JP3588932B2 - 電力変換装置とその制御方法及びこの電力変換装置を用いた無停電電源装置 - Google Patents

電力変換装置とその制御方法及びこの電力変換装置を用いた無停電電源装置 Download PDF

Info

Publication number
JP3588932B2
JP3588932B2 JP23932996A JP23932996A JP3588932B2 JP 3588932 B2 JP3588932 B2 JP 3588932B2 JP 23932996 A JP23932996 A JP 23932996A JP 23932996 A JP23932996 A JP 23932996A JP 3588932 B2 JP3588932 B2 JP 3588932B2
Authority
JP
Japan
Prior art keywords
phase
unit
section
arm switch
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23932996A
Other languages
English (en)
Other versions
JPH1084679A (ja
Inventor
静里 田村
昭徳 西廣
正勝 大上
春次 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23932996A priority Critical patent/JP3588932B2/ja
Priority to TW085115487A priority patent/TW443030B/zh
Priority to KR1019970003742A priority patent/KR100233957B1/ko
Priority to CN97110231A priority patent/CN1067499C/zh
Priority to US08/881,665 priority patent/US5889661A/en
Priority to DE19730364A priority patent/DE19730364A1/de
Publication of JPH1084679A publication Critical patent/JPH1084679A/ja
Application granted granted Critical
Publication of JP3588932B2 publication Critical patent/JP3588932B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Description

【0001】
【発明の属する技術分野】
この発明は入力と同じ周波数の出力を生成する電力変換装置とその制御方法及びこの電力変換装置を用いた無停電電源装置に関し、特にPWM制御されるコンバータ部とインバータ部とを備えた電力変換装置とその制御方法及びこの電力変換装置を用いた無停電電源装置に関するものである。
【0002】
【従来の技術】
この種の電力変換装置を用いた無停電電源装置の一例として、三相交流を入力し、入力と同一周波数の三相交流を出力する無停電電源装置について、図39〜図50を用いて説明する。図39は三相入力三相出力の電力変換装置を用いた無停電電源装置の主回路構成を示すブロック図、図40はスイッチSWJ7の詳細を示す内部構成図、図41はリアクトル8の詳細を示す内部構成図、図42はフィルタ11の詳細を示す内部構成図、図43はスイッチSWH12の詳細を示す内部構成図、図44はスイッチSWI14の詳細を示す内部構成図、図45はコンバータ部20の詳細を示す内部構成図、図46はインバータ部30の詳細を示す内部構成図、図47は三相入力三相出力の無停電電源装置の制御回路構成を示すブロック図、図48はインバータU相電圧変調指令生成回路50の詳細構成を示すブロック図、図49はコンバータ電流指令生成回路43の詳細構成を示すブロック図、図50はコンバータR相電圧変調指令生成回路44の詳細構成を示すブロック図である。
【0003】
図において同一符号は同一又は相当部分を示し、70は電力変換装置、80は無停電電源装置、7は三相のスイッチSWJ1、SWJ2、SWJ3から構成されるスイッチSWJ、8は三相のリアクトルL11、L12、L13から構成されるリアクトル,9は後述のコンバータ部20からの直流を平滑する平滑コンデンサ、10は三相交流入力電源(図示せず。)が停電などで異常の時にスイッチSWを閉じて直流電力を供給する蓄電装置、11は三相のリアクトルL21、L22、L23とC1、C2、C3とから構成されるフィルタ、12は三相のスイッチSWH1、SWH2、SWH3から構成されるスイッチSWH、13は三相の絶縁トランス、14は三相のスイッチSWI1、SWI2、SWI3から構成されるスイッチSWI、20は入力される三相交流を直流に変換するコンバータ部、30はコンバータ部20からの直流を三相交流に変換するインバータ部である。
【0004】
又、1R、1S、1Tはそれぞれ三相交流入力電源のR相、S相、T相の電力が供給される端子、2R、2S、2TはスイッチSWJ7とリアクトル8との間の三相の端子、3R、3S、3Tはリアクトル8とコンバータ部20との間の三相の端子、4U、4V、4Wはインバータ部30とフィルタ11との間の三相の端子、5U、5V、5Wはフィルタ11とスイッチSWH12との間の三相の端子、6U、6V、6Wは駆動される負荷(図示せず。)に出力される三相交流の出力端子、7R、7S、7Tは絶縁トランス13とスイッチSWI14との間三相の端子、Pはコンバータ部20の出力の直流正極端子、Nはコンバータ部20の出力の直流負極端子である。又、NCを三相交流入力電源の中性点(図示せず)、NIをインバータ部30の出力の中性点(図42に示すコンデンサC1、C2、C3の交点)とする。
【0005】
