JP5286585B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP5286585B2
JP5286585B2 JP2007262138A JP2007262138A JP5286585B2 JP 5286585 B2 JP5286585 B2 JP 5286585B2 JP 2007262138 A JP2007262138 A JP 2007262138A JP 2007262138 A JP2007262138 A JP 2007262138A JP 5286585 B2 JP5286585 B2 JP 5286585B2
Authority
JP
Japan
Prior art keywords
resin
light emitting
sealing body
phosphor
resin sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007262138A
Other languages
Japanese (ja)
Other versions
JP2009094207A (en
Inventor
達也 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007262138A priority Critical patent/JP5286585B2/en
Publication of JP2009094207A publication Critical patent/JP2009094207A/en
Application granted granted Critical
Publication of JP5286585B2 publication Critical patent/JP5286585B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45169Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、電極パターンが形成された基板と、基板上に実装され、電極パターンと電気的に接続された発光素子と、発光素子を覆うように形成された樹脂封止体とを備える発光装置に関する。   The present invention relates to a light emitting device including a substrate on which an electrode pattern is formed, a light emitting element mounted on the substrate and electrically connected to the electrode pattern, and a resin sealing body formed to cover the light emitting element. About.

半導体発光素子を用いた白色発光装置は、次世代の一般照明、液晶バックライトなどの電球、蛍光管、冷陰極管といった管球市場への応用が期待されている。近年、白色発光装置に用いられる青色発光ダイオード、蛍光体などの技術開発による個々の効率の向上に伴い、蛍光灯、冷陰極管などの発光効率を凌ぐものが商品化されつつある。しかしながら、これら白色発光装置は、未だ蛍光灯、冷陰極管などと比較すると色温度ばらつきは大きいため、蛍光灯、冷陰極管なみに色温度ばらつきを低減することが要求されている。   White light-emitting devices using semiconductor light-emitting elements are expected to be applied to the next-generation general lighting, bulbs such as liquid crystal backlights, fluorescent tubes and cold-cathode tubes. In recent years, with improvements in individual efficiency due to technological developments such as blue light emitting diodes and phosphors used in white light emitting devices, fluorescent lamps, cold cathode fluorescent lamps, and the like that have exceeded luminous efficiency are being commercialized. However, these white light emitting devices still have large color temperature variations compared to fluorescent lamps, cold cathode tubes, and the like, and therefore, it is required to reduce the color temperature variations just like fluorescent lamps and cold cathode tubes.

実際の発光装置の製造工程では、蛍光体が分散された封止樹脂を青色発光ダイオード上に塗布後、樹脂が完全に硬化するまでの間の時間経過が、この色温度ばらつきの原因の1つとなる。すなわち、塗布前半のものと、塗布後半のものとで、塗布時の状態が同じであっても、塗布後の経過時間が異なると、蛍光体の樹脂中への沈降の度合いが異なるために、色温度のばらつきが発生してしまう(たとえば、特開2006−269757号公報(特許文献1)を参照。)。さらに、樹脂を硬化させる際の硬化温度(100〜150℃)では樹脂の粘性は室温と比べて低下してしまうため、蛍光体の沈降が発生しやすくなってしまうことも、色温度のばらつきが発生してしまう要因となる。   In the actual manufacturing process of a light emitting device, one of the causes of this color temperature variation is the time elapsed from the application of the sealing resin in which the phosphor is dispersed on the blue light emitting diode until the resin is completely cured. Become. That is, even if the first half of the coating and the second half of the coating are the same in the coating state, if the elapsed time after coating is different, the degree of sedimentation of the phosphor into the resin is different. Variation in color temperature occurs (see, for example, Japanese Patent Laid-Open No. 2006-269757 (Patent Document 1)). Furthermore, since the viscosity of the resin is lower than that at room temperature at the curing temperature (100 to 150 ° C.) when the resin is cured, the phosphor is liable to settle, and the color temperature varies. It becomes a factor that occurs.

このような色温度ばらつきを調整する方法の1つとして、発光素子の封止樹脂の上層部に透明樹脂部を形成し、その透明樹脂を研磨、または、透明樹脂を表面に塗布して、発光ダイオードからの青色光が蛍光体に到達する実効的な距離を変えることによって、樹脂内部で青色光が吸収される量を調整して、蛍光体が励起される青色光の光量を変えること、あるいは、青色光の樹脂内部での閉じ込め空間を調整する効果によって、色温度を調整する方法が提案されている(たとえば特開2004−186488号公報(特許文献2)を参照。)。しかしながら、このような方法では、できあがり時の色温度ばらつきが大きい場合には、研磨または樹脂塗布工程のための色温度分布のグループ分けが多くなってしまい、工程が煩雑になるなどの問題があり、現実的な改善策とはなっていない。
特開2006−269757号公報 特開2004−186488号公報
As one method of adjusting such color temperature variation, a transparent resin portion is formed on the upper layer portion of the sealing resin of the light emitting element, and the transparent resin is polished or applied to the surface to emit light. Adjusting the amount of blue light absorbed inside the resin by changing the effective distance that blue light from the diode reaches the phosphor, or changing the amount of blue light excited by the phosphor, or A method of adjusting the color temperature by the effect of adjusting the confinement space inside the resin of blue light has been proposed (see, for example, Japanese Patent Application Laid-Open No. 2004-186488 (Patent Document 2)). However, in such a method, when the color temperature variation at the time of completion is large, there is a problem that the grouping of the color temperature distribution for the polishing or resin coating process increases and the process becomes complicated. It is not a realistic improvement measure.
JP 2006-269757 A JP 2004-186488 A

本発明は、上記課題を解決するためになされたものであって、その目的とするところは、色温度ばらつき、特に蛍光体の沈降に起因する色温度ばらつきを抑制できる発光装置を提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a light-emitting device capable of suppressing color temperature variations, particularly color temperature variations caused by phosphor settling. is there.

本発明の発光装置は、配線パターンが形成された基板と、基板上に実装され、配線パターンと電気的に接続された発光素子と、発光素子を覆うように形成された樹脂封止体とを備える発光装置であって、樹脂封止体が、発光素子を覆うように形成された第1の樹脂封止体と、その上に積層された第2の樹脂封止体とから構成され、第1の樹脂封止体および第2の樹脂封止体は同一種類の樹脂で形成され、かつ、第2の樹脂封止体が、第1の樹脂封止体よりも高い濃度で蛍光体を含有することを特徴とする。   A light emitting device of the present invention includes a substrate on which a wiring pattern is formed, a light emitting element mounted on the substrate and electrically connected to the wiring pattern, and a resin sealing body formed so as to cover the light emitting element. The resin sealing body includes a first resin sealing body formed so as to cover the light emitting element, and a second resin sealing body stacked on the first resin sealing body. 1 resin sealing body and 2nd resin sealing body are formed with the same kind of resin, and 2nd resin sealing body contains fluorescent substance with a density | concentration higher than 1st resin sealing body It is characterized by doing.

本発明の発光装置において、基板が酸化アルミニウム基板であり、発光素子が青色発光ダイオードであることが、好ましい。   In the light emitting device of the present invention, it is preferable that the substrate is an aluminum oxide substrate and the light emitting element is a blue light emitting diode.

本発明の発光装置は、第1の樹脂封止体が蛍光体を含まず、第2の樹脂封止体のみが蛍光体を含有するように実現されてもよい。   The light emitting device of the present invention may be realized such that the first resin sealing body does not include a phosphor and only the second resin sealing body includes a phosphor.

本発明の発光装置はまた、第1の樹脂封止体および第2の樹脂封止体の両方に蛍光体を含むように実現されてもよい。この場合、第1の樹脂封止体および第2の樹脂封止体が共に2種以上の蛍光体を含み、各樹脂封止体にそれぞれ含まれる各種の蛍光体同士の重量比率が等しくなるように構成されていてもよく、また、樹脂封止体が2種以上の蛍光体を含有し、少なくとも第1の樹脂封止体が、樹脂に対する蛍光体の沈降が他の蛍光体と比較して相対的に小さい蛍光体を含むように構成されていてもよい。   The light emitting device of the present invention may also be realized so as to include a phosphor in both the first resin sealing body and the second resin sealing body. In this case, both the 1st resin sealing body and the 2nd resin sealing body contain 2 or more types of fluorescent substance, and the weight ratio of the various fluorescent substance contained in each resin sealing body becomes equal, respectively. The resin encapsulant contains two or more types of phosphors, and at least the first resin encapsulant has a lower sedimentation of the phosphor relative to the resin than other phosphors. You may be comprised so that a comparatively small fluorescent substance may be included.

本発明の発光装置は、第1の樹脂封止体が、光散乱材となる微粒子を含むことが好ましい。   In the light-emitting device of the present invention, it is preferable that the first resin encapsulant includes fine particles serving as a light scattering material.

本発明の発光装置はまた、第1の樹脂封止体および第2の樹脂封止体の少なくともいずれかに、蛍光体の沈降を防止する微粒子を含むことが好ましい。この場合、微粒子は、樹脂封止体を形成する樹脂と同一の樹脂からなる微粒子であることがより好ましい。   In the light-emitting device of the present invention, it is preferable that at least one of the first resin sealing body and the second resin sealing body includes fine particles that prevent sedimentation of the phosphor. In this case, the fine particles are more preferably fine particles made of the same resin as the resin forming the resin sealing body.

本発明によれば、色温度ばらつきが低減できる発光装置を提供することができる。   According to the present invention, it is possible to provide a light emitting device capable of reducing color temperature variation.

図1は、本発明の好ましい第1の例の発光装置1を模式的に示す上面図であり、図2は、図1に示す発光装置1の樹脂封止体5a,5bを形成する前の状態を模式的に示す上面図である。また図3は、図1に示す発光装置1の切断面線III−IIIからみた断面図である。本発明の発光装置1は、図1〜図3に示す例のように、配線パターン4が形成された基板2と、基板2上に実装され、配線パターン4に電気的に接続された発光素子3と、発光素子3を覆うように形成された樹脂封止体5を基本的に備える。本発明の発光装置1は、このような基本構成において、樹脂封止体5が、発光素子3を覆うように形成された第1の樹脂封止体5aと、その上に積層された第2の樹脂封止体5bとから構成され、第1の樹脂封止体および第2の樹脂封止体が同一種類の樹脂で形成され、かつ、第2の樹脂封止体が、第1の樹脂封止体よりも高い濃度で蛍光体を含有するものであることを特徴とする。   FIG. 1 is a top view schematically showing a light emitting device 1 of a preferred first example of the present invention, and FIG. 2 is a diagram before forming the resin sealing bodies 5a and 5b of the light emitting device 1 shown in FIG. It is a top view which shows a state typically. FIG. 3 is a cross-sectional view of the light emitting device 1 shown in FIG. The light emitting device 1 of the present invention includes a substrate 2 on which a wiring pattern 4 is formed, and a light emitting element mounted on the substrate 2 and electrically connected to the wiring pattern 4 as in the examples shown in FIGS. 3 and the resin sealing body 5 formed so as to cover the light emitting element 3 are basically provided. In the light emitting device 1 of the present invention, in such a basic configuration, the resin sealing body 5 includes the first resin sealing body 5a formed so as to cover the light emitting element 3, and the second resin sealing body 5a stacked thereon. The first resin sealing body and the second resin sealing body are formed of the same type of resin, and the second resin sealing body is the first resin. It is characterized by containing a phosphor at a higher concentration than the sealing body.

