JP5333110B2 - White LED device - Google Patents

White LED device Download PDF

Info

Publication number
JP5333110B2
JP5333110B2 JP2009216077A JP2009216077A JP5333110B2 JP 5333110 B2 JP5333110 B2 JP 5333110B2 JP 2009216077 A JP2009216077 A JP 2009216077A JP 2009216077 A JP2009216077 A JP 2009216077A JP 5333110 B2 JP5333110 B2 JP 5333110B2
Authority
JP
Japan
Prior art keywords
light
light source
white led
white
red
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009216077A
Other languages
Japanese (ja)
Other versions
JP2011065892A (en
Inventor
政彦 柘植
敬 佐藤
浩二 内田
望 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2009216077A priority Critical patent/JP5333110B2/en
Publication of JP2011065892A publication Critical patent/JP2011065892A/en
Application granted granted Critical
Publication of JP5333110B2 publication Critical patent/JP5333110B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は、色温度及び演色性に優れた白色LED装置に関する。     The present invention relates to a white LED device excellent in color temperature and color rendering.

従来、白色光を出力する白色LED光源として、黄色蛍光体を分散させた蛍光体樹脂で青色LED光源を封止することで、青色LED光源の発光色と黄色蛍光体の蛍光色との混色によって白色を得るものが広く用いられている(例えば、特許文献1参照)。   Conventionally, as a white LED light source that outputs white light, by sealing a blue LED light source with a phosphor resin in which a yellow phosphor is dispersed, a mixed color of the emission color of the blue LED light source and the fluorescent color of the yellow phosphor can be obtained. What obtains white color is widely used (see, for example, Patent Document 1).

特開2009−147312号公報JP 2009-147312 A

しかしながら、従来の白色LED光源においては、標準光に比して色温度が高く(例えば6000K〜)青っぽい光色となり、また、演色性も悪い(平均演色評価指数Ra=70)、という問題がある。
本発明は、上述した事情に鑑みてなされたものであり、色温度及び演色性に優れた白色光を放射する白色LED装置を提供することを目的とする。
However, the conventional white LED light source has a problem that the color temperature is high (for example, from 6000 K) to a bluish light color compared to the standard light, and the color rendering property is also poor (average color rendering index Ra = 70). .
This invention is made | formed in view of the situation mentioned above, and it aims at providing the white LED apparatus which radiates | emits white light excellent in color temperature and color rendering properties.

上記目的を達成するために、本発明は、青色光を発する青色LED光源を蛍光体樹脂に封入し、前記青色LED光源の発光と前記蛍光体樹脂の蛍光の混合により白色光を放射する白色LED光源及び反射鏡を対向配置してなる白色LEDユニットと、赤色光を放射する赤色LED光源及びダイクロイックミラーを対向配置してなる赤色LEDユニットと、を備え、前記赤色LEDユニットは、前記白色LEDユニットの前方に光軸を合せて配置され、前記赤色LEDユニットのダイクロイックミラーは、前記赤色LED光源の放射光を反射するとともに前記白色LEDユニットの放射光のうち前記赤色LED光源の放射光の波長よりも低波長を透過することを特徴とする白色LED装置を提供する。   In order to achieve the above-mentioned object, the present invention encloses a blue LED light source that emits blue light in a phosphor resin, and emits white light by mixing light emitted from the blue LED light source and fluorescence of the phosphor resin. A white LED unit in which a light source and a reflecting mirror are arranged to face each other; and a red LED light source that emits red light and a red LED unit in which a dichroic mirror is arranged to face each other, the red LED unit being the white LED unit The dichroic mirror of the red LED unit reflects the radiated light of the red LED light source and the wavelength of the radiated light of the red LED light source out of the radiated light of the white LED unit. Further, the present invention provides a white LED device characterized by transmitting a low wavelength.

また本発明は、上記白色LED装置において、前記赤色LEDユニットの光量、又は、前記赤色LEDユニット及び前記白色LEDユニットの光量を個別に可変するコントローラを備えたことを特徴とする。   Further, the present invention is characterized in that the white LED device includes a controller that individually varies the light amount of the red LED unit or the light amounts of the red LED unit and the white LED unit.