又、21、22、23はそれぞれT相、S相、R相の上下アームスイッチ部、21aはT相の上下アームスイッチ部21の上アームスイッチ部、21bはT相の上下アームスイッチ部21の下アームスイッチ部、22aはS相の上下アームスイッチ部22の上アームスイッチ部、22bはS相の上下アームスイッチ部22の下アームスイッチ部、23aはR相の上下アームスイッチ部23の上アームスイッチ部、23bはR相の上下アームスイッチ部23の下アームスイッチ部である。ここで、各々の上又は下アームスイッチ部21a,21b,22a,22b,23a,23bは、トランジスタ、FET、IGBT等のスイッチング素子とこれに逆並列に接続されたダイオードから構成されている。
【0006】
又、31、32、33はそれぞれW相、V相、U相の上下アームスイッチ部、31aはW相の上下アームスイッチ部31の上アームスイッチ部、31bはW相の上下アームスイッチ部31の下アームスイッチ部、32aはV相の上下アームスイッチ部32の上アームスイッチ部、32bはV相の上下アームスイッチ部32の下アームスイッチ部、33aはU相の上下アームスイッチ部33の上アームスイッチ部、33bはU相の上下アームスイッチ部33の下アームスイッチ部である。ここで、各々の上又は下アームスイッチ部31a,31b,32a,32b,33a,33bは、トランジスタ、FET、IGBT等のスイッチング素子とこれに逆並列に接続されたダイオードから構成されている。
【0007】
又、40は三相交流入力の一つの線間電圧であるV(RS)を入力して基準信号を生成するPLL回路、41はPLL回路40からの出力信号に対して所定の位相差を有する二つの異なる位相信号を生成する位相変換回路、42は位相変換回路41からの二つの異なる位相信号に対応する正弦波信号を生成する三角関数発生回路、43は平滑コンデンサ9の両端の測定電圧信号V(DC)と直流電圧指令信号V(DC)*、及び三角関数発生回路42からの二つの正弦波信号sinθ(R)とsinθ(S)を入力してコンバータ部20のR相電流指令信号I(R)*とS相電流指令信号I(S)*を出力するコンバータ電流指令生成回路である。
【0008】
又、44は三相交流入力のR相電流の測定値信号I(R)とコンバータ電流指令生成回路43からのR相電流指令信号I(R)*を入力してコンバータR相の電圧変調指令信号V(RNC)*を出力するコンバータR相電圧変調指令生成回路、45は三相交流入力のS相電流の測定値信号I(S)とコンバータ電流指令生成回路43からのS相電流指令信号I(S)*を入力してコンバータS相の電圧変調指令信号V(SNC)*を出力するコンバータS相電圧変調指令生成回路、46はコンバータR相の電圧変調指令信号V(RNC)*とコンバータS相の電圧変調指令信号V(SNC)*を入力してコンバータT相の電圧変調指令信号V(TNC)*(=−V(RNC)*−V(SNC)*)を出力するコンバータT相電圧変調指令生成回路、47はコンバータR相の電圧変調指令信号V(RNC)*、コンバータS相の電圧変調指令信号V(SNC)*、コンバータT相の電圧変調指令信号V(TNC)*を入力してコンバータ部20のR相、S相、T相の上下アームスイッチ部23、22、21をPWM制御する信号を出力するコンバータ部ドライブ回路である。
【0009】
又、48はインバータ相電圧指令信号V(AC)*と三角関数発生回路42からの二つの正弦波信号sinθ(R)、sinθ(S)を入力してインバータ相電圧指令信号V(AC)*・sinθ(R)、V(AC)*・sinθ(S)を出力するインバータ相電圧指令生成回路、49は三相交流の出力端子6U、6V、6Wの線間電圧V(UW)とV(VW)を測定し、下式により出力端子6U、6Vと図42に示すコンデンサC1、C2、C3の中性点NIとの間の電圧信号V(UNI)、V(VNI)を生成する電圧変換回路である。
V(UNI)=(V(UV)−V(WU))/3
V(VNI)=(V(VW)−V(UV))/3
V(UV) =−V(VW)−V(WU)
【0010】
又、50はインバータ相電圧指令信号V(AC)*・sinθ(R)、電圧変換回路49からの電圧信号V(UNI)、三相交流出力のU相電流の測定値信号I(U)を入力してインバータU相の電圧変調指令信号V(UNI)*とU−W相電圧演算信号V(UNI)Wを出力するインバータU相電圧変調指令生成回路、51はインバータ相電圧指令信号V(AC)*・sinθ(S)、電圧変換回路49からの電圧信号V(VNI)、三相交流出力のV相電流の測定値信号I(V)を入力してインバータV相の電圧変調指令信号V(VNI)*とV−W相電圧演算信号V(VNI)Wを出力するインバータV相電圧変調指令生成回路である。
【0011】
52は三相交流出力のU相電流の測定値信号I(U)とV相電流の測定値信号I(V)を入力してW相電流信号I(W)(=−I(U)−I(V))を算出するW相電流生成回路、53はW相電流信号I(W)、U−W相電圧演算信号V(UNI)W、V−W相電圧演算信号V(VNI)Wを入力してインバータW相の電圧変調指令信号V(WNI)*を出力するインバータW相電圧変調指令生成回路、54はインバータU相の電圧変調指令信号V(UNI)*、インバータV相の電圧変調指令信号V(VNI)*、インバータW相の電圧変調指令信号V(WNI)*を入力してインバータ部30のU相、V相、W相の上下アームスイッチ部33、32、31をPWM制御する信号を出力するインバータ部ドライブ回路である。
【0012】
501はインバータ相電圧指令生成回路48からのインバータ相電圧指令信号V(AC)*・sinθ(R)から電圧変換回路49からの電圧信号V(UNI)を減算する減算器、502は減算器501からの出力信号をPID(比例+積分+微分)制御してU−W相電圧演算信号V(UNI)Wを生成するPID回路、503はU相電流の測定値信号I(U)を微分してリアクトルL23による電圧降下を算出するリアクトル分電圧降下生成回路、504はU−W相電圧演算信号V(UNI)Wにリアクトル分電圧降下生成回路503からの出力信号を加算してインバータU相の電圧変調指令信号V(UNI)*を生成する加算器である。
【0013】
431は直流電圧指令信号V(DC)*から平滑コンデンサ9の両端の測定電圧信号V(DC)を減算する減算器、432は減算器431からの出力信号をPI(比例+積分)制御で増幅するPI回路、433は三角関数発生回路42からの正弦波信号sinθ(R)とPI回路432からの出力信号を乗算しR相電流指令信号I(R)*を生成する乗算器、434は三角関数発生回路42からの正弦波信号sinθ(S)とPI回路432からの出力信号を乗算しS相電流指令信号I(S)*を生成する乗算器である。