本発明の発光装置1に用いられる基板2は、特に制限されるものではないが、熱膨張率が小さく、熱伝導性が高く、かつ光反射率が高い材料で形成されてなることが好ましい。このような基板の形成に好適に用いられる材料としては、たとえば酸化アルミニウム(アルミナ)、窒化アルミニウム、ボロンナイトライド、窒化ケイ素、酸化マグネシウム、フォルテライト、ステアタイト、低温焼結セラミックから選ばれるいずれか、または、これらの複合材料が挙げられる。上述した中でも、熱伝導率が20W/m・K程度の放熱性が良好で、かつ、可変光の波長に対して90%程度の高反射率特性を有し、安価で加工しやすい酸化アルミニウムで形成された基板が好ましい。また、機械的な強度、熱伝導率が高い鉄などで形成された金属板にセラミック誘導体をコーティングした、所謂ホーロ基板、金属であるアルミニウム基板などを基板2として用いても勿論よい。   Although the board | substrate 2 used for the light-emitting device 1 of this invention is not restrict | limited in particular, It is preferable that it is formed with a material with a small thermal expansion coefficient, a high thermal conductivity, and a high light reflectance. As a material suitably used for forming such a substrate, for example, any one selected from aluminum oxide (alumina), aluminum nitride, boron nitride, silicon nitride, magnesium oxide, fortelite, steatite, and low-temperature sintered ceramics. Or a composite material thereof. Among the above, aluminum oxide has good heat dissipation with a thermal conductivity of about 20 W / m · K, high reflectivity characteristics of about 90% with respect to the wavelength of variable light, and is inexpensive and easy to process. A formed substrate is preferred. Of course, a so-called hollow substrate, a metal aluminum substrate, or the like obtained by coating a metal plate made of iron or the like having high mechanical strength and thermal conductivity with a ceramic derivative may be used as the substrate 2.

基板2の大きさおよび厚みは特に制限されないが、図1および図2には、放熱性と機械強度の観点から、2cm角程度の大きさで、かつ厚みが1〜3mm程度の基板2を用いた例を示している。また、図1および図2に示すように、発光装置1を灯具または放熱フィンなどにネジ止め固定するための取り付け穴6(たとえば直径3mm程度)が形成されてなることが好ましい。   Although the size and thickness of the substrate 2 are not particularly limited, the substrate 2 having a size of about 2 cm square and a thickness of about 1 to 3 mm is used in FIGS. 1 and 2 from the viewpoint of heat dissipation and mechanical strength. An example was shown. Moreover, as shown in FIGS. 1 and 2, it is preferable that an attachment hole 6 (for example, a diameter of about 3 mm) for fixing the light emitting device 1 to a lamp or a radiating fin with screws is formed.

本発明の発光装置1に用いられる発光素子3としては、当分野において通常用いられる発光素子を特に制限なく用いることができる。このような発光素子としては、たとえば、サファイヤ基板、ZnO(酸化亜鉛)基板、GaN基板、Si基板、SiC基板、スピネルなどの基板上に、GaN(窒化ガリウム)系化合物半導体、ZnO(酸化亜鉛)系化合物半導体などの材料を成長させた青色LED(発光ダイオード)チップ、InGaAlP系化合物半導体チップ、AlGaAs系化合物半導体LEDチップなどの半導体発光素子を挙げることができる。中でも、絶縁性基板に片面2電極構造を容易に作製でき、結晶性のよい窒化物半導体を量産性よく形成できることから、サファイヤ基板上に窒化ガリウム系化合物半導体を成長させた青色LEDを発光素子として用いることが好ましい。   As the light emitting element 3 used in the light emitting device 1 of the present invention, a light emitting element usually used in this field can be used without particular limitation. Examples of such light-emitting elements include sapphire substrates, ZnO (zinc oxide) substrates, GaN substrates, Si substrates, SiC substrates, spinels, GaN (gallium nitride) -based compound semiconductors, and ZnO (zinc oxide). Examples thereof include semiconductor light emitting devices such as blue LED (light emitting diode) chips, InGaAlP compound semiconductor chips, and AlGaAs compound semiconductor LED chips on which materials such as compound compound semiconductors are grown. In particular, a single-sided two-electrode structure can be easily formed on an insulating substrate, and a nitride semiconductor with good crystallinity can be formed with high productivity. Therefore, a blue LED in which a gallium nitride compound semiconductor is grown on a sapphire substrate is used as a light emitting element. It is preferable to use it.

図2の、発光素子3は、基板2上に形成された直線状の配線パターン4を挟んで、配線パターン4に沿って直線状に並ぶように複数個搭載されてなる例を示している。本発明の発光装置1における配線パターン4の数は、特に制限されるものではないが、アノード用配線パターン、カソード用配線パターンがそれぞれ1本ずつ必要であるため、少なくとも2本以上の配線パターンが必要であり、発光素子3(好適にはGaN系の青色LED)の直列、並列の構成に応じて、適宜、選択される。図2には、発光素子3として、240μm×480μm角、厚み100μm程度のサファイヤ基板上に形成された発光波長460nm帯のGaN系の青色LED20個が、50μm厚の金−パラジウム合金、500μm厚の金の積層構造で形成された3本の直線状の配線パターン4a,4b,4cに沿って直線状に2列(1列に10個ずつ)に並んで搭載された例が示されている。   2 shows an example in which a plurality of light emitting elements 3 are mounted so as to be arranged in a straight line along the wiring pattern 4 with a linear wiring pattern 4 formed on the substrate 2 interposed therebetween. The number of wiring patterns 4 in the light emitting device 1 of the present invention is not particularly limited. However, since one anode wiring pattern and one cathode wiring pattern are required, at least two wiring patterns are required. It is necessary and is appropriately selected depending on the series and parallel configurations of the light-emitting elements 3 (preferably GaN-based blue LEDs). In FIG. 2, 20 GaN-based blue LEDs having a light emission wavelength of 460 nm band formed on a sapphire substrate having a 240 μm × 480 μm square and a thickness of about 100 μm as light-emitting elements 3 are 50 μm thick gold-palladium alloy, 500 μm thick An example is shown in which three linear wiring patterns 4a, 4b, and 4c formed in a gold stacked structure are mounted in a straight line in two rows (10 in a row).

図2および図3には、一方の面にプラス電極部およびマイナス電極部が形成された発光素子3が用いられ、このような発光素子3を、プラス電極部およびマイナス電極部が形成された面を上面として基板2上の配線パターン4の間に樹脂ペースト7(たとえばシリコーン系樹脂製の樹脂ペースト)を介して搭載され、配線パターン4と電気的に接続された例が示されている。なお、配線パターン4と発光素子3との電気的接続は、たとえば発光素子3のプラス電極部およびマイナス電極部をそれぞれ配線パターン4にボンディングワイヤWをボンディングすることで実現される。図2および図3に示す例では、2列に並んで搭載された発光素子3のうち、一方の列の発光素子3のマイナス電極部と配線パターン4aとボンディングワイヤWによってワイヤボンドされ、この配線パターン4aの終端部には発光装置用のマイナス電極パッド4a1が設けられており、他方の列の発光素子3のプラス電極部と配線パターン4bとがボンディングワイヤWによってワイヤボンドされ、この配線パターン4bの終端部には発光装置用のプラス電極パッド4b1が設けられている。また、配線パターン4aと配線パターン4bとの間には、配線パターン4cが形成され、2列に並んで搭載された発光素子3のうち、一方の列の発光素子3のプラス電極部と、他方の列の発光素子3のマイナス電極部とが、配線パターン4cにボンディングワイヤWを介して電気的に接続される。   2 and 3, a light emitting element 3 having a positive electrode portion and a negative electrode portion formed on one surface is used. Such a light emitting element 3 is a surface on which a positive electrode portion and a negative electrode portion are formed. As shown in FIG. 2, an example is shown in which a resin paste 7 (for example, a resin paste made of a silicone resin) is mounted between the wiring patterns 4 on the substrate 2 and electrically connected to the wiring patterns 4. Note that the electrical connection between the wiring pattern 4 and the light emitting element 3 is realized, for example, by bonding bonding wires W to the wiring pattern 4 at the plus electrode portion and the minus electrode portion of the light emitting element 3, respectively. In the example shown in FIG. 2 and FIG. 3, among the light emitting elements 3 mounted in two rows, wire bonding is performed by the negative electrode portion of the light emitting element 3 in one row, the wiring pattern 4a, and the bonding wire W. A minus electrode pad 4a1 for the light emitting device is provided at the terminal portion of the pattern 4a, and the plus electrode portion of the light emitting element 3 in the other row and the wiring pattern 4b are wire-bonded by a bonding wire W, and this wiring pattern 4b Is provided with a positive electrode pad 4b1 for a light emitting device. Further, a wiring pattern 4c is formed between the wiring pattern 4a and the wiring pattern 4b, and among the light emitting elements 3 mounted in two rows, the positive electrode portion of the light emitting element 3 in one column and the other The negative electrode portions of the light emitting elements 3 in this row are electrically connected to the wiring pattern 4c via bonding wires W.

ボンディングワイヤWとしては、当分野において用いられている適宜の金属細線を特に制限されることなく用いることができる。このような金属細線としては、たとえば金線、アルミニウム線、銅線、白金線などが挙げられるが、中でも腐食が少なく、耐湿性、耐環境性、密着性、電気伝導性、熱伝導性、伸び率が良好であり、ボールができやすいことから、金線をボンディングワイヤWとして用いることが好ましい。なお、ボンディングワイヤWは、数10μmの径のものが好適に用いられ得る。   As the bonding wire W, a suitable fine metal wire used in this field can be used without particular limitation. Examples of such fine metal wires include gold wires, aluminum wires, copper wires, platinum wires, etc., among which there is little corrosion, moisture resistance, environmental resistance, adhesion, electrical conductivity, thermal conductivity, elongation. It is preferable to use a gold wire as the bonding wire W because the rate is good and the ball is easily formed. The bonding wire W having a diameter of several tens of μm can be preferably used.

本発明の発光装置1においては、図3に示すように、発光素子3を覆うようにして形成された樹脂封止体5を備え、この樹脂封止体5が、発光素子3を含む第1の樹脂封止体5aと第2の樹脂封止体5bとで構成される。本発明における第1の樹脂封止体5aと第2の樹脂封止体5bとは、同一種類の樹脂で形成されることを特徴の1つとする。これによって、異なる種類の樹脂を用いて2層の樹脂封止体を形成した場合とは異なり、2層の樹脂界面で発生する界面反射による発光効率の低下を防止することができ、また、2層の樹脂の線膨張係数の違いによる樹脂剥離などの信頼性の問題を防止することができる。   As shown in FIG. 3, the light emitting device 1 of the present invention includes a resin sealing body 5 formed so as to cover the light emitting element 3, and the resin sealing body 5 includes a first light emitting element 3. The resin sealing body 5a and the second resin sealing body 5b. One feature of the first resin sealing body 5a and the second resin sealing body 5b in the present invention is that they are formed of the same type of resin. Thus, unlike the case where a two-layer resin sealing body is formed using different types of resins, it is possible to prevent a decrease in luminous efficiency due to interface reflection occurring at the two-layer resin interface. Reliability problems such as resin peeling due to the difference in the linear expansion coefficient of the resin of the layer can be prevented.

本発明における第1の樹脂封止体5aおよび第2の樹脂封止体5bを形成する樹脂材料としては、透光性を有する材料であれば特に制限されるものではなく、当分野において広く用いられた適宜の材料を用いて形成することができる。このような樹脂材料としては、たとえばシリコーン系樹脂、エポキシ系樹脂、ユリア系樹脂などの耐候性に優れた透光性樹脂材料が挙げられるが、耐候性の観点から、シリコーン系樹脂またはエポキシ系樹脂が好ましい。   The resin material for forming the first resin sealing body 5a and the second resin sealing body 5b in the present invention is not particularly limited as long as it is a material having translucency, and is widely used in this field. It can be formed using any appropriate material. Examples of such resin materials include translucent resin materials having excellent weather resistance such as silicone resins, epoxy resins, urea resins, etc., but from the viewpoint of weather resistance, silicone resins or epoxy resins are used. Is preferred.

本発明の発光装置1はまた、第2の樹脂封止体5bが、第1の樹脂封止体5aよりも高い濃度で蛍光体を含有することも特徴とする。本発明の発光装置1において、発光素子3(好適には青色LED)より放射された光が、第2の樹脂封止体5bに散乱されるよう、第1の樹脂封止体5aと第二の樹脂封止体5bとの蛍光体の濃度の比は、0.15以上程度に設定されることが好ましい。   The light emitting device 1 of the present invention is also characterized in that the second resin sealing body 5b contains a phosphor at a higher concentration than the first resin sealing body 5a. In the light emitting device 1 of the present invention, the first resin encapsulant 5a and the second resin encapsulant 5a are scattered so that the light emitted from the light emitting element 3 (preferably a blue LED) is scattered by the second resin encapsulant 5b. The ratio of the phosphor concentration to the resin sealing body 5b is preferably set to about 0.15 or more.

本発明の発光装置では、第2の樹脂封止体が、第1の樹脂封止体よりも高い濃度で蛍光体を含有するのであれば、図3に示す例のように第1の樹脂封止体5aが蛍光体を含まず、第2の樹脂封止体5bのみが蛍光体8を含むように実現されていてもよい(図3に示す例)。第1の樹脂封止体5aが蛍光体を含まず、第2の樹脂封止体5bのみが蛍光体8を含むように実現されることで、発光素子3(好適には青色LED)より放射された光の一部が第1の樹脂封止体中を伝播するため、効率は若干低下するが、色度のばらつきを抑制できる(蛍光体の樹脂に対する沈降の影響を最も低減できる)というような利点がある。   In the light emitting device of the present invention, as long as the second resin encapsulant contains a phosphor at a higher concentration than the first resin encapsulant, the first resin encapsulant as in the example shown in FIG. It may be realized that the stop body 5a does not include a phosphor and only the second resin sealing body 5b includes the phosphor 8 (example shown in FIG. 3). By realizing that the first resin sealing body 5a does not include a phosphor and only the second resin sealing body 5b includes the phosphor 8, radiation is emitted from the light emitting element 3 (preferably a blue LED). Since some of the emitted light propagates through the first resin sealing body, the efficiency is slightly reduced, but variation in chromaticity can be suppressed (the effect of sedimentation of the phosphor on the resin can be reduced most). There are significant advantages.

上述したような構造を備えることによって、色温度ばらつきが低減された発光装置が提供される。具体的には、本発明者らが、図1〜図3に示した発光装置1を具体的に作製したサンプルと、樹脂封止体を黄色蛍光体(2価のユーロピウムが賦活されている(Sr,Ba,Ca)2SiO4)のみを分散させたシリコーン系樹脂単層とした以外は同様の比較サンプルとをそれぞれ100個ずつ作製し、通常用いられる色度計を用いて色温度のばらつきを測定したところ、サンプルでは5010K±70Kであったのに対し、比較サンプルでは5015K±300Kであった。なお、サンプルの全光束の平均値は170lmであり、比較サンプルの全光束の平均値200lmと比べて若干低いものであった。 By providing the structure as described above, a light-emitting device with reduced color temperature variation is provided. Specifically, the inventors specifically prepared a sample of the light-emitting device 1 shown in FIGS. 1 to 3 and a resin encapsulant with a yellow phosphor (divalent europium is activated ( 100 pieces of the same comparative samples are prepared except that the silicone resin single layer in which only Sr, Ba, Ca) 2 SiO 4 ) is dispersed is used, and the color temperature is varied using a commonly used chromaticity meter. Of the sample was 5010K ± 70K, while that of the comparative sample was 5015K ± 300K. The average value of the total luminous flux of the sample was 170 lm, which was slightly lower than the average value of the total luminous flux of the comparative sample, 200 lm.

比較サンプルでみられたような色温度ばらつきは、樹脂封止体を作製するに際しての樹脂塗布時における蛍光体の沈降に起因するものと考えられ、本発明の発光装置では、この蛍光体の沈降を抑制することで、色温度ばらつきを低減できるものと考えられる。ここで、図4は、上述したように本発明の発光装置を具体的に作製した3個のサンプル(1)〜(3)と、黄色蛍光体のみを分散させたシリコーン系樹脂単層にて樹脂封止体を形成したこと以外は同様の3個の比較サンプル(1)〜(3)とについて、蛍光体が分散された樹脂塗布後の経時的な色温度変化を測定した結果を示すグラフであり、縦軸は色温度(K)、横軸は樹脂塗布後の経過時間(分)である。なお、サンプル(1)〜(3)については、樹脂塗布後の経過時間は、第2の樹脂封止体を形成する樹脂を塗布した後の経過時間を表している。図4から、樹脂塗布後の時間経過に伴って、サンプル、比較サンプル共に色温度は変化してしまうが、比較サンプルでは5時間後で初期値に対して色温度が600K程度も変動してしまうのに対して、サンプルでは、初期値に対して100K程度の色温度の変動に抑制できていることが分かる。   The color temperature variation as seen in the comparative sample is considered to be caused by the sedimentation of the phosphor during resin application when producing the resin sealing body. In the light emitting device of the present invention, this phosphor sedimentation It is considered that variation in color temperature can be reduced by suppressing. Here, FIG. 4 shows three samples (1) to (3) in which the light emitting device of the present invention is specifically manufactured as described above, and a silicone resin single layer in which only the yellow phosphor is dispersed. The graph which shows the result of having measured the color temperature change with time after resin application in which fluorescent substance was dispersed about three similar comparative samples (1) to (3) except that a resin sealing body was formed The vertical axis represents the color temperature (K), and the horizontal axis represents the elapsed time (minutes) after resin application. In addition, about sample (1)-(3), the elapsed time after resin application represents the elapsed time after apply | coating resin which forms the 2nd resin sealing body. From FIG. 4, the color temperature of both the sample and the comparative sample changes with the lapse of time after the resin application, but the color temperature changes by about 600 K with respect to the initial value after 5 hours in the comparative sample. On the other hand, in the sample, it can be seen that the variation of the color temperature of about 100K with respect to the initial value can be suppressed.

ここで、図5(a)は、比較サンプルでの樹脂塗布直後における発光素子100近傍の蛍光体の沈降状態を模式的に示す図であり、図5(b)は比較サンプルでの樹脂塗布後一定時間経過後における発光素子100近傍での蛍光体の沈降状態を模式的に示す図である。これに対し、図6(a)は、サンプルでの樹脂塗布直後における発光素子3近傍の蛍光体8の沈降状態を模式的に示す図であり、図6(b)はサンプルでの樹脂塗布後一定時間経過後における発光素子3近傍での蛍光体8の沈降状態を模式的に示す図である。なお、図6(a),(b)には、図3に示した例のように、第1の樹脂封止体5aが蛍光体を含有せず、第2の樹脂封止体5bのみが蛍光体8を含有することによって、第2の樹脂封止体5bが、第1の樹脂封止体5aよりも高い濃度で蛍光体を含有するように実現された例を示している。なお、図5(a)、図5(b)、図6(a)、図6(b)において、実効的に、青色光を吸収し得る可能性のある蛍光体(図5では蛍光体101、図6では蛍光体8)を白抜きの○で、青色光を吸収し得ない蛍光体(図5における蛍光体102)を斜線で塗った○で示している。   Here, FIG. 5A is a diagram schematically showing the sedimentation state of the phosphor in the vicinity of the light-emitting element 100 immediately after resin application in the comparative sample, and FIG. 5B is after resin application in the comparative sample. It is a figure which shows typically the sedimentation state of the fluorescent substance in the vicinity of the light emitting element 100 after progress for a fixed time. On the other hand, FIG. 6A is a diagram schematically showing the sedimentation state of the phosphor 8 in the vicinity of the light emitting element 3 immediately after the resin application with the sample, and FIG. 6B is the diagram after the resin application with the sample. It is a figure which shows typically the sedimentation state of the fluorescent substance 8 in the vicinity of the light emitting element 3 after progress for a fixed time. 6A and 6B, as in the example shown in FIG. 3, the first resin sealing body 5a does not contain a phosphor, and only the second resin sealing body 5b is included. In this example, the phosphor 8 is contained so that the second resin encapsulant 5b contains the phosphor at a higher concentration than the first resin encapsulant 5a. 5A, FIG. 5B, FIG. 6A, and FIG. 6B, a phosphor that can effectively absorb blue light (phosphor 101 in FIG. 5). In FIG. 6, the phosphor 8) is indicated by white circles, and the phosphor that cannot absorb blue light (phosphor 102 in FIG. 5) is indicated by hatching.

図5(a),(b)に示すように、比較サンプルでは、発光素子(青色LED)100、特に発光素子の発光領域100a近傍の蛍光体が、樹脂塗布後の時間経過につれて、沈降により濃度が低くなってしまう。この結果として、発光素子100から発せられた青色光103が吸収され得る実効的な蛍光体101の数が減ってしまうことに起因する。実験結果からも、図4における色温度の変化は、時間が経過するにつれ色温度が高い方にシフトしている(蛍光体の発光部である黄色と発光ダイオードの発光色の混色で白色を得ているため、青色の光が外部に多くでると、色温度が高い方にシフトする。)。このようなメカニズムによって、比較サンプルでは、蛍光体が沈降し、発光装置全体の経時的な色温度変動が発生してしまうと考えられる。   As shown in FIGS. 5A and 5B, in the comparative sample, the concentration of the phosphor in the vicinity of the light emitting element (blue LED) 100, particularly in the vicinity of the light emitting region 100a of the light emitting element, is decreased by sedimentation as time passes after the resin application. Will be lower. As a result, the number of effective phosphors 101 that can absorb the blue light 103 emitted from the light emitting element 100 is reduced. From the experimental results, the change in the color temperature in FIG. 4 is shifted to a higher color temperature as time passes (white is obtained by mixing the yellow light emitting part of the phosphor and the light emitting color of the light emitting diode). Therefore, if there is a lot of blue light outside, the color temperature will shift to the higher side.) Due to such a mechanism, in the comparative sample, the phosphor settles, and it is considered that the color temperature variation with time of the entire light emitting device occurs.