本発明によれば、白色LEDユニットの白色の光に、赤色LEDユニットの赤色の光を混合して放射するため、該赤色の光により、放射光の色温度を低めることができ、また、演色性を高めることもできる。
これに加え、白色LEDユニットと赤色LEDユニットをダイクロイックミラーを用いて光軸を合せるように前後に配置する構成としたため、照射面での色むらや照度むらを低減できる。
また、白色LEDユニットの放射光はダイクロイックミラーを透過する際に赤色の波長域がカットされることから該透過光の色温度が高くなり、これにより、該透過光に赤色LEDユニットの光を混合して得られる光の色温度の調整幅を広くすることができる。
According to the present invention, since the white light of the white LED unit is mixed with the red light of the red LED unit and emitted, the color temperature of the emitted light can be lowered by the red light. It can also improve sex.
In addition, since the white LED unit and the red LED unit are arranged in front and back so that the optical axes are aligned using a dichroic mirror, color unevenness and illuminance unevenness on the irradiated surface can be reduced.
In addition, when the radiated light of the white LED unit is transmitted through the dichroic mirror, the red wavelength region is cut, so that the color temperature of the transmitted light is increased, thereby mixing the light of the red LED unit with the transmitted light. Thus, the adjustment range of the color temperature of the light obtained can be widened.

本発明の実施形態に係る白色LED装置を示す斜視図である。It is a perspective view which shows the white LED apparatus which concerns on embodiment of this invention. 白色LED装置の側断面の概略図である。It is the schematic of the side cross section of a white LED apparatus. 白色LEDユニットが備える白色LED光源の構成を模式的に示す図である。It is a figure which shows typically the structure of the white LED light source with which a white LED unit is provided. 白色LED光源の分光分布を比視感度と共に示す図である。It is a figure which shows the spectral distribution of a white LED light source with specific luminous efficiency. 白色LED装置の分光分布を示す図である。It is a figure which shows the spectral distribution of a white LED apparatus. 白色LED装置の比較構成例を示す模式図である。It is a schematic diagram which shows the comparative structural example of a white LED apparatus. 白色LED光源及び比較構成において、白色LED光源の出力を一定に維持し、赤色LED光源の順電流を可変したときの色温度の変化を示す図である。In a white LED light source and a comparison structure, it is a figure which shows the change of color temperature when the output of a white LED light source is maintained constant and the forward current of a red LED light source is varied. 白色LED光源及び比較構成において、白色LED光源の出力を一定に維持し、赤色LED光源の順電流を可変したときの平均演色評価指数の変化を示す図である。In a white LED light source and a comparison structure, it is a figure which shows the change of an average color rendering evaluation index | exponent when the output of a white LED light source is maintained constant and the forward current of a red LED light source is varied.

以下、図面を参照して本発明の実施形態について説明する。
図1は本実施形態に係る積層型の白色LED装置1の正面および側面を示す概略図であり、図2はその側断面の概略図である。
これらの図に示すように、白色LED装置1は、白色光を放射する白色LEDユニット2と、赤色光を放射する赤色LEDユニット3とを備え、これら白色LEDユニット2及び赤色LEDユニット3が、赤色LEDユニット3を先頭に光放射方向Pに沿って光軸を合せて積層するように連設されている。
これら白色LEDユニット2及び赤色LEDユニット3の構成について説明すると、図2に示すように、それぞれは、円筒状(断面角形の筒状でも良い)のホルダケース12を備え、各ホルダケース12を同軸に連結材10を介して連結して白色LED装置1が構成されている。ホルダケース12は、アルミニウムなどの高熱伝導性を有する金属材から形成され、その外周面(外側面)に多数の放熱フィン14を有する放熱部16が形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing the front and side surfaces of a stacked white LED device 1 according to this embodiment, and FIG. 2 is a schematic diagram of a side cross section thereof.
As shown in these drawings, the white LED device 1 includes a white LED unit 2 that emits white light and a red LED unit 3 that emits red light. The white LED unit 2 and the red LED unit 3 are The red LED units 3 are continuously arranged so that the optical axes are aligned along the light emission direction P with the red LED unit 3 at the head.
The configuration of the white LED unit 2 and the red LED unit 3 will be described. As shown in FIG. 2, each of the white LED unit 2 and the red LED unit 3 includes a cylindrical holder case 12 (or a cylindrical shape having a square cross section). The white LED device 1 is configured by being connected to each other via a connecting material 10. The holder case 12 is made of a metal material having high thermal conductivity such as aluminum, and a heat radiating portion 16 having a large number of heat radiating fins 14 is formed on the outer peripheral surface (outer surface) thereof.