【0014】
441はコンバータ電流指令生成回路43からのR相電流指令信号I(R)*からR相電流の測定値信号I(R)を減算する減算器、442は減算器441からの出力信号をP(比例)制御で増幅しコンバータR相の電圧変調指令信号V(RNC)*を生成するP回路である。
【0015】
次にこの無停電電源装置の動作について説明する。まずスイッチSWJ7とスイッチSWHが閉じており、スイッチSWI14が開いているとする。端子1R、1S、1Tから入力された三相交流電力はコンバータ部20とリアクトル8により直流に変換される。このとき、三相交流電源のR相,S相、T相の各相の入力電流波形を正弦波とし、かつこれらの各相電流の位相をそれぞれR相,S相、T相の各相電圧の位相と一致させるように、R相、S相、T相の上下アームスイッチ部23、22、21をコンバータ部ドライブ回路47でPWM制御し、入力力率をほぼ1とすると共に平滑コンデンサ9の両端の電圧が直流電圧指令信号V(DC)*に等しくなるように制御している。
【0016】
このときの制御方法としては、まず三相交流電源のR相とS相間の線間電圧V(RS)をPLL回路40に入力しこれを基準信号とする。次に位相変換回路41によって線間電圧V(RS)に対して所定の位相差(線間と相との関係を考慮した位相差である。)を有する二つの位相を生成する。例えば、線間電圧V(RS)がある基準に対してθという位相を有していたとすると、θ(R)=θ−π/6、θ(S)=θ−5π/6となる。次に三角関数発生回路42で、これらの位相に対応する正弦波信号を生成する。これらの信号は、sinθ(R)(=sin(θ−π/6))、sinθ(S)(=sin(θ−5π/6))となる。
【0017】
次に、コンバータ電流指令生成回路43で平滑コンデンサ9の両端の測定電圧信号V(DC)と直流電圧指令信号V(DC)*との差の誤差信号を求め、これにPI制御を行って増幅し、その増幅された誤差信号と正弦波信号sinθ(R)、sinθ(S)との積をそれぞれ演算し、R相電流指令信号I(R)*,S相電流指令信号I(S)*を作成する。更に、三相交流入力の内のR相とS相の2相の電流I(R)、I(S)を検出する。そして、コンバータR相電圧変調指令生成回路44では、検出電流I(R)とR相電流指令信号I(R)*の差を比例制御で増幅しコンバータR相の電圧変調指令信号V(RNC)*を生成する。同様にして、コンバータS相電圧変調指令生成回路45では、検出電流I(S)とR相電流指令信号I(S)*とからコンバータS相の電圧変調指令信号V(SNC)*を生成する。
【0018】
更に、これらのコンバータR相の電圧変調指令信号V(RNC)*とコンバータS相の電圧変調指令信号V(SNC)*とから、もう1相分のコンバータT相の電圧変調指令信号V(TNC)*をコンバータT相電圧変調指令生成回路46で作成し、三相分のコンバータ相電圧変調指令信号を得ることになる。これらの三相分のコンバータ相電圧変調指令信号は、コンバータ部ドライブ回路47に入力され、コンバータ部20の3組の上下アームスイッチ部21、22、23をPWM制御し、入力力率をほぼ1に制御すると共に平滑コンデンサ9の両端の電圧を所定の直流電圧に制御することになる。このようなPWM制御を用いたコンバータの高力率制御は、例えば特開昭59−194697に示されており周知の技術である。
【0019】
一方、直流の正極端子Pと負極端子Nとの間の直流電圧は、インバータ部30とフィルタ11により、U相,V相、W相の各相の交流出力電圧が所定の電圧値V(AC)*で、かつ三相交流入力と同一の周波数を有する正弦波の電圧波形となるようにPWM制御される。そして、所定の電圧を有し、三相交流入力と同一の周波数の三相交流出力が出力端子6U、6V、6Wに得られることになる。
【0020】
即ち、インバータ相電圧指令生成回路48において、所定の電圧値V(AC)*を有する二つのインバータ相電圧指令信号V(AC)*・sinθ(R)、V(AC)*・sinθ(S)を生成する。そして、インバータU相電圧変調指令生成回路50では、インバータ相電圧指令信号V(AC)*・sinθ(R)と電圧変換回路49からの電圧信号V(UNI)との差である誤差信号をPID制御してU−W相電圧演算信号V(UNI)Wを生成する。更に、リアクトル分電圧降下生成回路503で、検出した電流I(U)を微分してリアクトルL23の電圧降下分を演算し、これをU−W相電圧演算信号V(UNI)Wに加え(リアクトルL23での電圧降下を補償する。)、インバータU相の電圧変調指令信号V(UNI)*を生成する。
【0021】
同様にして、インバータV相電圧変調指令生成回路51では、インバータ相電圧指令信号V(AC)*・sinθ(S)と電圧変換回路49からの電圧信号V(VNI)とから、V−W相電圧演算信号V(VNI)WとインバータV相の電圧変調指令信号V(VNI)*を生成する。又、インバータW相電圧変調指令生成回路53では、U−W相電圧演算信号V(UNI)WとV−W相電圧演算信号V(VNI)Wとを加算したものを符号反転させ、W相電流生成回路52からの電流I(W)によるリアクトルL21による電圧降下分を加算し、インバータW相の電圧変調指令信号V(WNI)*を生成する。そして、これらの三相分のインバータ相電圧変調指令信号は、インバータ部ドライブ回路54に入力され、インバータ部30の3組の上下アームスイッチ部31、32、33をPWM制御し、所定の電圧を有し、三相交流入力と同一の周波数の三相交流出力を得ることになる。
【0022】
一方、蓄電装置10は、定常時、充電回路(図示せず。)又は平滑コンデンサ9から直接充電され、三相交流電源異常時、即ち停電あるいは瞬時電圧低下が発生したときにインバータ部30の入力電源の役割を果たすものである。
【0023】
又、コンバータ部20又はインバータ部30に何らかの異常が発生した時は、スイッチSWJ7,スイッチSWH12を開くと共にスイッチSWI14を閉じる。従って、出力端子6U、6V、6Wへの三相交流出力は絶縁トランス13とスイッチSWI14を介して出力されることになる。このような異常が発生した時には、出力端子6U、6V、6Wへの三相交流出力を無瞬断で切り替える必要があり、そのためにスイッチSWJ7及びスイッチSWH12とスイッチSWI14とを同時に閉じる期間が必要となる。