これに対し、本発明の発光装置を具体的に作製したサンプルでは、図6(a),(b)に示すように、第2の樹脂封止体5b中の蛍光体8の沈降の発生に関わらず、発光素子(青色LED)から発せられた青色光9に対する、実効的な蛍光体の数は変化しにくい。これによって、経時的な色温度変動が抑制されるため、色温度ばらつきが低減された発光装置が実現できることが分かる。   On the other hand, in the sample in which the light-emitting device of the present invention is specifically manufactured, as shown in FIGS. 6A and 6B, the sedimentation of the phosphor 8 in the second resin encapsulant 5b occurs. Regardless, the effective number of phosphors for the blue light 9 emitted from the light emitting element (blue LED) is unlikely to change. As a result, the color temperature variation with time is suppressed, so that it is understood that a light emitting device with reduced color temperature variation can be realized.

本発明の発光装置1において、第1の樹脂封止体5aの厚みは、発光素子3の周りを覆い得るのであれば特に制限されないが、150〜250μmの範囲内が好ましい。第1の樹脂封止体5aの厚みが150μm未満である場合には、一般に用いられる発光素子3(好適には青色LED)の厚みより第1の樹脂封止体5aの厚みが薄くなってしまい、本発明の効果が低減してしまう傾向にあるためであり、また、250μmを超える場合には、第1および第2の樹脂封止体の全体の厚みが厚くなり、発光装置1の温度変化による樹脂剥れが発生しやすくなる傾向にあるためである。図3には、第1の樹脂封止体5aの厚みを200μmとした例が示されている。   In the light emitting device 1 of the present invention, the thickness of the first resin sealing body 5a is not particularly limited as long as it can cover the periphery of the light emitting element 3, but is preferably in the range of 150 to 250 μm. When the thickness of the 1st resin sealing body 5a is less than 150 micrometers, the thickness of the 1st resin sealing body 5a will become thinner than the thickness of the light emitting element 3 (preferably blue LED) generally used. This is because the effect of the present invention tends to be reduced, and when it exceeds 250 μm, the entire thickness of the first and second resin sealing bodies is increased, and the temperature change of the light emitting device 1 is increased. This is because the resin tends to easily peel off. FIG. 3 shows an example in which the thickness of the first resin sealing body 5a is 200 μm.

また本発明の発光装置1において、第2の樹脂封止体5bの厚みについても特に制限されるものではないが、200〜350μmの範囲内が好ましい。第2の樹脂封止体5bの厚みが200μm未満である場合には、第1の樹脂封止体5a上に均一に塗布することが困難となりやすくなる傾向にあるためであり、また、350μmを超える場合には、第2の樹脂封止体5bが剥離してしまう虞があるためである。なお、樹脂封止体5全体の剥離を防止する観点からは、第1の樹脂封止体5aおよび第2の樹脂封止体5bの全厚みが0.6μm以下であることが好ましい。   Moreover, in the light-emitting device 1 of this invention, although it does not restrict | limit especially also about the thickness of the 2nd resin sealing body 5b, The inside of the range of 200-350 micrometers is preferable. This is because when the thickness of the second resin sealing body 5b is less than 200 μm, it tends to be difficult to uniformly apply the first resin sealing body 5a on the first resin sealing body 5a. This is because if it exceeds, the second resin sealing body 5b may be peeled off. In addition, from the viewpoint of preventing peeling of the entire resin sealing body 5, it is preferable that the total thickness of the first resin sealing body 5a and the second resin sealing body 5b is 0.6 μm or less.

本発明の発光装置1に用いられる蛍光体8としては、たとえばCe:YAG(セリウム賦活イットリウム・アルミニウム・ガーネット)蛍光体、Eu:BOSE(ユーロピウム賦活バリウム・ストロンチウム・オルソシリケート)蛍光体、Eu:SOSE(ユーロピウム賦活ストロンチウム・バリウム・オルソシリケート)蛍光体、ユーロピウム賦活αサイアロン蛍光体などを好適に用いることができるが、これらに制限されるものではない。また、蛍光体8の量(濃度)も第1の樹脂封止体5aよりも第2の樹脂封止体5bの方が多くなるように含有されているのであれば、所望の色温度に応じて適宜選択することができる。たとえば、図3に示す例のように第2の樹脂封止体5bのみに蛍光体8を含有させる場合、蛍光体8としてピーク波長560nmの黄色を発光するEu:SOSE(ユーロピウム賦活ストロンチウム・バリウム・オルソシリケート)蛍光体(2価のユーロピウムが賦活された(Sr,Ba,Ca)2SiO4蛍光体)を、発光装置の色温度が5000Kとなるような含有量を選択する場合が例示される。 Examples of the phosphor 8 used in the light emitting device 1 of the present invention include Ce: YAG (cerium activated yttrium, aluminum, garnet) phosphor, Eu: BOSE (europium activated barium, strontium, orthosilicate) phosphor, Eu: SOSE. (Europium-activated strontium / barium / orthosilicate) phosphors, europium-activated α-sialon phosphors and the like can be preferably used, but are not limited thereto. Further, if the amount (concentration) of the phosphor 8 is contained so that the second resin sealing body 5b is larger than the first resin sealing body 5a, it corresponds to a desired color temperature. Can be selected as appropriate. For example, when the phosphor 8 is contained only in the second resin sealing body 5b as in the example shown in FIG. 3, Eu: SOSE (europium activated strontium barium. Orthosilicate) phosphor (divalent europium activated (Sr, Ba, Ca) 2 SiO 4 phosphor) is selected when the content is selected so that the color temperature of the light emitting device is 5000K. .

図7は、本発明の好ましい第2の例の発光装置21を模式的に示す断面図である。図7に示す例の発光装置21は、第2の樹脂封止体5bに蛍光体22が含有され、さらに第1の樹脂封止体5aにも蛍光体23が含有されていること以外は図3に示した例の発光装置1と同様であり、同様の構成を有する部分については同一の参照符を付して説明を省略する。本発明の発光装置は、第2の樹脂封止体が、第1の樹脂封止体よりも高い濃度で蛍光体を含有するように構成されているのであれば、図7に示す例のように第1の樹脂封止体5a、第2の樹脂封止体5bの両方に蛍光体23,22が含有されていてもよい。   FIG. 7 is a cross-sectional view schematically showing a light emitting device 21 of a preferred second example of the present invention. The light emitting device 21 of the example shown in FIG. 7 is a diagram except that the phosphor 22 is contained in the second resin sealing body 5b and the phosphor 23 is also contained in the first resin sealing body 5a. 3 are the same as those of the light emitting device 1 of the example shown in FIG. 3, and parts having the same configuration are denoted by the same reference numerals and description thereof is omitted. If the 2nd resin sealing body is comprised so that the 2nd resin sealing body may contain fluorescent substance with a density | concentration higher than a 1st resin sealing body, it will be like the example shown in FIG. The phosphors 23 and 22 may be contained in both the first resin sealing body 5a and the second resin sealing body 5b.

このように第1の樹脂封止体、第2の樹脂封止体が両方に蛍光体を含むように実現される場合、たとえば蛍光体23,22として同じ種類の蛍光体(たとえば2価のユーロピウムで賦活された(Sr,Ba,Ca)2SiO4蛍光体)についての所望の色温度となるような含有量のうち、たとえばその20%程度を第1の樹脂封止体5aに、その80%程度を第2の樹脂封止体5bに含有させるようにして、第2の樹脂封止体5bに含有される蛍光体22の量が第1の樹脂封止体5aに含有される蛍光体23よりも多くなるようにする。このようにすることで、第1の樹脂封止体5a、第2の樹脂封止体5bの両方に蛍光体22,2323,22を含有させつつ、所望の色温度に調整された発光装置21を実現することができる。 Thus, when it implement | achieves so that a 1st resin sealing body and a 2nd resin sealing body may contain a fluorescent substance in both, fluorescent substance of the same kind as fluorescent substance 23,22 (for example, bivalent europium, for example) For example, about 20% of the content of the (Sr, Ba, Ca) 2 SiO 4 phosphor activated by (1) is a desired color temperature, and the first resin encapsulant 5a is 80 The amount of the phosphor 22 contained in the second resin encapsulant 5b is contained in the first resin encapsulant 5a so that about 2% is contained in the second resin encapsulant 5b. It should be more than 23. By doing so, the light emitting device 21 adjusted to a desired color temperature while containing the phosphors 22, 2323, 22 in both the first resin sealing body 5 a and the second resin sealing body 5 b. Can be realized.

図7に示すような発光装置21でも、上述したように蛍光体の沈降による色温度のばらつきを抑えることができる。また、図7に示すような発光装置21では、発光素子3(青色LED)から発せられた青色光は、第1の樹脂封止体5aに含有される少量の蛍光体23によって黄色光に変換されるか、または青色光として散乱される。この散乱された青色光は、第2の樹脂封止体5bに含有される蛍光体22によって黄色光に変換されるか、または青色光として発光装置から出る。第1の樹脂封止体5a中で蛍光体23によって黄色に変換された光も、第1の樹脂封止体に含まれる他の蛍光体23で散乱され、第2の樹脂封止体5bを透過し、発光装置21から出る。よって、第1の樹脂封止体5a中を伝播した青色光が、発光装置の端部からそのまま外部に直接放出されるのを防ぐことができる。また、図7に示したように第1の樹脂封止体5a、第2の樹脂封止体5bの両方に蛍光体23,22を含有する構成とすることで、図3に示した例の発光装置1の全光束がたとえば170lm程度であるのに対し、全光束が200lm程度の発光装置21を実現することができる。   Also in the light emitting device 21 as shown in FIG. 7, as described above, the variation in the color temperature due to the settling of the phosphor can be suppressed. Further, in the light emitting device 21 as shown in FIG. 7, blue light emitted from the light emitting element 3 (blue LED) is converted into yellow light by a small amount of phosphor 23 contained in the first resin sealing body 5a. Or scattered as blue light. The scattered blue light is converted into yellow light by the phosphor 22 contained in the second resin sealing body 5b or exits from the light emitting device as blue light. The light converted into yellow by the phosphor 23 in the first resin sealing body 5a is also scattered by the other phosphors 23 included in the first resin sealing body, and the second resin sealing body 5b Transmits and exits the light emitting device 21. Therefore, it is possible to prevent the blue light propagating through the first resin sealing body 5a from being directly emitted to the outside as it is from the end of the light emitting device. Moreover, as shown in FIG. 7, it is set as the structure which contains the fluorescent substance 23,22 in both the 1st resin sealing body 5a and the 2nd resin sealing body 5b, and is the example shown in FIG. While the total luminous flux of the light emitting device 1 is about 170 lm, for example, the light emitting device 21 with the total luminous flux of about 200 lm can be realized.

また図8は、本発明の好ましい第3の例の発光装置31を模式的に示す断面図である。図8に示す例の発光装置31は、第2の樹脂封止体5bに2種類の蛍光体32,33が含有され、また第1の樹脂封止体5aにも2種類の蛍光体34,35が含有されていること以外は図3に示した例の発光装置1と同様であり、同様の構成を有する部分については同一の参照符を付して説明を省略する。上述してきたような発光素子である青色LEDと1種類の蛍光体との組み合わせでは、発光装置の演色性を高くしたり、電球色などの様々な色合いの発光色を得るのは困難であり、このような発光装置を実現するためには、青色LEDと2種類以上の蛍光体とを組み合わせる必要がある。このように2種類以上の蛍光体を用いる場合、第1の樹脂封止体および第2の樹脂封止体が共に2種以上の蛍光体を含み、各樹脂封止体にそれぞれ含まれる各種の蛍光体同士の重量比率が等くなるように構成されることが、好ましい。   FIG. 8 is a cross-sectional view schematically showing a light emitting device 31 of a preferred third example of the present invention. The light emitting device 31 of the example shown in FIG. 8 includes two types of phosphors 32 and 33 in the second resin encapsulant 5b, and two types of phosphors 34 and 33 in the first resin encapsulant 5a. 3 is the same as the light-emitting device 1 of the example shown in FIG. 3 except that 35 is contained, and the same reference numerals are given to portions having the same configuration and the description thereof is omitted. With the combination of the blue LED, which is a light emitting element as described above, and one kind of phosphor, it is difficult to increase the color rendering properties of the light emitting device or to obtain light emission colors of various shades such as a light bulb color, In order to realize such a light emitting device, it is necessary to combine a blue LED and two or more kinds of phosphors. When two or more kinds of phosphors are used in this way, both the first resin sealing body and the second resin sealing body include two or more kinds of phosphors, and various kinds of resins included in each resin sealing body, respectively. It is preferable that the weight ratio between the phosphors be equal.

蛍光体の組み合わせの一例として、たとえばピーク波長560nmの黄色を発光する黄色蛍光体(たとえば2価のユーロピウムが賦活された(Sr,Ba,Ca)2SiO4蛍光体)32,34と、ピーク波長640nmの赤色を発光する赤色蛍光体(たとえば2価のユーロピウムが賦活された(M21-bEub)M3SiN3蛍光体(式中、M2はMg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示し、M3はAl、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の元素を示し、bは0.001≦b≦0.05を満足する数である))33,35との組み合わせが挙げられるが、これらの限定されるものでは勿論ない。この際、第1の樹脂封止体5aに含有される黄色蛍光体34と第2の樹脂封止体5bに含有される黄色蛍光体32との重量比率が、第1の樹脂封止体5aに含有される赤色蛍光体35と第2の樹脂封止体5bに含有される赤色蛍光体33との重量比率が等しくなるように構成する(たとえば、第1の樹脂封止体5aに含有される各蛍光体の重量比率が所望とされる色温度を得るのに必要な各蛍光体量の30%程度、第2の樹脂封止体5bに含有される各蛍光体の重量比率が所望とされる色温度を得るのに必要な各蛍光体量の70%程度)。すなわち、第1の樹脂封止体5a、第2の樹脂封止体5bのそれぞれに対して2種類の蛍光体同士の重量比率を一定にしておき、かつ、第2の樹脂封止体5bが第1の樹脂封止体5aよりも高い濃度で各種の蛍光体を含有するように調整する。 As an example of the combination of phosphors, for example, yellow phosphors emitting yellow light having a peak wavelength of 560 nm (for example, bivalent europium activated (Sr, Ba, Ca) 2 SiO 4 phosphors) 32 and 34, and peak wavelengths Red phosphor emitting 640 nm red (for example, (M2 1-b Eu b ) M3SiN 3 phosphor activated with divalent europium (wherein M2 is at least one selected from Mg, Ca, Sr and Ba) M3 represents at least one element selected from Al, Ga, In, Sc, Y, La, Gd and Lu, and b is a number satisfying 0.001 ≦ b ≦ 0.05. )) A combination with 33 and 35 is mentioned, but it is of course not limited thereto. Under the present circumstances, the weight ratio of the yellow fluorescent substance 34 contained in the 1st resin sealing body 5a and the yellow fluorescent substance 32 contained in the 2nd resin sealing body 5b is the 1st resin sealing body 5a. The red phosphor 35 contained in the second resin sealing body 5b and the red phosphor 33 contained in the second resin sealing body 5b are configured to have the same weight ratio (for example, contained in the first resin sealing body 5a). The weight ratio of each phosphor is about 30% of the amount of each phosphor necessary to obtain a desired color temperature, and the weight ratio of each phosphor contained in the second resin sealing body 5b is desired. About 70% of the amount of each phosphor necessary to obtain the desired color temperature). That is, the weight ratio between the two types of phosphors is kept constant for each of the first resin sealing body 5a and the second resin sealing body 5b, and the second resin sealing body 5b It adjusts so that various fluorescent substance may be contained in the density | concentration higher than the 1st resin sealing body 5a.

図8に示すような構成によって、たとえば演色性が85で、色温度のばらつき3010K±80K、全光束が120lmの電球色の発光装置31を実現することができる。なお、全光束が図7に示した例の発光装置21の場合と比較して低いものとなっているが、これは、発光素子と各蛍光体間で生じるストークス損失(発光素子の発光波長が460nmで、蛍光体のピーク波長が650nmとすると、発光素子の1つの光子が蛍光体で1つの電子に変換後、1つの光子に変換されるときに生じるエネルギー損失のことで、1−460/650がこの損失に相当。発光素子の波長間隔が大きいもの、たとえば赤色などの蛍光体を用いた場合には、この損失は大きくなる)に起因するものであると考えられる。   With the configuration shown in FIG. 8, for example, it is possible to realize a light bulb 31 that has a color rendering property of 85, a color temperature variation of 3010K ± 80K, and a total luminous flux of 120 lm. Note that the total luminous flux is lower than that of the light emitting device 21 in the example shown in FIG. 7, but this is because the Stokes loss generated between the light emitting element and each phosphor (the emission wavelength of the light emitting element is reduced). When the peak wavelength of the phosphor is 650 nm at 460 nm, energy loss that occurs when one photon of the light-emitting element is converted into one electron after being converted into one electron by the phosphor, and is 1-460 / This loss corresponds to 650. This loss is considered to be caused by the fact that the wavelength interval of the light emitting element is large, for example, when a phosphor such as red is used.

また、図9は、本発明の好ましい第4の例の発光装置41を模式的に示す断面図である。図9に示す例の発光装置41は、一部を除いては図3に示した例の発光装置1と同様であり、同様の構成を有する部分については同一の参照符を付して説明を省略する。本発明の発光装置は、第1の樹脂封止体、第2の樹脂封止体に共に蛍光体が含有される場合、樹脂封止体が2種以上の蛍光体を含有し(図9に示す例では、第1の樹脂封止体5aが1種類の蛍光体44、第2の樹脂封止体5bが2種類の蛍光体42,43を含有)、少なくとも第1の樹脂封止体が、樹脂に対する蛍光体の沈降が他の蛍光体と比較して相対的に小さい蛍光体を含むように実現されてもよい。   Moreover, FIG. 9 is sectional drawing which shows typically the light-emitting device 41 of the preferable 4th example of this invention. The light emitting device 41 of the example shown in FIG. 9 is the same as the light emitting device 1 of the example shown in FIG. 3 except for a part, and parts having the same configuration are denoted by the same reference numerals and described. Omitted. In the light emitting device of the present invention, when both the first resin sealing body and the second resin sealing body contain a phosphor, the resin sealing body contains two or more kinds of phosphors (see FIG. 9). In the example shown, the first resin encapsulant 5a contains one type of phosphor 44 and the second resin encapsulant 5b contains two types of phosphors 42 and 43), and at least the first resin encapsulant is In addition, the precipitation of the phosphor relative to the resin may be realized so as to include a relatively small phosphor as compared with other phosphors.

このような構成の発光装置を実現する場合、まず、発光装置に使用する全ての蛍光体の封止樹脂に対する沈降の程度を個別に確認する。この沈降の程度を確認する方法としては、封止樹脂中に蛍光体をそれぞれ個別に分散させて、適当な時間経過後に樹脂を硬化させ、硬化後の樹脂断面の蛍光体の濃度分布を見ることによって判別することができる。このような手法を用いて、たとえば上述した黄色蛍光体(Sr,Ba,Ca)2SiO4と赤色蛍光体(M21-bEub)M3SiN3それぞれについて試験を行った結果、黄色蛍光体(Sr,Ba,Ca)2SiO4の方が、使用される封止樹脂に対して沈降しやすいことが分かった。なお、この蛍光体の樹脂中への沈降の程度(沈降速度)は、蛍光体の密度、粒子径によって決まってしまう。しかしながら、蛍光体の密度は蛍光体の母材で概ね決まってしまうし、粒子径は発光効率の兼ね合いによって任意に設定することは一般的には困難である。 When realizing the light-emitting device having such a configuration, first, the degree of sedimentation of all phosphors used in the light-emitting device with respect to the sealing resin is individually confirmed. As a method for confirming the degree of sedimentation, phosphors are individually dispersed in a sealing resin, the resin is cured after an appropriate time, and the concentration distribution of the phosphor in the cross section of the resin after curing is observed. Can be determined. Using such a technique, for example, the above-described yellow phosphor (Sr, Ba, Ca) 2 SiO 4 and red phosphor (M2 1-b Eu b ) M3SiN 3 were tested. It was found that Sr, Ba, Ca) 2 SiO 4 was more likely to settle against the sealing resin used. The degree of sedimentation of the phosphor into the resin (sedimentation rate) is determined by the density and particle diameter of the phosphor. However, the density of the phosphor is generally determined by the phosphor base material, and it is generally difficult to arbitrarily set the particle diameter depending on the light emission efficiency.

図9に示す例の発光装置41は、上述した試験結果に基づき、第1の樹脂封止体5aには、たとえば赤色蛍光体44として(M21-bEub)M3SiN3蛍光体を、必要な色温度に対して赤色蛍光体が必要とされる全体量の20%程度のみを分散させる。この第1の樹脂封止体5aの構成によっても、発光装置の側面部からの青色光の外部への放射を防ぐことができるため、発光効率の低下を抑制できる。さらに、樹脂に対して沈降しにくい蛍光体のみを使用しているため、第1の樹脂封止体5aに起因した色温度のばらつきも生じにくい。そして、第2の樹脂封止体5bには、色温度を所望の値にする量である黄色蛍光体43として(Sr,Ba,Ca)2SiO4と、赤色蛍光体42として(M21-bEub)M3SiN3蛍光体を、必要な色温度に対して赤色蛍光体が必要とされる全体量の80%程度を分散させる。このような構成によっても発光素子3近傍における蛍光体の樹脂に対する沈降による影響を低減することができ、たとえば色温度のばらつきが3010K±50Kで、全光束が160lmの発光装置41を実現することができる。 The light emitting device 41 in the example shown in FIG. 9 requires, for example, (M2 1-b Eu b ) M3SiN 3 phosphor as the red phosphor 44 based on the test results described above. Only about 20% of the total amount of red phosphor required for a certain color temperature is dispersed. Also with the configuration of the first resin sealing body 5a, it is possible to prevent the emission of blue light from the side surface portion of the light emitting device to the outside, and thus it is possible to suppress a decrease in light emission efficiency. Furthermore, since only the phosphor that does not easily settle with respect to the resin is used, variations in color temperature due to the first resin sealing body 5a hardly occur. The second resin encapsulant 5b includes (Sr, Ba, Ca) 2 SiO 4 as yellow phosphors 43, and red phosphors 42 as (M2 1− b Eu b ) Disperse the M3SiN 3 phosphor about 80% of the total amount of red phosphor needed for the required color temperature. Even with such a configuration, the influence of sedimentation of the phosphor on the resin in the vicinity of the light-emitting element 3 can be reduced. it can.

図10は、本発明の好ましい第5の例の発光装置51を模式的に示す断面図である。図10に示す例の発光装置51は、一部を除いては図3に示した例の発光装置1と同様であり、同様の構成を有する部分については同一の参照符を付して説明を省略する。図10に示す例の本発明の発光装置51は、第1の樹脂封止体5a、第2の樹脂封止体5bが共に蛍光体53,52を含有し、さらに、第1の樹脂封止体5aが光散乱材となる微粒子54を含有する。このような構成によって、蛍光体の樹脂に対する沈降に起因する色温度のばらつきを抑制することもできるとともに、光散乱材となる微粒子54を含む第1の樹脂封止体5aにより発光装置の側面部からの青色光の放射を防ぐことができ、発光効率の低下を抑制することができる。   FIG. 10 is a cross-sectional view schematically showing a light emitting device 51 of a preferred fifth example of the present invention. The light emitting device 51 of the example shown in FIG. 10 is the same as the light emitting device 1 of the example shown in FIG. 3 except for a part, and parts having the same configuration are denoted by the same reference numerals and described. Omitted. In the light emitting device 51 of the example of the present invention shown in FIG. 10, both the first resin sealing body 5a and the second resin sealing body 5b contain phosphors 53 and 52, and further the first resin sealing The body 5a contains fine particles 54 that serve as a light scattering material. With such a configuration, variation in color temperature due to sedimentation of the phosphor with respect to the resin can be suppressed, and the side surface portion of the light-emitting device is formed by the first resin sealing body 5a including the fine particles 54 serving as a light scattering material. The emission of blue light from can be prevented, and a decrease in luminous efficiency can be suppressed.

蛍光体53,52としては、たとえば、黄色蛍光体(Sr,Ba,Ca)2SiO4が用いられ、第1の樹脂封止体5a中には色温度を所望の値にする量の10%程度の蛍光体53が含有され、第2の樹脂封止体5b中には色温度を所望の値にする量の90%程度の蛍光体52が含有される場合が例示されるが、これに限定されるものではない。たとえば第2の樹脂封止体中のみが蛍光体を含有し、第1の樹脂封止体が光拡散材となる微粒子のみを含有する(蛍光体を含有しない)ように構成された場合であっても同様の効果を得ることができる。 For example, yellow phosphors (Sr, Ba, Ca) 2 SiO 4 are used as the phosphors 53 and 52, and 10% of the amount that makes the color temperature a desired value in the first resin sealing body 5 a. Illustrated is a case where the phosphor 53 of the degree is contained, and about 90% of the amount of the phosphor 52 contained in the second resin sealing body 5b is set to a desired value. It is not limited. For example, this is a case where only the second resin encapsulant contains a phosphor, and the first resin encapsulant contains only fine particles serving as a light diffusing material (no phosphor). However, the same effect can be obtained.

光散乱材となる微粒子54としては、特に限定されず、チタン酸バリウム、硫酸バリウム、酸化チタン、酸化アルミニウム、酸化ケイ素、軽質炭酸カルシウムなどの微粒子を用いることができる。またこの微粒子54の粒子径は0.1〜1.0μmの範囲内であることが好ましく、上記粒子径を有する微粒子54を用いることによって発光素子からの青色光および第1の樹脂封止体5aに含まれる蛍光体53からの黄色光を良好に乱反射させることができる。光散乱材となる微粒子54の含有量は、特に制限されないが、光散乱の機能が発揮され、かつ、光散乱材を入れすぎると、粘度が高くなって、均一な厚みの樹脂封止体を得にくくなる観点から、20〜50重量%の範囲内であることが好ましい。   The fine particles 54 used as the light scattering material are not particularly limited, and fine particles such as barium titanate, barium sulfate, titanium oxide, aluminum oxide, silicon oxide, and light calcium carbonate can be used. The particle diameter of the fine particles 54 is preferably in the range of 0.1 to 1.0 μm. By using the fine particles 54 having the particle diameter, the blue light from the light emitting element and the first resin encapsulant 5a can be obtained. The yellow light from the phosphor 53 contained in can be diffusely reflected well. The content of the fine particles 54 serving as the light scattering material is not particularly limited. However, if the light scattering function is exhibited and the light scattering material is excessively added, the viscosity becomes high, and the resin sealing body having a uniform thickness can be obtained. From the viewpoint of difficulty in obtaining, it is preferably in the range of 20 to 50% by weight.

図11は、本発明の好ましい第6の例の発光装置61を模式的に示す断面図である。図11に示す例の発光装置61は、一部を除いては図3に示した例の発光装置1と同様であり、同様の構成を有する部分については同一の参照符を付して説明を省略する。図11に示す例の発光装置61は、第1の樹脂封止体5a中には図10に示した例の発光装置51と同様の光散乱材となる微粒子54(たとえばシリカ粒子)のみが含有されており(蛍光体は含有されていない)、また、第2の樹脂封止体5b中には蛍光体62(たとえば発光装置の色温度を所望の値とする量の黄色蛍光体(Sr,Ba,Ca)2SiO4)と、蛍光体の沈降を防止する沈降防止材として作用する微粒子63とを含有する。このように第1の樹脂封止体および第2の樹脂封止体の少なくともいずれかに、蛍光体の沈降を防止する微粒子を含むことで、蛍光体が樹脂中に沈降して、発光素子から発せられた青色光の吸収状態が変わることによって生じる色温度のばらつきをさらに抑制することができる。 FIG. 11 is a cross-sectional view schematically showing a light emitting device 61 of a sixth preferred example of the present invention. The light emitting device 61 of the example shown in FIG. 11 is the same as the light emitting device 1 of the example shown in FIG. 3 except for a part, and parts having the same configuration are denoted by the same reference numerals and described. Omitted. The light emitting device 61 of the example shown in FIG. 11 contains only fine particles 54 (for example, silica particles) that are light scattering materials similar to the light emitting device 51 of the example shown in FIG. 10 in the first resin sealing body 5a. (The phosphor is not contained), and the second resin sealing body 5b includes a phosphor 62 (for example, an amount of yellow phosphor (Sr, Ba, Ca) 2 SiO 4 ) and fine particles 63 acting as an anti-settling material for preventing the phosphor from settling. As described above, at least one of the first resin encapsulant and the second resin encapsulant includes fine particles that prevent sedimentation of the phosphor, so that the phosphor settles in the resin and the light emitting element Variations in color temperature caused by changes in the absorption state of the emitted blue light can be further suppressed.

この沈降防止材として作用する微粒子63としては、たとえば、酸化ポリエチレン、酸化ポリエチレンアマイド、脂肪酸アマイド、ポリエーテル・エステル型界面活性剤、硫酸エステル型アニオン系界面活性剤などの有機化合物系の微粒子が使用可能である。また、サブWクラス級以上の大きな発熱量を伴うような発光装置の場合には、上述した有機化学系のものは耐熱性、耐光性の点で不安があるため、シリカなどの無機化合物系の微粒子が使用される。なお、このような沈降防止材のみで蛍光体の沈降を抑制することも原理的に可能であるものの、十分な沈降防止の効果を実現するためには、樹脂中に大量の沈降防止材を入れなければならない。しかしながら、このような沈降防止材は、溶解性に乏しいため樹脂中に均一に分散しにくく、さらには、透光性が余りよくないため、全光束の低下を引き起こしてしまう。このため、このような沈降防止材として作用する微粒子を用いる場合には、補助的な使用が好ましい。   As the fine particles 63 acting as an anti-settling material, organic compound fine particles such as polyethylene oxide, polyethylene oxide amide, fatty acid amide, polyether ester type surfactant, sulfate ester type anionic surfactant are used. Is possible. In addition, in the case of a light emitting device with a large calorific value higher than the sub-W class, the above-mentioned organic chemicals are uneasy in terms of heat resistance and light resistance. Fine particles are used. Although it is theoretically possible to suppress the sedimentation of the phosphor only with such an anti-settling material, in order to realize a sufficient anti-settling effect, a large amount of anti-settling material is put in the resin. There must be. However, such an anti-settling material is poorly soluble, so that it is difficult to disperse uniformly in the resin, and furthermore, since the translucency is not so good, the total luminous flux is reduced. For this reason, when using the microparticles | fine-particles which act as such a sedimentation prevention material, auxiliary use is preferable.

また本発明の発光装置では、上述した沈降防止材として作用する微粒子63として、樹脂封止体を形成する樹脂と同一の樹脂からなる微粒子を用いることが好ましい。樹脂封止体を形成する樹脂と同一の樹脂からなる微粒子を用いることで、樹脂中での蛍光体の沈降が抑制できる沈降防止材としての機能とともに、封止樹脂と同一の樹脂であることにより、分散量に関わらず透明性が損なわれることなく、全光束の低下が生じないという効果が奏される。   In the light emitting device of the present invention, it is preferable to use fine particles made of the same resin as the resin forming the resin sealing body as the fine particles 63 that act as the anti-settling material. By using fine particles made of the same resin as the resin forming the resin sealing body, it is the same resin as the sealing resin, together with a function as an anti-settling material that can suppress the sedimentation of the phosphor in the resin. The transparency is not impaired regardless of the amount of dispersion, and the total luminous flux is not lowered.

樹脂封止体を形成する樹脂と同一の樹脂からなる微粒子は、封止樹脂と用いる樹脂塊を、ロッドミル、ボールミル、ジェットミル、カッターミルなどの粉砕機を用いて粉砕することで作製することができる。さらに、耐候性、高温特性が良好な封止樹脂は、一般的に、硬度が非常に低いが、このような樹脂においても、液体窒素温度で樹脂を冷やして粉砕を行うことによって(脆化点以下に冷却することで、衝撃に対して著しくもろく、粉砕が容易になる性質を利用)、常温にて粉砕する場合と比して、さらに粒子径が小さい、沈降防止材として好適なものを得ることができる。たとえば、液体窒素温度の低温粉砕を行うことで、シリコーン系樹脂の場合には、d90の粒子径で100μm程度の微粒子を得ることができる。なお、このような樹脂封止体を形成する樹脂と同一の樹脂からなる微粒子を作製する比較的容易な方法としては、上述した粉砕による手法が1つであるが、それ以外に、化学的な合成手法、樹脂原料をノズルより高温空気中に噴射して、落下時に熱硬化させるような、所謂、スプレードライ法のような手法を用いることによって作製することも可能である。   Fine particles made of the same resin as the resin forming the resin sealing body can be prepared by pulverizing a resin lump to be used with the sealing resin using a pulverizer such as a rod mill, a ball mill, a jet mill, or a cutter mill. it can. Furthermore, sealing resins with good weather resistance and high-temperature characteristics generally have very low hardness, but even in such resins, by cooling the resin at a liquid nitrogen temperature and grinding (embrittlement point) Cooling to the following makes use of the property that it is extremely fragile against impacts and facilitates pulverization), and has a smaller particle size than that when pulverized at room temperature, and is suitable as an anti-settling material. be able to. For example, by performing low-temperature pulverization at a liquid nitrogen temperature, in the case of a silicone resin, fine particles having a particle diameter of d90 of about 100 μm can be obtained. In addition, as a relatively easy method for producing fine particles made of the same resin as the resin forming such a resin sealing body, there is one method by pulverization as described above. It is also possible to produce by using a method such as a so-called spray drying method in which a synthetic method, a resin raw material is injected into a high-temperature air from a nozzle and thermally cured when dropped.

沈降防止材として作用する微粒子63の含有量としては、特に制限されないが、含有量を増やすことにより粘度が向上するため、樹脂封止体の膜厚の均一性を保つためには、5〜20重量%の範囲内であることが好ましい。なお、図11には、第2の樹脂封止体5bにのみ沈降防止材として作用する微粒子63を含有させた場合を示しているが、第1の樹脂封止体のみに蛍光体とこの沈降防止材として作用する微粒子を含有させてもよいし、第1の樹脂封止体、第2の樹脂封止体の両方に、蛍光体とこの沈降防止材として作用する微粒子を含有させるようにしてもよい。   The content of the fine particles 63 acting as an anti-settling material is not particularly limited, but the viscosity is improved by increasing the content. Therefore, in order to maintain the uniformity of the film thickness of the resin encapsulant, 5 to 20 is required. It is preferable to be in the range of% by weight. FIG. 11 shows the case where the fine particles 63 that act as an anti-settling material are contained only in the second resin encapsulant 5b, but the phosphor and the sediment are only contained in the first resin encapsulant. Fine particles that act as a preventive material may be included, and both the first resin encapsulant and the second resin encapsulant contain a phosphor and fine particles that act as an anti-settling material. Also good.

上述してきた様々な構造の本発明の発光装置において、電極構造、配線パターン、発光素子などのレイアウト、個数、直並列などは、上述した例に限定されるものではなく、様々なものを採り得ることができる。また、発光素子として、GaN、Siなどの導電性基板が用いられ、素子裏面と素子表面にプラス電極、マイナス電極が設けられているものを用いても勿論よい。この場合、配線パターン上に、Agペーストなどの伝導ペーストを用いて実装する形態も採り得る。また、発光素子の波長も青色に限ることなく、400nm帯の近紫外領域などの波長のものを使用することもできる。さらに、使用される蛍光体の発光色も、発光素子の光を吸収でき得るものであれば、他の色の蛍光体、たとえば発光色として赤色、緑色の単色のものを使用することも可能である。   In the light-emitting device of the present invention having the various structures described above, the electrode structure, wiring pattern, light-emitting element layout, number, series-parallel, and the like are not limited to the above-described examples, and can take various forms. be able to. In addition, as a light emitting element, a conductive substrate such as GaN or Si may be used, and a positive electrode and a negative electrode provided on the element back surface and the element surface may of course be used. In this case, it is possible to adopt a form of mounting on the wiring pattern using a conductive paste such as an Ag paste. Further, the wavelength of the light emitting element is not limited to blue, and a light emitting element having a wavelength in the near-ultraviolet region of the 400 nm band can also be used. In addition, the phosphor used can also emit other colors of phosphors, such as red and green monochromatic ones, as long as they can absorb the light emitted from the light emitting element. is there.

また、本発明の発光装置の製造方法についても特に制限されることなく、当分野において広く知られている従来公知の方法を適宜組み合わせて製造することが可能である。なお、本発明の発光装置において特徴的な構造である第1の樹脂封止体および第2の樹脂封止体は、たとえば以下のようにして作製することが好ましい。   Moreover, the manufacturing method of the light emitting device of the present invention is not particularly limited, and can be manufactured by appropriately combining conventionally known methods widely known in the field. In addition, it is preferable to produce the 1st resin sealing body and 2nd resin sealing body which are the characteristic structures in the light-emitting device of this invention as follows, for example.

まず、配線パターンが形成され、該配線パターンと電気的に接続された発光素子(たとえば青色LED)が実装された基板(たとえばアルミナ基板)上に、発光素子を覆うように樹脂封止体が形成される部分に、塗布すべき樹脂形状となる穴部が設けられているフッ素樹脂(たとえばPTFE)製のシートを接着シートなどを用いて貼り付ける。次に、ディスペンサー装置によって、この穴部に所望の厚み(たとえば0.2mm)となるような量の樹脂(たとえばシリコーン系樹脂)を塗布する。この樹脂には、必要に応じて、蛍光体、光散乱材となる微粒子、沈降防止材となる微粒子などを適宜分散させる。そして、樹脂塗布後、樹脂がシート内部で略均一になじんだ後に、オーブンにて予備硬化100℃1時間、本硬化150℃4時間程度行う。この硬化した樹脂が、第1の樹脂封止体となる。   First, a wiring pattern is formed, and a resin sealing body is formed on a substrate (for example, an alumina substrate) on which a light emitting element (for example, a blue LED) electrically connected to the wiring pattern is mounted so as to cover the light emitting element. A fluororesin (for example, PTFE) sheet provided with a hole having a resin shape to be applied is attached to the portion to be applied using an adhesive sheet or the like. Next, an amount of resin (for example, a silicone-based resin) is applied to the hole by a dispenser device so as to have a desired thickness (for example, 0.2 mm). If necessary, the resin is appropriately dispersed with phosphors, fine particles serving as a light scattering material, fine particles serving as an anti-settling material, and the like. And after resin application | coating, after resin adapts substantially uniformly inside a sheet | seat, it preliminarily cures at 100 degreeC for 1 hour, and main curing is performed at 150 degreeC for about 4 hours. This cured resin becomes the first resin sealing body.

次に、樹脂硬化後、オーブンから取り出した発光装置を室温程度にまで冷却した後、第1の樹脂封止体の形成に用いたのと同一の種類の樹脂(たとえばシリコーン系樹脂)を、第1の樹脂封止体上に塗布する。この樹脂には、蛍光体が分散され、必要に応じて、沈降防止材となる微粒子などが分散される。樹脂塗布時には、蛍光体が沈降しにくいように樹脂を攪拌しながら、ディスペンサー装置によって塗布する方が好ましい。樹脂塗布後、第1の樹脂封止体の形成の際と同様の硬化条件によって、塗布した樹脂を硬化させ、第2の樹脂封体とする。硬化後、樹脂が剥離しないように、フッ素樹脂製のシートを基板上から剥がすことで、第1の樹脂封止体と第2の樹脂封止体の積層構造を実現できる。   Next, after the resin is cured, the light emitting device taken out from the oven is cooled to about room temperature, and then the same type of resin (for example, a silicone resin) used for forming the first resin sealing body is used. 1 is applied on the resin sealing body. In this resin, a phosphor is dispersed, and if necessary, fine particles that serve as an anti-settling material are dispersed. When applying the resin, it is preferable to apply the resin with a dispenser device while stirring the resin so that the phosphor does not easily settle. After the resin application, the applied resin is cured under the same curing conditions as those for forming the first resin encapsulant to obtain a second resin encapsulant. After curing, the laminated structure of the first resin sealing body and the second resin sealing body can be realized by peeling the fluororesin sheet from the substrate so that the resin does not peel off.

なお、図7〜図10にそれぞれ示したように第1の樹脂封止体、第2の樹脂封止体に共に蛍光体を含有させる場合には、個々の発光装置に対し、第1の樹脂封止体を形成するための樹脂を塗布、硬化した後に、色温度を測定し、第1の樹脂封止体の所望の色温度の設定値に対するずれ量に応じて、第2の樹脂封止体を形成するための樹脂に対する蛍光体の分散量を微調整することが、好ましい。このようにすることで、色温度ずれが生じ易い第1の樹脂封止体の色温度の影響を補正できるため、所望の色温度の設定値に対する中心値の補正を行うことができる。   As shown in FIGS. 7 to 10, when both the first resin sealing body and the second resin sealing body contain a phosphor, the first resin is used for each light emitting device. After applying and curing the resin for forming the sealing body, the color temperature is measured, and the second resin sealing is performed according to the amount of deviation of the first resin sealing body from the desired color temperature setting value. It is preferable to finely adjust the dispersion amount of the phosphor with respect to the resin for forming the body. By doing in this way, since the influence of the color temperature of the 1st resin sealing body which is easy to produce color temperature shift | offset | difference can be correct | amended, the center value correction | amendment with respect to the setting value of desired color temperature can be performed.

本発明の好ましい一例の発光装置1を模式的に示す上面図である。It is a top view which shows typically the light-emitting device 1 of a preferable example of this invention. 図1に示す発光装置1の樹脂封止体5a,5bを形成する前の状態を模式的に示す上面図である。It is a top view which shows typically the state before forming the resin sealing bodies 5a and 5b of the light-emitting device 1 shown in FIG. 図1に示す発光装置1の切断面線III−IIIからみた断面図である。It is sectional drawing seen from the cutting surface line III-III of the light-emitting device 1 shown in FIG. 本発明の発光装置を具体的に作製した3個のサンプル(1)〜(3)と、樹脂封止体を黄色蛍光体のみを分散させたシリコーン系樹脂単層とした以外は同様の3個の比較サンプル(1)〜(3)とについて、蛍光体が分散された樹脂塗布後の経時的な色温度変化を測定した結果を示すグラフであり、縦軸は色温度(K)、横軸は樹脂塗布後の経過時間(分)である。Three samples (1) to (3) that specifically produced the light-emitting device of the present invention, and three samples that were the same except that the resin sealing body was a silicone-based resin single layer in which only a yellow phosphor was dispersed. Is a graph showing the results of measuring the change in color temperature over time after application of the resin in which the phosphor is dispersed, with respect to Comparative Samples (1) to (3), in which the vertical axis represents the color temperature (K) and the horizontal axis Is the elapsed time (minutes) after resin application. 図5(a)は、比較サンプルでの樹脂塗布直後における発光素子100近傍の蛍光体の沈降状態を模式的に示す図であり、図5(b)は比較サンプルでの樹脂塗布後一定時間経過後における発光素子100近傍での蛍光体の沈降状態を模式的に示す図である。FIG. 5A is a diagram schematically showing the sedimentation state of the phosphor in the vicinity of the light emitting element 100 immediately after resin application in the comparative sample, and FIG. 5B is a lapse of a certain time after resin application in the comparative sample. It is a figure which shows typically the sedimentation state of the fluorescent substance in the vicinity of the light emitting element 100 after. 図6(a)は、サンプルでの樹脂塗布直後における発光素子3近傍の蛍光体8の沈降状態を模式的に示す図であり、図6(b)はサンプルでの樹脂塗布後一定時間経過後における発光素子3近傍での蛍光体8の沈降状態を模式的に示す図である。FIG. 6A is a diagram schematically showing the sedimentation state of the phosphor 8 in the vicinity of the light emitting element 3 immediately after resin application on the sample, and FIG. 6B is a diagram after a certain time has elapsed after resin application on the sample. It is a figure which shows typically the sedimentation state of the fluorescent substance 8 in the vicinity of the light emitting element 3 in FIG. 本発明の好ましい第2の例の発光装置21を模式的に示す断面図である。It is sectional drawing which shows typically the light-emitting device 21 of the preferable 2nd example of this invention. 本発明の好ましい第3の例の発光装置31を模式的に示す断面図である。It is sectional drawing which shows typically the light-emitting device 31 of the preferable 3rd example of this invention. 本発明の好ましい第4の例の発光装置41を模式的に示す断面図である。It is sectional drawing which shows typically the light-emitting device 41 of the preferable 4th example of this invention. 本発明の好ましい第5の例の発光装置51を模式的に示す断面図である。It is sectional drawing which shows typically the light-emitting device 51 of the preferable 5th example of this invention. 本発明の好ましい第6の例の発光装置61を模式的に示す断面図である。It is sectional drawing which shows typically the light-emitting device 61 of the preferable 6th example of this invention.

符号の説明Explanation of symbols

1,21,31,41,51,61 発光装置、2 基板、3 発光素子、4 配線パターン、5 樹脂封止体、5a 第1の樹脂封止体、5b 第2の樹脂封止体、8,22,23,32,33,34,35,42,43,44,52,53 蛍光体。   1, 21, 31, 41, 51, 61 Light emitting device, 2 substrate, 3 light emitting element, 4 wiring pattern, 5 resin sealing body, 5a first resin sealing body, 5b second resin sealing body, 8 , 22, 23, 32, 33, 34, 35, 42, 43, 44, 52, 53 phosphor.

Claims (6)

配線パターンが形成された基板と、
基板上に実装され、配線パターンと電気的に接続された発光素子と、
発光素子を覆うように形成された樹脂封止体とを備える発光装置であって、
樹脂封止体が、2種以上の蛍光体を含有し、発光素子を覆うように形成された蛍光体を含有する第1の樹脂封止体と、その上に積層された蛍光体を含有する第2の樹脂封止体とから構成され、
第1の樹脂封止体および第2の樹脂封止体は同一種類の樹脂で形成され、
第2の樹脂封止体が、第1の樹脂封止体よりも高い濃度で蛍光体を含有し、
少なくとも第1の樹脂封止体が、樹脂に対する蛍光体の沈降が他の蛍光体と比較して相対的に小さい蛍光体を含む、発光装置。
A substrate on which a wiring pattern is formed;
A light emitting element mounted on a substrate and electrically connected to a wiring pattern;
A light emitting device including a resin sealing body formed so as to cover the light emitting element,
The resin sealing body contains two or more types of phosphors, and includes a first resin sealing body containing a phosphor formed so as to cover the light emitting element, and a phosphor laminated thereon. A second resin sealing body,
The first resin sealing body and the second resin sealing body are formed of the same type of resin,
The second resin encapsulant contains a phosphor at a higher concentration than the first resin encapsulant,
The light emitting device, wherein at least the first resin sealing body includes a phosphor in which precipitation of the phosphor with respect to the resin is relatively small as compared with other phosphors.
基板が酸化アルミニウム基板であり、発光素子が青色発光ダイオードである、請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the substrate is an aluminum oxide substrate, and the light emitting element is a blue light emitting diode. 第1の樹脂封止体が、光散乱材となる微粒子を含む、請求項1または2に記載の発光装置。 First resin sealing body comprises fine particles of a light scattering material, light-emitting device according to claim 1 or 2. 第1の樹脂封止体および第2の樹脂封止体の少なくともいずれかに、蛍光体の沈降を防止する微粒子を含む、請求項1〜のいずれかに記載の発光装置。 At least one of the first resin sealing body and a second resin sealing body, comprising microparticles to prevent sedimentation of the phosphor, the light emitting device according to any one of claims 1-3. 前記微粒子が、樹脂封止体を形成する樹脂と同一の樹脂からなる微粒子である、請求項に記載の発光装置。 The light emitting device according to claim 4 , wherein the fine particles are fine particles made of the same resin as that forming a resin sealing body. 樹脂封止体を形成する樹脂がシリコーン系樹脂またはエポキシ系樹脂である、請求項1〜のいずれかに記載の発光装置。 The resin forming the resin sealing body is a silicone resin or epoxy resin, the light emitting device according to any one of claims 1-5.
JP2007262138A 2007-10-05 2007-10-05 Light emitting device Expired - Fee Related JP5286585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007262138A JP5286585B2 (en) 2007-10-05 2007-10-05 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007262138A JP5286585B2 (en) 2007-10-05 2007-10-05 Light emitting device

Publications (2)

Publication Number Publication Date
JP2009094207A JP2009094207A (en) 2009-04-30
JP5286585B2 true JP5286585B2 (en) 2013-09-11

Family

ID=40665921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007262138A Expired - Fee Related JP5286585B2 (en) 2007-10-05 2007-10-05 Light emitting device

Country Status (1)

Country Link
JP (1) JP5286585B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5190993B2 (en) * 2008-11-20 2013-04-24 日東電工株式会社 Sheet for optical semiconductor encapsulation
WO2011004798A1 (en) * 2009-07-06 2011-01-13 株式会社 東芝 Element mounting ceramic substrate, led mounting ceramic substrate, led lamp, and head light, and electronic component
JP5340191B2 (en) * 2010-02-02 2013-11-13 日東電工株式会社 Optical semiconductor device
JP5747546B2 (en) 2010-03-29 2015-07-15 東芝ライテック株式会社 Lighting device
WO2011129202A1 (en) * 2010-04-16 2011-10-20 日亜化学工業株式会社 Light-emitting device and manufacturing method for light-emitting device
JP5768435B2 (en) * 2010-04-16 2015-08-26 日亜化学工業株式会社 Light emitting device
JP5481277B2 (en) * 2010-06-04 2014-04-23 シャープ株式会社 Light emitting device
EP2400818A2 (en) * 2010-06-28 2011-12-28 Toshiba Lighting & Technology Corporation Light-emitting module and lighting apparatus with the same
JP2012109478A (en) * 2010-11-19 2012-06-07 Toshiba Lighting & Technology Corp Light-emitting body and luminaire
CN102544244B (en) * 2010-12-10 2015-09-30 比亚迪股份有限公司 A kind of preparation method of LED component
JP5869769B2 (en) * 2011-03-07 2016-02-24 コニカミノルタ株式会社 Method for forming phosphor layer and method for manufacturing light emitting device
JP2012248553A (en) * 2011-05-25 2012-12-13 Panasonic Corp Light-emitting device and luminaire using the same
KR20130014256A (en) * 2011-07-29 2013-02-07 엘지이노텍 주식회사 Light emitting device package and lighting system using the same
JP6178789B2 (en) * 2011-08-04 2017-08-09 フィリップス ライティング ホールディング ビー ヴィ Optical converter and lighting unit having the optical converter
JP2013183089A (en) * 2012-03-02 2013-09-12 Idec Corp Light emitting device, lighting device, light emitting device aggregate, and manufacturing method of light emitting device
JP6097489B2 (en) * 2012-03-30 2017-03-15 古河電気工業株式会社 Sealing resin film for light emitting diode and light emitting diode package
JP6065408B2 (en) * 2012-04-27 2017-01-25 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
CN104871323B (en) 2012-12-28 2018-07-13 夏普株式会社 Light-emitting device
JP5843900B2 (en) * 2014-02-17 2016-01-13 シャープ株式会社 Light emitting device
JP6428106B2 (en) * 2014-09-29 2018-11-28 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2015144301A (en) * 2015-03-10 2015-08-06 日東電工株式会社 optical semiconductor device
JP7137050B2 (en) * 2017-06-12 2022-09-14 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050800A (en) * 2000-05-24 2002-02-15 Nichia Chem Ind Ltd Light-emitting device and forming method therefor
JP4600404B2 (en) * 2003-04-24 2010-12-15 日亜化学工業株式会社 Semiconductor device and manufacturing method thereof
JP4366161B2 (en) * 2003-09-19 2009-11-18 スタンレー電気株式会社 Semiconductor light emitting device
JP4591690B2 (en) * 2005-06-06 2010-12-01 信越化学工業株式会社 LED light emitting device with fluorescent material
JP2007146154A (en) * 2005-10-31 2007-06-14 Kyocera Corp Wavelength converter, lighting system, and lighting system assembly

Also Published As

Publication number Publication date
JP2009094207A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5286585B2 (en) Light emitting device
JP3589187B2 (en) Method for forming light emitting device
KR101180216B1 (en) White light-emitting device, backlight, liquid crystal display device and illuminating device
JP3246386B2 (en) Light emitting diode and color conversion mold member for light emitting diode
JP4222017B2 (en) Light emitting device
JP6079209B2 (en) Light emitting device and manufacturing method thereof
US8937328B2 (en) Light emitting device and manufacturing method thereof
US7663307B2 (en) Light-emitting device
JP5326182B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
TWI418611B (en) Phosphor and light emitting device
WO2013190962A1 (en) Semiconductor light emitting device
JP2013201434A (en) Light-emitting device, display device, and lighting device
JP2014112635A (en) Method for manufacturing light-emitting device, and light-emitting device
JP2010129906A (en) Illumination device for display device and display device
WO2003001612A1 (en) Semiconductor device and its fabriction method
KR20110108042A (en) Complex crystal phosphor, light emitting device, surface light source apparatus, display apparatus and illumination apparatus
US8933475B2 (en) Light emitting device
JP4874510B2 (en) Light emitting device and manufacturing method thereof
JP2009164648A (en) Package for mounting light-emitting element and light-emitting device
JP2007073733A (en) Light emitting diode (led) and its manufacturing method
JP2002050800A (en) Light-emitting device and forming method therefor
JPH10107322A (en) Led display
JP4009868B2 (en) Nitride phosphor and light emitting device using the same
JP2019004134A (en) Light-emitting device and method for manufacturing the same
JP5795971B2 (en) Phosphor and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

R150 Certificate of patent or registration of utility model

Ref document number: 5286585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees