JP3618221B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP3618221B2
JP3618221B2 JP10124398A JP10124398A JP3618221B2 JP 3618221 B2 JP3618221 B2 JP 3618221B2 JP 10124398 A JP10124398 A JP 10124398A JP 10124398 A JP10124398 A JP 10124398A JP 3618221 B2 JP3618221 B2 JP 3618221B2
Authority
JP
Japan
Prior art keywords
light emitting
wire
light
emitting element
color conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10124398A
Other languages
Japanese (ja)
Other versions
JPH11298047A (en
Inventor
顕正 阪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP10124398A priority Critical patent/JP3618221B2/en
Publication of JPH11298047A publication Critical patent/JPH11298047A/en
Application granted granted Critical
Publication of JP3618221B2 publication Critical patent/JP3618221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45169Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は発光素子から放出された発光波長を蛍光体によって変換し少なくとも蛍光体からの光を外部に取り出す発光装置に関し、特に熱衝撃が加えられた場合においてもワイヤ切れの少ない信頼性の高い発光装置に関する。
【0002】
【従来技術】
近年、半導体発光素子の発光色を増やすなどの目的で、半導体発光素子からの発光波長を蛍光物質により波長変換して発光する発光ダイオードなどが開発されてきている。このような発光ダイオードの具体的構成として、マウント・リードのカップ上に紫外線、可視光や赤外線が発光可能なLEDチップを樹脂によってマウントさせてある。LEDチップにはマウント・リード及びインナー・リードと金線などによりワイヤボンドなどされ導通が取られる。このLEDチップ上から蛍光体含有の樹脂を塗布する。その後、蛍光体が塗布されたLEDチップ、マウントリード及びインナー・リードの先端をモールド樹脂で被覆することにより発光ダイオードを形成することができる。
【0003】
発光ダイオードに電流を供給するとLEDチップが発光する。LEDチップからの発光波長が蛍光体に吸収され、蛍光体によって所望波長に変換されて発光する。具体的には、発光層に窒化物半導体を用いたLEDチップからの青色光によって励起されたセリウム付活のイットリウム・アルミニウム・ガーネット系蛍光体は、青色光をより長波長の黄色光に変換して発光する。蛍光体の含有量を調節することなどによりLEDチップからの青色光及び蛍光体からの黄色光により発光ダイオードからは混色光が放出され白色発光が可能となる。
【0004】
このような発光ダイオードなどは、半導体発光素子の優れた特性を利用して種々の分野に利用され始めている。具体的には、野外での使用を始め、様々な車載用など多岐にわたっている。このような利用分野の広がりに伴い極めて厳しい使用環境下での駆動が要求される。しかしながら、発光素子を色変換部材及びモールド部材で被覆した発光装置は、色変換部材がない発光ダイオードなどと比較して熱衝撃などに弱い傾向にある。そのため、上記構成の発光装置では十分ではなく、更なる改良が求められている。
【0005】
【課題を解決するための手段】
本発明はマウント・リード(106)のカップ上に配置された発光素子(105)と、発光素子の電極とインナー・リード(107)を電気的に接続するワイヤ(104)と、カップ内に充填された色変換部材(102)と、マウント・リード及びインナー・リードの先端をモールド部材(103)で被覆した発光装置であって、色変換部材(102)は、少なくとも発光素子上に形成されると共に発光素子の電極上にワイヤボンディングされたワイヤ(104)のボール部(101)の上端よりも低く充填されてなる発光装置である。特に、色変換部材は主として発光素子の電極上にワイヤボンディングされたボール部の上端よりも低く充填されている発光装置である。これによって種々の環境下でも比較的簡単に利用可能な発光装置とすることができる。
【0006】
本発明の請求項2に記載の発光装置は、発光素子(205)の一方の電極と電気的に接続された第1のリード電極(206)と、発光素子の他方の電極とワイヤを介して接続された第2のリード電極(207)と、発光素子を覆っている色変換部材(202)と、色変換部材及び色変換部材から露出したワイヤ(204)を被覆するモールド部材(203)とを有する発光装置であって、発光素子からの発光波長を変換する色変換部材(202)とモールド部材(203)との界面は、発光素子の他方の電極上にワイヤボンディングされたワイヤ(204)のワイヤ径より太いボール部(201)に接してなる。特に、本発明において色変換部材とモールド部材との界面は発光素子の電極とボールボンディングされてできるボール部に接している発光装置である。これにより発光素子から発光波長を変換させた色変換部材から均一光を放出しつつ、ワイヤ切れがない信頼性の高い発光装置とすることができる。
【0007】
本発明の請求項3に記載の発光装置は、色変換部材が硬化された樹脂中に蛍光体が含有されたものであると共に、樹脂の主成分がモールド部材を構成する樹脂の主成分とほぼ同じである。これにより、発光素子からの発光波長が比較的短波長の可視光などであっても樹脂劣化による発光効率の低下を抑制することができる。また、ワイヤにかかる力をより低減させることができる。
【0008】
【発明の実施の形態】
本発明者は種々の実験の結果、色変換部材及びモールド部材を発光素子上のワイヤボンディングを考慮した特定の形状とすることにより、熱衝撃に強い発光装置とできることを見出し本発明を成すに至った。
【0009】
即ち、熱衝撃により不灯となった発光装置を詳細に調べたところ、色変換部材とモールド部材の界面やボールボンディング時に形成されたボール部とワイヤとの界面において発光素子に電流を供給するワイヤが断線していた。このような断線はモールド部材や色変換部材を構成する樹脂などを同一組成のもとしても起こる。このワイヤ断線の原因は定かではないが、色変換部材の形成時に色変換部材の表面が酸化されることにより、熱衝撃時に色変換部材とモールド部材との界面でワイヤに応力がかかる、或いはモールド部材及び色変換部材を構成する樹脂などの主材が同じであっても色変換部材は蛍光体が含有されることによって実質的に熱膨張や熱収縮率が異なり、その界面に力が掛かる。このような力により樹脂界面やボール部の形成によって脆くなったボール部とワイヤとの接続部分が断線するなどと考えられる。
【0010】
このような、ワイヤの断線はワイヤ径を太くし強度を高めることによりある程度防止することができると考えられるものの以下の理由により一定径以上ワイヤを太くすることができない。1.ワイヤを太くすると密着強度を向上させるためにボールボンディング用のボールも大きくならざるを得ない。ワイヤ先端のボールを精度良く発光素子の電極上にボールボンディングさせることが難しい。そのため、ワイヤの先端に形成されたボールがボールボンディング用の発光素子の電極からはみ出す場合がある。はみ出したボールはその電極が設けられた半導体層と逆極性の半導体層に接触すると短絡を生ずる。2.これを防止するために電極以外を保護膜で被覆することができる。しかしながら保護膜上にボールボンディングさせた場合は、ボールボンディングの密着性が低下するという問題がある。3.また、大きくなったボールを密着性よくボールボンディングするため、ボールボンディングされる電極の面積を大きくすると、発光素子の発光取り出し面積が小さくならざるを得ない。4.更に、ワイヤは電気伝導性をよくするなどの観点から貴金属が用いられる場合がある。この場合、コストの面からも使用量を少なくするためワイヤ径が細いことが望まれる。
【0011】
したがって、本発明は上述の問題がなくワイヤ自体の径を太くすることなく発光素子上に配置されるボールボンディングされたワイヤを利用した比較的簡単な構成でワイヤ切れを防止しうる発光装置である。
【0012】
具体的には、発光素子に第1のボンディングとしてボールボンディングを行う。発光素子の電極にボールボンドするためには、キャピラリに通したワイヤの先端を放電や水素ガス炎などによりボールを形成する。形成されたボールを発光素子の電極上に押しつけたままで超音波、或いは超音波エネルギーと共に熱エネルギーを加え融着させる。他方、キャピラリからワイヤを延ばしつつ、移動させ第2のボンディングさせるリード電極上にキャピラリごと押しつけ超音波融着させる。
【0013】
発光素子上の第1のボンディング(ボールボンディング)は、予め形成されたボールが押しつぶされ半球状の金属片(以下、ボール部ともいう)からワイヤが延びることとなる。ワイヤ径に対して、電極と接するボール部となる金属片は2倍から4倍程度の大きさとすることができる。金属片の大きさは、放電量や放電時間を制御することによりある程度制御することができる。そのため、形成された金属片はワイヤ径に対して極めて強い強度を持つ。
【0014】
本発明はボールボンディングされたワイヤのボール部に色変換部材とモールド部材との界面を形成させる。これにより、色変換部材とモールド部材との界面で応力がかかったとしてもワイヤ径に較べ太いボール部分が切断されることは実質的にないものである。これにより、色変換部材の厚みをワイヤ径よりも太いボール径に留めておくのみの比較的簡単な構成で極めて熱衝撃に強い発光ダイオードとすることができる。
【0015】
以下、本発明の一実施形態としてチップタイプLEDを図2を用いて詳述する。シリコンカーバイド上にバッファ層を介して窒化物半導体が形成されたLEDチップを青色が発光可能な発光素子205として利用する。基板209に設けられたキャビティは2段階の階段状に形成されており、底面と底面を有する凹部の外に設けられた1段目の表面にそれぞれリード電極206、207が形成されている。発光素子205はキャビティ底面に外部と電気的導通が可能な第1のリード電極206上にAgペースト208を用いてダイボンディングさせる。これによりLEDチップ205の一方の電極と第1のリード電極206とは電気的に接続される。
【0016】
また、階段状になった1段目の表面に一部が露出し、外部と電気的に接続可能な第2のリード電極207が形成されている。LEDチップ205の他方の電極と第2のリード電極207とを電気的に接続させるために金属ワイヤ204として金線を用いる。金線の先端には放電により予めボールが形成されたものをキャピラリごとLEDチップ205の電極に押しつけ超音波融着させた後、金線を延ばし第2のリード電極207上にステッチボンディングしてある。LEDチップ205の電極上にはボールボンディングされたことにより半球状の金属片(ボール部201)からワイヤ204が延びることとなる。
【0017】
次に、LEDチップ205上には色変換部材202としてセリウムで付活されたイットリウム・アルミニウム・ガーネット蛍光体(YAl12:Ce)を含有させたシリコン樹脂を塗布させてある。色変換部材202はキャビティ内に配置されたLEDチップ全体を覆っているものの、色変換部材202表面はLEDチップ205の電極上に形成されたボール部201の高さまでしか実質的に配置されていない。色変換部材を加熱硬化させた。断面が略階段状のキャビティ内に透明なモールド部材203としてエポキシ樹脂を流し込み硬化させることにより本発明の発光装置200とすることができる。
