JP5227693B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP5227693B2
JP5227693B2 JP2008207097A JP2008207097A JP5227693B2 JP 5227693 B2 JP5227693 B2 JP 5227693B2 JP 2008207097 A JP2008207097 A JP 2008207097A JP 2008207097 A JP2008207097 A JP 2008207097A JP 5227693 B2 JP5227693 B2 JP 5227693B2
Authority
JP
Japan
Prior art keywords
semiconductor light
light emitting
pattern
emitting device
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008207097A
Other languages
Japanese (ja)
Other versions
JP2010045105A (en
Inventor
亮介 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2008207097A priority Critical patent/JP5227693B2/en
Priority to CN200910160581.4A priority patent/CN101651136B/en
Publication of JP2010045105A publication Critical patent/JP2010045105A/en
Application granted granted Critical
Publication of JP5227693B2 publication Critical patent/JP5227693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor

Description

本発明は、半導体発光装置に関するものであり、詳しくは、直列に接続された複数の半導体発光素子を光源とする半導体発光装置に関する。   The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device using a plurality of semiconductor light emitting elements connected in series as a light source.

上面に一対の電極を設けた複数の半導体発光素子を1つのパッケージ内に配置し、それら半導体発光素子による直列接続回路を構成する場合、引用文献1のように、隣接する半導体発光素子50の極性の異なる電極同士を順次ボンディングワイヤ51を介して接続し、半導体発光素子50間の接続に寄与しないで残った一対の極性の異なる電極の夫々をパッケージ52に設けられたリード53にボンディングワイヤ54を介して接続する方法がある(図12参照)。
特開2007−103940号公報
When a plurality of semiconductor light emitting elements each having a pair of electrodes on the upper surface are arranged in one package and a series connection circuit is configured by these semiconductor light emitting elements, the polarity of adjacent semiconductor light emitting elements 50 as in Reference 1 is used. The electrodes having different polarities are sequentially connected via the bonding wire 51, and the bonding wires 54 are connected to the leads 53 provided in the package 52 for the remaining pairs of electrodes having different polarities without contributing to the connection between the semiconductor light emitting elements 50. There is a method of connecting through the network (see FIG. 12).
JP 2007-103940 A

ところで、特許文献1に引用されたような、半導体発光素子同士の電極をボンディングワイヤを介して直接接続する方法は、パッケージに設けるリードフレームのリードが外部からの給電用の2本のみでよく、リードで占有される部分が少ないためにパッケージの小型化が可能となる。   By the way, the method of directly connecting the electrodes of the semiconductor light emitting elements, as cited in Patent Document 1, through the bonding wires, requires only two lead frames for power supply from the outside provided in the package, Since the portion occupied by the leads is small, the package can be downsized.

しかし、半導体発光素子の電極のいずれかにボンディングワイヤの1stボンドによるボールボンド部が形成され、いずれかに2ndボンドによるステッチボンド部が形成される。そのうち、ステッチボンド部は電極に対するボンディングワイヤの接合力がボールボンド部に比べて極めて弱く、外部応力に対する信頼性が低いものとなってしまう。   However, a ball bond portion by a 1st bond of a bonding wire is formed on one of the electrodes of the semiconductor light emitting element, and a stitch bond portion by a 2nd bond is formed on either of them. Among them, the bonding force of the bonding wire to the electrode is extremely weak compared to the ball bond portion, and the reliability to external stress is low.

また、ステッチボンド用の電極はボールボンド用の電極よりも面積を大きくする必要があり、そのため半導体発光素子の光出射面に対するステッチボンド用電極の面積比が大きくなるため光取り出し効率が低下する。   In addition, the area for the stitch bond electrode needs to be larger than that for the ball bond electrode, so that the area ratio of the stitch bond electrode to the light emitting surface of the semiconductor light emitting device is increased, so that the light extraction efficiency is lowered.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、上面にのみ電極を設けた複数の半導体発光素子を1つのパッケージ内に配置し、それら半導体発光素子による直列接続回路を構成する半導体発光装置において、半導体発光素子の電極に対するボンディングワイヤの接合強度を高めることにより外部応力に対する信頼性を向上させ、且つ電極面積の拡大を抑制することにより良好な光取り出し効率を確保することを可能にすることにある。   Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to arrange a plurality of semiconductor light emitting elements having electrodes only on the upper surface in one package, and to connect the semiconductor light emitting elements in series. In the semiconductor light emitting device constituting the connection circuit, the reliability of external stress is improved by increasing the bonding strength of the bonding wire to the electrode of the semiconductor light emitting element, and the light extraction efficiency is improved by suppressing the expansion of the electrode area. It is to make it possible to secure.

上記課題を解決するために、本発明の請求項1に記載された発明は、
第1の貫通孔を有する第1の絶縁基板と、
前記第1の絶縁基板の下面に前記第1の貫通孔を塞ぐように配設された金属底板と、
前記第1の貫通孔内の前記金属底板上に配置された複数の半導体発光素子とを備え、
前記複数の半導体発光素子が直列接続されてなる半導体発光装置であって、
前記複数の半導体発光素子は、上面に対となる両電極を有し、
前記第一の絶縁基板上に形成され、前記半導体発光素子の電極とボンディングワイヤを介して電気的に接続されて外部からの給電を受ける一対の給電パターンと、
前記第一の絶縁基板上に前記給電パターと分離して形成され、前記複数の半導体発光素子のうち2つの半導体発光素子の互いに極性の異なる電極とボンディングワイヤを介して電気的に接続された中継パターンを有し、
前記一対の給電パターンおよび中継パターンは、前記第一の絶縁基板の上面にて前記第一の貫通孔を囲んで形成され、ボンディングワイヤで接続された部分から当該第一の絶縁基板の側面側の端部まで当該基板の上面に延設して形成されており、前記複数の半導体発光素子の電極とボンディングワイヤがボールボンド部を介して接合されていることを特徴とするものである。
In order to solve the above problems, the invention described in claim 1 of the present invention is:
A first insulating substrate having a first through hole;
A metal bottom plate disposed on the lower surface of the first insulating substrate so as to close the first through hole;
A plurality of semiconductor light emitting elements disposed on the metal bottom plate in the first through-hole,
A semiconductor light emitting device in which the plurality of semiconductor light emitting elements are connected in series,
The plurality of semiconductor light emitting devices have both electrodes paired on the upper surface,
A pair of power supply patterns formed on the first insulating substrate, electrically connected to the electrodes of the semiconductor light emitting element via bonding wires and receiving power from the outside;
A relay formed on the first insulating substrate separately from the power supply pattern and electrically connected to electrodes of two semiconductor light emitting elements having different polarities from each other through bonding wires. Has a pattern,
The pair of power supply patterns and relay patterns are formed on the upper surface of the first insulating substrate so as to surround the first through hole, and are connected to the side of the first insulating substrate from a portion connected by a bonding wire. It is formed so as to extend to the upper surface of the substrate to the end , and both electrodes of the plurality of semiconductor light emitting elements and bonding wires are bonded via ball bond portions.

また、本発明の請求項2に記載された発明は、請求項1において、
前記給電パターンは前記第1の絶縁基板の側面を経由して底面まで延設されていることを特徴とするものである。
In addition, the invention described in claim 2 of the present invention is as follows.
The feeding pattern is characterized in that it is extended to the bottom surface via the side surface of the first insulating substrate.

また、本発明の請求項3に記載された発明は、請求項1または2のいずれかにおいて、
前記ボンディングワイヤが前記給電パターンに結線されたステッチボンド部が、前記ボールボンド部より高い位置に形成されることを特徴とするものである。
Moreover, the invention described in claim 3 of the present invention is any one of claims 1 and 2,
A stitch bond portion where the bonding wire is connected to the power supply pattern is formed at a position higher than the ball bond portion.

また、本発明の請求項4に記載された発明は、請求項1乃至3のいずれかにおいて、
前記第1の絶縁基板上面に絶縁性接着層を介して貼り合わされた、前記第1の貫通孔よりも大きい第2の貫通孔を有する第2の絶縁基板を備えることを特徴とするものである。
Further, the invention described in claim 4 of the present invention is any one of claims 1 to 3,
A second insulating substrate having a second through hole larger than the first through hole, which is bonded to the upper surface of the first insulating substrate via an insulating adhesive layer, is provided. .

本発明は、上面に対となる電極を設けた複数の半導体発光素子を1つのパッケージ内に配置し、それら半導体発光素子による直列接続回路を構成する半導体発光装置であって、半導体発光素子の電極とボンディングワイヤを1stワイヤボンディングによるボールボンド部を介して接合するようにした。   The present invention is a semiconductor light-emitting device in which a plurality of semiconductor light-emitting elements each provided with a pair of electrodes on the upper surface are arranged in one package, and constitutes a series connection circuit using these semiconductor light-emitting elements. And the bonding wire are bonded through a ball bond portion by 1st wire bonding.

そのため、半導体発光素子の電極に対するボンディングワイヤの接合強度が高められて外部応力に対する信頼性が向上し、且つ電極面積の拡大が抑制されたことにより良好な光取り出し効率を確保することを可能になった。   Therefore, the bonding strength of the bonding wire to the electrode of the semiconductor light emitting element is increased, the reliability with respect to external stress is improved, and the expansion of the electrode area is suppressed, so that it is possible to ensure good light extraction efficiency. It was.

以下、この発明の好適な実施形態を図1から図11を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 11 (the same reference numerals are used for the same portions). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

本発明は、複数の半導体発光素子を発光源とする半導体発光装置であり、図1はその内部結線図、図2は上面図、図3は図2のA−A断面図、図4は図2の部分拡大図である。   The present invention is a semiconductor light emitting device using a plurality of semiconductor light emitting elements as light sources. FIG. 1 is an internal connection diagram, FIG. 2 is a top view, FIG. 3 is a cross-sectional view taken along line AA in FIG. FIG.

半導体発光装置は図1のように、発光源となる3個の半導体発光素子L1、L2、L3が直列に配置されている。半導体発光素子L1、L2、L3はいずれも上面に対となる両電極が設けられている。但し、半導体発光素子は必ずしも3個に限られるものではなく、半導体発光装置に求められる明るさ、消費電力、大きさ等の要件に基づいて決定され、複数個の半導体発光素子を配置し且つそれらを直列に内部結線するような半導体発光装置であれば本発明に係る優れた効果を得ることができる。   As shown in FIG. 1, the semiconductor light-emitting device has three semiconductor light-emitting elements L1, L2, and L3 that are light sources arranged in series. The semiconductor light emitting elements L1, L2, and L3 are all provided with a pair of electrodes on the upper surface. However, the number of semiconductor light-emitting elements is not necessarily limited to three, and is determined based on requirements such as brightness, power consumption, and size required for the semiconductor light-emitting device, and a plurality of semiconductor light-emitting elements are arranged and those As long as the semiconductor light emitting device is configured such that the internal connection is made in series, the excellent effect of the present invention can be obtained.

図2及び図3より、半導体発光装置1は、第1の貫通孔2を有する下部基板3と第2の貫通孔4を有する上部基板5が絶縁性接着層6を介して貼り合わされ、下部基板3の上部基板5と反対側(下面側)に例えば銅箔等の金属箔からなる金属底板7が配設されている。   2 and 3, the semiconductor light emitting device 1 includes a lower substrate 3 having a first through-hole 2 and an upper substrate 5 having a second through-hole 4 bonded together through an insulating adhesive layer 6. 3, a metal bottom plate 7 made of a metal foil such as a copper foil is disposed on the side opposite to the upper substrate 5 (lower surface side).

上部基板5と下部基板3はいずれも絶縁性部材からなり、上部基板5の第2の貫通孔4は下部基板3の第1の貫通孔2よりも大きく形成され、第1の貫通孔2と第2の貫通孔4により金属底板7を底面とする凹部8が形成されている。   Both the upper substrate 5 and the lower substrate 3 are made of an insulating member, and the second through hole 4 of the upper substrate 5 is formed larger than the first through hole 2 of the lower substrate 3. The second through hole 4 forms a recess 8 having the metal bottom plate 7 as a bottom surface.

下部基板3の上部基板5側(上面側)及び側面側には導体パターンが形成されており、夫々独立した一対の給電パターン9、給電パターン9と独立した中継パターン10、及び給電パターン9、中継パターン10と独立した反射パターン11の一部が凹部8内に露出している。そのうち各給電パターン9は凹部8内から下部基板3の上面を経て、側面側を経て、底面側まで延設されている。下部基板3の側面および底面に配設された給電パターンは、給電端子として機能する。各中継パターン10は凹部8内から下部基板3の上面を前記給電パターン9が延設されていない側面側の端部まで延設され、反射パターン11は凹部8内に露出した下部基板上面の給電パターン9及び中継パターン10以外の領域を占めており、中継パターン10と同様に凹部8内から前記給電パターン9が延設されていない互いに対向する側面側端部まで延設されている。さらに、図示はしていないが、上部基板5の第2の貫通孔4および下部基板3の第1の貫通孔2の内周面には、給電パターン9と絶縁して設けられた反射面が形成されている。   Conductor patterns are formed on the upper substrate 5 side (upper surface side) and the side surface side of the lower substrate 3, and a pair of independent power feeding patterns 9, a relay pattern 10 independent of the power feeding pattern 9, a power feeding pattern 9, and a relay A part of the reflection pattern 11 independent of the pattern 10 is exposed in the recess 8. Among them, each power feeding pattern 9 extends from the inside of the recess 8 through the upper surface of the lower substrate 3 to the bottom surface side through the side surface side. The power supply pattern disposed on the side surface and the bottom surface of the lower substrate 3 functions as a power supply terminal. Each relay pattern 10 extends from the inside of the recess 8 to the upper surface of the lower substrate 3 to the end on the side surface where the power supply pattern 9 is not extended, and the reflection pattern 11 feeds the power of the upper surface of the lower substrate exposed in the recess 8. It occupies an area other than the pattern 9 and the relay pattern 10, and extends from the inside of the recess 8 to the opposite side end portions where the power feeding pattern 9 is not extended. Further, although not shown in the drawings, the inner peripheral surfaces of the second through hole 4 of the upper substrate 5 and the first through hole 2 of the lower substrate 3 are provided with reflection surfaces that are insulated from the power feeding pattern 9. Is formed.

凹部8の金属底板7上には、夫々光出射面側(上部側)に極性が異なる2つの電極を設けた3個の半導体発光素子L1、L2、L3が配設され、各半導体発光素子L1、L2、L3の夫々の電極と凹部8内に露出した給電パターン9及び中継パターン10がボンディングワイヤ12を介して電気的に接続されている。   On the metal bottom plate 7 of the recess 8, there are disposed three semiconductor light emitting elements L1, L2, L3 each having two electrodes of different polarities on the light emitting surface side (upper side), and each semiconductor light emitting element L1. , L2 and L3 are electrically connected to the feeding pattern 9 and the relay pattern 10 exposed in the recess 8 through bonding wires 12.

具体的には図4に示すように、ボールボンディング法により半導体発光素子L2のアノード電極aと給電パターン9aがボンディングワイヤ12aを介して接合され、半導体発光素子L2のカソード電極c及び半導体発光素子L1のアノード電極aが夫々ボンディングワイヤ12b、12cを介して中継パターン10aに接合され、半導体発光素子L1のカソード電極c及び半導体発光素子L3のアノード電極aが夫々ボンディングワイヤ12d、12eを介して中継パターン10bに接合され、半導体発光素子L3のカソード電極cがボンディングワイヤ12fを介して給電パターン9bに接合されている。   Specifically, as shown in FIG. 4, the anode electrode a of the semiconductor light emitting element L2 and the power supply pattern 9a are joined via a bonding wire 12a by a ball bonding method, and the cathode electrode c and the semiconductor light emitting element L1 of the semiconductor light emitting element L2 are joined. Are bonded to the relay pattern 10a via bonding wires 12b and 12c, respectively, and the cathode electrode c of the semiconductor light emitting element L1 and the anode electrode a of the semiconductor light emitting element L3 are connected to the relay pattern 10b via bonding wires 12d and 12e, respectively. The cathode electrode c of the semiconductor light emitting element L3 is bonded to the power supply pattern 9b via the bonding wire 12f.

これにより、半導体発光素子L1、L2、L3による直列接続の内部結線が施されている。この場合、各ボンディングワイヤ12をワイヤボンディングするにあたって、ボンディングワイヤ12aは半導体発光素子L2のアノード電極aに1stボンディングが行われ、給電パターン9aに2ndボンディングが行われている。ボールボンディング法によれば、先端をトーチにより溶融してAuボールの形成されたボンディングワイヤは、半導体発光素子の電極上に超音波等を用いて圧着接続し、給電パターンあるいは中継パターンに導いて圧着接続する。このとき、半導体発光素子上の電極上にボールボンド部が形成され、給電パターンあるいは中継パターン上にステッチボンド部が形成される。その結果、半導体発光素子L2のアノード電極aにボールボンド部13を介してボンディングワイヤ12aの一方の端部が接合され、給電パターン9aにステッチボンド部14を介してボンディングワイヤ12aの他方の端部が接合されている。   Thereby, the internal connection of the serial connection by the semiconductor light emitting elements L1, L2, and L3 is performed. In this case, when the bonding wires 12 are wire-bonded, the bonding wire 12a is subjected to 1st bonding to the anode electrode a of the semiconductor light emitting element L2 and 2nd bonding to the power supply pattern 9a. According to the ball bonding method, a bonding wire in which an Au ball is formed by melting the tip with a torch is crimped and connected to an electrode of a semiconductor light emitting element using ultrasonic waves or the like, and is guided to a power feeding pattern or a relay pattern to be crimped. Connecting. At this time, a ball bond portion is formed on the electrode on the semiconductor light emitting element, and a stitch bond portion is formed on the power feeding pattern or the relay pattern. As a result, one end of the bonding wire 12a is bonded to the anode electrode a of the semiconductor light emitting element L2 via the ball bond portion 13, and the other end of the bonding wire 12a is connected to the power supply pattern 9a via the stitch bond portion 14. Are joined.

以下同様に、ボンディングワイヤ12bは、一方の端部が半導体発光素子L2のカソード電極cに1stボンディングによるボールボンド部13を介して接合され、他方の端部が中継パターン10aに2ndボンディングによるステッチボンド部14を介して接合されている。ボンディングワイヤ12cは、一方の端部が半導体発光素子L1のアノード電極aに1stボンディングによるボールボンド部13を介して接合され、他方の端部が中継パターン10aに2ndボンディングによるステッチボンド部14を介して接合されている。ボンディングワイヤ12dは、一方の端部が半導体発光素子L1のカソード電極cに1stボンディングによるボールボンド部13を介して接合され、他方の端部が中継パターン10bに2ndボンディングによるステッチボンド部14を介して接合されている。ボンディングワイヤ12eは、一方の端部が半導体発光素子L3のアノード電極aに1stボンディングによるボールボンド部13を介して接合され、他方の端部が中継パターン10bに2ndボンディングによるステッチボンド部14を介して接合されている。ボンディングワイヤ12fは、一方の端部が半導体発光素子L3のカソード電極cに1stボンディングによるボールボンド部13を介して接合され、他方の端部が給電パターン9bに2ndボンディングによるステッチボンド部14を介して接合されている。   Similarly, one end of the bonding wire 12b is bonded to the cathode electrode c of the semiconductor light emitting element L2 via the ball bonding portion 13 by 1st bonding, and the other end is stitch bonded to the relay pattern 10a by 2nd bonding. It is joined via the part 14. One end of the bonding wire 12c is bonded to the anode electrode a of the semiconductor light emitting element L1 via the ball bond portion 13 by 1st bonding, and the other end is connected to the relay pattern 10a via the stitch bond portion 14 by 2nd bonding. Are joined. One end of the bonding wire 12d is bonded to the cathode electrode c of the semiconductor light emitting element L1 via the ball bond portion 13 by 1st bonding, and the other end is connected to the relay pattern 10b via the stitch bond portion 14 by 2nd bonding. Are joined. One end of the bonding wire 12e is bonded to the anode electrode a of the semiconductor light emitting element L3 via the ball bond portion 13 by 1st bonding, and the other end is bonded to the relay pattern 10b via the stitch bond portion 14 by 2nd bonding. Are joined. One end of the bonding wire 12f is bonded to the cathode electrode c of the semiconductor light emitting element L3 via the ball bond portion 13 by 1st bonding, and the other end is connected to the power supply pattern 9b via the stitch bond portion 14 by 2nd bonding. Are joined.

このように、半導体発光素子L1、L2、L3の各電極とボンディングワイヤ12はいずれもボールボンド部13を介して接合され、各給電パターン9及び各中継パターン10とボンディングワイヤ12はいずれもステッチボンド部14を介して接合されている。   In this way, each electrode of the semiconductor light emitting elements L1, L2, and L3 and the bonding wire 12 are joined via the ball bond portion 13, and each of the power supply pattern 9, each relay pattern 10 and the bonding wire 12 are stitch bonded. It is joined via the part 14.

そのため、半導体発光素子の各電極とボンディングワイヤを接合するボールボンド部の接合強度が、ステッチボンド部を介して接合される場合に比べて極めて高くなり、高い接合信頼性を確保することができる。   Therefore, the bonding strength of the ball bond portion for bonding each electrode of the semiconductor light emitting element and the bonding wire is extremely higher than that in the case of bonding via the stitch bond portion, and high bonding reliability can be ensured.

なお、ボンディングワイヤのステッチボンド部を介する接合は、基板上の導体パターンに対するよりも半導体発光素子の電極に対する方が強度が弱い。そこで、本発明のように半導体発光素子の電極側にボールボンド部を形成し、基板上の導体パターン側にステッチボンド部を形成することにより、ボンディングワイヤによる半導体発光素子の電極と基板上の導体パターンとの電気的な接続をより確実なものとすることができる。   It should be noted that the bonding via the stitch bond portion of the bonding wire is weaker with respect to the electrode of the semiconductor light emitting element than with respect to the conductor pattern on the substrate. Therefore, as in the present invention, a ball bond part is formed on the electrode side of the semiconductor light emitting element, and a stitch bond part is formed on the conductor pattern side on the substrate, whereby the electrode of the semiconductor light emitting element by the bonding wire and the conductor on the substrate are formed. The electrical connection with the pattern can be made more reliable.

このように、中継パターンは2つの半導体発光素子の互いに極性の異なる電極同士を電気的に接続するための中継点としてのみ機能し、外部との電気的な繋がりをもたない。つまり、中継点としての働きをもたせるのみのために形成されたものである。そして、中継パターンを設けたことにより半導体発光素子の全ての電極側にボールボンド部を形成することが可能となり、半導体発光素子が直列に接続された内部結線を電気的に信頼性の高いものとすることができるようになる。   Thus, the relay pattern functions only as a relay point for electrically connecting the electrodes of the two semiconductor light emitting elements having different polarities, and has no electrical connection with the outside. In other words, it is formed only to serve as a relay point. By providing the relay pattern, it becomes possible to form ball bond portions on all the electrode sides of the semiconductor light emitting element, and the internal connection in which the semiconductor light emitting elements are connected in series is electrically reliable. Will be able to.

なお、中継パターンは上述のような機能を果たすものであればよく、導体パターンを形成したサブマウントを下部基板上に取り付けることによっても形成することができる。   The relay pattern may be any pattern as long as it fulfills the above-described function, and can also be formed by attaching a submount on which a conductor pattern is formed on the lower substrate.

また、半導体発光素子の全ての電極側にボールボンド部を形成することが可能となったことにより、半導体発光素子の光出射面に対する電極の面積比をステッチボンド部を形成する場合よりも小さくすることができる。そのため、半導体発光素子の光出射面の面積を大きく確保することが可能となり光取り出し効率の向上を図ることができる。   In addition, since it becomes possible to form ball bond portions on all the electrode sides of the semiconductor light emitting device, the area ratio of the electrodes to the light emitting surface of the semiconductor light emitting device is made smaller than when the stitch bond portions are formed. be able to. For this reason, it is possible to ensure a large area of the light emitting surface of the semiconductor light emitting device, and to improve the light extraction efficiency.

凹部内には半導体発光素子及びボンディングワイヤを覆うように封止樹脂が充填され、半導体発光素子を水分、塵埃及びガス等の外部環境から保護し、且つボンディングワイヤを振動及び衝撃等の機械的応力から保護している。また、封止樹脂は半導体発光素子の光出射面とで界面を形成しており、半導体発光素子の発光光を半導体発光素子の光出射面から封止樹脂内に効率良く出射させる機能も有している。   The recess is filled with a sealing resin so as to cover the semiconductor light emitting element and the bonding wire, protect the semiconductor light emitting element from the external environment such as moisture, dust and gas, and mechanical stress such as vibration and impact. Protect from. In addition, the sealing resin forms an interface with the light emitting surface of the semiconductor light emitting element, and also has a function of efficiently emitting light emitted from the semiconductor light emitting element from the light emitting surface of the semiconductor light emitting element into the sealing resin. ing.

また、図5に示すように下部基板3の厚みd2(給電パターン9の厚みを含む)が半導体発光素子Lの厚みd1よりも厚く形成されている(d2>d1)。これにより、半導体発光素子Lの電極に接合されたボンディングワイヤのボールボンド部の直上部分αを半導体発光素子Lの光出射面15に対して略垂直に立ち上がった状態に架線することができる。この部分は1stボンディング前のボール形成時に放電の熱によって結晶粒子が粗粒化した再結晶領域となっており、引張り強度や破断強度が弱い部分となっている。また、再結晶領域と通常結晶領域の境界には破断強度が弱い結晶粒界面も形成されている。
具体的には、下部基板3の厚みd2を180μm、半導体発光素子Lの厚みd1を100μmとしている。中継パターンを下部基板3上に設け、下部基板3の厚みd2を半導体発光素子Lの厚みd1よりも厚くすることにより、ボールボンド部よりステッチボンド部を高い位置とすることができる。そして、ボールボンド部よりステッチボンド部を高い位置とすることにより、再結晶領域αへの負荷の少ないボンディングワイヤのループ形状を維持しやすく、ボンディングワイヤの破断強度を高め、信頼性の高い半導体発光装置を提供することができる。
特に、再結晶領域αは、ボールボンド部から約50〜150μmの範囲で形成されること、半導体発光装置の薄型化のためボンディングワイヤのループ高さが低いことが望まれること、および、下部基板のエッジ接触を避ける必要があることを考慮すると、ステッチボンド部は、ボールボンド部より約40〜120μm高い位置に形成されることが好ましい。
Further, as shown in FIG. 5, the thickness d2 of the lower substrate 3 (including the thickness of the power feeding pattern 9) is formed to be thicker than the thickness d1 of the semiconductor light emitting element L (d2> d1). As a result, the portion α directly above the ball bond portion of the bonding wire bonded to the electrode of the semiconductor light emitting element L can be installed in a state of rising substantially perpendicular to the light emitting surface 15 of the semiconductor light emitting element L. This portion is a recrystallized region in which crystal grains are coarsened by the heat of discharge during ball formation before the first bonding, and is a portion having low tensile strength and breaking strength. In addition, a crystal grain interface having a low breaking strength is formed at the boundary between the recrystallization region and the normal crystal region.
Specifically, the thickness d2 of the lower substrate 3 is 180 μm, and the thickness d1 of the semiconductor light emitting element L is 100 μm. By providing the relay pattern on the lower substrate 3 and making the thickness d2 of the lower substrate 3 larger than the thickness d1 of the semiconductor light emitting element L, the stitch bond portion can be positioned higher than the ball bond portion. And by making the stitch bond part higher than the ball bond part, it is easy to maintain the loop shape of the bonding wire with less load on the recrystallization region α, increase the breaking strength of the bonding wire, and reliable semiconductor light emission An apparatus can be provided.
In particular, the recrystallized region α is formed in a range of about 50 to 150 μm from the ball bond portion, the bonding wire is desired to have a low loop height in order to reduce the thickness of the semiconductor light emitting device, and the lower substrate. Considering that it is necessary to avoid edge contact, the stitch bond portion is preferably formed at a position higher by about 40 to 120 μm than the ball bond portion.

ところで、凹部内に充填された封止樹脂16は、半導体発光素Lの発光時の発熱や周囲温度等に起因する温度変化によって膨張・収縮を繰り返す。封止樹脂の膨張・収縮の度合いは封止樹脂16の厚みが厚い方向、つまり半導体発光素子Lの光出射面15に平行な方向が最も大きい。   By the way, the sealing resin 16 filled in the recesses repeatedly expands and contracts due to temperature changes caused by heat generation, ambient temperature, and the like when the semiconductor light emitting element L emits light. The degree of expansion / contraction of the sealing resin is greatest in the direction in which the sealing resin 16 is thick, that is, in the direction parallel to the light emitting surface 15 of the semiconductor light emitting element L.

そこで、本発明のように、ボンディングワイヤ12の引張り強度や破断強度が弱い領域を半導体発光素子Lの光出射面15と略垂直に立ち上がった状態に架線することにより、封止樹脂16の膨張・収縮によりボンディングワイヤ12に垂直方向から加わる最大応力をボンディングワイヤ12自身の撓みによって緩和することができ、ボンディングワイヤ12を細線化や破断などの不具合から保護することができる。   Therefore, as in the present invention, the region of the bonding wire 12 having a low tensile strength or breaking strength is installed in a state of rising substantially perpendicular to the light emitting surface 15 of the semiconductor light emitting element L, whereby the expansion / expansion of the sealing resin 16 is performed. The maximum stress applied to the bonding wire 12 from the vertical direction by the contraction can be relieved by the bending of the bonding wire 12 itself, and the bonding wire 12 can be protected from defects such as thinning and breaking.

次に、本発明の半導体発光装置の製造方法について図6〜図11を参照して説明する。まず、図6に示す絶縁基板準備工程において、所定の間隔で所定の大きさの第1の貫通孔2と貫通スリット20を有する絶縁基板を準備する。この場合、絶縁基板にプレス加工等により第1の貫通孔2及び貫通スリット20を設けてもよいし、樹脂による基板成形時に第1の貫通孔2及び貫通スリット20を同時形成してもよい。   Next, a method for manufacturing a semiconductor light emitting device of the present invention will be described with reference to FIGS. First, in an insulating substrate preparation step shown in FIG. 6, an insulating substrate having first through holes 2 and through slits 20 having a predetermined size is prepared at predetermined intervals. In this case, the first through hole 2 and the through slit 20 may be provided in the insulating substrate by pressing or the like, or the first through hole 2 and the through slit 20 may be formed at the same time when the substrate is formed of resin.

次に、図7に示す多数個取り下部基板作製工程において、絶縁基板21の一方の面及び貫通スリット20の内面に導体パターン22を形成して多数個取りの下部基板23とする。この導体パターン22は各第1の貫通孔2を囲んで反射パターン11、中継パターン10及び一対の給電パターン9となる部分が形成され、それらはいずれも貫通スリット20内面の導体パターン22と共に多数個取り下部基板23の端部24で一体に繋がっている。これにより、導体パターン22上全面に亘って電解メッキにより順次Cuメッキ、Niメッキ層が形成されている。さらに、反射パターン11、中継パターン10、給電パターン9における下部基板上面に形成された部分、および、図示しない第1の貫通孔2および第2の貫通孔4の内周面に形成された反射面にはAgメッキが施されている。貫通スリット20の内面に形成された各導体パターン22は夫々給電パターン9に繋がっており、そのため貫通スリット20の部分はスルースリットを形成している。
つまり、各中継パターンは、多数個取り下部基板においては電気的に接続された状態で形成され、後のダイシング工程を経て電気的に独立したものとして形成することができる。従って、中継パターンは、下部電極上において、ダイシング工程による切断面となる側面側の端部まで延設している。そして、給電パターンの形成される側面は、下部基板に設けたスルースリットの内周面により構成されるため、中継パターンは、給電パターンの形成されていない側面側の端部まで延設する。
Next, in the multi-cavity lower substrate manufacturing step shown in FIG. 7, a conductor pattern 22 is formed on one surface of the insulating substrate 21 and the inner surface of the through slit 20 to obtain a multi-cavity lower substrate 23. This conductor pattern 22 surrounds each first through-hole 2 and is formed with a reflection pattern 11, a relay pattern 10, and a pair of power supply patterns 9, all of which are numerous together with the conductor pattern 22 on the inner surface of the through-slit 20. They are connected together at the end 24 of the lower substrate 23. Thus, a Cu plating layer and a Ni plating layer are sequentially formed on the entire surface of the conductor pattern 22 by electrolytic plating. Further, the reflection pattern 11, the relay pattern 10, the portion formed on the upper surface of the lower substrate in the power feeding pattern 9, and the reflection surface formed on the inner peripheral surfaces of the first through hole 2 and the second through hole 4 (not shown). Is plated with Ag. Each conductor pattern 22 formed on the inner surface of the through slit 20 is connected to the power feeding pattern 9, and thus the through slit 20 forms a through slit.
That is, each relay pattern is formed in an electrically connected state on the multi-piece lower substrate, and can be formed as an electrically independent pattern through a subsequent dicing process. Therefore, the relay pattern extends to the end portion on the side surface that becomes the cut surface in the dicing process on the lower electrode. And since the side surface in which a power feeding pattern is formed is comprised by the inner peripheral surface of the through slit provided in the lower board | substrate, a relay pattern is extended to the edge part of the side surface in which the power feeding pattern is not formed.

次に、図8に示す多数個取り上部基板貼り合わせ工程において、多数個取り下部基板23の導体パターンが形成された面に、多数個取り下部基板23の第1の貫通孔2に対応する位置に前記第1の貫通孔2よりも大きい第2の貫通孔4を有する多数個取り上部基板25を絶縁性接着層(図示せず)を介して貼り合わせる。それと共に、多数個取り下部基板23の導体パターンが形成された面の反対側に例えば銅箔等の金属箔からなる金属底板7を配設する。
絶縁性接着層には、ガラス繊維に未硬化の熱硬化性樹脂を含浸したプリプレグ、エポキシ樹脂等からなる接着シート、あるいは、ガラスエポキシ基板の両面に接着シートが配置された多層構造のものを用いるなど、用途や仕様に応じて変更したものを用いることができる。
Next, in the multi-cavity upper substrate bonding step shown in FIG. 8, positions corresponding to the first through holes 2 of the multi-cavity lower substrate 23 are formed on the surface of the multi-cavity lower substrate 23 on which the conductor pattern is formed. A multi-piece upper substrate 25 having a second through-hole 4 larger than the first through-hole 2 is bonded to each other through an insulating adhesive layer (not shown). At the same time, the metal bottom plate 7 made of a metal foil such as a copper foil is disposed on the opposite side of the surface of the lower substrate 23 on which the conductor pattern is formed.
As the insulating adhesive layer, a prepreg obtained by impregnating a glass fiber with an uncured thermosetting resin, an adhesive sheet made of an epoxy resin, or a multilayer structure in which an adhesive sheet is disposed on both surfaces of a glass epoxy substrate is used. For example, it is possible to use a modified one according to the application and specifications.

次に、図9に示す半導体発光素子実装工程において、多数個取り上部基板25及び多数個取り下部基板23の各第2の貫通孔4及び第1の貫通孔2で形成される凹部8の底面の金属底板7上に3個の半導体素子L1、L2、L3を搭載し、半導体発光素子L2のアノード電極aをボンディングワイヤ12aを介して給電パターン9aに接合し、半導体発光素子L2のカソード電極c及び半導体発光素子L1のアノード電極aを夫々ボンディングワイヤ12b、12cを介して中継パターン10aに接合し、半導体発光素子L1のカソード電極c及び半導体発光素子L3のアノード電極aを夫々ボンディングワイヤ12d、12eを介して中継パターン10bに接合し、半導体発光素子L3のカソード電極cをボンディングワイヤを12fを介して給電パターン9bに接合する(図4参照)。   Next, in the semiconductor light emitting device mounting step shown in FIG. 9, the bottom surface of the recess 8 formed by the second through holes 4 and the first through holes 2 of the multi-cavity upper substrate 25 and the multi-cavity lower substrate 23. The three semiconductor elements L1, L2, and L3 are mounted on the metal bottom plate 7, and the anode electrode a of the semiconductor light emitting element L2 is joined to the power supply pattern 9a via the bonding wire 12a, and the cathode electrode c of the semiconductor light emitting element L2 The anode electrode a of the semiconductor light emitting element L1 is bonded to the relay pattern 10a via bonding wires 12b and 12c, respectively. The cathode electrode c of the semiconductor light emitting element L1 and the anode electrode a of the semiconductor light emitting element L3 are bonded to bonding wires 12d and 12e, respectively. The cathode electrode c of the semiconductor light emitting element L3 is bonded to the relay pattern 10b via the bonding wire 12f. Te is bonded to the power feeding pattern 9b (see FIG. 4).

このとき、半導体発光素子L1、L2、L3の各電極とボンディングワイヤ12はいずれもボールボンド部13を介して接合され、各給電パターン9a、9b及び各中継パターン10a、10bとボンディングワイヤ12はいずれもステッチボンド部14を介して接合される。   At this time, each of the electrodes of the semiconductor light emitting elements L1, L2, and L3 and the bonding wire 12 are all bonded through the ball bond portion 13, and each of the power supply patterns 9a and 9b, each of the relay patterns 10a and 10b, and the bonding wire 12 is Are also joined via the stitch bond portion 14.

次に、図10に示す封止樹脂充填工程において、各凹部8内に封止樹脂16を充填し、半導体発光素子L1、L2、L3及びボンディングワイヤ12を樹脂封止する。   Next, in the sealing resin filling step shown in FIG. 10, the sealing resin 16 is filled in each recess 8, and the semiconductor light emitting elements L 1, L 2, L 3 and the bonding wire 12 are resin sealed.

次に、図11に示すダイシング工程において、半導体発光素子L1、L2、L3が実装された多数個取り貼り合わせ基板26を所定の間隔でダイシングして個々の半導体発光装置1に個片化し、半導体発光装置の製造工程が終了する。
ダイシング工程において、下部基板のスルースリット(中央)に沿うダイシングライン27aと、直交するダイシングライン27bにより個片化されるため、半導体発光装置1の上部基板の4つの側面はいずれも切断面で構成され、半導体発光装置1の下部基板の4つの側面は、対向する2つの切断面と、該切断面に挟まれたスルースリット内周面で構成される。
Next, in the dicing step shown in FIG. 11, a large number of bonded substrates 26 on which the semiconductor light emitting elements L1, L2, and L3 are mounted are diced at predetermined intervals to be singulated into individual semiconductor light emitting devices 1. The manufacturing process of the light emitting device is completed.
In the dicing process, each of the four side surfaces of the upper substrate of the semiconductor light emitting device 1 is constituted by a cut surface because the dicing line 27a along the through slit (center) of the lower substrate and the dicing lines 27b orthogonal to each other are separated. Then, the four side surfaces of the lower substrate of the semiconductor light emitting device 1 are constituted by two opposing cut surfaces and an inner peripheral surface of the through slit sandwiched between the cut surfaces.

ところで、この製造工程からわかるように、ダイシング工程までは多数個取り下部基板を構成する絶縁基板の一方の面及びスリットの内面に形成された導体パターンが全て基板の端部で一体に繋がっている、そのため導体パターン全面に亘って電解メッキを施すことが可能となる。   By the way, as can be seen from this manufacturing process, all the conductor patterns formed on one surface of the insulating substrate and the inner surface of the slit constituting the lower substrate are integrally connected at the end of the substrate until the dicing step. Therefore, it is possible to perform electrolytic plating over the entire conductor pattern.

その後、ダイシング工程による個片化によって一体に繋がった導体パターンが切断、分離され、反射パターン、一対の中継パターン及び一対の給電パターンの夫々が独立した状態となり、各独立したパターンの夫々が半導体発光素子の直列内部結線に寄与するものとなる。   Thereafter, the conductor patterns that are integrally connected by the dicing process are cut and separated, and the reflection pattern, the pair of relay patterns, and the pair of power supply patterns become independent, and each of the independent patterns emits light from the semiconductor. This contributes to the series internal connection of the elements.

このように、多数個取り下部基板において導体パターンの全てを一体に繋がった状態に形成することで、個片化後の個々の半導体発光装置の信頼性を向上させることが可能となる。   As described above, by forming all the conductor patterns in the multi-piece lower substrate so as to be integrally connected, it is possible to improve the reliability of the individual semiconductor light emitting devices after being separated.

以上、詳細に説明したように、本発明の半導体発光装置は、発光源となる複数の半導体発光素子を直列に接続してなる内部結線を有し、結線を構成するボンディングワイヤと半導体発光素子の電極との接続をすべてボンディングワイヤの1stボンディングで形成されるボールボンド部を介して行うようにした。そのために、外部との電気的な繋がりを持たない中継パターンを設け、3つの半導体発光素子のうち互いに隣接する2つの半導体発光素子の互いに極性の異なる電極同士を、中継パターンを中継点として接続する2本のボンディングワイヤで電気的に接続するようにした。   As described above in detail, the semiconductor light-emitting device of the present invention has an internal connection formed by connecting a plurality of semiconductor light-emitting elements serving as light emission sources in series, and includes a bonding wire and a semiconductor light-emitting element that form the connection. All the connections with the electrodes are made through ball bond portions formed by 1st bonding of bonding wires. For this purpose, a relay pattern having no electrical connection to the outside is provided, and electrodes having different polarities of two adjacent semiconductor light emitting elements among the three semiconductor light emitting elements are connected using the relay pattern as a relay point. Electrical connection was made with two bonding wires.

その結果、半導体発光素子の各電極とボンディングワイヤの接合強度が、ステッチボンド部を介して接合される場合に比べて極めて高くなり、高い接合信頼性を確保することが可能となった。   As a result, the bonding strength between each electrode of the semiconductor light emitting element and the bonding wire is extremely higher than that in the case of bonding through the stitch bond portion, and it is possible to ensure high bonding reliability.

また、半導体発光素子の全ての電極側にボールボンド部を形成することが可能となったことにより、半導体発光素子の光出射面に対する電極の面積比をステッチボンド部で接合する場合よりも小さくすることができた。そのため、半導体発光素子の光出射面の面積を大きく確保することが可能となり光取り出し効率の向上を図ることができようになった。   In addition, since it becomes possible to form ball bond portions on all the electrode sides of the semiconductor light emitting device, the area ratio of the electrodes to the light emitting surface of the semiconductor light emitting device is made smaller than that in the case of joining at the stitch bond portion. I was able to. For this reason, it is possible to ensure a large area of the light emitting surface of the semiconductor light emitting device, and to improve the light extraction efficiency.

また、半導体発光装置を構成する下部基板の厚みを半導体発光素子の厚みよりも厚く形成し半導体発光素子の電極に接合されたボンディングワイヤのボールボンド部の直上部分を半導体発光素子の光出射面に対して略垂直に立ち上がった状態に架線するようにした。これにより、ボンディングワイヤの1suボンディング前のボール形成時に放電の熱によって結晶粒子が粗粒化して引張り強度や破断強度が弱くなった部分に加わる封止樹脂の膨張・収縮による垂直方向からの応力を、ボンディングワイヤ自身の撓みによって緩和できるようになった。その結果、ボンディングワイヤを細線化や破断などの不具合から保護することが可能となった。   Further, the thickness of the lower substrate constituting the semiconductor light emitting device is made larger than the thickness of the semiconductor light emitting element, and the portion directly above the ball bond portion of the bonding wire bonded to the electrode of the semiconductor light emitting element is used as the light emitting surface of the semiconductor light emitting element. On the other hand, it was constructed so as to stand up almost vertically. As a result, the stress from the vertical direction due to the expansion / contraction of the sealing resin applied to the portion where the crystal grains are coarsened by the heat of discharge during the formation of the ball before bonding 1su of the bonding wire and the tensile strength or breaking strength is weakened. This can be alleviated by the bending of the bonding wire itself. As a result, it has become possible to protect the bonding wire from defects such as thinning and breaking.

更に、半導体発光素子を金属箔からなる金属底板上に直接搭載するようにした。その結果、半導体発光素子の点灯時に発生する熱を熱抵抗が低い金属底板内を伝導させて外部に放散させることができ、半導体発光素子の温度上昇を抑制することができるようになった。その結果、半導体発光素子の良好な発光効率を確保すると共に、長寿命化も実現することが可能となった。   Further, the semiconductor light emitting device is directly mounted on a metal bottom plate made of a metal foil. As a result, heat generated when the semiconductor light emitting element is turned on can be conducted through the metal bottom plate having a low thermal resistance to be dissipated to the outside, and the temperature rise of the semiconductor light emitting element can be suppressed. As a result, it is possible to ensure a good light emission efficiency of the semiconductor light emitting device and to achieve a long life.

本発明の半導体発光装置の内部結線図である。It is an internal connection figure of the semiconductor light-emitting device of this invention. 本発明の半導体発光装置の上面図である。It is a top view of the semiconductor light-emitting device of this invention. 図2のA−A断面図である。It is AA sectional drawing of FIG. 図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 図3の部分拡大図である。FIG. 4 is a partially enlarged view of FIG. 3. 本発明の半導体発光装置の製造工程図の一部である。It is a part of manufacturing-process figure of the semiconductor light-emitting device of this invention. 同じく、本発明の半導体発光装置の製造工程図の一部である。Similarly, it is a part of manufacturing process figure of the semiconductor light-emitting device of this invention. 同じく、本発明の半導体発光装置の製造工程図の一部である。Similarly, it is a part of manufacturing process figure of the semiconductor light-emitting device of this invention. 同じく、本発明の半導体発光装置の製造工程図の一部である。Similarly, it is a part of manufacturing process figure of the semiconductor light-emitting device of this invention. 同じく、本発明の半導体発光装置の製造工程図の一部である。Similarly, it is a part of manufacturing process figure of the semiconductor light-emitting device of this invention. 同じく、本発明の半導体発光装置の製造工程図の一部である。Similarly, it is a part of manufacturing process figure of the semiconductor light-emitting device of this invention. 従来例の説明図である。It is explanatory drawing of a prior art example.

符号の説明Explanation of symbols

1 半導体発光装置
2 第1の貫通孔
3 下部基板
4 第2の貫通孔
5 上部基板
6 絶縁性接着層
7 金属底板
8 凹部
9 給電パターン
9a、9b 給電パターン
10 中継パターン
10a、10b 中継パターン
11 反射パターン
12 ボンディングワイヤ
12a、12b、12c、12d、12e、12f ボンディングワイヤ
13 ボールボンド部
14 ステッチボンド部
15 光出射面
16 封止樹脂
20 貫通スリット
21 絶縁基板
22 導体パターン
23 多数個取り下部基板
24 端部
25 多数個取り上部基板
26 多数個取り貼り合わせ基板
27a、27b ダイシングライン
DESCRIPTION OF SYMBOLS 1 Semiconductor light-emitting device 2 1st through-hole 3 Lower substrate 4 2nd through-hole 5 Upper substrate 6 Insulating adhesive layer 7 Metal bottom plate 8 Recess 9 Feed pattern 9a, 9b Feed pattern 10 Relay pattern 10a, 10b Relay pattern 11 Reflection Pattern 12 Bonding wire 12a, 12b, 12c, 12d, 12e, 12f Bonding wire 13 Ball bond portion 14 Stitch bond portion 15 Light exit surface 16 Sealing resin 20 Through slit 21 Insulating substrate 22 Conductor pattern 23 Multi-piece lower substrate 24 End Part 25 Multi-piece upper substrate 26 Multi-piece bonded substrate 27a, 27b Dicing line

Claims (4)

第1の貫通孔を有する第1の絶縁基板と、
前記第1の絶縁基板の下面に前記第1の貫通孔を塞ぐように配設された金属底板と、
前記第1の貫通孔内の前記金属底板上に配置された複数の半導体発光素子とを備え、
前記複数の半導体発光素子が直列接続されてなる半導体発光装置であって、
前記複数の半導体発光素子は、上面に対となる両電極を有し、
前記第一の絶縁基板上に形成され、前記半導体発光素子の電極とボンディングワイヤを介して電気的に接続されて外部からの給電を受ける一対の給電パターンと、
前記第一の絶縁基板上に前記給電パターと分離して形成され、前記複数の半導体発光素子のうち2つの半導体発光素子の互いに極性の異なる電極とボンディングワイヤを介して電気的に接続された中継パターンを有し、
前記一対の給電パターンおよび中継パターンは、前記第一の絶縁基板の上面にて前記第一の貫通孔を囲んで形成され、ボンディングワイヤで接続された部分から当該第一の絶縁基板の側面側の端部まで当該基板の上面に延設して形成されており、前記複数の半導体発光素子の電極とボンディングワイヤがボールボンド部を介して接合されていることを特徴とする半導体発光装置。
A first insulating substrate having a first through hole;
A metal bottom plate disposed on the lower surface of the first insulating substrate so as to close the first through hole;
A plurality of semiconductor light emitting elements disposed on the metal bottom plate in the first through-hole,
A semiconductor light emitting device in which the plurality of semiconductor light emitting elements are connected in series,
The plurality of semiconductor light emitting devices have both electrodes paired on the upper surface,
A pair of power supply patterns formed on the first insulating substrate, electrically connected to the electrodes of the semiconductor light emitting element via bonding wires and receiving power from the outside;
A relay formed on the first insulating substrate separately from the power supply pattern and electrically connected to electrodes of two semiconductor light emitting elements having different polarities from each other through bonding wires. Has a pattern,
The pair of power supply patterns and relay patterns are formed on the upper surface of the first insulating substrate so as to surround the first through hole, and are connected to the side of the first insulating substrate from a portion connected by a bonding wire. A semiconductor light emitting device , wherein the semiconductor light emitting device is formed so as to extend to the upper surface of the substrate up to an end portion , and both electrodes of the plurality of semiconductor light emitting elements and bonding wires are bonded via ball bond portions.
前記給電パターンは前記第1の絶縁基板の側面を経由して底面まで延設されていることを特徴とする請求項1に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1 wherein the feeding pattern is characterized in that it is extended to the bottom surface via the side surface of the first insulating substrate. 前記ボンディングワイヤが前記給電パターンに結線されたステッチボンド部が、前記ボールボンド部より高い位置に形成されることを特徴とする請求項1または2のいずれかに記載の半導体発光装置。   3. The semiconductor light emitting device according to claim 1, wherein a stitch bond portion in which the bonding wire is connected to the power supply pattern is formed at a position higher than the ball bond portion. 前記第1の絶縁基板上面に絶縁性接着層を介して貼り合わされた、前記第1の貫通孔よりも大きい第2の貫通孔を有する第2の絶縁基板を備えることを特徴とする請求項1乃至3のいずれかに記載の半導体発光装置。   2. A second insulating substrate having a second through hole larger than the first through hole, which is bonded to the upper surface of the first insulating substrate via an insulating adhesive layer. 4. The semiconductor light emitting device according to any one of items 1 to 3.
JP2008207097A 2008-08-11 2008-08-11 Semiconductor light emitting device Active JP5227693B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008207097A JP5227693B2 (en) 2008-08-11 2008-08-11 Semiconductor light emitting device
CN200910160581.4A CN101651136B (en) 2008-08-11 2009-08-10 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008207097A JP5227693B2 (en) 2008-08-11 2008-08-11 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2010045105A JP2010045105A (en) 2010-02-25
JP5227693B2 true JP5227693B2 (en) 2013-07-03

Family

ID=41673321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008207097A Active JP5227693B2 (en) 2008-08-11 2008-08-11 Semiconductor light emitting device

Country Status (2)

Country Link
JP (1) JP5227693B2 (en)
CN (1) CN101651136B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101103674B1 (en) 2010-06-01 2012-01-11 엘지이노텍 주식회사 Light emitting device
KR101859149B1 (en) 2011-04-14 2018-05-17 엘지이노텍 주식회사 Light emitting device package
TW201205753A (en) * 2010-07-20 2012-02-01 Pico Jet Corp Lead frame and method for manufacturing the same
JP6753051B2 (en) 2014-10-31 2020-09-09 日亜化学工業株式会社 Light emitting device
JP2017054993A (en) * 2015-09-10 2017-03-16 パナソニックIpマネジメント株式会社 Light emitting device, luminaire, and manufacturing method of light emitting device
TWI820026B (en) * 2017-06-21 2023-11-01 荷蘭商露明控股公司 Lighting assembly with improved thermal behaviour

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3383081B2 (en) * 1994-07-12 2003-03-04 三菱電機株式会社 Electronic component manufactured using anodic bonding and method of manufacturing electronic component
JP3618221B2 (en) * 1998-04-13 2005-02-09 日亜化学工業株式会社 Light emitting device
JP2003078169A (en) * 1998-09-21 2003-03-14 Nichia Chem Ind Ltd Light emitting element
JP3490906B2 (en) * 1998-09-22 2004-01-26 日亜化学工業株式会社 Semiconductor device and manufacturing method thereof
JP2005183531A (en) * 2003-12-17 2005-07-07 Sharp Corp Semiconductor light emitting device
KR101131259B1 (en) * 2004-03-24 2012-03-30 스탄레 덴끼 가부시키가이샤 Light-emitting device manufacturing method and light-emitting device
JP2006019598A (en) * 2004-07-05 2006-01-19 Citizen Electronics Co Ltd Light emitting diode
JP4989867B2 (en) * 2005-08-26 2012-08-01 スタンレー電気株式会社 Surface mount type LED
JP3978456B2 (en) * 2005-11-02 2007-09-19 株式会社トリオン LED mounting board
JP5038623B2 (en) * 2005-12-27 2012-10-03 株式会社東芝 Optical semiconductor device and manufacturing method thereof
JP5106862B2 (en) * 2007-01-15 2012-12-26 昭和電工株式会社 Light emitting diode package

Also Published As

Publication number Publication date
JP2010045105A (en) 2010-02-25
CN101651136A (en) 2010-02-17
CN101651136B (en) 2013-05-08

Similar Documents

Publication Publication Date Title
KR100850666B1 (en) Led package with metal pcb
US8916958B2 (en) Semiconductor package with multiple chips and substrate in metal cap
JP5227693B2 (en) Semiconductor light emitting device
US20130307014A1 (en) Semiconductor light emitting device
WO2008047933A1 (en) Package assembly for upper/lower electrode light-emitting diodes and light-emitting device manufacturing method using same
JP2010165992A (en) Semiconductor device and method for manufacturing the same
JP2018107207A (en) LED package
JP5041593B2 (en) Manufacturing method of chip type semiconductor device
US9324929B2 (en) Wiring substrate
US9748459B2 (en) Method for manufacturing improved chip-on-board type light emitting device package and such manufactured chip-on-board type light emitting device package
JP6581886B2 (en) Semiconductor device
JPWO2008139981A1 (en) Light emitting device and package assembly for light emitting device
KR20110041090A (en) Light emitting apparatus
JP2009188005A (en) Surface-mounted semiconductor device
JP2017135148A (en) Semiconductor device
JP2013149843A (en) Semiconductor light emitting device
US8803168B2 (en) Light emitting module
JP2014146846A (en) Chip type light emitting element
JP2016018990A (en) Package structure and method of manufacturing the same and mounting member
JP6567305B2 (en) LED light source
JP2012074474A (en) Light emitting device mounting substrate
JP6986453B2 (en) Semiconductor laser device
KR20110034123A (en) Light emitting device package
JP2008041922A (en) Light emitting device
JP6254807B2 (en) Semiconductor device and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

R150 Certificate of patent or registration of utility model

Ref document number: 5227693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250