【0024】
従って、絶縁トランス13を介するバイパス回路の出力電圧とインバータ部30出力電圧とは位相的に同期し、かつ同一電位でなければならない。しかしながら、コンバータ部20はリアクトル8の入力側の電位をスイッチングによりPとNの電位に切り替える一方、出力端子6U、6V、6Wの電位は、インバータ部30の基準で正弦波電圧を出力しているので、交流入力側の基準電位とインバータ部30の出力側の基準電位とは異なっている。従って、絶縁トランス13がなければ、バイパス回路に切り替えるためにスイッチSWJ7及びスイッチSWH12とスイッチSWI14とを同時に閉にした場合には、基準の電位が違うものを接続することになり、スイッチング素子を介して短絡電流が流れてしまう不具合が発生する。
【0025】
【発明が解決しようとする課題】
従来の電力変換装置では、交流入力電源の相数に対応したリアクトルL11、L12、L13、及び相数に対応したコンバータ部20の上下アームスイッチ部21、22、23が必要となり、更に同装置の交流出力の相数に対応したインバータ部30の上下アームスイッチ部31、32、33、及びフィルタ11のリアクトルL21、L22、L23とコンデンサC1、C2、C3が必要となる。また、コンバータ部ドライブ回路47やインバータ部ドライブ回路54の中に含まれるコンバータ部やインバータ部の各スイッチ部を制御する指令及び各スイッチ部を駆動する回路が、スイッチ部の数に対応して必要となるため、主回路及び制御回路の部品点数が多く、重量も大となり、装置が大きくなるという問題点があった。
【0026】
又、交流入力電源の相に対応したコンバータ相電圧変調指令が各相ごとに必要であり、又交流出力の相に対応したインバータ相電圧変調指令が各相ごとに必要であったため、コンバータ部やインバータ部の相電圧変調指令生成回路44、45、46、50、51、53を交流入力の相数と交流出力の相数だけ必要としていた。更に、コンバータ部,インバータ部とも相電圧に対応した変調指令を使用しているため、検出した交流出力の線間電圧を相電圧に変換する電圧変換回路49を必要としていた。
【0027】
更に、この電力変換装置を用いた無停電電源装置では、スイッチSWJ7、スイッチSWH12、スイッチSWI14のそれぞれを構成するスイッチの数は相数に対応した数だけ必要となり、またバイパス回路には三相交流入力電源とインバータ部30の出力とを無瞬断で切り換える時の電位差を吸収するための絶縁トランス13が必要となる等、部品点数が多く、重量も大となり、装置が大きくなるという問題点があった。
【0028】
この発明はかかる問題点を解決するためになされたもので、電力変換装置とその制御方法において、上下アームスイッチ部の一部をコンバータ部とインバータ部とで共有化して制御し、主回路および制御回路の部品点数や重量を低減できる電力変換装置とその制御方法を得ることを目的としている。
【0029】
更に、この電力変換装置を用いた無停電電源装置において、主回路および制御回路の部品点数や重量を低減でき、かつ三相交流入力電源を出力側にバイパスするバイパス回路に絶縁トランスを設ける必要のないこの電力変換装置を用いた無停電電源装置を得ることを目的としている。
【0030】
【課題を解決するための手段】
【0031】
この発明に係わる電力変換装置においては、複数のスイッチ部を有しPWM制御する共通部と、複数のスイッチ部を有し、前記共通部の複数のスイッチ部と組合せて、PWM制御して交流を直流に変換するコンバータ部と、複数のスイッチ部を有し、前記共通部の複数のスイッチ部と組合せて、PWM制御して直流を交流へ変換するインバータ部とこの共通部とコンバータ部との組合せにより入力される交流を直流に変換するPWM制御を行うコンバータ制御部と、共通部とインバータ部との組合せにより直流を交流として出力するPWM制御を行うインバータ制御部と、を備えたものである。
【0032】
又、コンバータ部、インバータ部及び共通部はそれぞれ少なくとも一組の上下アームスイッチ部を備え、入力される交流の一つの相を出力される交流の一つの相と共通に接続し、この共通に接続された相を共通部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、入力される交流の他の相をコンバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、出力される交流の他の相をインバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続したものである。
【0033】
又、コンバータ部及びインバータ部は二組の上下アームスイッチ部を、共通部は一組の上下アームスイッチ部を備え、入力される三相交流の内の二相をコンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、出力される三相交流の内の二相をインバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続したものである。
【0034】
又、コンバータ部は二組の上下アームスイッチ部を、インバータ部及び共通部は一組の上下アームスイッチ部を備え、入力される三相交流の内の二相をコンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、出力される単相交流の内の一相をインバータ部の一組の上アームスイッチ部と下アームスイッチ部の中間点に接続したものである。
【0035】
又、コンバータ部及び共通部は一組の上下アームスイッチ部を、インバータ部は二組の上下アームスイッチ部を備え、入力される単相交流の内の一相をコンバータ部の一組の上アームスイッチ部と下アームスイッチ部の中間点に接続し、出力される三相交流の内の二相をインバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続したものである。
【0036】
又、この電力変換装置の制御方法においては、複数のスイッチ部をPWM制御して交流を直流へ変換するコンバータ部と、複数のスイッチ部をPWM制御して直流を交流へ変換するインバータ部と、複数のスイッチ部をPWM制御して交流を直流へ又は直流を交流へ変換する共通部と、この共通部とコンバータ部との組合せにより入力される交流を直流に変換するPWM制御を行うコンバータ制御部と、共通部とインバータ部との組合せにより直流を交流として出力するPWM制御を行うインバータ制御部と、を備え、入力される交流の少なくとも一つの相を基準信号とし、この基準信号に基づいて共通部をPWM制御する共通部電圧変調信号を生成し、この共通部電圧変調信号と所定の位相差を有するコンバータ部電圧変調信号及びインバータ部電圧変調信号を生成し、このコンバータ部電圧変調信号と共通部電圧変調信号とをコンバータ制御部のPWM変調信号とし、インバータ部電圧変調信号と共通部電圧変調信号とをインバータ制御部のPWM変調信号としたものである。
【0037】
又、コンバータ部、インバータ部及び共通部はそれぞれ少なくとも一組の上下アームスイッチ部を備え、入力される交流の一つの相を出力される交流の一つの相と共通に接続し、この共通に接続された相を共通部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、入力される交流の他の相をコンバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、出力される交流の他の相をインバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、基準信号は前記入力される交流の前記共通に接続される相と他の相との線間電圧から生成したものである。
【0038】
又、コンバータ部及びインバータ部は二組の上下アームスイッチ部を、又共通部は一組の上下アームスイッチ部を備え、入力される三相交流の内の二相をコンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、出力される三相交流の内の二相をインバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、共通部電圧変調信号は基準信号から線間と相の位相関係を有して生成し、インバータ部電圧変調信号は入力される交流の一つの相と共通に接続された出力される交流の一つの相と出力される交流の他の二つ相との間の線間電圧に基づいて生成した線間電圧変調信号と共通部電圧変調信号とから生成したものである。
【0039】
又、コンバータ部及びインバータ部は二組の上下アームスイッチ部を、又共通部は一組の上下アームスイッチ部を備え、入力される三相交流の内の二相をコンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、出力される三相交流の内の二相をインバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、共通部電圧変調信号は基準信号から線間と相の位相関係を有して生成し、コンバータ部電圧変調信号は入力される交流の一つの相と共通に接続された出力される交流の一つの相と入力される交流の他の二つ相との間の線間電圧に基づいて生成した線間電圧変調信号と共通部電圧変調信号とから生成したものである。
【0040】
又、共通部をPWM制御する共通相電圧変調信号を生成する関数信号は、正弦波信号、台形波信号又は三角波信号であるものである。
【0041】
又、この電力変換装置を用いた無停電電源装置においては、複数のスイッチ部をPWM制御して交流を直流へ変換するコンバータ部と、複数のスイッチ部をPWM制御して直流を交流へ変換するインバータ部と、複数のスイッチ部をPWM制御して交流を直流へ又は直流を交流へ変換する共通部と、この共通部とコンバータ部との組合せにより入力される交流を直流に変換するPWM制御を行うコンバータ制御部と、共通部とインバータ部との組合せにより前記直流を交流として出力するPWM制御を行うインバータ制御部と、入力される交流とインバータ部から出力される交流に対応する相の交流とを選択的に出力するスイッチ部と、を備えたものである。
【0042】
又、コンバータ部、インバータ部及び共通部はそれぞれ少なくとも一組の上下アームスイッチ部を備え、入力される交流の一つの相を前記出力される交流の一つの相と共通に接続し、この共通に接続された相を共通部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、入力される交流の他の相をコンバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、出力される交流の他の相をインバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続したものである。
【0043】
又、コンバータ部及びインバータ部は二組の上下アームスイッチ部を、共通部は一組の上下アームスイッチ部を備え、入力される三相交流の内の二相をコンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、出力される三相交流の内の二相をインバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続したものである。
【0044】
更に、コンバータ部は二組の上下アームスイッチ部を、インバータ部及び共通部は一組の上下アームスイッチ部を備え、入力される三相交流の内の二相をコンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、出力される単相交流の内の一相をインバータ部の一組の上アームスイッチ部と下アームスイッチ部の中間点に接続したものである。
【0045】
そして、コンバータ部及び共通部は一組の上下アームスイッチ部を、インバータ部は二組の上下アームスイッチ部を備え、入力される単相交流の内の一相をコンバータ部の一組の上アームスイッチ部と下アームスイッチ部の中間点に接続し、出力される三相交流の内の二相をインバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続したものである。
【0046】
【発明の実施の形態】
実施の形態1.