白色LEDユニット2は、白色光の光源たる白色LED光源4と、この白色LED光源4を支持するリードフレーム6と、白色LED光源4の発光面4Aに対向配置される全反射鏡8とを備えている。リードフレーム6は、白色LEDユニット2及び赤色LEDユニット3のそれぞれで同一構成を成し、図1に示すように、円環部1Aと、この円環部1Aの中心Oに配置される略円板状の取付部1Bと、円環部1Aから取付部1Bに向けて延びる三本のアーム部1Cとを備え、これらが例えば銅などの高熱伝導性を有する板材を例えば型抜き成形するなどして一体に形成されている。
リードフレーム6の背面では、図2に示すように、上記白色LED光源4が取付部1Bに固定される。また、アーム部1Cには、図1に示すように、回路用基板18が設けられ、この回路用基板18を介して外部からの電力が白色LED光源4に供給される。かかるリードフレーム6は、図2に示すように、白色LED光源4の発光面4Aを背面側に向けた姿勢で背面開口12Aからホルダケース12内に挿入され掛止片12Bに掛止される。
The white LED unit 2 includes a white LED light source 4 that is a light source of white light, a lead frame 6 that supports the white LED light source 4, and a total reflection mirror 8 that is disposed so as to face the light emitting surface 4A of the white LED light source 4. ing. The lead frame 6 has the same configuration in each of the white LED unit 2 and the red LED unit 3, and as shown in FIG. 1, the annular portion 1A and a substantially circle arranged at the center O of the annular portion 1A. A plate-shaped attachment portion 1B and three arm portions 1C extending from the annular portion 1A toward the attachment portion 1B are provided, for example, die-molding a plate material having high thermal conductivity such as copper, for example. Are integrally formed.
On the back surface of the lead frame 6, the white LED light source 4 is fixed to the mounting portion 1B as shown in FIG. Further, as shown in FIG. 1, the arm portion 1 </ b> C is provided with a circuit board 18, and electric power from the outside is supplied to the white LED light source 4 through the circuit board 18. As shown in FIG. 2, the lead frame 6 is inserted into the holder case 12 through the rear opening 12A with the light emitting surface 4A of the white LED light source 4 facing the rear side, and is hooked on the hooking piece 12B.

全反射鏡8は、図2に示すように、光学反射面8Aが白色LED光源4の発光面4Aに対向するように焦点距離調整用スペーサ20を介在させてホルダケース12に挿入される。光学反射面8Aは、対向配置される白色LED光源4の放射光を全反射する反射特性を有し、また、この白色LED光源4の配置位置を焦点とする放物面(回転放物面)または非球面に形成されている。したがって、白色LED光源4から放射された光は全反射鏡8の中心軸(光軸)Nに対して略平行な光として反射され、ホルダケース12の正面側の開口12Dから前方の赤色LEDユニット3に向けて放射される。上記焦点距離調整用スペーサ20は、白色LED光源4の製造ばらつき等によって生じる該白色LED光源4から光学反射面8Aまでの距離のばらつき、すなわち、焦点距離f(図2参照)のばらつきを補償し、該白色LEDユニット2や赤色LEDユニット3の配光特性や照度分布を等しくするものである。   As shown in FIG. 2, the total reflection mirror 8 is inserted into the holder case 12 with a focal length adjustment spacer 20 interposed so that the optical reflection surface 8 </ b> A faces the light emitting surface 4 </ b> A of the white LED light source 4. The optical reflecting surface 8A has a reflection characteristic that totally reflects the radiated light of the white LED light source 4 arranged to face the parabolic surface (rotating parabolic surface) with the arrangement position of the white LED light source 4 as a focal point. Or it is formed in the aspherical surface. Therefore, the light emitted from the white LED light source 4 is reflected as light substantially parallel to the central axis (optical axis) N of the total reflection mirror 8, and the red LED unit ahead from the opening 12 </ b> D on the front side of the holder case 12. Radiated toward 3. The focal length adjusting spacer 20 compensates for the variation in the distance from the white LED light source 4 to the optical reflecting surface 8A caused by the manufacturing variation of the white LED light source 4, that is, the variation in the focal length f (see FIG. 2). The white LED unit 2 and the red LED unit 3 have the same light distribution characteristics and illuminance distribution.