【0018】
形成されたチップタイプLEDにおいて、LEDチップ205が配置された第1のリード電極206及びワイヤ204と接続された第2のリード電極207に電流を流すとLEDチップ205が青色に発光すると共にLEDチップ205から放出された光はその一部が蛍光体により変換され黄色光が放出される。LEDチップ205及び色変換部材202の混色光が放出されチップタイプLED200からは電球色(黄色)が放出観測される。また、熱衝撃を加えてもワイヤ204が断線することなく発光することができる。以下、本発明の各構成について詳述する。
【0019】
(ボール部101、201)
本発明のボール部101とは、発光素子105とワイヤ104との密着性を向上させ得るものであり、色変換部材102及びモールド部材103との界面が形成されるものである。具体的には、ボールボンディング時に形成される半球状の金属片をいう。ワイヤボンディング機器での接続では、発光素子105の電極上を第1のボンド(ボールボンディング)とし、色変換部材102の外部で形成されるインナー・リード107などとの接続部を第2のボンド(ステッチボンディング)とすることができる。具体的には、キャピラリを通してはみ出した金線に放電を照射してボールを形成する。形成されたボールを発光素子の電極上に押しつけると共に超音波、超音波及び熱を加える。これにより、電極上にボールが押しつぶされ融着される。
【0020】
融着されたボール部101は、半球状の金属片となりワイヤ104の径に対して電極と接するボール部101となる金属片は2倍から4倍程度の大きさとすることもできる。本発明において発光素子105の電極上に形成された金属片は色変換部材102とモールド部材103との主な界面が形成されるものであり、熱収縮や熱膨張などにより力が掛かりやすいものであるから色変換部材102とモールド部材103を考慮してボール部101上での界面位置やボール部101の大きさを種々選択することができる。
【0021】
何れにしても本発明は、色変換部材102とモールド部材103の界面のずれなどに対してワイヤ104よりも強いボール部101(ワイヤ径よりも太いボール部)を利用して発光素子105の導通を確保するものであるから発光素子105への影響を少なくする範囲で種々選択することができる。色変換部材102とモールド部材104との熱収縮や熱膨張率等の違いなどが大きければ発光素子105の電極に近くボール部101の径が大きい部位に色変換部材102とモールド部材103との界面を形成する、或いはボール部101自体を大きくすることで断線を防ぐことができる。なお、本発明においてボール部の上端とは、ボール部からワイヤが延びるワイヤとの界面をいう。
【0022】
(色変換部材102)
本発明に用いられる色変換部材としては、発光素子からの発光波長をより長波長側に変換可能な蛍光物質を有するものであり、無機や有機の蛍光物質が含有された種々の樹脂やガラス、有機蛍光体そのものなどが挙げられる。発光素子から放出された可視発光波長と蛍光物質からの蛍光を共に外部に放出させる場合は、発光装置の外部に発光素子からの可視発光波長と蛍光物質からの蛍光とがモールド部材などを透過する必要がある。なお、本発明においては色変換部材とは可視光から可視光に変換させるもののみならず、紫外域の波長を可視光に変換させたものをも含む。
【0023】
このような色変換部材に利用される蛍光物質として具体的には、単色性ピーク波長を持った窒化物半導体などのLEDチップからの青色光など比較的高エネルギーの可視光によって発光可能な蛍光物質として、セリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体(Y、Lu、Sc、La、Gd及びSmからなる群から選ばれた少なくとも1つの元素と、Al、Ga、及びInからなる群から選ばれる少なくとも1つの元素とを含んでなるセリウムで付活されたガーネット系蛍光体)、ペリレン系誘導体や銅で付活された硫化亜鉛などが挙げられる。一方、蛍光物質からの可視域光のみを外部に放出させるためには、発光素子から放出され蛍光物質を励起する励起波長を紫外域にする。或いは、発光素子が放出した発光波長を実質的に全て蛍光物質で波長変換させる。さらには、蛍光物質で変換されなかった発光素子からの光をピグメントなどにより吸収させることで蛍光物質からの可視域光のみ外部に放出させることができる。
【0024】
LEDチップから放出される発光波長が紫外域の発光波長である場合、種々の蛍光物質を利用することができる。具体的には、紫外域の励起波長により赤色が発光可能な蛍光物質として3.5MgO・0.5MgF・GeO:Mn、YS:Eu、Y:Eu、CaTiO:Pr、Y(PV)O:Eu、YVO:Euなどが好適に挙げられる。同様に緑色が発光可能な蛍光物質としてZnSiO:Mn、ZnSiO:Mn、LaPO:Tb、SrAl:Euなどが好適に挙げられる。同様に青色が発光可能な蛍光物質としてSr:Eu、Sr(POCl:Eu、(SrCaBa)(POCl:Eu、BaMgAl1627:Eu、SrO・P・B:Eu、(BaCa)(POCl:Euなどが好適に挙げられる。白色が発光可能な蛍光物質としてYVO:Dyなどが好適に挙げられる。また、これら複数の蛍光物質の混合比率を調節させつつ、含有させることにより発光装置からの放出されるRGB(赤色、緑色、青色)波長成分を増やすことや混色光を含め任意の発光色を発光させることもできる。
【0025】
色変換部材102が蛍光体を含有する透光性部材から構成される場合、透光性部材の具体的材料としては、エポキシ樹脂、ユリア樹脂、シリコン樹脂、シリコン樹脂などの耐候性に優れた透光性樹脂や酸化珪素などの透光性無機部材が好適に用いられる。ガラスなどの無機部材を用いた場合は発光素子の劣化を考慮して低温で形成できるものが好ましい。また、本発明の蛍光物質と共に着色顔料、着色染料や拡散剤を含有させても良い。着色顔料や着色染料を用いることによって発光装置から放出される光の色味を調節させることもできる。また、拡散剤を含有させることによって、より指向角を増すこともできる。具体的な拡散剤としては、無機系である酸化チタン、酸化アルミニウム、酸化珪素等や有機系であるグアナミン樹脂などが好適に用いられる。
【0026】
なお、色変換部材を構成する樹脂が未硬化では蛍光体が流動し発光色のバラツキなどが生ずる恐れがある。同様に、色変換部材を構成する樹脂が未硬化では、発光素子自体からの熱や発光素子から放出される短波長の波長によって劣化しやすい傾向にある。このような樹脂劣化は発光素子からの発光波長や蛍光体からの蛍光が樹脂によって吸収などされるため発光効率が低下する場合がある。そのため、色変換部材を構成する樹脂は(実質的に完全)硬化させておくことが望ましい。
【0027】
(モールド部材103)
モールド部材103は、色変換部材102、ワイヤ104、発光素子105などを外部から保護するために設けられる。また、蛍光物質によって発光素子105から放出される光の視野角を増やすことができるが、モールド部材103に拡散剤を含有させることによって発光素子105からの指向性を緩和させ視野角をさらに増やすことができる。
【0028】
また、モールド部材103中にも着色顔料や着色染料を含有させることもできる。モールド部材と色変換部材の主材を同一のものを用いることによりワイヤに掛かる力を低減することができるが、蛍光体が含有された樹脂と拡散材や着色剤が含有されたモールド部材を選択することで互いの熱膨張率差等をより小さくさせることもできる。
【0029】
モールド部材103を所望の形状にすることにより、発光素子105からの発光を集束させたり拡散させたりするレンズ効果を持たせることができる。したがって、モールド部材103は複数積層した構造でもよい。具体的には、凸レンズ形状、凹レンズ形状さらには、発光観測面側から見て楕円形状やそれらを複数組み合わせたものが挙げられる。モールド部材103の具体的材料としては、主としてエポキシ樹脂、ユリア樹脂、シリコン樹脂などの耐候性に優れた透明樹脂や低融点ガラスなどが好適に用いられる。ワイヤへの応力を考慮した場合、収縮や膨張などが少ないものが望ましい。更に、色変換部材を構成する主材とモールド部材とが主として同じ部材から構成されていることが望ましい。また、拡散剤としては、無機系である酸化チタン、酸化アルミニウム、酸化珪素等や有機系のグアナミン樹脂などが好適に用いられる。
【0030】
(ワイヤ104)
電気的接続部材であるワイヤ104としては、発光素子105の電極及びリード電極などとのオーミック性、機械的接続性、電気伝導性及び熱伝導性がよいものが求められる。熱伝導度としては0.01cal/cm/cm/℃以上が好ましく、より好ましくは0.5cal/cm/cm/℃以上である。また、発光装置100の効率、作業性、コストなどを考慮してワイヤの直径は、好ましくは、Φ10μm以上、Φ45μm以下である。より好ましくは、Φ25μm以上、Φ35μm以下である。このようなワイヤ104として具体的には、金、銅、白金、アルミニウム等の金属及びそれらの合金を用いたワイヤが挙げられる。ワイヤ104は、発光素子105の電極と、インナー・リードなどのリード電極とをワイヤボンディング機器によって容易に接続させることができる。
【0031】
(発光素子105)
本発明に用いられる半導体発光素子とは、蛍光物質を励起し発光させることができるものであれば、シリコンカーバイド、窒化ホウ素、インジウム・リンなど種々の半導体を利用したLEDやLDなどを用いることができる。特に、蛍光物質を効率良く励起できる紫外域や近紫外域さらには、比較的高エネルギーの可視光が効率よく発光可能な半導体発光素子として窒化物半導体を用いたものが好適に挙げられる。
【0032】
発光素子105は、MOCVD法やHVPE法等により基板上に半導体を形成させることにより構成することができる。半導体の構造としては、MIS接合、PIN接合やpn接合などを有するホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。半導体層の材料やその混晶度によって発光波長を種々選択することができる。また、半導体活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。
【0033】
InAlGa1−x−yN(ただし、0≦x、0≦y、x+y≦1)を発光層として形成させた窒化物半導体としては、比較的高いエネルギを高輝度に発光させることができるため、蛍光体を励起させる発光素子として好適に利用することができる。以下、窒化物半導体素子について詳述する。窒化物半導体を用いた発光素子用の基板にはサファイアC面の他、R面、A面を主面とするサファイア、その他、スピネル(MgA1)のような絶縁性の基板の他、SiC(6H、4H、3Cを含む)、Si、ZnO、GaAs、GaN結晶等の材料を用いることができる。結晶性の良い窒化物半導体を比較的簡単に形成させるためにはサファイヤ基板(C面)やGaN単結晶を用いることが好ましい。
【0034】
サファイア基板上に結晶性の良い窒化物半導体を形成させるためには、格子不整合を是正するためにバッファ層を形成することが望ましい。バッファ層上には、n型コンタクト層兼クラッド層として窒化ガリウム、p型クラッド層として窒化アルミニウム・ガリウム、p型コンタクト層として窒化ガリウムが積層することができる。n型コンタクト層兼クラッド層とp型クラッド層との間には活性層として窒化インジウム・ガリウムを単一量子井戸構造とされる膜厚で形成することができる。
【0035】