この発明の第1の実施の形態として、三相交流を入力し入力と同一周波数の三相交流を出力する電力変換装置を用いた無停電電源装置について、図1〜図15に基づいて説明する。図1は三相入力三相出力の無停電電源装置の主回路構成を示すブロック図、図2はスイッチSWJ107の詳細を示す内部構成図、図3はリアクトル108の詳細を示す内部構成図、図4はフィルタ111の詳細を示す内部構成図、図5はスイッチSWH112の詳細を示す内部構成図、図6はスイッチSWI114の詳細を示す内部構成図、図7はコンバータ部120の詳細を示す内部構成図、図8はインバータ部130の詳細を示す内部構成図、図9は共通部110の詳細を示す内部構成図、図10は三相入力三相出力の無停電電源装置の制御回路構成を示すブロック図、図11はインバータVU間電圧変調指令生成回路150の詳細構成を示すブロック図、図12はコンバータ電流指令生成回路143の詳細構成を示すブロック図、図13はコンバータSR間電圧変調指令生成回路144の詳細構成を示すブロック図、図14はコンバータ及びインバータの各種電圧変調指令信号の関係を示す波形図、図15は3次高調波を含んだ相電圧変調指令信号とそれに基づく線間電圧との関係を示す波形図である。
【0047】
図において従来例と同一符号は同一又は相当部分を示し、71は電力変換装置、81は無停電電源装置、107は二相のスイッチSWJ1、SWJ2から構成されるスイッチSWJ、108は二相のリアクトルL11、L12から構成されるリアクトル,9は後述のコンバータ部120と共通部110からの直流を平滑する平滑コンデンサ、111は二相のリアクトルL21、L22とC1、C2とから構成されるフィルタ、112は二相のスイッチSWH1、SWH2から構成されるスイッチSWH、114は二相のスイッチSWI1、SWI2から構成されるスイッチSWI、120は入力される二相交流を直流に変換するコンバータ部、130は後述の共通部110と協働して直流を三相交流に変換するインバータ部、110はコンバータ部120とインバータ部130の両方の役目を備えたR相又はU相の上下アームスイッチ部である共通部である。
【0048】
121、122はそれぞれT相、S相の上下アームスイッチ部、121aはT相の上下アームスイッチ部121の上アームスイッチ部、121bはT相の上下アームスイッチ部121の下アームスイッチ部、122aはS相の上下アームスイッチ部122の上アームスイッチ部、122bはS相の上下アームスイッチ部122の下アームスイッチ部である。ここで、各々の上又は下アームスイッチ部121a,121b,122a,122bは、トランジスタ、FET、IGBT等のスイッチング素子とこれに逆並列に接続されたダイオードから構成されている。
【0049】
131、132はそれぞれW相、V相の上下アームスイッチ部、131aはW相の上下アームスイッチ部131の上アームスイッチ部、131bはW相の上下アームスイッチ部131の下アームスイッチ部、132aはV相の上下アームスイッチ部132の上アームスイッチ部、132bはV相の上下アームスイッチ部132の下アームスイッチ部である。ここで、各々の上又は下アームスイッチ部131a,131b,132a,132bは、トランジスタ、FET、IGBT等のスイッチング素子とこれに逆並列に接続されたダイオードから構成されている。
【0050】
110aはR相又はU相の共通部110の上下アームスイッチの上アームスイッチ部、110bはR相又はU相の共通部110の上下アームスイッチの下アームスイッチ部である。
【0051】
1R、1S、1Tはそれぞれ三相交流入力電源のR相、S相、T相の電力が供給される端子、6U、6V、6Wは駆動される負荷(図示せず。)に出力される三相交流の出力端子であり、1R端子と6U端子とは直結されている。そして、端子1Tと端子2T、端子1Sと端子2SはそれぞれスイッチSWJ107のSWJ1、SWJ2を介して接続され、端子2Tと端子3T、端子2Sと端子3Sはそれぞれリアクトル108のL11、L12を介して接続され、端子3T、3SはそれぞれT相の上アームスイッチ部121aと下アームスイッチ部121bの接続点、S相の上アームスイッチ部122aと下アームスイッチ部122bの接続点に接続されている。
【0052】
1RUは共通部110の上アームスイッチ部110aと下アームスイッチ部110bの接続点に接続されている端子である。P1、N1はそれぞれ共通部110とインバータ部130との間の直流正極端子、直流負極端子であり、それぞれ直流正極端子P、直流負極端子Nと同電位である。
【0053】
端子4W、4Vはインバータ部130のそれぞれW相の上アームスイッチ部131aと下アームスイッチ部131bの接続点、V相の上アームスイッチ部132aと下アームスイッチ部132bの接続点に接続されている。そして、端子4Wと端子5W、端子4Vと端子5Vはそれぞれフィルタ111のリアクトルL21、L22を介して接続され、更に、2RUはフィルタ111のコンデンサC1、C2の共通接続点に接続されている端子である。又、端子5Wと端子6W、端子5Vと端子6VはそれぞれスイッチSWH112のSWH1、SWH2を介して接続され、端子1Tと端子6W、端子1Sと端子6VはそれぞれスイッチSWI114のSWI1、SWI2を介して接続されている。
【0054】
次に、図10に示す制御回路においては、141Aは三相交流入力の一つの線間電圧であるV(SR)を入力して基準信号を生成するPLL回路40からの出力信号に対して所定の位相差を有し互いに異なる位相の二つの異なる位相信号θ(SR)、θ(TR)を生成する位相変換回路A、141BはPLL回路40からの出力信号に対して更に異なる所定の位相差を有する位相信号θ(R)を生成する位相変換回路B、142Aは位相変換回路A141Aからの二つの異なる位相信号θ(SR)、θ(TR)に対応する正弦波信号を生成する三角関数発生回路A、142Bは位相変換回路B141Bからの位相信号θ(R)に対応する正弦波信号を生成する三角関数発生回路Bである。
【0055】
143は平滑コンデンサ9の両端の測定電圧信号V(DC)と直流電圧指令信号V(DC)*、及び三角関数発生回路A142Aからの二つの正弦波信号sinθ(SR)とsinθ(TR)を入力して、コンバータ部120のコンバータS相電流指令信号I(S)*とコンバータT相電流指令信号I(T)*を出力するコンバータ電流指令生成回路である。
【0056】
ここで、コンバータ電流指令生成回路143は、図12に示すように構成されており、1431は直流電圧指令信号V(DC)*と平滑コンデンサ9の両端の測定電圧信号V(DC)との差を演算する減算器、1432は減算器1431からの出力信号をPI(比例+積分)制御で増幅するPI回路、1433は三角関数発生回路A142Aからの正弦波信号sinθ(TR)とPI回路1432からの出力信号を乗算しT相電流指令信号I(T)*を生成する乗算器、1434は三角関数発生回路A142Aからの正弦波信号sinθ(SR)とPI回路1432からの出力信号を乗算しS相電流指令信号I(S)*を生成する乗算器である。
【0057】
144は三相交流入力のS相電流の測定値信号I(S)とコンバータ電流指令生成回路143からのS相電流指令信号I(S)*を入力してコンバータSR間電圧変調指令信号V(SR)*を出力するコンバータSR間電圧変調指令生成回路、145は三相交流入力のT相電流の測定値信号I(T)とコンバータ電流指令生成回路143からのT相電流指令信号I(T)*を入力してコンバータTR間電圧変調指令信号V(TR)*を出力するコンバータTR間電圧変調指令生成回路である。
【0058】
ここで、コンバータSR間電圧変調指令生成回路144は、図13に示すように構成されており、1441はコンバータ電流指令生成回路143からのS相電流指令信号I(S)*とS相電流の測定値信号I(S)との差を演算する減算器、1442は減算器1441からの出力信号をP(比例)制御で増幅しコンバータSR間電圧変調指令信号V(SR)*を生成するP回路である。又、コンバータTR間電圧変調指令生成回路145もコンバータSR間電圧変調指令生成回路144と同様に構成されている。
【0059】
146は三角関数発生回路B142Bからの正弦波信号sinθ(R)と平滑コンデンサ9の両端の測定電圧信号V(DC)とを入力して、共通部の電圧であるU相の電圧のU相の電圧変調指令信号V(UN)*を生成する共通部電圧変調指令生成回路、161はコンバータTR間電圧変調指令生成回路145からのコンバータTR間電圧変調指令信号V(TR)*と共通部電圧変調指令生成回路146からのU相の電圧変調指令信号V(UN)*を加算してコンバータT相の電圧変調指令信号V(TN)*を生成する加算器、162はコンバータSR間電圧変調指令生成回路144からのコンバータSR間電圧変調指令信号V(SR)*と共通部電圧変調指令生成回路146からのU相の電圧変調指令信号V(UN)*を加算してコンバータS相の電圧変調指令信号V(SN)*を生成する加算器である。
【0060】
そして、147は加算器161からのコンバータT相の電圧変調指令信号V(TN)*と加算器162からのコンバータS相の電圧変調指令信号V(SN)*を入力して、コンバータ部120のそれぞれ対応するT相、S相の上及び下アームスイッチ部121a、121b、122a、122bをPWM制御するコンバータ部ドライブ回路、149は共通部電圧変調指令生成回路146からのU相の電圧変調指令信号V(UN)*を入力してU相に対応する共通部110の上及び下アームスイッチ部110a、110bをPWM制御する共通部ドライブ回路である。
【0061】