赤色LEDユニット3は、白色LEDユニット2に対して、白色LED光源4の代わりに赤色LED光源5を備える点、及び、全反射鏡8の代わりにダイクロイックミラー9を備える点を除き、略同一構成を成している。
赤色LED光源5は、波長600nm〜780nmの光を放射するLED光源である。
ダイクロイックミラー9は、少なくとも赤色LED光源5の波長帯域の光を反射するとともに、背面側から入射された白色LEDユニット2の白色光のうち、赤色LED光源5の波長帯域よりも短波長(例えば600nm以下)の光を透過する凹面状の光学素子である。すなわち、このダイクロイックミラー9では、図2に示すように、赤色LED光源5の放射光が中心軸(光軸)Nに沿った平行光として反射されるとともに、背面側から入射された白色LEDユニット2の平行光が同軸に重なるように透過し、このダイクロイックミラー9による反射光M2と透過光M1の混合光M3が白色LED装置1から白色光として放射される。
The red LED unit 3 has substantially the same configuration as the white LED unit 2 except that a red LED light source 5 is provided instead of the white LED light source 4 and a dichroic mirror 9 is provided instead of the total reflection mirror 8. Is made.
The red LED light source 5 is an LED light source that emits light having a wavelength of 600 nm to 780 nm.
The dichroic mirror 9 reflects at least light in the wavelength band of the red LED light source 5 and has a shorter wavelength (for example, 600 nm) than the wavelength band of the red LED light source 5 in the white light of the white LED unit 2 incident from the back side. The following is a concave optical element that transmits light. That is, in this dichroic mirror 9, as shown in FIG. 2, the radiant light of the red LED light source 5 is reflected as parallel light along the central axis (optical axis) N and is incident from the back side. The two parallel lights are transmitted so as to be coaxially overlapped, and the mixed light M3 of the reflected light M2 and the transmitted light M1 by the dichroic mirror 9 is emitted from the white LED device 1 as white light.

また白色LED装置1には、図2に示すように、白色LEDユニット2及び赤色LEDユニット3の光量をそれぞれ個別に調整するコントローラ24が設けられている。   Further, as shown in FIG. 2, the white LED device 1 is provided with a controller 24 that individually adjusts the light amounts of the white LED unit 2 and the red LED unit 3.

図3は、白色LEDユニット2が備える白色LED光源4の構成を模式的に示す図である。
白色LED光源4は、図3に示すように、光源本体30と、1又は複数(図示例では1つ)の青色LED光源32と、青色LED光源32に電流を供給する二対のリードフレーム34と、青色LED光源32を覆う蛍光体樹脂36とを備えて大略構成されている。光源本体30には、その上面に凹状のカップ38が設けられ、このカップ38は、平坦な底部38A、及び、その周縁から上方に拡がる傾斜を有するスロープ部38Bを備えて側面視台形状に形成されている。
FIG. 3 is a diagram schematically illustrating the configuration of the white LED light source 4 included in the white LED unit 2.
As shown in FIG. 3, the white LED light source 4 includes a light source body 30, one or a plurality of (one in the illustrated example) blue LED light sources 32, and two pairs of lead frames 34 that supply current to the blue LED light sources 32. And a phosphor resin 36 that covers the blue LED light source 32. The light source body 30 is provided with a concave cup 38 on its upper surface, and this cup 38 has a flat bottom portion 38A and a slope portion 38B having an inclination extending upward from the periphery thereof, and is formed in a trapezoidal shape in side view. Has been.

青色LED光源32は、カップ38の底部38Aの略中央に配置されており、青色LED光源32の電極とリードフレーム34とが図示しないワイヤによって電気的に接続されている。この青色LED光源32は、青色光を受けて黄色の蛍光を発する蛍光体が散布された樹脂製の上記蛍光体樹脂36に封止され、この蛍光体樹脂36は、さらに略透明の透明樹脂40でカップ38に封止されている。そして、この白色LED光源4においては、青色LED光源32の青色光K1と蛍光体樹脂36の黄色の蛍光K2の混合によって白色光K3が得られる。   The blue LED light source 32 is disposed substantially at the center of the bottom 38A of the cup 38, and the electrode of the blue LED light source 32 and the lead frame 34 are electrically connected by a wire (not shown). The blue LED light source 32 is sealed with the phosphor resin 36 made of resin in which a phosphor emitting blue fluorescence upon receiving blue light is dispersed. The phosphor resin 36 is further made of a substantially transparent transparent resin 40. The cup 38 is sealed. In the white LED light source 4, white light K <b> 3 is obtained by mixing the blue light K <b> 1 of the blue LED light source 32 and the yellow fluorescence K <b> 2 of the phosphor resin 36.

図4は白色LED光源4の分光分布を比視感度と共に示す図であり、同図では、実線Aが分光分布曲線を示し、実線Bが比視感度曲線を示している。
白色LED光源4は、青色光K1と黄色の蛍光K2との混合により白色光K3を得る構成であるため、実線Aに示されるように、波長400nm〜700nmの広い波長帯域を有するものの、波長500nm〜700nmでの強度が波長400nm〜500nmでの強度に比べて低い。このため、白色光K3は、色温度が比較的高く、放射光が青っぽい光となる。また、比視認感度が高い領域である波長500nm〜700nmの範囲で光量が相対的に低くなるため暗く感じられる。
FIG. 4 is a diagram showing the spectral distribution of the white LED light source 4 together with the relative luminous efficiency. In the figure, the solid line A shows the spectral distribution curve and the solid line B shows the specific luminous curve.
Since the white LED light source 4 is configured to obtain the white light K3 by mixing the blue light K1 and the yellow fluorescent light K2, as shown by the solid line A, the white LED light source 4 has a wide wavelength band from 400 nm to 700 nm, but has a wavelength of 500 nm. The intensity at ˜700 nm is lower than the intensity at wavelengths of 400 nm to 500 nm. For this reason, the white light K3 has a relatively high color temperature and the emitted light is bluish light. Further, since the light amount becomes relatively low in the wavelength range of 500 nm to 700 nm, which is a region where the specific visual sensitivity is high, it is felt dark.

図5は、白色LED装置1の分光分布を示す図である。
白色LED装置1においては、上述したように、白色LED光源4の白色光に加えて赤色LED光源5の光も加えられるため、図5に示すように、該赤色LED光源5の光により波長600nm以上の波長帯域にも十分な強度の光が得られる。これにより、白色LED光源4を単体で用いた場合に比べ、色温度が比較的低くなり標準光に近づく上に、比視認感度が高い領域での光量も増えるため明るく感じられることとなり、白色LED光源4を単体で用いた場合に比べて色温度と明るさが改善される。
FIG. 5 is a diagram showing the spectral distribution of the white LED device 1.
In the white LED device 1, as described above, since the light of the red LED light source 5 is also added in addition to the white light of the white LED light source 4, the wavelength of 600 nm is generated by the light of the red LED light source 5 as shown in FIG. 5. Light with sufficient intensity can be obtained even in the above wavelength band. As a result, compared with the case where the white LED light source 4 is used alone, the color temperature becomes relatively low and approaches the standard light, and the amount of light in the region where the specific visual sensitivity is high increases, so that the white LED is felt bright. Compared with the case where the light source 4 is used alone, the color temperature and the brightness are improved.

ここで、本実施形態の白色LED装置1は、赤色LEDユニット3及び白色LEDユニット2をダイクロイックミラー9を用いて積層する積層型としているため、図6に示すように、赤色LED光源S1の赤色光L1と、白色LED光源S2の白色光L2とを例えばプリズム等の合成用光学素子Tで単純に合成して混合光L3を得る構成(比較構成Q)に比べ、次ぎのような利点がある。   Here, since the white LED device 1 of the present embodiment is a stacked type in which the red LED unit 3 and the white LED unit 2 are stacked using the dichroic mirror 9, as shown in FIG. 6, the red LED light source S1 has a red color. Compared with the configuration (comparative configuration Q) in which the light L1 and the white light L2 of the white LED light source S2 are simply combined by the combining optical element T such as a prism to obtain the mixed light L3, there are the following advantages. .

図7は、本実施形態(本構成)及び比較構成Qにおいて、白色LED光源4、S2の出力を一定に維持し、赤色LED光源5、S1の順電流(光量)を0〜500(mA)の間で可変させたときの色温度の変化を示す図である。
比較構成Qにおいては、赤色光L1と白色光L2とを単純に混合して混合光L3を得ているため、白色光L2の赤色の成分(波長600nm以上の光)がカットされずに混合光L3に含まれる。このため、赤色LED光源S1の順電流を小さくして赤色光L1を小さくしたとしても、白色光L2の赤色の成分が存在することから、図7に示すように、色温度の最大値は比較的高くならずに約6000〜7000K程度に留まる。
FIG. 7 shows that in this embodiment (this configuration) and comparative configuration Q, the outputs of the white LED light sources 4 and S2 are kept constant, and the forward current (light quantity) of the red LED light sources 5 and S1 is 0 to 500 (mA). It is a figure which shows the change of color temperature when making it vary between.
In the comparative configuration Q, since the mixed light L3 is obtained by simply mixing the red light L1 and the white light L2, the red light component (light having a wavelength of 600 nm or more) of the white light L2 is not cut and mixed light is obtained. Included in L3. For this reason, even if the forward current of the red LED light source S1 is reduced and the red light L1 is reduced, the red component of the white light L2 exists, so that the maximum color temperature is compared as shown in FIG. It stays at about 6000-7000K without being too high.

これに対して、本例では、ダイクロイックミラー9により、白色LED光源4の白色光のうち波長600nm以上の光をカットしているため、赤色LED光源5の順電流を小さくするほど、色温度が比較構成Qよりも高くなり、色温度の最大値は約14000〜15000K程度にまで達する。このように、本例では、赤色光L1と白色光L2とを単純に合成して混合光L3を得る構成に比べ、色温度の調整範囲を拡大することができる、という利点がある。   On the other hand, in this example, the dichroic mirror 9 cuts light with a wavelength of 600 nm or more from the white light of the white LED light source 4, so that the color temperature increases as the forward current of the red LED light source 5 decreases. It becomes higher than the comparative configuration Q, and the maximum value of the color temperature reaches about 14,000 to 15000K. Thus, in this example, there is an advantage that the adjustment range of the color temperature can be expanded as compared with the configuration in which the red light L1 and the white light L2 are simply combined to obtain the mixed light L3.

図8は、本実施形態(本構成)及び比較構成Qにおいて、白色LED光源4、S2の出力を一定に維持し、赤色LED光源5、S1の順電流(光量)を0〜500(mA)の間で可変させたときの平均演色評価指数(Ra)の変化を示す図である。
この図に示すように、本構成においては、赤色LED光源5の順電流を調整することで平均演色評価指数Ra>70が得られ、白色LED光源4を単体で使用したときよりも、演色性が高められ、また、該演色性を赤色LEDユニット3の光量を可変することで調整できることが分かる。さらに、この図8に示すように、拡大した色温度6000K以上(順電流200mA以下)の本構成では、12000Kまで(順電流50mA以下)の範囲でRa>70であることが分かる。
FIG. 8 shows that the outputs of the white LED light sources 4 and S2 are kept constant in the present embodiment (this configuration) and the comparative configuration Q, and the forward current (light quantity) of the red LED light sources 5 and S1 is 0 to 500 (mA). It is a figure which shows the change of the average color rendering evaluation index (Ra) when making it change between.
As shown in this figure, in this configuration, the average color rendering index Ra> 70 is obtained by adjusting the forward current of the red LED light source 5, and the color rendering property is higher than when the white LED light source 4 is used alone. It can be seen that the color rendering properties can be adjusted by changing the light quantity of the red LED unit 3. Further, as shown in FIG. 8, it can be seen that Ra> 70 in the range of up to 12000 K (forward current 50 mA or less) in this configuration having an enlarged color temperature of 6000 K or more (forward current 200 mA or less).

したがって、白色LED装置1の用途に応じて、上記コントローラ24により、赤色LEDユニット3及び白色LEDユニット2の光量を個別に可変することで、その用途に応じた色温度及び演色性を実現することができる。特に、歯科治療等の医療用の照明に用いて好適な色温度及び演色性を備えた白色LED装置1とすることもできる。   Therefore, according to the use of the white LED device 1, the controller 24 can individually change the light amounts of the red LED unit 3 and the white LED unit 2 to realize the color temperature and color rendering according to the use. Can do. In particular, the white LED device 1 having a color temperature and color rendering suitable for use in medical illumination such as dental treatment can be obtained.

以上説明したように、本実施形態によれば、白色LEDユニット2の白色光に、赤色LEDユニット3の赤色光を混合して放射する構成としたため、該赤色光により、放射光の色温度を低めることができ、また、演色性を高めることができる。
これに加え、白色LEDユニット2と赤色LEDユニット3をダイクロイックミラー9を用いて光軸を合せるように前後に配置する構成としたため、照射面での色むらや照度むらを低減できる。
また、白色LEDユニット2の放射光はダイクロイックミラー9を透過する際に赤色の波長域がカットされることから該透過光M1の色温度が高くなり、これにより、該透過光M1に、赤色LEDユニット3の反射光M2を混合して得られる混合光M3の色温度の調整幅を広くすることができる。
As described above, according to the present embodiment, the white light of the white LED unit 2 is mixed with the red light of the red LED unit 3, and thus the color temperature of the emitted light is adjusted by the red light. The color rendering property can be improved.
In addition, since the white LED unit 2 and the red LED unit 3 are arranged in front and back so as to align the optical axis using the dichroic mirror 9, uneven color and uneven illuminance on the irradiated surface can be reduced.
Further, since the red wavelength band of the radiated light of the white LED unit 2 is cut when passing through the dichroic mirror 9, the color temperature of the transmitted light M1 is increased, and thus the transmitted light M1 is converted into a red LED. The adjustment range of the color temperature of the mixed light M3 obtained by mixing the reflected light M2 of the unit 3 can be widened.

また、赤色LEDユニット3及び白色LEDユニット2の光量を個別に可変するコントローラ24を備える構成としたため、それぞれの光量を独立して制御することができ、用途に応じた色温度及び演色性を実現することができる。
なお、コントローラ24が赤色LEDユニット3の光量のみを調整する構成としてもよい。
In addition, since the controller 24 is configured to individually change the light amounts of the red LED unit 3 and the white LED unit 2, each light amount can be controlled independently, and the color temperature and color rendering properties according to the application are realized. can do.
The controller 24 may be configured to adjust only the light amount of the red LED unit 3.

なお、上述した実施形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形及び応用が可能であることは勿論である。   The above-described embodiment is merely an aspect of the present invention, and it is needless to say that modifications and applications can be arbitrarily made within the scope of the present invention.

1 白色LED装置
2 白色LEDユニット
3 赤色LEDユニット
4 白色LED光源
5 赤色LED光源
8 全反射鏡(反射鏡)
9 ダイクロイックミラー
24 コントローラ
32 青色LED光源
36 蛍光体樹脂
N 中心軸(光軸)
P 光放射方向
Q 比較構成
DESCRIPTION OF SYMBOLS 1 White LED device 2 White LED unit 3 Red LED unit 4 White LED light source 5 Red LED light source 8 Total reflection mirror (reflection mirror)
9 Dichroic mirror 24 Controller 32 Blue LED light source 36 Phosphor resin N Central axis (optical axis)
P Light emission direction Q Comparison configuration

Claims (2)

青色光を発する青色LED光源を蛍光体樹脂に封入し、前記青色LED光源の発光と前記蛍光体樹脂の蛍光の混合により白色光を放射する白色LED光源及び反射鏡を対向配置してなる白色LEDユニットと、
赤色光を放射する赤色LED光源及びダイクロイックミラーを対向配置してなる赤色LEDユニットと、を備え、
前記赤色LEDユニットは、前記白色LEDユニットの前方に光軸を合せて配置され、
前記赤色LEDユニットのダイクロイックミラーは、前記赤色LED光源の放射光を反射するとともに前記白色LEDユニットの放射光のうち前記赤色LED光源の放射光の波長よりも低波長を透過することを特徴とする白色LED装置。
A white LED in which a blue LED light source that emits blue light is sealed in a phosphor resin, and a white LED light source that emits white light by mixing light emission of the blue LED light source and fluorescence of the phosphor resin and a reflecting mirror are arranged opposite to each other Unit,
A red LED light source that emits red light and a red LED unit in which a dichroic mirror is disposed oppositely, and
The red LED unit is arranged with the optical axis aligned in front of the white LED unit,
The dichroic mirror of the red LED unit reflects the emitted light of the red LED light source and transmits a lower wavelength than the emitted light of the red LED light source among the emitted light of the white LED unit. White LED device.
前記赤色LEDユニットの光量、又は、前記赤色LEDユニット及び前記白色LEDユニットの光量を個別に可変するコントローラを備えたことを特徴とする請求項1に記載の白色LED装置。   The white LED device according to claim 1, further comprising a controller that individually varies a light amount of the red LED unit or a light amount of the red LED unit and the white LED unit.
JP2009216077A 2009-09-17 2009-09-17 White LED device Expired - Fee Related JP5333110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009216077A JP5333110B2 (en) 2009-09-17 2009-09-17 White LED device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009216077A JP5333110B2 (en) 2009-09-17 2009-09-17 White LED device

Publications (2)

Publication Number Publication Date
JP2011065892A JP2011065892A (en) 2011-03-31
JP5333110B2 true JP5333110B2 (en) 2013-11-06

Family

ID=43951935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009216077A Expired - Fee Related JP5333110B2 (en) 2009-09-17 2009-09-17 White LED device

Country Status (1)

Country Link
JP (1) JP5333110B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226874A (en) * 2011-04-15 2012-11-15 Ccs Inc Reflection type lighting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242524A (en) * 1997-02-28 1998-09-11 Iwasaki Electric Co Ltd Layer-built light emitting diode
JP3541709B2 (en) * 1998-02-17 2004-07-14 日亜化学工業株式会社 Method of forming light emitting diode
JP2005250059A (en) * 2004-03-03 2005-09-15 Hitachi Ltd Light source apparatus and projection type image display apparatus using the same
US8057046B2 (en) * 2005-05-10 2011-11-15 Iwasaki Electric Co., Ltd. Projector device having assembly of reflection type light emitting diodes

Also Published As

Publication number Publication date
JP2011065892A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
EP2534411B1 (en) Lamp comprising a phosphor, radiation source, optical system and heatsink
US9233639B2 (en) Light-emitting device and vehicle headlight
EP2417218B1 (en) Lamp for laser applications
CN107036033B (en) Light emitting device and lighting system
JP6101978B2 (en) Light emitting device
JP6588564B2 (en) High brightness light emitting device
JP5438099B2 (en) LED lamp with reflector
JP6087809B2 (en) Lighting device
JP2013080638A (en) Collected linear lighting device and its driving method as well as lamp fitting
US20110002137A1 (en) Light emitting module and automotive lamp
JP6098747B2 (en) Adjustment parts and light emitting device
KR101557404B1 (en) Laser lighting device
JP4945925B2 (en) Multilayer light emitting diode device and reflective light emitting diode unit
JP5333110B2 (en) White LED device
WO2010103840A1 (en) Light-emitting module and lighting unit
CN106969305B (en) Adjustable light source device and lighting device
JP2013161889A (en) Light-emitting device, vehicular headlamp, and color adjusting method of light-emitting device
CN111458931A (en) High-brightness backlight source module based on L D pump fluorescent crystal
CN112728497A (en) Laser lighting module and lighting system
CN112555773A (en) Laser lighting module and lighting system
CN118582680A (en) Light source device
TW201420943A (en) Signal lamp module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Ref document number: 5333110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees