer is scribed, the pressure applied to the wafer can be reduced, and the warpage and cleavage of the substrate can be suppressed. After dicing, Au, which is the material of the bump 8, is pressure-bonded on each bonding surface of each electrode at a height of 50 μm using a bump bomber. (First step).
[0067]
On the other hand, (Y 0.8 Gd 0.2 ) 3 Al 5 O 12 : 80 parts by weight of Ce, 100 parts by weight of epoxy resin, SiO 2 as acid anhydride, curing accelerator and diffusing agent 2 Is sufficiently stirred at 65 ° C. to form a material that becomes the light-transmissive mold member 9 containing a fluorescent substance. At this time, the viscosity of the epoxy resin is 700 cp. The material to be the phosphor-containing translucent mold member formed as described above is coated with a film thickness of 150 μm so as to cover the bumps by dip (second step). This is cured by primary curing at 85 ° C. for 180 minutes and secondary curing at 140 ° C. for 240 minutes.
[0068]
Next, the bumps 8 and the phosphor-containing translucent mold member 9 are polished together from the semiconductor layer side so that the upper surface of the translucent mold member is 40 μm from the light emitting surface of the light emitting element. Is exposed (third step). Further, the substrate is ground and polished from the substrate side so as to have a thickness of 120 μm.
[0069]
Finally, after removing the translucent mold member at the position where the nitride semiconductor wafer is cut by dicing, the scribe line is cut by a scriber into chips of 300 μm square by an external force (fourth step).
[0070]
When a white LED lamp is formed using the light emitting diodes formed as described above, the yield is 95%. As described above, by using the light-emitting diode of the present invention, a light-emitting device can be manufactured with high productivity and a light-emitting device with high reliability and less color tone unevenness can be provided.
[0071]
(Comparative Example 1)
On the other hand, after the insulating film is provided, the nitride semiconductor layer semiconductor wafer is cut into chips, the individual light emitting elements are arranged on the bottom surface of the mount lead inside the cup, and electrically connected by wires, and then the fluorescent light is first emitted. When the light-emitting diode is formed in the same manner as in Example 1 except that the material-containing light-transmitting mold member is filled in the cup so as to cover the light-emitting element, and then a light-transmitting convex lens member is provided, the yield is 85%. . Further, as compared with the light emitting diode of Example 1, the color tone is uneven.
[0072]
(Example 2)
After the fourth step, light-emitting diodes are formed in the same manner as in Example 1 except that a fifth step of forming a reflective film 11 on the sapphire substrate side by a sputtering method using a sheet expand 10 for each light-emitting diode is performed. Then, the same effect as in the first embodiment can be obtained. In addition, light from the end face can be favorably extracted to the light emitting surface, and a light emitting diode with high output can be obtained.
[0073]
(Example 3)
After the fourth step, a light emitting diode is formed on each light emitting diode in the same manner as in Example 1 except that a light-transmitting mold member containing a fluorescent substance is formed from the substrate side to the periphery of the substrate. A light emitting device having the phosphor-containing translucent mold member on the entire outer periphery other than the exposed surfaces of the provided bumps is obtained, and the same effects as those of Embodiment 1 are obtained, and light is emitted from all directions of the light emitting element. Color can be satisfactorily converted, thereby suppressing color unevenness and obtaining more uniform light emission.
[0074]
On the other hand, (Y 0.8 Gd 0.2 ) 3 Al 5 O 12 : 80 parts by weight of Ce, 100 parts by weight of silanol (Si (OEt) 3OH), and ethanol at twice the weight of the silanol were mixed to form a slurry, and the slurry was discharged from a nozzle onto a wafer to emit a fluorescent substance. After forming the light emitting device in the same manner as in Example 1 except that the material is coated with the material of the translucent mold member and heated at 300 ° C. for 3 hours to convert the silanol to SiO 2 and fix the fluorescent substance on the wafer, Thus, the same effects as those of the first embodiment can be obtained.
[0075]
【The invention's effect】
As described in detail, before the wafer is cut into chips, the light emitting device according to the present invention forms a bump on each electrode to raise the conductive portion, and the fluorescent material-containing translucent mold member is formed into a semiconductor. By providing the layer on the layer side, a color conversion type light emitting device having high reliability and excellent optical characteristics can be efficiently produced.
[0076]
In addition, since the light emitting device of the present invention has the phosphor-containing translucent mold member around the entire surface of the light emitting element with the bump exposed surface as an opening, light from the light emitting element can be efficiently converted by the fluorescent substance. Thus, a desired color tone can be uniformly emitted. Therefore, external deterioration due to light from the light emitting element can be suppressed.
.
[0077]
In addition, by providing a continuous insulating reflective film on the substrate side, a light emitting device having good light extraction efficiency and less emission unevenness can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a light emitting diode according to an embodiment of the present invention.
FIG. 2 is a schematic plan view of a light-emitting diode according to another embodiment of the present invention.
FIG. 3 is a method for forming a light emitting diode according to an embodiment of the present invention.
FIG. 4 is a step of another method for forming a light emitting diode according to the embodiment of the present invention.
FIG. 5 is a schematic sectional view of another light emitting diode according to the embodiment of the present invention.
.
[Explanation of symbols]
1 ... substrate
2 ... n-type nitride semiconductor layer
3 ... p-type nitride semiconductor layer
4 ... first positive electrode
5 ... second positive electrode
6 ... negative electrode
7 ... insulating film
8 ... Bump
9: Transparent mold member containing fluorescent substance
10 ... sheet expand
11 ... reflective film

Claims (3)

基板上に半導体層を有する発光素子と、該発光素子からの光の一部を吸収してそれよりも長波長の光が発光可能な蛍光物質と、該蛍光物質を有し前記発光素子の表面を包囲する透光性モールド部材とを有する発光装置の形成方法であって、
ウエハーの状態で前記発光素子の電極上にバンプを形成する第1の工程と、前記発光素子の半導体層側に前記バンプを覆うように前記透光性モールド部材となる材料を被覆させる第2の工程と、研磨により半導体層側から前記ウエハー底面と平行にバンプの上面を露出させる第3の工程と、前記ウエハーをダイシング且つスクライブすることにより切断する第4の工程とを有する発光装置の形成方法。
A light-emitting element having a semiconductor layer over a substrate, a fluorescent substance capable of absorbing part of light from the light-emitting element and emitting light of a longer wavelength than the light-emitting element, and a surface of the light-emitting element having the fluorescent substance And a light-transmitting mold member surrounding the light-emitting device,
A first step of forming a bump on the electrode of the light emitting element in a wafer state, and a second step of covering the semiconductor layer side of the light emitting element with a material to be the translucent mold member so as to cover the bump A third step of exposing the upper surface of the bumps from the semiconductor layer side in parallel with the bottom surface of the wafer by polishing, and a fourth step of cutting the wafer by dicing and scribing. .
前記第4の工程後、前記発光素子の少なくとも基板側に連続した透光性モールド部材を形成する請求項1に記載の発光装置の形成方法。The method for forming a light emitting device according to claim 1, wherein after the fourth step, a continuous translucent mold member is formed on at least the substrate side of the light emitting element. 前記第4の工程後、前記発光素子の少なくとも基板側に連続した反射膜を形成する請求項1に記載の発光装置の形成方法。The method according to claim 1, wherein after the fourth step, a continuous reflective film is formed on at least the substrate side of the light emitting element.
JP2001053511A 2000-07-31 2001-02-28 Method for forming light emitting device Expired - Fee Related JP3589187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001053511A JP3589187B2 (en) 2000-07-31 2001-02-28 Method for forming light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000230197 2000-07-31
JP2000-230197 2000-07-31
JP2001053511A JP3589187B2 (en) 2000-07-31 2001-02-28 Method for forming light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003007038A Division JP2003273408A (en) 2000-07-31 2003-01-15 Light emitting device

Publications (2)

Publication Number Publication Date
JP2002118293A JP2002118293A (en) 2002-04-19
JP3589187B2 true JP3589187B2 (en) 2004-11-17

Family

ID=26596989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053511A Expired - Fee Related JP3589187B2 (en) 2000-07-31 2001-02-28 Method for forming light emitting device

Country Status (1)

Country Link
JP (1) JP3589187B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030105B1 (en) 2010-03-18 2011-10-04 Everlight Electronics Co., Ltd. Method of fabricating a light emitting diode chip having phosphor coating layer
CN102544267A (en) * 2007-01-22 2012-07-04 美商克立股份有限公司 Wafer level phosphor coating method and devices fabricated utilizing method
US8878219B2 (en) 2008-01-11 2014-11-04 Cree, Inc. Flip-chip phosphor coating method and devices fabricated utilizing method
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US9093616B2 (en) 2003-09-18 2015-07-28 Cree, Inc. Molded chip fabrication method and apparatus
US9159888B2 (en) 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
US9337402B2 (en) 2013-11-21 2016-05-10 Nichia Corporation Method for manufacturing semiconductor light emitting device
US9755119B2 (en) 2014-01-17 2017-09-05 Nichia Corporation Light emitting device and method of manufacturing light emitting device
US10546846B2 (en) 2010-07-23 2020-01-28 Cree, Inc. Light transmission control for masking appearance of solid state light sources

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003221442A1 (en) 2002-03-22 2003-10-08 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device
US6841802B2 (en) 2002-06-26 2005-01-11 Oriol, Inc. Thin film light emitting diode
JP2004083653A (en) 2002-08-23 2004-03-18 Sharp Corp Light emitting device, phosphor and method for producing the same
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
AU2003276867A1 (en) 2002-09-19 2004-04-08 Cree, Inc. Phosphor-coated light emitting diodes including tapered sidewalls, and fabrication methods therefor
US20060003477A1 (en) 2002-10-30 2006-01-05 Bert Braune Method for producing a light source provided with electroluminescent diodes and comprising a luminescence conversion element
CN100508221C (en) * 2002-10-30 2009-07-01 奥斯兰姆奥普托半导体有限责任公司 Method for producing a light source provided with electroluminescent diodes and comprising a luminescence conversion element
DE10258193B4 (en) * 2002-12-12 2014-04-10 Osram Opto Semiconductors Gmbh Method for producing light-emitting diode light sources with luminescence conversion element
DE10261672B4 (en) * 2002-12-31 2005-11-24 Osram Opto Semiconductors Gmbh LED chip with conversion substance, optoelectronic component with such an LED chip and method for producing such an LED chip
US20050104072A1 (en) 2003-08-14 2005-05-19 Slater David B.Jr. Localized annealing of metal-silicon carbide ohmic contacts and devices so formed
US7029935B2 (en) 2003-09-09 2006-04-18 Cree, Inc. Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same
US7183587B2 (en) 2003-09-09 2007-02-27 Cree, Inc. Solid metal block mounting substrates for semiconductor light emitting devices
JP2006019400A (en) * 2004-06-30 2006-01-19 Sanyo Electric Co Ltd Light emitting device and its manufacturing method
US20060097385A1 (en) 2004-10-25 2006-05-11 Negley Gerald H Solid metal block semiconductor light emitting device mounting substrates and packages including cavities and heat sinks, and methods of packaging same
DE112005002889B4 (en) 2004-12-14 2015-07-23 Seoul Viosys Co., Ltd. Light emitting device with a plurality of light emitting cells and assembly assembly thereof
US7322732B2 (en) 2004-12-23 2008-01-29 Cree, Inc. Light emitting diode arrays for direct backlighting of liquid crystal displays
EP1864339A4 (en) 2005-03-11 2010-12-29 Seoul Semiconductor Co Ltd Led package having an array of light emitting cells coupled in series
JP4931372B2 (en) * 2005-06-06 2012-05-16 日亜化学工業株式会社 Light emitting device
KR20090009772A (en) 2005-12-22 2009-01-23 크리 엘이디 라이팅 솔루션즈, 인크. Lighting device
US8004002B2 (en) 2006-01-04 2011-08-23 Rohm Co., Ltd. Thin-light emitting diode lamp, and method of manufacturing the same
KR100658970B1 (en) 2006-01-09 2006-12-19 주식회사 메디아나전자 LED device generating light with multi-wavelengths
KR100723247B1 (en) 2006-01-10 2007-05-29 삼성전기주식회사 Chip coating type light emitting diode package and fabrication method thereof
JP4726633B2 (en) * 2006-01-11 2011-07-20 シャープ株式会社 Method for manufacturing light emitting device
US8441179B2 (en) 2006-01-20 2013-05-14 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
WO2007084640A2 (en) 2006-01-20 2007-07-26 Cree Led Lighting Solutions, Inc. Shifting spectral content in solid state light emitters by spatially separating lumiphor films
JP2007273562A (en) 2006-03-30 2007-10-18 Toshiba Corp Semiconductor light-emitting device
US8033692B2 (en) 2006-05-23 2011-10-11 Cree, Inc. Lighting device
US9196799B2 (en) 2007-01-22 2015-11-24 Cree, Inc. LED chips having fluorescent substrates with microholes and methods for fabricating
US7867793B2 (en) * 2007-07-09 2011-01-11 Koninklijke Philips Electronics N.V. Substrate removal during LED formation
TWI396298B (en) 2007-08-29 2013-05-11 Everlight Electronics Co Ltd Phosphor coating method for light emmitting semiconductor device and applications thereof
US8167674B2 (en) 2007-12-14 2012-05-01 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
JP4799606B2 (en) * 2008-12-08 2011-10-26 株式会社東芝 Optical semiconductor device and method for manufacturing optical semiconductor device
JP4724222B2 (en) 2008-12-12 2011-07-13 株式会社東芝 Method for manufacturing light emitting device
JP5385004B2 (en) * 2009-05-22 2014-01-08 富士通テン株式会社 Circuit parts
JP5278175B2 (en) * 2009-06-05 2013-09-04 日亜化学工業株式会社 Light emitting device
JP5378130B2 (en) 2009-09-25 2013-12-25 株式会社東芝 Semiconductor light emitting device
JP2011071272A (en) 2009-09-25 2011-04-07 Toshiba Corp Semiconductor light-emitting device and method for manufacturing the same
US8593040B2 (en) 2009-10-02 2013-11-26 Ge Lighting Solutions Llc LED lamp with surface area enhancing fins
JP5349260B2 (en) 2009-11-19 2013-11-20 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
CN102754229B (en) * 2010-02-09 2016-07-06 日亚化学工业株式会社 The manufacture method of light-emitting device and light-emitting device
EP2363749B1 (en) 2010-03-05 2015-08-19 Rohm and Haas Electronic Materials, L.L.C. Methods of forming photolithographic patterns
JP5197654B2 (en) * 2010-03-09 2013-05-15 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP5202559B2 (en) * 2010-03-09 2013-06-05 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
KR101149028B1 (en) * 2010-03-17 2012-05-24 엘지이노텍 주식회사 Led package and manufacturing method of the same
JP5101650B2 (en) 2010-03-25 2012-12-19 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
CN103003966B (en) * 2010-05-18 2016-08-10 首尔半导体株式会社 There is light emitting diode chip and the manufacture method thereof of wavelength conversion layer, and include its packaging part and manufacture method thereof
WO2011145794A1 (en) 2010-05-18 2011-11-24 서울반도체 주식회사 Light emitting diode chip having wavelength conversion layer and manufacturing method thereof, and package including same and manufacturing method thereof
JP5325834B2 (en) * 2010-05-24 2013-10-23 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP5356312B2 (en) * 2010-05-24 2013-12-04 株式会社東芝 Semiconductor light emitting device
JP5390472B2 (en) 2010-06-03 2014-01-15 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP5398644B2 (en) 2010-06-07 2014-01-29 株式会社東芝 Light source device using semiconductor light emitting device
JP2011258673A (en) * 2010-06-07 2011-12-22 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
JP5462078B2 (en) * 2010-06-07 2014-04-02 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP5414627B2 (en) * 2010-06-07 2014-02-12 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP5426484B2 (en) 2010-06-07 2014-02-26 株式会社東芝 Manufacturing method of semiconductor light emitting device
JP5449039B2 (en) * 2010-06-07 2014-03-19 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
WO2012002580A1 (en) 2010-07-01 2012-01-05 シチズンホールディングス株式会社 Led light source device and method for manufacturing same
TWI401829B (en) * 2010-10-07 2013-07-11 Advanced Optoelectronic Tech Led pakage and method for manufacturing the same
KR101767100B1 (en) 2010-11-10 2017-08-10 삼성전자주식회사 Light emitting device and manufacturing method of the same
US8772817B2 (en) 2010-12-22 2014-07-08 Cree, Inc. Electronic device submounts including substrates with thermally conductive vias
JP5537446B2 (en) 2011-01-14 2014-07-02 株式会社東芝 Light emitting device, light emitting module, and method of manufacturing light emitting device
JP6110310B2 (en) * 2011-01-24 2017-04-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
KR101761834B1 (en) * 2011-01-28 2017-07-27 서울바이오시스 주식회사 Wafer level led package and method of fabricating the same
JP5603793B2 (en) 2011-02-09 2014-10-08 株式会社東芝 Semiconductor light emitting device
JP2012175069A (en) * 2011-02-24 2012-09-10 Nitto Denko Corp Manufacturing method of light emitting diode device
JP5603813B2 (en) 2011-03-15 2014-10-08 株式会社東芝 Semiconductor light emitting device and light emitting device
JP5535114B2 (en) 2011-03-25 2014-07-02 株式会社東芝 Light emitting device, light emitting module, and method of manufacturing light emitting device
CN102208499A (en) * 2011-05-12 2011-10-05 深圳市瑞丰光电子股份有限公司 Manufacturing process of white-light LED chip and product thereof
JP5642623B2 (en) 2011-05-17 2014-12-17 株式会社東芝 Semiconductor light emitting device
JP5619680B2 (en) * 2011-06-03 2014-11-05 シチズンホールディングス株式会社 Manufacturing method of semiconductor light emitting device
JP5662277B2 (en) 2011-08-08 2015-01-28 株式会社東芝 Semiconductor light emitting device and light emitting module
US20140198528A1 (en) * 2011-08-17 2014-07-17 Samsung Electronics Co., Ltd. Wavelength conversion chip for a light emitting diode, and method for manufacturing same
JP2013065726A (en) 2011-09-16 2013-04-11 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
JP5698633B2 (en) * 2011-09-21 2015-04-08 株式会社東芝 Semiconductor light emitting device, light emitting module, and method of manufacturing semiconductor light emitting device
JP6066253B2 (en) * 2011-09-26 2017-01-25 東芝ライテック株式会社 Method for manufacturing light emitting device
WO2013084126A1 (en) * 2011-12-08 2013-06-13 Koninklijke Philips Electronics N.V. Semiconductor light emitting device with thick metal layers
JP5885499B2 (en) 2011-12-27 2016-03-15 株式会社ディスコ Tool cutting method
WO2013118002A1 (en) * 2012-02-10 2013-08-15 Koninklijke Philips N.V. Molded lens forming a chip scale led package and method of manufacturing the same
KR20130110381A (en) * 2012-03-29 2013-10-10 삼성전자주식회사 Manufacturing method of semiconductor light emitting device having a wavelength conversion layer
US9500355B2 (en) 2012-05-04 2016-11-22 GE Lighting Solutions, LLC Lamp with light emitting elements surrounding active cooling device
JP6094062B2 (en) * 2012-06-01 2017-03-15 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP5592963B2 (en) * 2013-01-30 2014-09-17 株式会社東芝 Light source device using semiconductor light emitting device
JP5422760B2 (en) * 2013-02-04 2014-02-19 株式会社東芝 Semiconductor light emitting device
JP6307907B2 (en) 2013-02-12 2018-04-11 日亜化学工業株式会社 Method for manufacturing light emitting device
JP2014160736A (en) * 2013-02-19 2014-09-04 Toshiba Corp Semiconductor light-emitting device and light-emitting device
JP5537700B2 (en) * 2013-05-23 2014-07-02 株式会社東芝 Semiconductor light emitting device
JP2015008220A (en) * 2013-06-25 2015-01-15 日亜化学工業株式会社 Side emission light-emitting device
JP5695706B2 (en) * 2013-07-05 2015-04-08 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP6098439B2 (en) * 2013-08-28 2017-03-22 日亜化学工業株式会社 Wavelength conversion member, light emitting device, and method of manufacturing light emitting device
JP6209949B2 (en) * 2013-11-13 2017-10-11 日亜化学工業株式会社 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP6237181B2 (en) 2013-12-06 2017-11-29 日亜化学工業株式会社 Method for manufacturing light emitting device
TW201616689A (en) * 2014-06-25 2016-05-01 皇家飛利浦有限公司 Packaged wavelength converted light emitting device
CN104979437A (en) * 2015-05-29 2015-10-14 山东浪潮华光光电子股份有限公司 LED lamp filament preparation method based on chip technical process
JP6387973B2 (en) 2016-01-27 2018-09-12 日亜化学工業株式会社 Light emitting device
JP6928424B2 (en) * 2016-02-24 2021-09-01 日亜化学工業株式会社 Fluorescent material and light emitting device
JP6269753B2 (en) * 2016-08-29 2018-01-31 日亜化学工業株式会社 Light emitting device
US11121172B2 (en) 2017-11-08 2021-09-14 Seoul Viosys Co., Ltd. Light-emitting diode unit for display comprising plurality of pixels and display device having same
JP6555335B2 (en) * 2017-12-28 2019-08-07 日亜化学工業株式会社 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP7092506B2 (en) 2018-01-09 2022-06-28 スタンレー電気株式会社 Light emitting device
JP7320717B2 (en) * 2019-10-11 2023-08-04 日亜化学工業株式会社 Method for manufacturing light emitting device
CN115458644A (en) * 2022-10-10 2022-12-09 硅能光电半导体(广州)有限公司 Upright white light LED packaging structure and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10546978B2 (en) 2003-09-18 2020-01-28 Cree, Inc. Molded chip fabrication method and apparatus
US10164158B2 (en) 2003-09-18 2018-12-25 Cree, Inc. Molded chip fabrication method and apparatus
US9093616B2 (en) 2003-09-18 2015-07-28 Cree, Inc. Molded chip fabrication method and apparatus
US9105817B2 (en) 2003-09-18 2015-08-11 Cree, Inc. Molded chip fabrication method and apparatus
US9159888B2 (en) 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
CN102544267A (en) * 2007-01-22 2012-07-04 美商克立股份有限公司 Wafer level phosphor coating method and devices fabricated utilizing method
US9024349B2 (en) 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US8878219B2 (en) 2008-01-11 2014-11-04 Cree, Inc. Flip-chip phosphor coating method and devices fabricated utilizing method
US8030105B1 (en) 2010-03-18 2011-10-04 Everlight Electronics Co., Ltd. Method of fabricating a light emitting diode chip having phosphor coating layer
US8309378B2 (en) 2010-03-18 2012-11-13 Everlight Electronics Co., Ltd. Method of fabricating a light emitting diode chip having phosphor coating layer
US10546846B2 (en) 2010-07-23 2020-01-28 Cree, Inc. Light transmission control for masking appearance of solid state light sources
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
US9337402B2 (en) 2013-11-21 2016-05-10 Nichia Corporation Method for manufacturing semiconductor light emitting device
US9755119B2 (en) 2014-01-17 2017-09-05 Nichia Corporation Light emitting device and method of manufacturing light emitting device

Also Published As

Publication number Publication date
JP2002118293A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP3589187B2 (en) Method for forming light emitting device
US7833073B2 (en) Method of manufacturing a light emitting device
JP4650378B2 (en) Method for manufacturing light emitting device
JP4269709B2 (en) Light emitting device and manufacturing method thereof
JP4407204B2 (en) Light emitting device
JP5286585B2 (en) Light emitting device
JP4222017B2 (en) Light emitting device
JP3541709B2 (en) Method of forming light emitting diode
JP3617587B2 (en) Light emitting diode and method for forming the same
JP3618221B2 (en) Light emitting device
JP2004363343A (en) Light emitting device and method of forming the same
JP2003321675A (en) Nitride fluorophor and method for producing the same
JP2003179269A (en) Optical semiconductor element
JP2005033194A (en) Package molding object and semiconductor device using it
JPWO2002059982A1 (en) Optical semiconductor device and method of manufacturing the same
JP2004071726A (en) Light emitting device
JP2006086191A (en) Light-emitting device
JP2002261325A (en) Light-emitting device and method of manufacturing the same
JP2005123560A (en) Light emitting device and its forming method
JP2003273408A (en) Light emitting device
JP3417415B1 (en) Epoxy resin composition, method for producing the same, and optical semiconductor device using the same
JP3367096B2 (en) Method of forming light emitting diode
JP4059293B2 (en) Light emitting device
JP5619533B2 (en) Light emitting device
JP4874510B2 (en) Light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3589187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees