JP3541709B2 - Method of forming a light emitting diode - Google Patents

Method of forming a light emitting diode Download PDF

Info

Publication number
JP3541709B2
JP3541709B2 JP3926299A JP3926299A JP3541709B2 JP 3541709 B2 JP3541709 B2 JP 3541709B2 JP 3926299 A JP3926299 A JP 3926299A JP 3926299 A JP3926299 A JP 3926299A JP 3541709 B2 JP3541709 B2 JP 3541709B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
light
light emitting
resin
emitting element
fluorescent substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP3926299A
Other languages
Japanese (ja)
Other versions
JP2000286455A (en )
Inventor
広昭 為本
Original Assignee
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は発光素子から放出される発光波長の少なくとも一部を蛍光物質により変換して放出する発光ダイオードに係わり、特に、発光むら、色むらや形成された発光ダイオード間における発光バラツキが少なく歩留りの高い発光ダイオードに関するものである。 The present invention relates to a light emitting diode that emits converted by a fluorescent substance at least part of the emission wavelength emitted from the light emitting element, particularly, light emission unevenness, yield luminescence unevenness is small among color unevenness and form light emitting diodes it relates high luminous diodes.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
半導体発光素子は、小型で効率よく鮮やかな色の発光をする。 The semiconductor light emitting device, the light emission efficiency vivid colors compact. また、半導体素子であるため球切れがない。 Further, there is no burn out because it is a semiconductor element. 駆動特性が優れ、振動やON/OFF点灯の繰り返しに強いという特徴を有する。 Driving characteristics excellent, has a characteristic that resistance to repeated vibrations and ON / OFF lighting. そのため、各種インジケータや種々の光源として利用されている。 Therefore, it is utilized as various indicators and various light sources. しかしながら、このような発光素子は単色性のピーク波長を有するが故に白色系(白、ピンクや電球色など)の発光のみを得る場合においても、2種類以上の発光素子を利用せざるを得なかった。 However, such a light-emitting element has a peak wavelength of monochromatic because white even when obtaining only the light-emitting (white, pink, etc. or light bulb color), had to use two or more kinds of light emitting element It was. また、種々の発光色を簡単に得ることはできなかった。 Moreover, it was not possible to easily obtain various emission colors.
【0003】 [0003]
単色性のピーク波長を発するLEDチップと蛍光物質を利用して種々の発光色を発光させる発光ダイオードとして、特開平7−99345号公報などに記載されたものが知られている。 As a light-emitting diode utilizing the LED chip and a fluorescent substance that emits a peak wavelength of monochromatic emit various emission colors, there has been known one which is described, for example, in JP-A-7-99345 JP. これらの発光ダイオードは、発光チップの発光を発光観測面側に反射するカップの底部に発光チップを積載させると共にカップ内部に充填された樹脂と、全体を覆った樹脂から構成することができる。 These light-emitting diodes, and a resin filled in the cup causes stacked the light emitting chip to the bottom of the cup for reflecting light emission of the light emitting chip to the light emission observing surface side, it can be composed of a resin to cover the whole. 内部に充填された樹脂中には発光チップからの光を吸収し、波長変換する蛍光物質を含有させてある。 The resin filled inside absorbs light from the light emitting chip, are allowed to contain a fluorescent material for wavelength-converting.
【0004】 [0004]
蛍光物質が含有された樹脂は、液状のエポキシ樹脂などを発光素子が搭載されたカップ上に滴下注入し、加熱硬化させ色変換部材とさせる。 Resin fluorescent substance is contained, and a liquid epoxy resin was instilled onto the cup which the light emitting element is mounted, thereby the color conversion member is heated and cured. カップ内部以外の樹脂は液状のエポキシ樹脂などを注型したキャスティングケース内に、色変換部材及び発光チップが形成されたフレーム部材先端を浸漬配置し、これをオーブンに入れ加熱硬化させることにより形成する。 Resin other than the internal cup including a liquid epoxy resin in the cast casting cases, the frame member tip color conversion member and the light emitting chip is formed is immersed arranged, which is formed by heat curing in an oven . これにより、発光チップからの発光波長を蛍光物質によって波長変換した発光ダイオードとすることができる。 Thus, the emission wavelength from the light emitting chip may be a light emitting diode which is wavelength-converted by the fluorescent substance. 例えば、LEDチップからの青色系の光と、その青色系の光を吸収し補色関係にある黄色系を発光する蛍光体からの光との混色により白色が発光可能な発光ダイオードとすることができる。 For example, the blue light from the LED chip can be its absorb blue light white by mixing the light from the phosphor which emits yellow having a complementary relationship to the emission can be light emitting diodes .
【0005】 [0005]
このような発光ダイオードを用いて、所望の白色系などを発光させるためには、それぞれの光を極めて精度良く発光させ混色調整させる必要がある。 Using such light-emitting diodes, in order to emit such desired white-based, it is necessary to color mixing adjustment is very accurately emit respective light. LEDチップからの光は、その半導体及び駆動電流などにより調節させることができる。 Light from the LED chip can be regulated by such the semiconductor and the drive current. 一方、蛍光物質からの波長変換された光も蛍光物質の組成や粒径を制御することによってある程度調整することができる。 On the other hand, it can be adjusted to some extent by controlling the composition and particle size of the wavelength converted light also fluorescent material from the fluorescent material.
【0006】 [0006]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
しかし、蛍光物質自体には密着力がない、或いは弱いため発光素子上に配置固定させるためには、種々の樹脂中など発光素子及び蛍光物質それぞれの光が放出可能な密着性を有するバインダー中に含有させる必要がある。 However, there is no adhesion to the fluorescent substance itself, or weak because in order to fixedly arranged on the light emitting element, in a binder having a different light emitting element such as a resin and a fluorescent material each light capable adhesion release there is a need to be contained. このようなバインダー中に含有された蛍光物質は、その蛍光物質の含有量や分布などによってLEDチップから放出された光量及び蛍光物質から放出された光量が大きく左右される。 Such fluorescent substance contained in the binder, the amount of light emitted by such content and distribution of light intensity and a fluorescent substance which is emitted from the LED chips of the fluorescent substance greatly affected. これらが制御できず、また発光素子から放出される可視光と蛍光物質から放出される光が可視光の混色によって色表現させる場合には、それぞれの可視光量の違いが大きな問題となる。 These can not be controlled, also when the light emitted from the visible light and a fluorescent substance which is emitted from the light emitting element to the color represented by the color mixture of the visible light, the difference of each visible light quantity becomes a big problem. 特に、白色系は人間の目が僅かな色温度差でも識別することができるため大きな問題となる。 In particular, white is a major problem since it is a human eye to identify even a slight color temperature difference. したがって、本発明は上記問題点を解決し、極めて精度良く蛍光物質の含有量及び分布を均一とさせ発光特性の優れた、歩留りの高い発光ダイオードを提供することにある。 Accordingly, the present invention is to solve the above problems and to provide a good, high yield emitting diodes of the light emitting characteristics is the content and distribution of very accurately fluorescent material uniform.
【0007】 [0007]
【課題を解決するための手段】 In order to solve the problems]
本発明者は種々実験の結果、蛍光物質を利用した発光ダイオードにおいて、発光ダイオード間のバラツキや発光ダイオードの色むらや発光むらは、蛍光物質の分布に大きく起因していること及び特定の形成方法により制御しうることを見出し本発明を成すに至った。 The present inventors as a result of various experiments, the light emitting diode using fluorescent substance, color unevenness and uneven light emission variation and light emitting diodes among the light emitting diodes, and that the specific forming method is largely due to the distribution of the fluorescent substance and they accomplished the present invention found that can be controlled by.
【0008】 [0008]
即ち、蛍光物質が含有された液状の透光性樹脂を発光素子が配置された上に注入して形成させる場合、注型での充填性を考慮し、粘度が500〜1000cps程度の低粘度のものが用いられる。 That is, when forming by injecting a translucent resin liquid which fluorescent substance is contained on which the light emitting elements are arranged, considering the filling property in the casting, the viscosity of the low viscosity of about 500~1000cps what is used. 蛍光物質と樹脂との比重が大きく異なるため、このような透光性樹脂中に蛍光物質を混合すると、両者は容易に分離する。 Since the specific gravity of the fluorescent substance and the resin are greatly different, when mixing a fluorescent material in such a light-transmitting resin, both easily separated. したがって、軽い有機蛍光物質などを利用した場合は浮遊し、重い無機蛍光物質などを利用した場合は沈降する傾向にある。 Therefore, when using such mild organic fluorescent material was suspended, when using such heavy inorganic fluorescent substance tends to settle. このような分離は蛍光物質の分散不均一を生ずる。 Such separation results in a dispersion nonuniform phosphor.
【0009】 [0009]
特に、バッチ式に樹脂と蛍光物質を混合した混合体を少量ずつ注型していく方法を繰り返して製造する場合、混合体の樹脂と蛍光物質の分離は時間と共に進行する。 In particular, when manufacturing following the procedure to continue to casting in small portions mixture obtained by mixing the resin and the fluorescent material batchwise separation of the resin and the fluorescent substance of the mixture proceeds with time. したがって、混合直後に注型して製造された発光ダイオードと、混合後しばらく後に注型して製造された発光ダイオードでは、蛍光物質の含有量が異なってしまう傾向にある。 Thus, a light-emitting diode fabricated by casting immediately after mixing, a light emitting diode fabricated by casting after some time after mixing, tend to become different content of the fluorescent substance.
【0010】 [0010]
また、注型が完了した発光ダイオードを加熱硬化させる時、樹脂が固体化するまでの間、温度上昇に伴い粘度が低下する。 Further, when cured by heating LED casting is completed, until the resin is solidified, the viscosity with increasing temperature decreases. そのため、キャスティングケース内でも樹脂と蛍光物質の比重差による分離が発生し易い傾向にある。 Therefore, separation by specific gravity difference between the resin and the fluorescent material tends to easily occur even within a casting case. 特に、発光素子からの可視発光と蛍光物質からの可視蛍光との混色光を発生させる発光ダイオードにおいては、蛍光物質の含有量変化及び封止樹脂内での分布不均一がすべて発光色の色温度変化として顕著に現れる。 In particular, in the light emitting diode for generating mixed color light of the visible fluorescence from visible light emission and a fluorescent material from the light emitting element, uneven distribution all emission colors of the color temperature in a content change and the sealing resin of the fluorescent substance noticeable as a change. このような問題を以下の本発明によって解決することができる。 Such problems can be solved by the following present invention. 即ち、本発明は、発光素子と、該発光素子からの発光の少なくとも一部を吸収し蛍光を発する蛍光物質を含有する透光性樹脂とを有し、前記発光素子からの発光と前記蛍光物質からの蛍光との白色系混色光を発光する発光ダイオードの形成方法であって、成型前に蛍光物質と固体状の透光性樹脂とを均一に混合する第一の工程と、固体状の透光性樹脂を軟化させて、発光素子が固定された金型中に射出・注入し、該発光素子の少なくとも一部を被覆する第二の工程と、再び上記透光性樹脂を固体状とする第三の工程と、 発光素子の少なくとも一部が被覆された蛍光物質含有透光性樹脂の外側に透光性樹脂を注型成型にて形成させる第四の工程と、を有する発光ダイオードの形成方法である。 That is, the present invention includes a light emitting element and a light-transmitting resin containing a fluorescent substance that emits the absorbed fluorescent at least a portion of light emitted from the light emitting element, the fluorescent substance and light emission from the light emitting element a method of forming a light emitting diode that emits white mixed light with fluorescence from a first step of uniformly mixing the fluorescent material and the solid translucent resin before molding, solid Toru to soften the light resin, injected-injected into a mold where the light emitting element is fixed, a second step of covering at least a portion of the light emitting element, again the transmissive resin and solid formation of light-emitting diode having a third step, and a fourth step of forming at cast molding a translucent resin on the outside of at least a part of which is coated fluorescent substance-containing light-transmitting resin of a light-emitting element it is a method. 蛍光物質含有透光性樹脂は射出成型によって発光素子の少なくとも一部を被覆してなる。 Fluorescent material-containing light transmissive resin formed by coating at least a portion of the light emitting element by injection molding. これによって、制御性よく均一発光可能な発光ダイオードとすることができる。 This can be a good controllability uniform light emission can be light emitting diodes.
【0011】 [0011]
特に、本発明の発光ダイオードの形成方法は、発光素子の少なくとも一部が被覆された蛍光物質含有透光性樹脂の外側に透光性樹脂を注型成型にて形成させる第四の工程を有する。 In particular, the method of forming the light-emitting diode of the present invention has a fourth step of the translucent resin on the outside of at least a part of which is coated fluorescent substance-containing light-transmitting resin of a light emitting element formed by cast molding . これにより、封止部材のレンズ作用のバラツキを防止することができる。 Thus, it is possible to prevent variations in the lens action of the sealing member.
【0012】 [0012]
また、本発明の発光ダイオードの形成方法は、第三の工程によって再び固体状とされた前記蛍光物質含有透光性樹脂を硬化させる工程を有することもできる。 Further, the method of forming the light-emitting diode of the present invention may also have the step of curing the phosphor-containing translucent resin which is again solid by a third step.
【0013】 [0013]
また、本発明の発光ダイオードの形成方法は、発光素子の発光層が少なくとも窒化物半導体からなると共に蛍光物質がセリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体(以下、YAG蛍光体と呼ぶこともある。)である。 Further, the method of forming the light-emitting diode of the present invention, yttrium-aluminum-garnet fluorescent material in which the light-emitting layer is activated fluorescent material with cerium with of at least a nitride semiconductor light-emitting device (hereinafter, referred to as YAG phosphor it is also there.). これにより、形成された発光ダイオード間のバラツキがより少なく発光むらや色むらの少ない白色光が発光可能な発光ダイオードを形成させることができる。 Thus, small white light variation of less uneven light emission and color unevenness between the formed light-emitting diode can be formed capable of emitting light emitting diode.
【0014】 [0014]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
本発明の実施態様例による発光ダイオードとして図1に、白色発光可能な発光ダイオード100の模式的断面図を示してある。 1 as a light emitting diode according to an embodiment of the present invention, there is shown a schematic cross-sectional view of a white light emitting possible LED 100. 銅あるいは鉄系合金材の表面に銀あるいは金等のメッキ処理が施されたマウント・リード104の先端にLEDチップを搭載するカップ上部を有する。 Having a cup top for mounting an LED chip on the tip of the mount lead 104 which plating such as silver or gold on the surface of copper or iron-based alloy material has been subjected. 搭載されたLEDチップは単体では青色系の可視光を発光する発光素子103であり、マウント部材106となるエポキシ樹脂によりマウント固着されている。 Onboard LED chips in itself is a light emitting element 103 emits blue visible light, it is mounted fixed by an epoxy resin as a mounting member 106. 発光素子103の各電極は、金等よりなるワイヤ107でマウント・リード104及びインナー・リード105とワイヤボンド結合している。 Each electrode of the light emitting element 103 is mounted, leads 104 and the inner lead 105 and wire bond bond wires 107 made of gold or the like. 耐熱性に優れた透光性樹脂101としてノルボネン系樹脂、ポリメチルペンテン樹脂(TPX)、非晶質ナイロン樹脂などの熱可塑性樹脂や脂環式エポキシ樹脂や含窒素エポキシ樹脂等の熱硬化性樹脂によって封止してある。 Norbornene-based resin as an excellent light-transmitting resin 101 in heat resistance, polymethylpentene resin (TPX), thermoplastic resins and alicyclic thermosetting resin such as epoxy resin and nitrogen-containing epoxy resins such as an amorphous nylon resin It is sealed by. 透光性樹脂中には、青色光を照射すると黄色の蛍光を発するCeで付活されたYAG蛍光体102を約5質量%混合してある。 During translucent resin, Aru a YAG phosphor 102 activated by Ce which emits yellow fluorescence when irradiated with blue light by mixing about 5 wt%.
【0015】 [0015]
発光ダイオードは、リードフレームにLEDチップをマウント、ワイヤボンドしたものを成形型にインサートし、1個が数十mm 3程度のペレット状の樹脂とYAG蛍光体をホッパに攪拌しながら収容したもの、或いは予め樹脂ペレット内にYAG蛍光体を混ぜ込んだものをホッパ内に収容した射出成形機で、射出成形し封止する。 Light emitting diode, which insert mounting the LED chip to a lead frame, a material obtained by wire-bonding to the mold, one has accommodated with stirring several tens mm 3 about pelletized resin and YAG phosphor in the hopper, or advance in a resin pellet that elaborate mixed YAG phosphor in an injection molding machine accommodated in the hopper is sealed by injection molding. 射出成型は樹脂を成型機のスクリュー内で数秒程度の短時間で加熱溶融、攪拌圧送し、型内に樹脂を注入し、型内に注入された樹脂は速やかに冷却され、数十秒で固化する。 Injection molding heated melt in a short time of about several seconds resin in a screw molding machine, stirred pumping, the resin is injected into the mold, the resin injected into the mold is cooled rapidly, solidified in a few tens of seconds to.
【0016】 [0016]
本発明で透光性樹脂は、成型前状態において固体状とできる。 Translucent resin in the present invention can be a solid in molding prior state. 成型機投入前に均一に樹脂ペレットと蛍光物質とを混合しておけば、液体のように樹脂中の蛍光物質が自由に沈降あるいは浮遊することはない。 If by uniformly mixing the resin pellets and the fluorescent substance before molding machine turned, no fluorescent substance in the resin to freely settle or float as a liquid. そのため、蛍光物質の混合状態は型内に投入前の状態まま保持される。 Therefore, the mixed state of the fluorescent substance is kept state before introduced into the mold. また、成形時に樹脂が溶融し液体で存在する期間は数分から数十秒と、注型成形により熱硬化形成する方法の数時間と比較して極めて短い。 Further, extremely short compared period the resin is present in the molten liquid and several seconds to several tens of minutes, and hours of a method of forming thermally cured by cast molding at the time of molding. また、射出される際にスクリューで加圧攪拌される場合、樹脂中での蛍光物質の分布はより均一にすることができる。 Also, as the screw with pressurized 圧攪 拌 when emitted, distribution of the fluorescent substance in the resin can be made more uniform. さらに、固化までの時間も極めて短く樹脂と蛍光物質との分離もほとんど発生しない。 Moreover, hardly occurs the separation of even very short resin and the fluorescent material time to solidify.
【0017】 [0017]
すなわち、成形前及び成形後固化までの間に樹脂と蛍光物質との分離が極めて発生し難い。 That is, the separation between the resin and the fluorescent substance is very hard to occur until the molding before and after molding and solidified. これにより本発明の発光ダイオードでは、樹脂と蛍光物質の比重差によらず樹脂中に均一分散させることができる。 Thus the light emitting diode of the present invention can be uniformly dispersed in the resin regardless of the difference in specific gravity between the resin and the fluorescent substance. そのため、発光ダイオード内の蛍光物質の分布均一だけでなく、製造ロット毎の蛍光物質の含有量バラツキも極めて少ない。 Therefore, not only the distribution uniformity of the fluorescent substance in the light-emitting diodes, the content variations of the fluorescent substance for each production lot is also very small.
【0018】 [0018]
特にYAG:Ce蛍光体を蛍光物質として含有した白色発光が可能な発光ダイオードとした場合、樹脂に較べ比重の大きいYAG:Ce蛍光体でも常時極めて均一な分布のものができる。 Particularly YAG: case of a Ce phosphor can white emission was contained as a fluorescent substance emitting diodes, large YAG specific gravity than the resin: it is what also very uniform distribution constantly in Ce phosphor. そのため色温度の均一な発光ダイオードが安定して形成し得る。 Therefore uniform light emitting diodes of a color temperature can be formed stably. 以下、本発明に用いられる各構成について詳述する。 Will be described below in detail each constituent used in the present invention.
【0019】 [0019]
(射出成形機400) (Injection molding machine 400)
本発明に用いられる射出成形機400としては、図4の如き蛍光物質含有の透光性樹脂を加熱溶融させプランジャー402でノズルを通して金型405内に射出し成形させられるために好適に用いられる。 The injection molding machine 400 used in the present invention is suitably used in order to be allowed to injection molded into mold 405 through nozzle plunger 402 is heated to melt translucent resin such fluorescent substance contained in FIG. 4 . したがって、射出成型機は予め蛍光物質が一定量含有された透光性樹脂のペレット401を軟化溶融させ射出するためのプランジャー、プランジャーで押し出される融解樹脂を金型内に導くノズル及び成型品の形を与える金型から主として構成することができる。 Therefore, injection molding machine nozzle and moldings leads advance fluorescent substance plunger for injecting soften melting the pellet 401 of a fixed amount the contained translucent resin, the melting resin extruded by a plunger into a mold it can be mainly composed of a mold which gives the shape of. 特に、発光ダイオードが発光素子からの可視光と、この可視光によって励起されると共に発光する蛍光物質との混色発光させる場合、混合分布量がごく微少量でも異なるとその発光色の変動が大きくなる。 In particular, the visible light from the light emitting diode is emitting element, if color mixing emit light with a fluorescent substance emitting while being excited by visible light, mixture distribution amount increases is different when the variation of the emission color even in a very small amount . そのため、蛍光物質が含有された透光性樹脂を予備可塑化装置などを利用して撹拌溶融させることが好ましい。 Therefore, it is preferable to stir melting a translucent resin which fluorescent substance is contained using such pre-plasticizing unit. このような撹拌は、透光性樹脂中に含有される蛍光物質の密度が変化しない限り連続的、間欠的になど種々行うことができる。 Such agitation is continuous as long as the density of the fluorescent substance contained in the translucent resin is not changed intermittently can perform various like. また、撹拌回転数は撹拌部となるスクリュー403の大きさ、蛍光物質の粒径や形状、バインダーの粘度、材質などによって種々選択させることができる。 Further, the stirring rotational speed magnitude, the particle size and shape, the viscosity of the binder of the fluorescent substance of the stirring section screw 403 can be variously selected depending on the material.
【0020】 [0020]
(透光性樹脂101) (Translucent resin 101)
本発明に用いられる透光性樹脂は蛍光物質を内部に含有させ射出により一定の形状をとることができる樹脂である。 Translucent resin used in the present invention is a resin that can take a certain shape by injection to contain a fluorescent substance therein. 具体的には、ノルボネン樹脂、ポリメチルペンテン樹脂、非晶質ナイロン樹脂、ポリアリレートやポリカーボネート樹脂など透光性がありかつ耐熱性に優れた熱可塑性樹脂、ポリアミドや酢酸ビニル等の100℃から260℃程度の比較的低温、1から25Kgf/cm 2程度の比較的低圧にていわゆるホットメルト成形と称される射出成形が可能でかつ透光性を有する熱可塑性樹脂及び脂環式エポキシ樹脂、含窒素エポキシ樹脂等の熱硬化性樹脂が好適に挙げられる。 Specifically, norbornene resins, polymethyl pentene resins, amorphous nylon resins, polyarylate and include translucent polycarbonate resin and excellent heat resistance thermoplastic resin, from 100 ° C., such as polyamide or a vinyl acetate 260 relatively low temperature of about ° C., a thermoplastic resin and an alicyclic epoxy resin having referred injection molding so-called hot melt molding possible and translucent from 1 at a relatively low pressure of about 25 kgf / cm 2, containing thermosetting resin such as nitrogen epoxy resins are preferably exemplified. これらの樹脂中に蛍光物質を溶融分散させ一定の大きさに形成させることで射出形成の軟化溶融材料となるペレットなどとすることができる。 It may be, eg, pellets of the softening and melting the material of the injection molding by the fluorescent substance in these resins by melt dispersion is formed in a predetermined size. これらの透光性樹脂には所望の波長をカットする着色剤、所望の光を拡散させる拡散材、樹脂の耐光性を高める紫外線吸収剤、酸化防止剤や硬化促進剤など種々の添加剤を含有させることができる。 These translucent resin cuts desired wavelength colorant, containing the desired diffusion material to diffuse light, ultraviolet absorbers to improve the lightfastness of the resin, various additives such as antioxidants and curing accelerator it can be.
【0021】 [0021]
(蛍光物質102) (Fluorescent substance 102)
本発明に用いられる蛍光物質としては、発光素子から発光された電磁波で励起されて蛍光を発する蛍光物質をいう。 The fluorescent substance used in the present invention refers to a fluorescent substance which emits fluorescence by being excited by the emitted electromagnetic radiation from the light emitting element. 蛍光物質は一般に発光波長よりも励起波長が短波長の方が効率が良いため、発光素子からの発光波長よりも長波長の蛍光を発する蛍光体を用いることが好ましい。 Since fluorescent material is generally towards the excitation wavelength is shorter than the emission wavelength is good efficiency, it is preferable to use a phosphor that emits fluorescence of longer wavelength than the emission wavelength from the light emitting element. 具体的蛍光物質として青色の発光素子との混色により白色を発光させるためには、セリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体、ペリレン系誘導体、銅で付活されたセレン化亜鉛など種々のものが挙げられる。 To emit white by color mixing of blue light-emitting element as a specific fluorescent substance activated yttrium-aluminum-garnet fluorescent material with cerium, perylene derivatives, copper activated with zinc selenide, etc. It includes various things. 特に、イットリウム・アルミニウム・ガーネット系蛍光体は、発光素子に窒化物半導体を用いた場合、耐光性や効率などの観点から特に好ましい。 In particular, yttrium-aluminum-garnet fluorescent material, when using a nitride semiconductor in the light emitting device, particularly preferred from the viewpoint of light resistance and efficiency.
【0022】 [0022]
セリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体は、ガーネット構造のため、熱、光及び水分に強く、励起スペクトルのピークが450nm付近にさせることができる。 Activated yttrium-aluminum-garnet fluorescent material with cerium because of garnet structure, heat, resistant to light and moisture, the peak of the excitation spectrum can be around 450nm. また、発光ピークも530nm付近にあり700nmまで裾を引くブロードな発光スペクトルを持たすことができる。 Further, it is possible to Motas a broad emission spectrum tails to 700nm has emission peaks in the vicinity of 530 nm. なお、本発明においてセリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体とは、最も広義に解釈するものとしてY 3 Al 512 :Ceのイットリウム(Y)の代わりにLu、Sc、La、Gd、Smから選択される少なくとも一種と置き換えることができるものである。 Note that the activated yttrium-aluminum-garnet fluorescent material with cerium in the present invention, most broadly Y 3 Al 5 as being interpreted O 12: Lu in place of Ce yttrium (Y), Sc, La are those that can be replaced with at least one selected Gd, from Sm. また、アルミニウム(Al)の代わりにGa、In、B、Tlから選択される少なくとも一種と置き換えることができるものである。 Further, those that can be replaced instead of aluminum (Al) Ga, In, B, and at least one selected from Tl. 組成を変化させることで発光色を連続的に調節することが可能である。 It is possible to continuously adjust the luminescent color by changing the composition. 即ち、長波長側の強度がGdの組成比で連続的に変えられるなど窒化物半導体の青色系発光を白色系発光に変換するための理想条件を備えている。 That, and a ideal conditions for converting the blue light emitting nitride semiconductor, such as intensity of the long wavelength side is varied continuously in the composition ratio of Gd to white light. 同様に、Lu、Lc、ScやSmなどを加えて所望の特性を得るようにしても良い。 Similarly, Lu, Lc, and the like is added Sc or Sm may be obtained the desired properties.
【0023】 [0023]
このような蛍光物質は、Y、Gd、Ce、Sm、La、Al及びGaの原料として酸化物、又は高温で容易に酸化物になる化合物を使用し、それらを化学量論比で十分に混合して原料を得る。 Such fluorescent material, Y, Gd, Ce, Sm, La, oxides as a raw material of Al and Ga, or elevated temperatures using readily become oxide compounds, thoroughly mixed them in a stoichiometric ratio obtain raw materials and. 又は、Y、Gd、Ce、Sm、Laの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して混合原料を得る。 Or, Y, Gd, Ce, Sm, and coprecipitated oxide obtained by baking a material obtained by coprecipitation of the solution, which is obtained by dissolving rare earth elements to the acid in a stoichiometric ratio of La with oxalic acid, aluminum oxide, gallium oxide obtaining a mixed raw material by mixing and. これにフラックスとしてフッ化アンモニウム等のフッ化物を適量混合して坩堝に詰め、空気中1350〜1450°Cの温度範囲で2〜5時間焼成して焼成品を得、次に焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通すことで得ることができる。 This packed into a crucible and mixed with an appropriate amount of a fluoride such as ammonium fluoride as a flux, and fired 2-5 hours at a temperature range of 1350 to 1450 ° C in air to obtain a calcined product, then the fired product in water and a ball mill, washed, separated, dried, and finally can be obtained by passing a sieve.
【0024】 [0024]
本発明の発光ダイオードにおいて、このような蛍光物質を2種類以上混合させてもよい。 In the light emitting diode of the present invention, such a fluorescent material may be a mixture of two or more thereof. 具体的には、Al、Ga、Y及びGd、LaやSmの含有量が異なる2種類以上のセリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体を混合させてRGBの波長成分を増やすことなどができる。 Specifically, increasing Al, Ga, Y and Gd, the RGB wavelength components content of La or Sm is mixed with activated yttrium-aluminum-garnet fluorescent material with two or more different types of cerium it is like. このような場合、異なる蛍光物質間の比重が異なっていても量産性よく発光特性の均一な発光ダイオードを形成することができる。 In such a case, it can be different from the specific gravity between the different fluorescent materials to form a uniform light-emitting diodes of the mass with good light emission characteristics.
【0025】 [0025]
(発光素子103、203) (Light-emitting element 103, 203)
本発明に用いられる発光素子103とは、蛍光物質を励起可能な発光波長を発光できる発光層を有する半導体発光素子である。 The light emitting element 103 used in the present invention, a semiconductor device having a light-emitting layer capable of emitting light excitable emission wavelength fluorescent material. このような半導体発光素子としてZnSeやGaNなど種々の半導体を挙げることができるが、蛍光物質を効率良く励起できる短波長が発光可能な窒化物半導体(In X Al Y Ga 1-XY N、0≦X、0≦Y、X+Y≦1)が好適に挙げられる。 Can be mentioned various semiconductor such as ZnSe and GaN as the semiconductor light emitting element, the fluorescent substance efficiently excited can short wavelength can emit a nitride semiconductor (In X Al Y Ga 1- XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) is preferably exemplified. 半導体の構造としては、MIS接合、PIN接合やpn接合などを有するホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。 The structure of the semiconductor, MIS junction, homo structure with like PIN junction or pn junction may include the hetero structure to heterostructure or double. 半導体層の材料やその混晶度によって発光波長を種々選択することができる。 It can be variously selected emission wavelength depending on the material and the mixed crystal ratio of the semiconductor layer. また、半導体活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。 The semiconductor active layer may be a single quantum well structure or a multiple quantum well structure provided with thin layer (s) for quantum effect.
【0026】 [0026]
窒化物半導体を使用した場合、半導体用基板にはサファイヤ、スピネル、SiC、Si、ZnO等の材料が好適に用いられる。 When using a nitride semiconductor, the semiconductor substrate is sapphire, spinel, SiC, Si, materials such as ZnO are suitably used. 結晶性の良い窒化物半導体を量産性よく形成させるためにはサファイヤ基板を用いることが好ましい。 In order to form good mass productivity good nitride semiconductor crystallinity is preferable to use a sapphire substrate. このサファイヤ基板上にMOCVD法などを用いて窒化物半導体を形成させることができる。 Thereby forming a nitride semiconductor with MOCVD or the like to the sapphire substrate. サファイア基板上にGaN、AlN、GaAIN等のバッファー層を形成しその上にpn接合を有する窒化物半導体を形成させる。 GaN on the sapphire substrate, AlN, to form a nitride semiconductor having formed a buffer layer such as GaAlN pn junction thereon.
【0027】 [0027]
窒化物半導体を使用したpn接合を有する発光素子例として、バッファ層上に、n型窒化ガリウムで形成した第1のコンタクト層、n型窒化アルミニウム・ガリウムで形成させた第1のクラッド層、窒化インジウム・ガリウムで形成した活性層、p型窒化アルミニウム・ガリウムで形成した第2のクラッド層、p型窒化ガリウムで形成した第2のコンタクト層を順に積層させたダブルへテロ構成などが挙げられる。 As the light emitting element example having a pn junction using the nitride semiconductor, on the buffer layer, a first contact layer formed with n-type gallium nitride, a first clad layer was formed in the n-type aluminum gallium nitride, active layer formed of indium-gallium, second cladding layer of p-type aluminum gallium nitride, and the like terrorism constitutes a second contact layer of p-type gallium nitride to double as a laminate in this order.
【0028】 [0028]
窒化物半導体は、不純物をドープしない状態でn型導電性を示す。 Nitride semiconductor shows n-type conductivity when not doped with impurities. 発光効率を向上させるなど所望のn型窒化物半導体を形成させる場合は、n型ドーパントとしてSi、Ge、Se、Te、C等を適宜導入することが好ましい。 Case of forming a desired n-type nitride semiconductor such as improving luminous efficiency, Si as an n-type dopant, Ge, Se, Te, it is preferable to appropriately introduce C like. 一方、p型窒化物半導体を形成させる場合は、p型ドーパントであるZn、Mg、Be、Ca、Sr、Ba等をドープさせる。 On the other hand, when forming a p-type nitride semiconductor, Zn is a p-type dopant, Mg, Be, Ca, Sr, is doped with Ba or the like. 窒化物半導体は、p型ドーパントをドープしただけではp型化しにくいためp型ドーパント導入後に、炉による加熱やプラズマ照射等により加熱処理することで低抵抗化させることが好ましい。 Nitride semiconductor is only doped with a p-type dopant after p-type dopant introduction for difficult to p-type, by heating or plasma irradiation or the like by a furnace it is preferable to lower the resistance by heating treatment. 電極形成後、半導体ウエハーからチップ状にカットさせることで窒化物半導体からなる発光素子を形成させることができる。 After electrode formation, thereby forming the light-emitting element of a nitride semiconductor by causing cut into chips from the semiconductor wafer.
【0029】 [0029]
本発明の発光ダイオードにおいて白色系を発光させる場合は、蛍光物質からの発光波長との補色関係や透光性樹脂の劣化等を考慮して発光素子の発光波長は400nm以上530nm以下が好ましく、420nm以上490nm以下がより好ましい。 When light emission of white in the light emitting diode of the present invention, the emission wavelength is preferably 400nm or more 530nm or less of the light emitting device by considering the deterioration of the complementary color relationship or translucent resin with the emission wavelength from the fluorescent material, 420 nm more than 490nm or less is more preferable. 発光素子と蛍光物質との励起、発光効率をそれぞれより向上させるためには、450nm以上475nm以下がさらに好ましい。 Excitation of the light emitting element and a fluorescent substance, in order to improve more the luminous efficiency of each is more preferably 450nm or more 475nm or less. なお、400nmより短い紫外域の波長を利用できることは言うまでもない。 Incidentally, it is needless to say that use a wavelength shorter ultraviolet than 400 nm.
【0030】 [0030]
(マウント・リード104、204) (Mount lead 104, 204)
マウント・リード104としては、発光素子を配置させるものであり、ダイボンド機器などで積載するのに十分な大きさがあれば良い。 The mount lead 104, which is disposed the light-emitting element, it is sufficient large enough to load the like die bonding equipment. また、発光素子を複数設置しマウント・リードを発光素子の共通電極として利用する場合においては、十分な電気伝導性とボンディングワイヤ等との接続性が求められる。 Further, in case of using a plurality installation mount lead a light-emitting element as a common electrode of the light emitting element is connected with the sufficient electrical conductivity and a bonding wire or the like is required. また、マウント・リード上のカップ内に発光素子を配置すると共に蛍光体を内部に充填させる場合は、近接して配置させた別の発光ダイオードからの光により疑似点灯することを防止することができる。 In addition, when a phosphor is filled in as well as light-emitting elements are arranged in the cup on the mount lead can be prevented from being pseudo turned on by the light from another light-emitting diode is arranged close to .
【0031】 [0031]
発光素子とマウント・リードのカップとの接着はマウント部材106として熱硬化性樹脂などによって行うことができる。 Bonding the cup of the light emitting element and the mount lead can be done by including a thermosetting resin as the mount member 106. 具体的には、エポキシ樹脂、アクリル樹脂、シリコン樹脂やイミド樹脂などが挙げられる。 Specifically, epoxy resins, and acrylic resins, silicone resins and imide resins. また、フリップチップ型の発光素子によりマウント・リードと接着させると共に電気的に接続させるためにはAgペースト、Cuペースト、カーボンペースト、金属バンプや金属酸化物が含有された樹脂等を用いることができる。 Further, in order to electrically connect with adhering a mount lead by flip-chip type light-emitting element can be used Ag paste, Cu paste, carbon paste, resin or the like metal bump or a metal oxide is contained . また、マウント・リードの具体的な電気抵抗としては300μΩ・cm以下が好ましく、より好ましくは、3μΩ・cm以下である。 Further, as the mount lead specific electrical resistance of less preferably 300Myuomega · cm, more preferably not more than 3μΩ · cm. また、マウント・リード上に複数の発光素子を積載する場合は、発光素子からの発熱量が多くなるため熱伝導度がよいことが求められる。 In the case of stacking a plurality of light emitting elements on the mount lead, it is required good thermal conductivity because the amount of heat generated from the light emitting element is increased. 具体的には、0.01cal/cm 2 /cm/℃以上が好ましくより好ましくは 0.5cal/cm 2 /cm/℃以上である。 Specifically, 0.01cal / cm 2 / cm / ℃ or more preferably preferably 0.5cal / cm 2 / cm / ℃ above. これらの条件を満たす材料としては、鉄、銅、鉄入り銅、錫入り銅、メタライズパターン付きセラミック等が挙げられる。 These conditions are satisfied materials, iron, copper, iron-containing copper, tin-containing copper, ceramics with metallized patterns and the like.
【0032】 [0032]
(インナー・リード105、205) (Inner lead 105, 205)
インナー・リードとしては、マウント・リード上に配置された発光素子と導電性ワイヤなどを介して電気的に接続を図るものである。 The inner lead is intended to achieve electrical connection via a light emitting element and the electrically conductive wire arranged on the mount lead. インナー・リードは、ボンディングワイヤ等との接続性及び電気伝導性が良いことが求められる。 Inner leads, it is necessary a good connectivity and electrical conductivity between the bonding wire and the like. 具体的な電気抵抗としては、300μΩ・cm以下が好ましく、より好ましくは3μΩ・cm以下である。 Specific electrical resistance is preferably not more than 300μΩ · cm, more preferably not more than 3μΩ · cm. これらの条件を満たす材料としては、鉄、銅、鉄入り銅、錫入り銅及び銅、金、銀をメッキしたアルミニウム、鉄、銅等が挙げられる。 These conditions are satisfied materials, iron, copper, iron-containing copper, tin-containing copper and copper, gold, aluminum plated with silver, iron, copper and the like.
【0033】 [0033]
(ワイヤ107、207) (Wire 107, 207)
ワイヤ107としては、発光素子の電極とのオーミック性、密着性、電気伝導性及び熱伝導性がよいものが求められる。 The wire 107, the ohmic property between the electrodes of the light emitting element, adhesion, those good electrical conductivity and heat conductivity. 熱伝導度としては0.01cal/cm 2 /cm/℃以上が好ましく、より好ましくは0.5cal/cm 2 /cm/℃以上である。 Preferably at least 0.01cal / cm 2 / cm / ℃ as thermal conductivity, more preferably 0.5cal / cm 2 / cm / ℃ above. また、作業性などを考慮してワイヤの直径は、好ましくは、Φ10μm以上、Φ45μm以下である。 Further, the diameter of the wire in consideration of workability, preferably, more than Fai10myuemu, or less Fai45myuemu. このようなワイヤとして具体的には、金、銅、白金、アルミニウム等の金属及びそれらの合金を用いたワイヤが挙げられる。 Such Specific examples a wire, gold, copper, platinum, and a wire with metals and their alloys, such as aluminum. このようなワイヤは、各発光素子の電極と、インナー・リード及びマウント・リードなどとをワイヤボンディング機器によって容易に接続させることができる。 Such wire, the electrode of each light-emitting element can be easily connected by such a wire bonding apparatus inner lead and the mount lead.
【0034】 [0034]
(モールド部材208) (Mold member 208)
モールド部材208は、発光ダイオードの使用用途に応じて発光素子103、ワイヤ107、蛍光物質102などを外部から保護するために設けることができる。 The mold member 208, the light emitting element 103 in accordance with the intended use of the light-emitting diode, the wire 107 can be provided to protect the external fluorescent material 102. モールド部材は、一般には樹脂を用いて形成させることができる。 Mold member is generally can be formed by using a resin. また、蛍光体を含有させることによって視野角を増やすことができるが、樹脂モールドに拡散剤を含有させることによって発光素子からの指向性を緩和させ視野角をさらに増やすことができる。 Further, it is possible to increase the viewing angle by containing a phosphor, it is possible to further increase the viewing angle to relax the directivity from the light emitting element by incorporating a diffusing agent in the resin mold. 更にまた、モールド部材を所望の形状にすることによって発光素子からの発光を集束させたり拡散させたりするレンズ効果を持たせることができる。 Furthermore, it is possible to provide a lens effect or to diffuse or focus the light emitted from the light emitting element by the molding member into a desired shape. したがって、モールド部材は複数積層した構造でもよい。 Therefore, the mold member may be a stacked structure. 具体的には、凸レンズ形状、凹レンズ形状さらには、発光観測面から見て楕円形状やそれらを複数組み合わせた物である。 Specifically, a convex lens shape, a concave lens shape further is one in which a plurality combination of elliptical and their viewed from the light emitting observation plane. モールド部材の具体的材料としては、主としてエポキシ樹脂、ユリア樹脂、シリコーン樹脂などの耐候性に優れた透明樹脂や硝子などが好適に用いられる。 Specific material of the mold members, mainly epoxy resin, urea resin, a transparent resin or glass having excellent weather resistance such as a silicone resin is preferably used. また、拡散剤としては、チタン酸バリウム、酸化チタン、酸化アルミニウム、酸化珪素等が好適に用いられる。 As the diffusing agent, barium titanate, titanium oxide, aluminum oxide, silicon oxide or the like is preferably used. また、屈折率差を考慮してモールド部材と結着剤とを同じ材質のものを用いて形成させても良い。 Also, it may be formed using the same material of the mold member and a binder in consideration of the refractive index difference. 以下、本発明の具体的実施例について詳述するがこれのみに限定されないことは言うまでもない。 Hereinafter, it is needless to say that although described in detail specific embodiments of the present invention is not limited thereto.
【0035】 [0035]
【実施例】 【Example】
(実施例1) (Example 1)
LEDチップは、発光層として発光ピークが450nmのIn 0.2 Ga 0.8 N半導体を用いた。 LED chips, light emitting peak as a light emitting layer using an In 0.2 Ga 0.8 N semiconductor 450nm. LEDチップは、洗浄させたサファイヤ基板上にTMG(トリメチルガリウム)ガス、TMI(トリメチルインジウム)ガス、窒素ガス及びドーパントガスをキャリアガスと共に流し、MOCVD法で窒化物半導体を成膜させることにより形成させた。 LED chips, TMG (trimethyl gallium) gas on a sapphire substrate was cleaned, TMI (trimethyl indium) gas, nitrogen gas and dopant gas flowed together with a carrier gas, to form by forming a nitride semiconductor with MOCVD method It was. ドーパントガスとしてSiH 4とCp 2 Mgとを切り替えることによってn型やp型導電性の窒化物半導体を形成させる。 To form a n-type or p-type conductivity of the nitride semiconductor by switching SiH 4 and Cp 2 Mg as a dopant gas. 発光素子としてはn型導電性を有する窒化ガリウム半導体であるコンタクト層と、p型導電性を有する窒化アルミニウムガリウム半導体であるクラッド層、p型導電性を有する窒化ガリウムであるコンタクト層を形成させた。 A contact layer which is gallium nitride semiconductor having n-type conductivity as a light emitting element, the cladding layer is aluminum gallium nitride semiconductor having a p-type conductivity, to form a contact layer which is gallium nitride having a p-type conductivity . n型コンタクト層とp型クラッド層との間に厚さ約3nmであり、単一量子井戸構造となるInGaNの活性層を形成してある。 A thickness of about 3nm between the n-type contact layer and the p-type cladding layer, is formed an active layer of InGaN as a single quantum well structure. (なお、サファイヤ基板上には低温で窒化ガリウムを形成させバッファ層とさせてある。また、p型半導体は、成膜後400℃以上で熱処理させてある。) (Note that on a sapphire substrate are allowed to the buffer layer to form a gallium nitride at low temperatures. In addition, p-type semiconductor is heat-treated at 400 ° C. or higher after the film formation.)
エッチングによりサファイア基板上の窒化物半導体に同一面側で、pn各コンタクト層表面を露出させる。 In the same side the nitride semiconductor on the sapphire substrate by etching to expose the pn the contact layer surface. 各コンタクト層上に、スパッタリング法を用いて正負各台座電極をそれぞれ形成させた。 On each contact layer, respectively to form a positive and negative pad electrode by a sputtering method. なお、p型窒化物半導体上の全面には金属薄膜を透光性電極として形成させた後に、透光性電極の一部に台座電極を形成させてある。 Note that the entire surface of the p-type nitride semiconductor after forming the metal thin film as a transparent electrode, are to form a pad electrode on a part of the translucent electrode. 出来上がった半導体ウエハーをスクライブラインを引いた後、外力により分割させ半導体発光素子であるLEDチップを形成させた。 After the resulting semiconductor wafer minus the scribe lines to form a LED chip is a semiconductor light emitting device is divided by an external force.
【0036】 [0036]
一方、打ち抜き及びスタンピングによりタイバーで接続されマウント・リード先端にカップが形成された鉄入り銅製リードフレームを形成する。 On the other hand, to form the iron-containing copper leadframe cup mount lead tips are connected by a tie bar is formed by punching and stamping. LEDチップはエポキシ樹脂を用いて銀メッキした鉄入り銅製リードフレームの先端カップ内にダイボンドした。 LED chips were die-bonded to the distal end cup silvered iron-containing copper lead frame using an epoxy resin. LEDチップの各電極と、カップが設けられたマウント・リードやインナー・リードとをそれぞれ金線でワイヤボンディングし電気的導通を取った。 And each electrode of the LED chip, took the wire bonding to electrically conductive cup, respectively gold and mount lead and inner lead provided.
【0037】 [0037]
蛍光物質は、Y、Gd、Ceの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈させた。 Fluorescent material, Y, Gd, and the solution, which is obtained by dissolving rare earth elements of Ce in an acid in a stoichiometric ratio was co-precipitated with oxalic acid. これを焼成して得られる共沈酸化物と、酸化アルミニウムと混合して混合原料を得る。 A coprecipitated oxide obtained by firing this to obtain a mixed raw material is mixed with aluminum oxide. これにフラックスとしてフッ化アンモニウムを混合して坩堝に詰め、空気中1400°Cの温度で3時間焼成して焼成品を得た。 This packed in a crucible a mixture of ammonium fluoride as a flux, to obtain a calcined product was calcined for 3 hours at a temperature of 1400 ° C in air. 焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通して形成させた。 The fired product is ball in water, washed, separated, dried, and finally to form through a sieve.
【0038】 [0038]
形成された(Y 0.8 Gd 0.23 Al 512 :Ce蛍光物質25重量部、ポリカーボネート樹脂100重量部をよく混合して1個が十mm 3程度のペレットとさせた。 Formed (Y 0.8 Gd 0.2) 3 Al 5 O 12: Ce fluorescent substance 25 parts by weight, one well mixed 100 parts by weight of polycarbonate resin was shown with ten mm 3 about pellets. このペレットを図4に示す射出成型機のホッパ中に入れた。 The pellets were placed in a hopper of the injection molding machine shown in FIG. 他方、リード端子と電気的に接続されたLEDチップを金型中に入れ固定させる。 On the other hand, it is placed in fixing the lead terminals electrically connected to the LED chip into the mold. ペレットを加熱可塑化させ撹拌させながらプランジャーにより射出温度280℃射出圧力800kgf/cm 2で金型中に注入した。 The pellet was injected by heating plasticized agitation is allowed while the plunger into the mold at an injection temperature of 280 ° C. Injection pressure 800 kgf / cm 2. 金型を冷却後、樹脂モールドされたリードを取り出しタイバーを切断することでLEDチップ、マウント・リード及びインナー・リードの一部を蛍光物質が含有された熱可塑性樹脂で被覆して砲弾型に形成された発光ダイオードを得ることができる。 After cooling the mold, forming LED chips by cutting the tie bars removed resin molded lead, and covering a portion of the mount lead and the inner lead of a thermoplastic resin which fluorescent substance is contained in the shell-type light emitting diodes can be obtained. こうした発光ダイオードを500個形成させバラツキを測定した。 These light-emitting diodes were measured variation was 500 form. 得られた白色系が発光可能な発光ダイオードの色度点を測定しCIE座標上にプロットした。 The resulting white system is plotted on the CIE coordinates measured chromaticity point of capable of emitting light emitting diode. また、一個ずつの発光ダイオードにおいて外観上の発光むらがないことを確認した。 It was also confirmed that there is no uneven light emission on the appearance in the light-emitting diode of one by one. なお、砲弾型発光ダイオードだけではなく、チップタイプLEDやセグメントディスプレイなどにおいても利用することができることは言うまでもない。 Incidentally, not only the bullet type light emitting diode, it is needless to say that can be utilized in a chip type LED or a segment display.
【0039】 [0039]
(比較例) (Comparative Example)
(Y 0.8 Gd 0.23 Al 512 :Ce蛍光物質をエポキシ樹脂中に混合したものを用いて注型によりカップ内に配置させた後に、硬化形成した以外は実施例1と同様の発光ダイオードを形成させた。 (Y 0.8 Gd 0.2) 3 Al 5 O 12: Ce fluorescent material after being placed in the cup by casting using a mixture in an epoxy resin, except that the cured form similar light-emitting diodes of Example 1 It was allowed to form. 形成された発光ダイオードの500個平均と実施例1の発光ダイオードとを比較して色温度の製造バラツキを調べた。 It was examined manufacturing variations of color temperature 500 average of the formed light-emitting diode and is compared with the light emitting diode of Example 1. 比較例の発光ダイオードに較べ実施例の発光ダイオードは、色温度の製造バラツキが明らかに小さくなった。 Emitting diode of Example compared with the light emitting diode of the comparative example, the manufacturing variation of the color temperature becomes clearly smaller. なお、比較例の発光ダイオードは、モールド部材の先端に蛍光物質が固まった状態であった。 The light emitting diode of the comparative example, the fluorescent substance was solidified state at the tip of the mold member.
【0040】 [0040]
(実施例2) (Example 2)
図2に示すようにLEDチップ203周辺を上述と同様の蛍光物質202を含有した熱可塑性樹脂201で射出成形封止した後、注型成形にて透光性のエポキシ樹脂をモールド部材208として外側に形成した以外は実施例1と同様にして発光ダイオード200を形成させた。 After sealed injection molding sealed with thermoplastic resin 201 surrounding the LED chip 203 containing the fluorescent substance 202 similar to the above, as shown in FIG. 2, the outer translucent epoxy resin as a mold member 208 by casting except for forming was allowed to form a light-emitting diode 200 in the same manner as in example 1 to. これにより、上述の硬化に加え、射出成形時に封止樹脂表面に型のミスマッチやバリが発生しても、これをさらに注型で覆うことができる。 Thus, in addition to the curing of the above, even if the type of mismatch and burrs on the sealing resin surface during injection molding occurs, which can be further covered with casting. そのため、封止樹脂のレンズ作用のバラツキや発光ダイオード実装時のバリ脱落によるはんだ付け不良等が防止される。 Therefore, soldering defects due burrs falling off during dispersion or light emitting diodes mounted in the lens action of the sealing resin can be prevented. また、比較的高価な高透光性かつ高耐熱性の熱可塑性樹脂の使用量を減らすことも可能である。 It is also possible to reduce the amount of relatively expensive high light-and high heat resistance of the thermoplastic resin.
【0041】 [0041]
(実施例3) (Example 3)
図3に示すように表面実装型の発光ダイオード300を形成させた。 To form a light-emitting diode 300 of the surface mounting type as shown in FIG. LEDチップ303は、発光層として発光ピークが475nmのIn 0.2 Ga 0.8 N半導体を有する窒化物半導体素子を用いた。 LED chips 303, light emission peak as a light emitting layer using a nitride semiconductor device having an In 0.2 Ga 0.8 N semiconductor 475 nm. より具体的にはLEDチップ303は、洗浄させたサファイヤ基板上にTMG(トリメチルガリウム)ガス、TMI(トリメチルインジウム)ガス、窒素ガス及びドーパントガスをキャリアガスと共に流し、MOCVD法で窒化物半導体を成膜させることにより形成させることができる。 More LED chip 303 specifically includes, TMG (trimethyl gallium) on a sapphire substrate was cleaned gas, TMI (trimethyl indium) gas, flushed with nitrogen gas and dopant gas together with a carrier gas, a nitride semiconductor deposition by MOCVD it can be formed by film. ドーパントガスとしてSiH 4とCp 2 Mgを切り替えることによってn型窒化物半導体やp型窒化物半導体となる層を形成させる。 A layer to be an n-type nitride semiconductor and p-type nitride semiconductor is formed by switching SiH 4 and Cp 2 Mg as a dopant gas.
【0042】 [0042]
LEDチップの素子構造としてはサファイア基板上に、アンドープの窒化物半導体であるn型GaN層、Siドープのn型電極が形成されn型コンタクト層となるGaN層、アンドープの窒化物半導体であるn型GaN層、次に発光層を構成するバリア層となるGaN層、井戸層を構成するInGaN層、バリア層となるGaN層を1セットとしGaN層に挟まれたInGaN層を5層積層させた多重量子井戸構造としてある。 On a sapphire substrate is used as the element structure of LED chips, the n-type GaN layer is undoped nitride semiconductor, GaN layer n-type electrode is formed n-type contact layer of Si-doped, a nitride semiconductor of undoped n -type GaN layer, GaN layer serving as the barrier layer then constituting the light emitting layer, InGaN layer constituting a well layer and an InGaN layer sandwiched between GaN layer and one set GaN layer serving as the barrier layer are laminated five layers there a multiple quantum well structure. 発光層上にはMgがドープされたp型クラッド層としてAlGaN層、Mgがドープされたp型コンタクト層であるGaN層を順次積層させた構成としてある。 The on-emitting layer is a structure in which Mg-AlGaN layer, Mg are successively laminated a GaN layer is a p-type contact layer doped as p-type cladding layer doped. (なお、サファイヤ基板上には低温でGaN層を形成させバッファ層とさせてある。また、p型半導体は、成膜後400℃以上でアニールさせてある。) (Note that on a sapphire substrate are allowed to the buffer layer to form a GaN layer at low temperature. Further, p-type semiconductor is annealed at 400 ° C. or higher after the film formation.)
エッチングによりサファイア基板上の窒化物半導体に同一面側で、pn各コンタクト層表面を露出させる。 In the same side the nitride semiconductor on the sapphire substrate by etching to expose the pn the contact layer surface. 各コンタクト層上に、スパッタリング法を用いて正負各台座電極をそれぞれ形成させた。 On each contact layer, respectively to form a positive and negative pad electrode by a sputtering method. なお、p型窒化物半導体上の全面には金属薄膜を透光性電極として形成させた後に、透光性電極の一部に台座電極を形成させてある。 Note that the entire surface of the p-type nitride semiconductor after forming the metal thin film as a transparent electrode, are to form a pad electrode on a part of the translucent electrode. 出来上がった半導体ウエハーをスクライブラインを引いた後、外力により分割させ半導体発光素子であるLEDチップを形成させた。 After the resulting semiconductor wafer minus the scribe lines to form a LED chip is a semiconductor light emitting device is divided by an external force.
【0043】 [0043]
一方、打ち抜き及び射出成形により一対のリード電極304、305となる金属片が絶縁性樹脂309によって固定された基板を形成する。 On the other hand, metal pieces consisting of a pair of lead electrodes 304, 305 by stamping and injection molding to form a substrate fixed by an insulating resin 309. LEDチップ303はエポキシ樹脂306を用いて銀メッキした鉄入り銅製のリード電極上にダイボンドした。 LED chip 303 is die-bonded onto the iron-containing copper lead electrodes of silver plated using the epoxy resin 306. LEDチップの各電極と、各リード電極とをそれぞれ金線307でワイヤボンディングし電気的導通を取った。 And each electrode of the LED chip, took the electric conduction wire-bonded with the respective lead electrodes respectively gold wires 307.
【0044】 [0044]
蛍光物質302は、Y、Gd、Ceの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈させた。 Fluorescent substances 302, Y, Gd, and the solution, which is obtained by dissolving rare earth elements of Ce in an acid in a stoichiometric ratio was co-precipitated with oxalic acid. これを焼成して得られる共沈酸化物と、酸化アルミニウムと混合して混合原料を得る。 A coprecipitated oxide obtained by firing this to obtain a mixed raw material is mixed with aluminum oxide. これにフラックスとしてフッ化アンモニウムを混合して坩堝に詰め、空気中1400°Cの温度で3時間焼成して焼成品を得た。 This packed in a crucible a mixture of ammonium fluoride as a flux, to obtain a calcined product was calcined for 3 hours at a temperature of 1400 ° C in air. 焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通して形成させた。 The fired product is ball in water, washed, separated, dried, and finally to form through a sieve.
【0045】 [0045]
形成された(Y 0.6 Gd 0.43 Al 512 :Ce蛍光物質25重量部、含窒素エポキシ樹脂であるトリグリシジルイソシアヌレート100重量部と酸無水物及び硬化促進剤を65℃で撹拌させ24時間反応させ室温で冷却する。 Formed (Y 0.6 Gd 0.4) 3 Al 5 O 12: Ce fluorescent substance 25 parts by weight, 100 parts by weight of triglycidyl isocyanurate nitrogen-containing epoxy resin and an acid anhydride and a curing accelerator were stirred at 65 ° C. 24 It cooled at room temperature by the time the reaction. この反応によりある程度硬化させた固体となる。 A solid cured to some extent by the reaction. 室温に冷却後、取り出した固体を粉砕しプレスして固体状のタブレットを形成させる。 After cooling to room temperature, to form a solid tablet was pressed by grinding extracted solids. なお、蛍光物質を透光性樹脂中に含有させたタブレットを形成させるためには、上述のように原材料透光性樹脂中に含有させても良いし、均一性を保てる限りにおいて、ある程度硬化させた透光性樹脂粉体と蛍光物質とを混合撹拌させ固めたタブレットを利用することもできる。 In order to form a tablet which contains a fluorescent material in the translucent resin may be contained in the raw material translucent resin as described above, as long as the maintain the uniformity, to some extent cure tablets and can be used by hardening and the transparent resin powder and phosphor are mixed and stirred.
【0046】 [0046]
次にポットを加熱後、上記で形成させたLEDチップと導通を取った基板が配置された金型に軟化させたタブレットを射出させ150℃5分で一時硬化させた。 Then after heating the pot was temporarily cured at 0.99 ° C. 5 minutes to emit the tablet softened in the mold in which the substrate is disposed took conduction and LED chip was formed above. 次に、金型から射出成形させた発光ダイオードを取り出した後、150℃4時間で二次硬化させた。 Then, after removal of the light-emitting diode obtained by injection molding from the mold and allowed to secondary hardening at 0.99 ° C. 4 h. 蛍光物質が含有された透光性樹脂301は、LEDチップが配置された基板上に突出した形状で形成させることができた。 Translucent resin 301 a fluorescent substance is contained in, LED chips can be formed in a shape protruding placed on the substrate.
【0047】 [0047]
形成させたチップタイプLEDは上述と同様に形成された発光ダイオードのばらつきが極めて少ないと共に各発光ダイオードの色むらが極めて少ない白色LEDとすることができる。 Chip type LED having formed can be color unevenness of the light-emitting diodes with variations of light emitting diodes formed in the same manner as described above is very small to the very small white LED. また、蛍光物質を含有させた樹脂を維持させるためにキャビティー構造となる側壁を形成させる必要もなく極めて小型な白色発光ダイオードを形成させることができる。 Further, it is possible to form a very small white light emitting diode is not necessary to form a side wall comprising a cavity structure in order to maintain a resin containing a fluorescent substance. さらに、ある程度硬化させたとはいえ熱硬化性樹脂を用いるため、射出成型時に比較的粘度が高い熱可塑性樹脂を用いた場合と比較してLEDチップを電気的に接続させるワイヤなどの損傷を防ぎつつ形成させることができる。 Further, since a thermosetting resin is used said that was somewhat hardened, while preventing damage such as a wire electrically connecting the LED chips as compared with the case where relatively viscosity with high thermoplastic resin during injection molding it can be formed.
【0048】 [0048]
【発明の効果】 【Effect of the invention】
本発明による製造方法を用いることによって、発光特性が安定した蛍光物質を有する白色系が発光可能な発光ダイオードを量産性良く製造させることができる。 By using the process according to the invention, the emission characteristics can be manufactured with high productivity capable of emitting light-emitting diode white system having a stable fluorescent substance. また、長時間量産時においても最初に形成された発光ダイオードと、後に形成された発光ダイオード間の発光ばらつきが極めて小さくさせることができる。 Further, it is possible to light emission variation between the initially formed light-emitting diode and, after being formed on the light emitting diode is very small even during long production. さらに、比較的簡便に形成された発光ダイオード内における発光むらを低減させることができるため量産性と歩留りを向上させることができる。 Furthermore, it is possible to improve the mass productivity and yield since it is possible to reduce the uneven light emission in a relatively simple-formed light-emitting diode within.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】図1は本発明の発光ダイオードを示す模式的断面図である。 FIG. 1 is a schematic sectional view showing a light-emitting diode of the present invention.
【図2】図2は本発明の他の発光ダイオードを示す模式的断面図である。 Figure 2 is a schematic sectional view showing another light emitting diode of the present invention.
【図3】図3は本発明の別の発光ダイオードを示す模式的断面図である。 Figure 3 is a schematic sectional view of another light-emitting diode of the present invention.
【図4】図4は本発明の製造に用いられる射出成型機の模式的断面図である。 Figure 4 is a schematic cross-sectional view of an injection molding machine used for producing the present invention.
【符号の説明】 DESCRIPTION OF SYMBOLS
100、200、300・・・発光ダイオード101、201、301・・・蛍光物質を含有する透光性樹脂102、202、302・・・蛍光物質103、203、303・・・発光素子104、204・・・マウント・リード105、205・・・インナー・リード106、206、306・・・LEDを接着させるマウント部材107、207、307・・・ワイヤ208・・・モールド部材304、305・・・リード電極309・・・リード電極間を絶縁する樹脂400・・・射出成形機401・・・ペレット402・・・射出ピストン403・・・スクリュー404・・・電熱線405・・・金型406・・・発光素子がマウントされたマウントリード 100, 200, 300 ... light-emitting diodes 101, 201, 301 ... fluorescent substance containing a light-transmitting resin 102, 202, 302 ... fluorescent substance 103, 203, 303 ... light-emitting element 104, 204 ... mount lead 105, 205 ... inner leads 106, 206, 306 ... mount member to the LED is bonded 107, 207, 307 ... wire 208 ... the mold members 304 and 305 ... lead electrodes 309 ... lead electrodes between which an insulating resin 400 ... injection molding machine 401 ... pellets 402 ... injection piston 403 ... screw 404 ... heating wire 405 ... die 406, ... mount lead which the light-emitting element is mounted

Claims (2)

  1. 発光素子と、該発光素子からの発光の少なくとも一部を吸収し蛍光を発する蛍光物質を含有する透光性樹脂とを有し、前記発光素子からの発光と前記蛍光物質からの蛍光との白色系の混色光を発光する発光ダイオードの形成方法であって、 A light emitting element, and a light-transmitting resin containing a fluorescent substance that emits at least a portion of absorbing fluorescence emission from the light emitting element, white and fluorescence from the fluorescent substance and light emission from the light emitting element a method of forming a light emitting diode for emitting mixed color light of the system,
    成型前に蛍光物質と固体状の透光性樹脂とを均一に混合する第一の工程と、 A first step of uniformly mixing the fluorescent material and the solid translucent resin before molding,
    前記固体状の透光性樹脂を軟化させて、前記発光素子が固定された金型中に射出・注入し、該発光素子の少なくとも一部を被覆する第二の工程と、 To soften the solid translucent resin, the light emitting element emitted-injected into the fixed mold, a second step of covering at least a portion of the light emitting element,
    再び前記透光性樹脂を固体状とする第三の工程と、 A third step of the translucent resin and the solid again,
    前記発光素子の少なくとも一部が被覆された蛍光物質含有透光性樹脂の外側に透光性樹脂を注型成型にて形成させる第四の工程と、を有する発光ダイオードの形成方法。 Method of forming a light emitting diode having a fourth step of forming at cast molding a translucent resin on the outside of at least a part of which is coated fluorescent substance containing translucent resin of the light-emitting element.
  2. 前記発光素子の発光層が少なくとも窒化物半導体からなると共に前記蛍光物質がセリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体である請求項1に記載の発光ダイオードの形成方法。 Method of forming a light-emitting diode according to claim 1 emitting layer is the fluorescent substance is an yttrium-aluminum-garnet fluorescent material activated with cerium with of at least a nitride semiconductor of the light emitting element.
JP3926299A 1998-02-17 1999-02-17 Method of forming a light emitting diode Active JP3541709B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3527398 1998-02-17
JP2323499 1999-01-29
JP11-23234 1999-01-29
JP10-35273 1999-01-29
JP3926299A JP3541709B2 (en) 1998-02-17 1999-02-17 Method of forming a light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3926299A JP3541709B2 (en) 1998-02-17 1999-02-17 Method of forming a light emitting diode

Publications (2)

Publication Number Publication Date
JP2000286455A true JP2000286455A (en) 2000-10-13
JP3541709B2 true JP3541709B2 (en) 2004-07-14

Family

ID=27284173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3926299A Active JP3541709B2 (en) 1998-02-17 1999-02-17 Method of forming a light emitting diode

Country Status (1)

Country Link
JP (1) JP3541709B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002232013A (en) * 2001-02-02 2002-08-16 Rohm Co Ltd Semiconductor light emitting element
US6924596B2 (en) 2001-11-01 2005-08-02 Nichia Corporation Light emitting apparatus provided with fluorescent substance and semiconductor light emitting device, and method of manufacturing the same
WO2004027884A1 (en) 2002-09-19 2004-04-01 Cree, Inc. Phosphor-coated light emitting diodes including tapered sidewalls, and fabrication methods therefor
US20050104072A1 (en) 2003-08-14 2005-05-19 Slater David B.Jr. Localized annealing of metal-silicon carbide ohmic contacts and devices so formed
US7029935B2 (en) 2003-09-09 2006-04-18 Cree, Inc. Transmissive optical elements including transparent plastic shell having a phosphor dispersed therein, and methods of fabricating same
US7183587B2 (en) 2003-09-09 2007-02-27 Cree, Inc. Solid metal block mounting substrates for semiconductor light emitting devices
JP4529544B2 (en) * 2004-05-21 2010-08-25 スタンレー電気株式会社 The method of manufacturing Led
US20060097385A1 (en) 2004-10-25 2006-05-11 Negley Gerald H Solid metal block semiconductor light emitting device mounting substrates and packages including cavities and heat sinks, and methods of packaging same
US7322732B2 (en) 2004-12-23 2008-01-29 Cree, Inc. Light emitting diode arrays for direct backlighting of liquid crystal displays
JP4401348B2 (en) 2004-12-28 2010-01-20 シャープ株式会社 The light emitting device as well as lighting and display equipment using the same
JP4889076B2 (en) * 2005-04-14 2012-02-29 アサ電子工業株式会社 Indicator light
US7416906B2 (en) 2005-05-18 2008-08-26 Asahi Rubber Inc. Soldering method for semiconductor optical device, and semiconductor optical device
JP2009527071A (en) 2005-12-22 2009-07-23 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド Lighting device
US8441179B2 (en) 2006-01-20 2013-05-14 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
JP5428122B2 (en) * 2006-05-11 2014-02-26 日亜化学工業株式会社 And its molding method molded resin product, and, the light emitting device and manufacturing method thereof
JP2010042520A (en) * 2008-08-08 2010-02-25 Panasonic Electric Works Co Ltd Hot-melt molding device, manufacturing method for detecting switch with lead wire using the same, and detecting switch with lead wire manufactured by the method
JP5333110B2 (en) * 2009-09-17 2013-11-06 岩崎電気株式会社 White led equipment
US8593040B2 (en) 2009-10-02 2013-11-26 Ge Lighting Solutions Llc LED lamp with surface area enhancing fins
JP2010263232A (en) * 2010-07-01 2010-11-18 Okaya Electric Ind Co Ltd Light emitting diode
US8772817B2 (en) 2010-12-22 2014-07-08 Cree, Inc. Electronic device submounts including substrates with thermally conductive vias
US9500355B2 (en) 2012-05-04 2016-11-22 GE Lighting Solutions, LLC Lamp with light emitting elements surrounding active cooling device

Also Published As

Publication number Publication date Type
JP2000286455A (en) 2000-10-13 application

Similar Documents

Publication Publication Date Title
US20090321778A1 (en) Flip-chip light emitting diode and method for fabricating the same
US20070262328A1 (en) Semiconductor light emitting device and a method for producing the same
US20060054913A1 (en) Light emitting device and method of producing same
US20090261374A1 (en) High output power light emitting device and packaged used therefor
US20050139851A1 (en) Semiconductor light-emitting apparatus having wavelength conversion portion and method of fabricating the same
US7824937B2 (en) Solid element device and method for manufacturing the same
US20120193662A1 (en) Reflective mounting substrates for flip-chip mounted horizontal leds
US7847302B2 (en) Blue LED with phosphor layer for producing white light and different phosphor in outer lens for reducing color temperature
US20090289275A1 (en) Light Emitting Device, Package, Light Emitting Device Manufacturing Method, Package Manufacturing Method and Package Manufacturing Die
US20050133808A1 (en) Package for housing light-emitting element, light-emitting apparatus and illumination apparatus
US20080157113A1 (en) Surface mount lateral light emitting apparatus and fabrication method thereof
US20060055309A1 (en) Light emitting device
US8013352B2 (en) Chip coated light emitting diode package and manufacturing method thereof
US7045905B2 (en) Molded package and semiconductor device using molded package
US20090039762A1 (en) White led device comprising dual-mold and manufacturing method for the same
US20080298063A1 (en) Light emitting apparatus, resin molding device composing light emitting device, method for producing the same
US20090050925A1 (en) Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
US20080054287A1 (en) Semiconductor light emitting device
US20060131591A1 (en) Light emitting apparatus
US20090321758A1 (en) Led with improved external light extraction efficiency
JP2927279B2 (en) Light emitting diode
US6924514B2 (en) Light-emitting device and process for producing thereof
JP3503139B2 (en) A light-emitting device and a display device
JP2005008844A (en) Phosphor, and light emitter using the same
JP2004244560A (en) Silicon nitride-based phosphor and light emitting device using the same

Legal Events

Date Code Title Description
A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250