なお、窒化ガリウム系半導体は、不純物をドープしない状態でn型導電性を示す。発光効率を向上させるなど所望のn型窒化ガリウム半導体を形成させる場合は、n型ドーパントとしてSi、Ge、Sn、Se、Te等を適宜導入することが好ましい。一方、p型窒化ガリウム半導体を形成させる場合は、p型ドーパントであるZn、Mg、Be、Ca、Sr、Ba等をドープさせる。窒化ガリウム系化合物半導体は、p型ドーパントをドープしただけではp型化しにくいためp型ドーパント導入後に、炉による加熱、低速電子線照射やプラズマ照射等によりアニールすることでp型化させることが好ましい。
【0036】
こうして形成された発光素子は、絶縁性基板を用いている。そのため、絶縁性基板の一部を除去する、或いは半導体表面側からp型半導体及びn型半導体の露出面をエッチングなどすることによりp型及びn型用の電極面をそれぞれ形成させる。各半導体層上にスパッタリング法や真空蒸着法などによりAu、Alやそれら合金を用いて所望の形状の電極を形成させる。発光面側に設ける電極は、全被覆せずに発光領域を取り囲むようにパターニングするか、或いは金属薄膜や金属酸化物などの透明電極を用いることができる。なお、p型GaNと好ましいオーミックが得られる電極材料としては、Ni、Pt、Pd、Au等の金属やこれら合金が好適に挙げることができる。n型GaNと好ましいオーミックが得られる電極材料としてはAl、Ti、W、Cu、Zn、Sn、In等の金属若しくは合金等が好適に挙げることができる。このように形成された発光素子をそのまま利用することもできるし、個々に分割してLEDチップの如き構成とし使用してもよい。
【0037】
LEDチップとして利用する場合は、形成された半導体ウエハをダイヤモンド製の刃先を有するブレードが回転するダイシングソーにより直接フルカットするか、又は刃先幅よりも広い幅の溝を切り込んだ後(ハーフカット)、外力によって半導体ウエハを割る。あるいは、先端のダイヤモンド針が往復直線運動するスクライバーにより半導体ウエハに極めて細いスクライブライン(経線)を例えば碁盤目状に引いた後、外力によって半導体ウエハを割り半導体ウエハからチップ状にカットする。このようにして窒化物半導体であるLEDチップなどの発光素子を形成させることができる。なお、絶縁性基板上に形成された半導体は、p型及びn型の窒化物半導体を同一平面側から取り出さざるを得ないためワイヤのボールボンディングにより短絡しやすくなる。そのため本発明の構成が特に有効となる。
【0038】
本発明の発光装置100において蛍光物質からの可視光を発光させる場合は、発光素子105の主発光波長は効率を考慮して365nm以上530nm以下が好ましく、365nm以上490nm以下が好ましい。蛍光物質からの光のみを発光させる場合は、主として紫外域である365nm以上400nm未満がより好ましい。また、発光素子105に用いられる樹脂部材の劣化、白色系など蛍光物質との補色関係等を考慮する場合は、可視域である400nm以上530nm以下が好ましく、420nm以上490nm以下がより好ましい。可視光を利用して発光素子105と蛍光物質との効率をそれぞれより向上させるためには、430nm以上475nm以下がさらに好ましい。
【0039】
(マウント・リード106)
マウント・リード106は発光素子105を配置させるものであり、ダイボンド機器などで発光素子105を積載するのに十分な大きさがあれば良い。また、発光素子105を複数設置しマウント・リード106を発光素子105の共通電極として利用する場合においては、十分な電気伝導性とワイヤ104等との接続性が求められる。
【0040】
発光素子105とマウント・リード106のカップとの接着は熱硬化性樹脂などによって行うことができる。具体的には、エポキシ樹脂や水ガラスなどが挙げられる。マウント・リード106の具体的な電気抵抗としては300μΩ・cm以下が好ましく、より好ましくは、3μΩ・cm以下である。マウント・リード106上に複数の発光素子105を積載する場合は、発光素子105からの発熱量が多くなるため熱伝導度がよいことが求められる。具体的には、0.01cal/cm/cm/℃以上が好ましくより好ましくは 0.5cal/cm/cm/℃以上である。これらの条件を満たす材料としては、鉄、銅、鉄入り銅、錫入り銅、金、銀をメッキしたアルミニウム、銅や鉄等が挙げられる。
【0041】
(インナー・リード107)
インナー・リード107としては、マウント・リード106上に配置された発光素子105と接続されたワイヤ104との電気的接続を図るものである。インナー・リード107は、ワイヤ104であるボンディングワイヤ等との接続性及び電気伝導性が良いことが求められる。具体的な電気抵抗としては、300μΩ・cm以下が好ましく、より好ましくは3μΩ・cm以下である。これらの条件を満たす材料としては、鉄、銅、鉄入り銅、錫入り銅及び銅、金、銀をメッキしたアルミニウム、鉄、銅等が挙げられる。
【0042】
以下、本発明の具体的実施例について詳述する。
【0043】
【実施例】
(実施例1)
発光素子としてサファイア基板上に窒化物半導体が形成されたLEDチップを利用した(主発光ピークが470nm)。LEDチップはMOCVD法を用いて形成させた。加熱基体上に洗浄されたサファイア基板を配置し原料ガスとしてトリメチルガリウム(TMG)、トリメチルインジウム(TMI)、トリメチルアルミニウム(TMA)及び窒素ガス、キャリアガスとして水素ガス、p型不純物ガスとしてシクロペンタジエニルマグネシウム(CpMg)、n型不純物ガスとしてシラン(SiH)を種々供給することにより窒化物半導体膜を形成することができる。
【0044】
サファイア基板上には、バッファ層として窒化ガリウム、n型コンタクト層兼クラッド層として窒化ガリウム、p型クラッド層として窒化アルミニウムガリウム、p型コンタクト層として窒化ガリウムを積層させてある。n型コンタクト層とp型クラッド層との間には量子井戸構造とされる厚さ3nmの窒化インジュウ・ガリウムからなる発光層が形成されている。(なお、p型半導体は成膜後400℃以上でアニールしてある。)n型及びp型の電極を形成させるためにn型コンタクト層までを部分的にエッチングさせ、p型コンタクト層及びn型コンタクト層表面を同一面側に露出させる。また、各LEDチップごとの大きさに分離できるよう各半導体層をサファイア基板までエッチングしてある。
【0045】
p型コンタクト層上のほぼ全面には、電流を均一に流すために透明電極として金薄膜をスパッタリング法により形成させてある。金薄膜上には一片が120μm角の金及びニッケルをワイヤボンディング用の電極として厚膜に形成させてある。他方、n型コンタクト層がエッチングにより露出された表面にはスパッタリング法によりアルミニウムを形成しワイヤボンディング用のパッド電極として形成させてある。LEDチップ上の全面には、保護膜としてボールボンディングされる電極表面を除いて酸化珪素を形成させてある。こうして形成された半導体ウエハを予めエッチングされた溝に沿ってダイサーを用いて切断し一片が350μmのLEDチップを形成させる。
【0046】
次に、銅入り鉄の平板を押圧加工及び打ち抜きによりタイバで接続されたマウント・リード及びインナー・リードを形成させる。マウント・リード及びインナー・リードに銀メッキを施した後、ダイボンド機器を用いて上述のLEDチップをエポキシ樹脂を用いてマウント・リードのカップ内にマウントさせる。エポキシ樹脂を硬化後、直径30μmの金線を用いてLEDチップの電極とボールボンディングする。第1のボンディングとしてLEDチップ上にボールボンディングされた金線はインナー・リード或いはマウント・リードのカップ外部に第2のボンディングとしてステッチボンディングされる。
【0047】
LEDチップの各電極上にボールボンディングさせた後、マウント・リードのカップ内に色変換部材用原料をノズルの先端から注入させる。色変換部材用原料としては脂環式エポキシ樹脂である3,4エポキシシクロメチルカルボキレート及び酸無水物であるメチルヘキサヒドロ無水フタル酸からなるエポキシ樹脂組成物100重量部にセリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体80重量部を含有させたものをよく混合して用いてある。
【0048】
セリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体として(Y0.8Ga0.2Al12:Ceを用いた。蛍光体は以下のようにして形成される。Y、Gd、Ceの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈させた。これを焼成して得られる共沈酸化物と酸化アルミニウム、酸化ガリウムと混合して混合原料を得る。これにフラックスとしてフッ化アンモニウムを混合して坩堝に詰め、空気中1400℃の温度で3時間焼成して焼成品を得た。焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通して形成させた。
【0049】
マウント・リードのカップ内に4分の3程度に色変換部材用原料を注入し120℃3時間で硬化させた。硬化後の色変換部材は、硬化に伴い半球状のボール部の上部分までは覆わない厚みとして形成させている。なお、表面張力により部分的にワイヤまで薄い色変換部材の膜が形成されていたが、モールド部材の主部と色変換部材の主部との実質的な界面はLEDチップ上に形成されたボール部よりも下である。色変換部材が形成されたリード電極先端を内部が砲弾型の空洞となったキャスティングケースに配置させ色変換部材を構成するエポキシ樹脂とほぼ同様の主成分からなるエポキシ樹脂組成物を注入させた。エポキシ樹脂組成物を150℃3時間で硬化させキャスティングケースから取り出した後、タイバを切断することで発光ダイオードを形成させた。
【0050】
こうして形成された白色径が発光可能な発光ダイオードを1200個用いて熱衝撃試験を行った。熱衝撃試験は−40℃、30分と100℃、30分を1000サイクルまで繰り返し発光ダイオードの特性を調べた。100サイクルごとに発光可能かどうかを全て調べたが不灯となった発光ダイオードは全くなかった。
【0051】
(比較例1)
カップ内に充填される色変換部材用原料を構成するエポキシ樹脂組成物量を多くした以外は実施例1と同様にして1200個の白色発光ダイオードを形成させた。色変換部材を硬化させた段階でマウントリードのカップ内ほぼ一杯に色変換部材が充填されており、発光観測面側から観測すると色変換部材中からワイヤが延びているように見える。モールド部材を形成させた発光ダイオードを実施例1と同様の条件で熱衝撃試験を行ったところ、100サイクルから不灯となるものが出始め1000サイクルを行うと216個も断線するものがあった。不灯となった発光ダイオードを調べたところ図3(A)の如くボール部よりも上の色変換部材とモールド部材の界面やボール部直上でワイヤが断線していることが確認された。これにより本発明の発光装置が熱衝撃に極めて強いことが分かった。
【0052】
【発明の効果】
本発明は発光素子からの発光波長を色変換部材で波長変換させる発光装置において生ずるワイヤの断線を比較的簡単な構成で防止しうるものである。即ち、色変換部材やモールド部材により生ずる力をワイヤ径ではなく、ワイヤよりも太いボールボンディングされたボール部径により受けることでワイヤの断線を防止しうるものである。
【0053】
本発明の請求項1に記載の構成とすることにより、比較的簡単な構成の発光装置において野外にでも使用可能な発光装置とすることができる。
【0054】
本発明の請求項3に記載の構成とすることにより、色変換部材を構成する樹脂の劣化を抑制し、発光効率の低下を防止しうる。また、蛍光体の分散状態を硬化時のまま保持することができ使用によって色ずれが生ずることがない。さらに、同じ主材を利用することでより、ワイヤにかかる力を低減することができる。
【図面の簡単な説明】
【図1】本発明の発光装置を示す模式的断面図である。
【図2】本発明の別の発光装置を示す模式的断面図である。
【図3】本発明の作用を示す模式的拡大図であり、図3(A)は本発明と比較のために示す発光装置のワイヤが断線する様子を示した模式的断面図であり、図3(B)は本発明での色変換部材及びモールド部材が受ける力を示す模式的断面図を示す。
【符号の説明】
100、200・・・発光装置
101、201、301・・・ボール部
102、202、302・・・色変換部材
103、203、303・・・モールド部材
104、204、304・・・ワイヤ
105、205、305・・・発光素子
106・・・マウント・リード
107・・・インナー・リード
206・・・第1のリード電極
207・・・第2のリード電極
208・・・ダイボンド樹脂
209・・・凹部を有する基板となるパッケージ
308・・・エポキシ樹脂
314・・・色変換部材とモールド部材の界面で断線したワイヤ
324・・・ボール部の直上で断線したワイヤ
[0001]
[Technical field to which the invention belongs]
The present invention relates to a light-emitting device that converts a light emission wavelength emitted from a light-emitting element by a phosphor and extracts at least light from the phosphor to the outside, and particularly has high reliability with little wire breakage even when a thermal shock is applied. Relates to the device.
[0002]
[Prior art]
In recent years, for the purpose of increasing the emission color of a semiconductor light emitting device, a light emitting diode that emits light by converting the wavelength of light emitted from the semiconductor light emitting device with a fluorescent material has been developed. As a specific configuration of such a light emitting diode, an LED chip capable of emitting ultraviolet light, visible light, or infrared light is mounted on a mount lead cup with a resin. The LED chip is electrically connected by wire bonding using a mount lead, an inner lead, and a gold wire. A phosphor-containing resin is applied on the LED chip. Thereafter, a light emitting diode can be formed by coating the tip of the LED chip, the mount lead, and the inner lead coated with the phosphor with a mold resin.
[0003]
When a current is supplied to the light emitting diode, the LED chip emits light. The emission wavelength from the LED chip is absorbed by the phosphor, and is converted to a desired wavelength by the phosphor to emit light. Specifically, cerium-activated yttrium / aluminum / garnet phosphors excited by blue light from LED chips using nitride semiconductors in the light-emitting layer convert blue light into longer wavelength yellow light. Flashes. By adjusting the phosphor content or the like, mixed light is emitted from the light emitting diode by blue light from the LED chip and yellow light from the phosphor, and white light emission becomes possible.
[0004]
Such light emitting diodes and the like have begun to be used in various fields by utilizing the excellent characteristics of semiconductor light emitting devices. Specifically, they are used in a wide variety of fields, including outdoor use and various in-vehicle use. With the spread of such fields of use, driving in extremely severe usage environments is required. However, a light-emitting device in which a light-emitting element is covered with a color conversion member and a mold member tends to be weak against thermal shock or the like as compared with a light-emitting diode without a color conversion member. Therefore, the light emitting device having the above configuration is not sufficient, and further improvement is demanded.
[0005]
[Means for Solving the Problems]
The present inventionIs filled in the cup with the light emitting element (105) disposed on the cup of the mount lead (106), the wire (104) for electrically connecting the electrode of the light emitting element and the inner lead (107) A light-emitting device in which the tip of the color conversion member (102) and the mount lead and inner lead is covered with a mold member (103), and the color conversion member (102) is formed on at least the light-emitting element and emits light. The light emitting device is filled lower than the upper end of the ball portion (101) of the wire (104) wire-bonded on the electrode of the element. In particular, the color conversion member is a light emitting device in which the color conversion member is mainly filled lower than the upper end of the ball part wire-bonded onto the electrode of the light emitting element. As a result, a light-emitting device that can be used relatively easily even in various environments can be obtained.
[0006]
The light emitting device according to claim 2 of the present invention includes a first lead electrode (206) electrically connected to one electrode of the light emitting element (205), and the other electrode of the light emitting element via a wire. The connected second lead electrode (207), the color conversion member (202) covering the light emitting element, and the mold member (203) covering the color conversion member and the wire (204) exposed from the color conversion member The interface between the color conversion member (202) for converting the emission wavelength from the light emitting element and the mold member (203) is a wire (204) wire-bonded to the other electrode of the light emitting element. ofThicker than wire diameterIt is in contact with the ball part (201). In particular, in the present invention, the interface between the color conversion member and the mold member is a light emitting device in contact with a ball portion formed by ball bonding with an electrode of a light emitting element. Thereby, it is possible to obtain a highly reliable light-emitting device in which uniform light is emitted from the color conversion member whose light emission wavelength is converted from the light-emitting element and the wire is not cut.
[0007]
In the light emitting device according to claim 3 of the present invention, the phosphor is contained in the resin in which the color conversion member is cured, and the main component of the resin is substantially the same as the main component of the resin constituting the mold member. The same. Thereby, even if the light emission wavelength from a light emitting element is visible light etc. with a comparatively short wavelength, the fall of the light emission efficiency by resin degradation can be suppressed. Further, the force applied to the wire can be further reduced.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As a result of various experiments, the inventor has found that a light-emitting device that is resistant to thermal shock can be obtained by making the color conversion member and the mold member into a specific shape in consideration of wire bonding on the light-emitting element. It was.
[0009]
That is, when a light-emitting device that has been turned off due to thermal shock is examined in detail, a wire that supplies current to the light-emitting element at the interface between the color conversion member and the mold member or the ball portion and the wire formed at the time of ball bonding. Was disconnected. Such disconnection occurs even if the resin constituting the mold member or the color conversion member has the same composition. The cause of this wire breakage is not clear, but the surface of the color conversion member is oxidized during the formation of the color conversion member, so that stress is applied to the wire at the interface between the color conversion member and the mold member during thermal shock, or the mold Even if the main material such as resin constituting the member and the color conversion member is the same, the color conversion member substantially differs in thermal expansion and contraction rate due to the phosphor contained therein, and a force is applied to the interface. It is considered that the connection portion between the ball portion and the wire, which has become brittle due to the formation of the resin interface or the ball portion, is broken due to such a force.
[0010]
Although it is considered that such wire breakage can be prevented to some extent by increasing the wire diameter and increasing the strength, the wire cannot be increased beyond a certain diameter for the following reasons. 1. If the wire is made thicker, the ball for ball bonding must be enlarged in order to improve the adhesion strength. It is difficult to ball bond the ball at the tip of the wire on the electrode of the light emitting element with high accuracy. Therefore, the ball formed at the tip of the wire may protrude from the electrode of the light emitting element for ball bonding. When the protruding ball comes into contact with a semiconductor layer having a polarity opposite to that of the semiconductor layer provided with the electrode, a short circuit occurs. 2. In order to prevent this, a layer other than the electrode can be covered with a protective film. However, when ball bonding is performed on the protective film, there is a problem that adhesion of ball bonding is lowered. 3. Further, in order to perform ball bonding of the enlarged ball with good adhesion, if the area of the electrode to be ball bonded is increased, the light emission extraction area of the light emitting element has to be reduced. 4). Furthermore, a noble metal may be used for a wire from a viewpoint of improving electrical conductivity. In this case, it is desired that the wire diameter is thin in order to reduce the amount of use from the viewpoint of cost.
[0011]
Therefore, the present invention is a light-emitting device that can prevent wire breakage with a relatively simple configuration using a ball-bonded wire disposed on a light-emitting element without increasing the diameter of the wire itself without the above-described problems. .
[0012]
Specifically, ball bonding is performed as first bonding on the light emitting element. In order to make a ball bond to the electrode of the light emitting element, a ball is formed at the tip of the wire passed through the capillary by discharge or hydrogen gas flame. While the formed ball is pressed onto the electrode of the light emitting element, heat energy is applied together with ultrasonic waves or ultrasonic energy to be fused. On the other hand, while extending the wire from the capillary, it is moved and ultrasonically welded together with the capillary onto the lead electrode to be second bonded.
[0013]
In the first bonding (ball bonding) on the light emitting element, a previously formed ball is crushed and a wire extends from a hemispherical metal piece (hereinafter also referred to as a ball portion). The metal piece serving as the ball portion in contact with the electrode can be about 2 to 4 times as large as the wire diameter. The size of the metal piece can be controlled to some extent by controlling the discharge amount and discharge time. Therefore, the formed metal piece has extremely strong strength with respect to the wire diameter.
[0014]
In the present invention, an interface between the color conversion member and the mold member is formed in the ball portion of the ball-bonded wire. Thereby, even if stress is applied at the interface between the color conversion member and the mold member, the ball portion that is thicker than the wire diameter is not substantially cut. Thereby, it is possible to obtain a light-emitting diode that is extremely resistant to thermal shock with a relatively simple configuration in which the thickness of the color conversion member is kept at a ball diameter larger than the wire diameter.
[0015]
Hereinafter, a chip type LED will be described in detail with reference to FIG. 2 as an embodiment of the present invention. An LED chip in which a nitride semiconductor is formed on a silicon carbide through a buffer layer is used as a light emitting element 205 capable of emitting blue light. The cavity provided in the substrate 209 is formed in a two-step step shape, and lead electrodes 206 and 207 are respectively formed on the first step surface provided outside the recess having the bottom surface and the bottom surface. The light emitting element 205 is die-bonded using Ag paste 208 on the first lead electrode 206 that can be electrically connected to the outside on the bottom surface of the cavity. As a result, one electrode of the LED chip 205 and the first lead electrode 206 are electrically connected.
[0016]
In addition, a second lead electrode 207 that is partly exposed on the stepped first surface and can be electrically connected to the outside is formed. A gold wire is used as the metal wire 204 in order to electrically connect the other electrode of the LED chip 205 and the second lead electrode 207. The tip of the gold wire, in which a ball is formed in advance by discharge, is pressed against the electrode of the LED chip 205 together with the capillary and ultrasonically fused, and then the gold wire is extended and stitch-bonded onto the second lead electrode 207. . The wire 204 extends from the hemispherical metal piece (ball portion 201) by ball bonding on the electrode of the LED chip 205.
[0017]
Next, an yttrium / aluminum / garnet phosphor (Y) activated with cerium as a color conversion member 202 is formed on the LED chip 205.3Al5O12: A silicon resin containing Ce) is applied. Although the color conversion member 202 covers the entire LED chip disposed in the cavity, the surface of the color conversion member 202 is substantially disposed only up to the height of the ball portion 201 formed on the electrode of the LED chip 205. . The color conversion member was heat cured. The light emitting device 200 of the present invention can be obtained by pouring and curing an epoxy resin as a transparent mold member 203 in a cavity having a substantially stepped cross section.
[0018]
In the formed chip type LED, when a current is passed through the first lead electrode 206 on which the LED chip 205 is disposed and the second lead electrode 207 connected to the wire 204, the LED chip 205 emits blue light and the LED chip. Part of the light emitted from 205 is converted by the phosphor, and yellow light is emitted. The mixed color light of the LED chip 205 and the color conversion member 202 is emitted, and a light bulb color (yellow) is observed to be emitted from the chip type LED 200. Further, even when a thermal shock is applied, the light can be emitted without the wire 204 being disconnected. Hereafter, each structure of this invention is explained in full detail.
[0019]
(Ball part 101, 201)
The ball portion 101 of the present invention can improve the adhesion between the light emitting element 105 and the wire 104, and forms an interface between the color conversion member 102 and the mold member 103. Specifically, it refers to a hemispherical metal piece formed during ball bonding. In connection with a wire bonding apparatus, a first bond (ball bonding) is formed on the electrode of the light emitting element 105, and a connection portion with an inner lead 107 or the like formed outside the color conversion member 102 is a second bond ( Stitch bonding). Specifically, the gold wire protruding through the capillary is irradiated with discharge to form a ball. The formed ball is pressed onto the electrode of the light emitting element, and ultrasonic waves, ultrasonic waves and heat are applied. Thereby, the ball is crushed and fused on the electrode.
[0020]
The fused ball portion 101 becomes a hemispherical metal piece, and the metal piece that becomes the ball portion 101 in contact with the electrode with respect to the diameter of the wire 104 can be about 2 to 4 times larger. In the present invention, the metal piece formed on the electrode of the light emitting element 105 forms a main interface between the color conversion member 102 and the mold member 103, and is easily subjected to force due to thermal contraction or thermal expansion. Therefore, the position of the interface on the ball portion 101 and the size of the ball portion 101 can be variously selected in consideration of the color conversion member 102 and the mold member 103.
[0021]
In any case, the present invention uses the ball portion 101 (ball portion thicker than the wire diameter) stronger than the wire 104 against the deviation of the interface between the color conversion member 102 and the mold member 103, etc. Therefore, various selections can be made as long as the influence on the light emitting element 105 is reduced. If there is a large difference in thermal contraction or thermal expansion coefficient between the color conversion member 102 and the mold member 104, the interface between the color conversion member 102 and the mold member 103 is close to the electrode of the light emitting element 105 and the ball portion 101 has a large diameter. Can be prevented by forming the ball portion 101 or by enlarging the ball portion 101 itself. In the present invention, the upper end of the ball portion refers to the interface with the wire from which the wire extends from the ball portion.
[0022]
(Color conversion member 102)
The color conversion member used in the present invention has a fluorescent material capable of converting the emission wavelength from the light emitting element to the longer wavelength side, and various resins and glasses containing inorganic and organic fluorescent materials, Examples include organic phosphors themselves. When both the visible emission wavelength emitted from the light emitting element and the fluorescence from the fluorescent substance are emitted to the outside, the visible emission wavelength from the light emitting element and the fluorescence from the fluorescent substance are transmitted through the mold member and the like to the outside of the light emitting device. There is a need. In the present invention, the color conversion member includes not only a member that converts visible light to visible light but also a member that converts a wavelength in the ultraviolet region into visible light.
[0023]
Specifically, the fluorescent material used in such a color conversion member is a fluorescent material capable of emitting light by relatively high energy visible light such as blue light from an LED chip such as a nitride semiconductor having a monochromatic peak wavelength. As yttrium-aluminum-garnet phosphors activated with cerium (at least one element selected from the group consisting of Y, Lu, Sc, La, Gd and Sm, and a group consisting of Al, Ga, and In) Garnet phosphors activated with cerium comprising at least one element selected from the group consisting of perylene derivatives and zinc sulfide activated with copper. On the other hand, in order to emit only visible light from the fluorescent material to the outside, the excitation wavelength that is emitted from the light emitting element and excites the fluorescent material is set to the ultraviolet region. Alternatively, substantially all of the emission wavelength emitted from the light emitting element is converted with a fluorescent material. Further, only visible light from the fluorescent material can be emitted to the outside by absorbing light from the light-emitting element that has not been converted by the fluorescent material with a pigment or the like.
[0024]
When the emission wavelength emitted from the LED chip is an emission wavelength in the ultraviolet region, various fluorescent materials can be used. Specifically, 3.5MgO · 0.5MgF is a fluorescent material capable of emitting red light with an excitation wavelength in the ultraviolet region.2・ GeO2: Mn, Y2O2S: Eu, Y2O3: Eu, CaTiO3: Pr, Y (PV) O4: Eu, YVO4: Eu and the like are preferred. Similarly, ZnSiO as a fluorescent material capable of emitting green light.4: Mn, Zn2SiO4: Mn, LaPO4: Tb, SrAl2O4: Eu and the like are preferred. Similarly, Sr as a fluorescent material capable of emitting blue light.2P2O7: Eu, Sr5(PO4)3Cl: Eu, (SrCaBa)3(PO4)6Cl: Eu, BaMg2Al16O27: Eu, SrO · P2O5・ B2O5: Eu, (BaCa)5(PO4)3A suitable example is Cl: Eu. YVO as a fluorescent material capable of emitting white light4: Dy and the like are preferable. In addition, by adjusting the mixing ratio of the plurality of fluorescent substances, the RGB (red, green, blue) wavelength components emitted from the light emitting device can be increased by adding them, and any emission color including mixed color light can be emitted. It can also be made.
[0025]
When the color conversion member 102 is composed of a translucent member containing a phosphor, the specific material of the translucent member is a transparent material having excellent weather resistance, such as an epoxy resin, a urea resin, a silicon resin, or a silicon resin. A light-transmitting inorganic member such as a light-sensitive resin or silicon oxide is preferably used. In the case of using an inorganic member such as glass, a material that can be formed at a low temperature in consideration of deterioration of the light emitting element is preferable. Moreover, you may contain a coloring pigment, coloring dye, and a diffusing agent with the fluorescent substance of this invention. The color of light emitted from the light emitting device can be adjusted by using a coloring pigment or a coloring dye. Moreover, the directivity angle can be further increased by containing a diffusing agent. Specific examples of the diffusing agent include inorganic titanium oxide, aluminum oxide, silicon oxide, and organic guanamine resins.
[0026]
In addition, if the resin constituting the color conversion member is uncured, the phosphor may flow and the emission color may vary. Similarly, when the resin constituting the color conversion member is uncured, the resin tends to be deteriorated due to heat from the light emitting element itself or a short wavelength emitted from the light emitting element. Such resin deterioration may reduce the light emission efficiency because the light emission wavelength from the light emitting element and the fluorescence from the phosphor are absorbed by the resin. Therefore, it is desirable that the resin constituting the color conversion member is (substantially completely) cured.
[0027]
(Mold member 103)
The mold member 103 is provided to protect the color conversion member 102, the wire 104, the light emitting element 105, and the like from the outside. Further, the viewing angle of light emitted from the light emitting element 105 by the fluorescent material can be increased, but by adding a diffusing agent to the mold member 103, the directivity from the light emitting element 105 can be reduced and the viewing angle can be further increased. Can do.
[0028]
The mold member 103 can also contain a coloring pigment or a coloring dye. Although the force applied to the wire can be reduced by using the same main material for the mold member and the color conversion member, a resin containing a phosphor and a mold member containing a diffusing material or a colorant are selected. By doing so, the difference in coefficient of thermal expansion and the like can be further reduced.
[0029]
By making the mold member 103 into a desired shape, it is possible to have a lens effect that focuses or diffuses the light emitted from the light emitting element 105. Therefore, the mold member 103 may have a stacked structure. Specifically, a convex lens shape, a concave lens shape, an elliptical shape as viewed from the light emission observation surface side, or a combination of a plurality of them can be used. As a specific material of the mold member 103, a transparent resin excellent in weather resistance such as an epoxy resin, a urea resin, or a silicon resin, a low melting point glass, or the like is preferably used. In consideration of the stress on the wire, it is desirable to have less shrinkage and expansion. Furthermore, it is desirable that the main material and the mold member constituting the color conversion member are mainly composed of the same member. As the diffusing agent, inorganic titanium oxide, aluminum oxide, silicon oxide or the like, organic guanamine resin, or the like is preferably used.
[0030]
(Wire 104)
The wire 104 that is an electrical connection member is required to have good ohmic properties, mechanical connectivity, electrical conductivity, and thermal conductivity with the electrode and lead electrode of the light emitting element 105. The thermal conductivity is 0.01 cal / cm2/ Cm / ° C. or higher is preferable, and more preferably 0.5 cal / cm2/ Cm / ° C. or higher. In consideration of the efficiency, workability, cost, and the like of the light emitting device 100, the diameter of the wire is preferably Φ10 μm or more and Φ45 μm or less. More preferably, it is Φ25 μm or more and Φ35 μm or less. Specific examples of such a wire 104 include wires using metals such as gold, copper, platinum, and aluminum, and alloys thereof. The wire 104 can easily connect an electrode of the light emitting element 105 and a lead electrode such as an inner lead by a wire bonding apparatus.
[0031]
(Light emitting element 105)
The semiconductor light-emitting element used in the present invention may be an LED or LD using various semiconductors such as silicon carbide, boron nitride, indium / phosphorus, etc., as long as it can excite a fluorescent material to emit light. it can. In particular, an ultraviolet region and a near ultraviolet region that can excite a fluorescent material efficiently, and a semiconductor light emitting device that can efficiently emit a relatively high energy visible light are preferably used.
[0032]
The light-emitting element 105 can be configured by forming a semiconductor on a substrate by MOCVD, HVPE, or the like. Examples of the semiconductor structure include a homostructure having a MIS junction, a PIN junction, and a pn junction, a heterostructure, and a double heterostructure. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the degree of mixed crystal. In addition, a single quantum well structure or a multiple quantum well structure in which the semiconductor active layer is formed in a thin film in which a quantum effect is generated can be used.
[0033]
InxAlyGa1-xyNitride semiconductors in which N (where 0 ≦ x, 0 ≦ y, x + y ≦ 1) is formed as a light emitting layer can emit relatively high energy with high luminance, and thus light emission that excites a phosphor. It can be suitably used as an element. Hereinafter, the nitride semiconductor device will be described in detail. A substrate for a light-emitting element using a nitride semiconductor includes a sapphire C surface, sapphire whose main surface is an R surface and an A surface, other spinel (MgA12O4In addition to an insulating substrate such as), materials such as SiC (including 6H, 4H, and 3C), Si, ZnO, GaAs, and GaN crystals can be used. In order to form a nitride semiconductor with good crystallinity relatively easily, it is preferable to use a sapphire substrate (C-plane) or a GaN single crystal.
[0034]
In order to form a nitride semiconductor with good crystallinity on a sapphire substrate, it is desirable to form a buffer layer in order to correct lattice mismatch. On the buffer layer, gallium nitride can be stacked as an n-type contact / cladding layer, aluminum / gallium nitride can be stacked as a p-type cladding layer, and gallium nitride can be stacked as a p-type contact layer. Between the n-type contact / cladding layer and the p-type cladding layer, indium gallium nitride can be formed as an active layer with a film thickness of a single quantum well structure.
[0035]
Note that the gallium nitride based semiconductor exhibits n-type conductivity without being doped with impurities. When forming a desired n-type gallium nitride semiconductor such as improving luminous efficiency, it is preferable to appropriately introduce Si, Ge, Sn, Se, Te or the like as an n-type dopant. On the other hand, when forming a p-type gallium nitride semiconductor, p-type dopants such as Zn, Mg, Be, Ca, Sr, and Ba are doped. Since a gallium nitride compound semiconductor is difficult to be converted into a p-type simply by doping with a p-type dopant, it is preferable that the gallium nitride compound semiconductor be converted into a p-type by annealing with a furnace, low-energy electron beam irradiation, plasma irradiation, or the like after introduction of the p-type dopant. .
[0036]
The light emitting element thus formed uses an insulating substrate. Therefore, the p-type and n-type electrode surfaces are respectively formed by removing a part of the insulating substrate or etching the exposed surfaces of the p-type semiconductor and the n-type semiconductor from the semiconductor surface side. An electrode having a desired shape is formed on each semiconductor layer using Au, Al, or an alloy thereof by sputtering or vacuum deposition. The electrode provided on the light emitting surface side may be patterned so as to surround the light emitting region without being entirely covered, or a transparent electrode such as a metal thin film or a metal oxide may be used. In addition, as an electrode material from which a preferable ohmic can be obtained with p-type GaN, metals such as Ni, Pt, Pd, Au, and alloys thereof can be preferably cited. As an electrode material from which a preferable ohmic can be obtained with n-type GaN, a metal or an alloy such as Al, Ti, W, Cu, Zn, Sn, and In can be preferably cited. The light-emitting elements formed in this way can be used as they are, or can be divided into individual pieces and used as a configuration such as an LED chip.
[0037]
When used as an LED chip, the formed semiconductor wafer is either fully cut directly by a dicing saw with a blade having a diamond cutting edge or a groove having a width wider than the cutting edge width is cut (half cut). The semiconductor wafer is broken by external force. Alternatively, after a very thin scribe line (meridian line) is drawn on the semiconductor wafer by, for example, a grid pattern by a scriber in which the diamond needle at the tip moves reciprocally linearly, the semiconductor wafer is divided by an external force and cut into chips. In this manner, a light emitting element such as an LED chip that is a nitride semiconductor can be formed. Note that the semiconductor formed on the insulating substrate is likely to be short-circuited by wire ball bonding because the p-type and n-type nitride semiconductors must be taken out from the same plane. Therefore, the configuration of the present invention is particularly effective.
[0038]
In the case of emitting visible light from a fluorescent substance in the light emitting device 100 of the present invention, the main light emission wavelength of the light emitting element 105 is preferably 365 nm or more and 530 nm or less, and preferably 365 nm or more and 490 nm or less in consideration of efficiency. In the case of emitting only light from the fluorescent material, it is more preferable that the wavelength is mainly 365 nm or more and less than 400 nm which is mainly in the ultraviolet region. In consideration of deterioration of the resin member used for the light-emitting element 105 and a complementary color relationship with a fluorescent material such as white, the visible region is preferably 400 nm to 530 nm, and more preferably 420 nm to 490 nm. In order to further improve the efficiency of the light emitting element 105 and the fluorescent material using visible light, the wavelength is more preferably 430 nm or more and 475 nm or less.
[0039]
(Mount lead 106)
The mount lead 106 is used to place the light emitting element 105, and may have a size sufficient to load the light emitting element 105 by a die bonding apparatus or the like. Further, when a plurality of light emitting elements 105 are installed and the mount lead 106 is used as a common electrode of the light emitting elements 105, sufficient electrical conductivity and connectivity with the wires 104 and the like are required.
[0040]
Adhesion between the light emitting element 105 and the cup of the mount lead 106 can be performed by a thermosetting resin or the like. Specifically, an epoxy resin, water glass, etc. are mentioned. The specific electric resistance of the mount lead 106 is preferably 300 μΩ · cm or less, more preferably 3 μΩ · cm or less. When a plurality of light-emitting elements 105 are stacked on the mount lead 106, heat generation from the light-emitting elements 105 is required to be high, so that heat conductivity is required. Specifically, 0.01 cal / cm2/ Cm / ° C. or higher is preferable, more preferably 0.5 cal / cm2/ Cm / ° C. or higher. Examples of the material that satisfies these conditions include iron, copper, iron-containing copper, tin-containing copper, gold, silver-plated aluminum, copper, and iron.
[0041]
(Inner lead 107)
The inner lead 107 is intended to be electrically connected to the wire 104 connected to the light emitting element 105 disposed on the mount lead 106. The inner lead 107 is required to have good connectivity and electrical conductivity with a bonding wire or the like that is the wire 104. The specific electric resistance is preferably 300 μΩ · cm or less, more preferably 3 μΩ · cm or less. Examples of materials that satisfy these conditions include iron, copper, iron-containing copper, tin-containing copper and copper, gold, silver plated aluminum, iron, copper, and the like.
[0042]
Hereinafter, specific examples of the present invention will be described in detail.
[0043]
【Example】
Example 1
An LED chip in which a nitride semiconductor is formed on a sapphire substrate was used as a light emitting element (main emission peak was 470 nm). The LED chip was formed using the MOCVD method. A cleaned sapphire substrate is placed on a heating substrate, and trimethylgallium (TMG), trimethylindium (TMI), trimethylaluminum (TMA) and nitrogen gas are used as source gases, hydrogen gas is used as a carrier gas, and cyclopentadiamine is used as a p-type impurity gas. Enil magnesium (Cp2Mg), silane (SiH as n-type impurity gas)4) Can be variously supplied to form a nitride semiconductor film.
[0044]
On the sapphire substrate, gallium nitride is laminated as a buffer layer, gallium nitride as an n-type contact / cladding layer, aluminum gallium nitride as a p-type cladding layer, and gallium nitride as a p-type contact layer. Between the n-type contact layer and the p-type cladding layer, a light emitting layer made of Inju gallium nitride having a thickness of 3 nm and having a quantum well structure is formed. (Note that the p-type semiconductor is annealed at 400 ° C. or higher after film formation.) In order to form n-type and p-type electrodes, the n-type contact layer is partially etched to form a p-type contact layer and n The mold contact layer surface is exposed on the same side. In addition, each semiconductor layer is etched up to the sapphire substrate so that it can be separated into sizes for each LED chip.
[0045]
A gold thin film is formed as a transparent electrode by sputtering on almost the entire surface of the p-type contact layer so that a current flows uniformly. On the gold thin film, a piece of 120 μm square gold and nickel is formed into a thick film as an electrode for wire bonding. On the other hand, on the surface where the n-type contact layer is exposed by etching, aluminum is formed by sputtering to form a pad electrode for wire bonding. Silicon oxide is formed on the entire surface of the LED chip except for the electrode surface that is ball-bonded as a protective film. The semiconductor wafer thus formed is cut using a dicer along a groove etched in advance to form an LED chip having a piece of 350 μm.
[0046]
Next, a mount lead and an inner lead are formed by connecting a flat plate of copper-containing iron with a tie bar by pressing and punching. After silver plating is applied to the mount lead and the inner lead, the above-described LED chip is mounted in the mount lead cup using epoxy resin using a die-bonding device. After curing the epoxy resin, ball bonding is performed with the electrode of the LED chip using a gold wire with a diameter of 30 μm. The gold wire ball-bonded on the LED chip as the first bonding is stitch-bonded as the second bonding outside the cup of the inner lead or mount lead.
[0047]
After ball bonding on each electrode of the LED chip, a color conversion member material is injected into the cup of the mount lead from the tip of the nozzle. The raw material for the color conversion member was activated with cerium on 100 parts by weight of an epoxy resin composition comprising alicyclic epoxy resin, 3,4 epoxycyclomethylcarboxylate and acid anhydride, methylhexahydrophthalic anhydride. A mixture containing 80 parts by weight of yttrium / aluminum / garnet phosphor is mixed well.
[0048]
Yttrium, aluminum, and garnet phosphors activated with cerium (Y0.8Ga0.2)3Al5O12: Ce was used. The phosphor is formed as follows. A solution in which rare earth elements of Y, Gd, and Ce were dissolved in acid at a stoichiometric ratio was coprecipitated with oxalic acid. A co-precipitated oxide obtained by firing this is mixed with aluminum oxide and gallium oxide to obtain a mixed raw material. This was mixed with ammonium fluoride as a flux, packed in a crucible, and fired in air at a temperature of 1400 ° C. for 3 hours to obtain a fired product. The fired product was ball milled in water, washed, separated, dried, and finally formed through a sieve.
[0049]
The color conversion member raw material was injected into the mount lead cup at about 3/4 and cured at 120 ° C. for 3 hours. The cured color conversion member is formed to have a thickness that does not cover the upper part of the hemispherical ball portion with curing. In addition, although the thin film of the color conversion member was partially formed by the surface tension up to the wire, the substantial interface between the main part of the mold member and the main part of the color conversion member is a ball formed on the LED chip. Below the part. The tip of the lead electrode on which the color conversion member was formed was placed in a casting case having a bullet-shaped cavity inside, and an epoxy resin composition composed of substantially the same main components as the epoxy resin constituting the color conversion member was injected. The epoxy resin composition was cured at 150 ° C. for 3 hours and taken out from the casting case, and then the tie bar was cut to form a light emitting diode.
[0050]
A thermal shock test was performed using 1200 light-emitting diodes with a white diameter formed in this way. In the thermal shock test, the characteristics of the light-emitting diode were examined by repeating −40 ° C., 30 minutes and 100 ° C., 30 minutes up to 1000 cycles. Every 100 cycles was examined for light emission, but no light emitting diode was turned off.
[0051]
(Comparative Example 1)
1200 white light-emitting diodes were formed in the same manner as in Example 1 except that the amount of the epoxy resin composition constituting the color conversion member raw material filled in the cup was increased. When the color conversion member is cured, the color conversion member is almost completely filled in the cup of the mount lead, and the wire appears to extend from the color conversion member when observed from the light emission observation surface side. When the thermal shock test was performed on the light emitting diodes on which the mold members were formed under the same conditions as in Example 1, those that became unlighted started from 100 cycles, and there were 216 broken wires after 1000 cycles. . As a result of examining the light-emitting diode that was turned off, it was confirmed that the wire was disconnected at the interface between the color conversion member and the mold member above the ball portion or just above the ball portion as shown in FIG. As a result, it was found that the light emitting device of the present invention was extremely resistant to thermal shock.
[0052]
【The invention's effect】
The present invention can prevent wire breakage that occurs in a light emitting device that converts the wavelength of light emitted from a light emitting element with a color conversion member with a relatively simple configuration. That is, the wire breakage can be prevented by receiving the force generated by the color conversion member or the mold member not by the wire diameter but by the ball-bonded ball diameter larger than the wire.
[0053]
Claim of the present inventionIn item 1With the structure described above, a light-emitting device that can be used outdoors even in a light-emitting device with a relatively simple structure can be obtained.
[0054]
By setting it as the structure of Claim 3 of this invention, deterioration of resin which comprises a color conversion member can be suppressed, and the fall of luminous efficiency can be prevented. Further, the dispersed state of the phosphor can be maintained as it is during curing, and no color shift occurs due to use. Furthermore, the force applied to the wire can be reduced by using the same main material.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a light emitting device of the present invention.
FIG. 2 is a schematic cross-sectional view showing another light emitting device of the present invention.
FIG. 3 is a schematic enlarged view showing the operation of the present invention, and FIG. 3A is a schematic cross-sectional view showing a state where a wire of a light emitting device shown for comparison with the present invention is disconnected. 3 (B) is a schematic cross-sectional view showing the forces received by the color conversion member and the mold member in the present invention.
[Explanation of symbols]
100, 200... Light emitting device
101, 201, 301 ... ball part
102, 202, 302 ... Color conversion member
103, 203, 303 ... Mold member
104, 204, 304 ... wire
105, 205, 305 ... Light emitting element
106 ... Mount lead
107 ... Inner lead
206... First lead electrode
207 ... Second lead electrode
208 ... Die bond resin
209 ... Package to be a substrate having a recess
308 ... Epoxy resin
314: Wire broken at the interface between the color conversion member and the mold member
324: Wire broken just above the ball

Claims (3)

マウント・リード(106)のカップ上に配置された発光素子(105)と、該発光素子の電極とインナー・リード(107)を電気的に接続するワイヤ(104)と、前記カップ内に充填された色変換部材(102)と、前記マウント・リード及びインナー・リードの先端をモールド部材(103)で被覆した発光装置であって、
前記色変換部材(102)は、少なくとも発光素子上に形成されると共に発光素子の電極上にワイヤボンディングされたワイヤ(104)のボール部(101)の上端よりも低く充填されてなることを特徴とする発光装置。
A light emitting element (105) disposed on the cup of the mount lead (106), a wire (104) for electrically connecting the electrode of the light emitting element and the inner lead (107), and filling the cup. A light emitting device having the color conversion member (102) and the tip of the mount lead and inner lead covered with a mold member (103),
The color conversion member (102) is formed on at least the light emitting element and filled lower than the upper end of the ball portion (101) of the wire (104) wire-bonded on the electrode of the light emitting element. A light emitting device.
発光素子(205)の一方の電極と電気的に接続された第1のリード電極(206)と、前記発光素子の他方の電極とワイヤを介して接続された第2のリード電極(207)と、前記発光素子を覆っている色変換部材(202)と、該色変換部材及び色変換部材から露出したワイヤ(204)を被覆するモールド部材(203)とを有する発光装置であって、
前記発光素子からの発光波長を変換する前記色変換部材(202)とモールド部材(203)との界面は、前記発光素子の他方の電極上にワイヤボンディングされたワイヤ(204)のワイヤ径より太いボール部(201)に接してなることを特徴とする発光装置。
A first lead electrode (206) electrically connected to one electrode of the light emitting element (205), and a second lead electrode (207) connected to the other electrode of the light emitting element via a wire; A light emitting device comprising: a color conversion member (202) covering the light emitting element; and a mold member (203) for covering the color conversion member and the wire (204) exposed from the color conversion member,
The interface between the color conversion member (202) for converting the emission wavelength from the light emitting element and the mold member (203) is thicker than the wire diameter of the wire (204) wire-bonded on the other electrode of the light emitting element. A light emitting device characterized by being in contact with a ball portion (201).
前記色変換部材は、硬化された樹脂中に蛍光体が含有されたものであると共に、該樹脂の主成分がモールド部材を構成する樹脂の主成分とほぼ同じである請求項1或いは請求項2に記載の発光装置。3. The color conversion member is one in which a phosphor is contained in a cured resin, and the main component of the resin is substantially the same as the main component of the resin constituting the mold member. The light emitting device according to 1.
JP10124398A 1998-04-13 1998-04-13 Light emitting device Expired - Lifetime JP3618221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10124398A JP3618221B2 (en) 1998-04-13 1998-04-13 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10124398A JP3618221B2 (en) 1998-04-13 1998-04-13 Light emitting device

Publications (2)

Publication Number Publication Date
JPH11298047A JPH11298047A (en) 1999-10-29
JP3618221B2 true JP3618221B2 (en) 2005-02-09

Family

ID=14295475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10124398A Expired - Lifetime JP3618221B2 (en) 1998-04-13 1998-04-13 Light emitting device

Country Status (1)

Country Link
JP (1) JP3618221B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10020465A1 (en) * 2000-04-26 2001-11-08 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component with luminescence conversion element
KR100372834B1 (en) * 2000-05-25 2003-02-19 에이프로시스템즈 (주) Light emitting semiconductor device for emitting lights having complex wavelengths through fluorescent material thereof
JP2003197976A (en) * 2001-12-27 2003-07-11 Okaya Electric Ind Co Ltd Light emitting diode
US20040145539A1 (en) * 2002-02-01 2004-07-29 Tatsuki Okamoto Image display for projecting image directly onto retina of wearer
JP3973457B2 (en) * 2002-03-15 2007-09-12 シャープ株式会社 Semiconductor light emitting device
ATE521092T1 (en) 2002-04-25 2011-09-15 Nichia Corp LIGHT-EMITTING COMPONENT WITH A FLUORESCENT SUBSTANCE
JP3899000B2 (en) * 2002-08-30 2007-03-28 三菱電機株式会社 Image display device
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
JP2006500767A (en) 2002-09-19 2006-01-05 クリー インコーポレイテッド Light emitting diode and manufacturing method thereof
WO2004040661A2 (en) 2002-10-30 2004-05-13 Osram Opto Semiconductors Gmbh Method for producing a light source provided with electroluminescent diodes and comprising a luminescence conversion element
JP4661031B2 (en) * 2003-06-26 2011-03-30 日亜化学工業株式会社 Light emitting device
JP4661032B2 (en) * 2003-06-26 2011-03-30 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
US20050104072A1 (en) 2003-08-14 2005-05-19 Slater David B.Jr. Localized annealing of metal-silicon carbide ohmic contacts and devices so formed
US7029935B2 (en) 2003-09-09 2006-04-18 Cree, Inc. Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same
US7183587B2 (en) 2003-09-09 2007-02-27 Cree, Inc. Solid metal block mounting substrates for semiconductor light emitting devices
US7733002B2 (en) 2004-10-19 2010-06-08 Nichia Corporation Semiconductor light emitting device provided with an alkaline earth metal boric halide phosphor for luminescence conversion
US7322732B2 (en) 2004-12-23 2008-01-29 Cree, Inc. Light emitting diode arrays for direct backlighting of liquid crystal displays
KR20090009772A (en) 2005-12-22 2009-01-23 크리 엘이디 라이팅 솔루션즈, 인크. Lighting device
US8441179B2 (en) 2006-01-20 2013-05-14 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
JP2008208380A (en) * 2008-05-26 2008-09-11 Nippon Electric Glass Co Ltd Luminescent color-converting member
JP5190680B2 (en) * 2008-05-26 2013-04-24 日本電気硝子株式会社 Luminescent color conversion member
WO2009145259A1 (en) * 2008-05-30 2009-12-03 株式会社東芝 White light source, backlight, liquid crystal display and illuminator
JP5227693B2 (en) * 2008-08-11 2013-07-03 スタンレー電気株式会社 Semiconductor light emitting device
US8593040B2 (en) 2009-10-02 2013-11-26 Ge Lighting Solutions Llc LED lamp with surface area enhancing fins
US9500355B2 (en) 2012-05-04 2016-11-22 GE Lighting Solutions, LLC Lamp with light emitting elements surrounding active cooling device

Also Published As

Publication number Publication date
JPH11298047A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
JP3618221B2 (en) Light emitting device
US6924514B2 (en) Light-emitting device and process for producing thereof
US7462928B2 (en) Semiconductor apparatus
US7462870B2 (en) Molded package and semiconductor device using molded package
US7301175B2 (en) Light emitting apparatus and method of manufacturing the same
JP4055373B2 (en) Method for manufacturing light emitting device
JP3589187B2 (en) Method for forming light emitting device
US9437787B2 (en) Semiconductor light emitting device
JP4991026B2 (en) Light emitting device
JP3246386B2 (en) Light emitting diode and color conversion mold member for light emitting diode
US7550096B2 (en) Light emitting diode, optical semiconductor device, epoxy resin composition and phosphor suited for optical semiconductor device, and method for manufacturing the same
JP3541709B2 (en) Method of forming light emitting diode
JP4411892B2 (en) Light source device and vehicle headlamp using the same
JP3617587B2 (en) Light emitting diode and method for forming the same
JP2002252372A (en) Light-emitting diode
JP3772801B2 (en) Light emitting diode
JP2006179520A (en) Semiconductor device
JP3604298B2 (en) Method of forming light emitting diode
JP2002050800A (en) Light-emitting device and forming method therefor
JP3858829B2 (en) Method for forming light emitting diode
JP2003037293A (en) Chip component type light-emitting element and manufacturing method therefor
JP2003224307A5 (en)
JP3509665B2 (en) Light emitting diode
JP3835276B2 (en) Light emitting diode and method for forming the same
JP4254214B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term