一方、148はインバータ電圧振幅指令信号V(AC)*及び三角関数発生回路A142Aからの二つの正弦波信号sinθ(SR)とsinθ(TR)を入力して、二種類のインバータ電圧指令信号V(AC)*・sinθ(SR)とV(AC)*・sinθ(TR)とを生成するインバータ電圧指令生成回路、150はインバータ電圧指令生成回路148からのインバータ電圧指令信号V(AC)*・sinθ(SR)とV相電流の検出値I(V)及びV相U相間の線間電圧検出値V(VU)を入力してインバータVU間電圧変調指令信号V(VU)*を生成するインバータVU間電圧変調指令生成回路、151はインバータ電圧指令生成回路148からのインバータ電圧指令信号V(AC)*・sinθ(TR)とW相電流の検出値I(W)及びW相U相間の線間電圧検出値V(WU)を入力してインバータWU間電圧変調指令信号V(WU)*を生成するインバータWU間電圧変調指令生成回路である。
【0062】
ここで、インバータVU間電圧変調指令生成回路150は、図11に示すように構成されており、1501はインバータ電圧指令信号V(AC)*・sinθ(R)とV相U相間の線間電圧検出値V(VU)との差を演算する減算器、1502は減算器1501からの差信号をPID制御して誤差を増幅するPID回路、1503はV相電流の検出値I(V)を入力してこれを微分しリアクトルL22による電圧降下を生成するリアクトル分電圧降下生成回路、1504はリアクトル分電圧降下生成回路1503からの信号とPID回路1502からの信号を加算してインバータVU間電圧変調指令信号V(VU)*を生成する加算器である。又、インバータWU間電圧変調指令生成回路151もインバータVU間電圧変調指令生成回路150と同様に構成されている。
【0063】
163はインバータWU間電圧変調指令生成回路151からのインバータWU間電圧変調指令信号V(WU)*と共通部電圧変調指令生成回路146からのU相の電圧変調指令信号V(UN)*を加算してインバータW相の電圧変調指令信号V(WN)*を生成する加算器、164はインバータVU間電圧変調指令生成回路150からのインバータVU間電圧変調指令信号V(VU)*と共通部電圧変調指令生成回路146からのU相の電圧変調指令信号V(UN)*を加算してインバータV相の電圧変調指令信号V(VN)*を生成する加算器である。
【0064】
そして、152は加算器163からのインバータW相の電圧変調指令信号V(WN)*と加算器164からのインバータV相の電圧変調指令信号V(VN)*を入力して、インバータ部130のそれぞれ対応するW相、V相の上及び下アームスイッチ部131a、131b、132a、132bをPWM制御するコンバータ部ドライブ回路である。
【0065】
次に、この実施の形態による無停電電源装置の動作について説明する。まず、スイッチSWJ107及びスイッチSWH112が閉じられスイッチSWI114が開かれている場合について見てみると、基本的な制御動作としては、コンバータ部120、共通部110、リアクトル108で三相交流電源の三相交流入力を直流に変換すると同時に、この三相交流電源のR相,S相、T相の各相入力電流波形を正弦波とさせ、又R相,S相、T相の各相電圧を各相電流と位相を一致させるように、コンバータ部120、共通部110を構成するスイッチ部を所定の指令でPWM制御することにより、入力力率がほぼ1で、平滑コンデンサ9の両端の電圧を所定の直流電圧値とするように制御するものである。
【0066】
一方、インバータ部130、共通部110、フィルタ111によりU相,V相、W相の各相出力電圧が正弦波の一定電圧値でかつ所定の周波数の交流出力波形となるように、インバータ部130、共通部110を構成するスイッチ部を所定の指令でPWM制御することにより、所定周波数で所定電圧の三相交流出力を出力端子6W、6V、6Uに得らことができる。
【0067】
ここで、蓄電装置10は、定常時は図示されない充電回路あるいは平滑コンデンサ9から充電され、三相交流電源が異常の時、即ち停電あるいは瞬時電圧低下が発生した時に、これを放電することにより、インバータ部130,共通部110,フィルタ111を介して出力端子6W、6V、6Uへ出力されることになる。
【0068】
又、コンバータ部120、インバータ部130、或いは共通部110に何らかの異常が発生した時には、スイッチSWJ107及びスイッチSWH112を開としスイッチSWI114を閉とすることにより、三相交流電源からの交流出力が直接スイッチSWI114を介して出力端子6W、6V、6Uへ出力されることになる。このような異常が発生した時には、インバータ部130によって発生された交流出力と三相交流電源からインバータ部130をバイパスして直接得られる交流出力とを無瞬断で切り替えることが重要となる。そのためにはスイッチSWH112とスイッチSWI114とを同時に閉にする期間が必要となる。
【0069】
このような場合においても、後に詳述するように、この実施の形態による主回路構成では、入力側の一つの端子1Rと出力側の一つの端子6Uが共通に接続されているので、コンバータ部120とインバータ部130とは同一の基準を持つことになり、両者の間に電位差は発生しないので従来例に示したような絶縁トランス13を必要としない。更に、コンバータ部120とインバータ部130とは共通部110を介してPWM制御されているので、バイパス回路との切り替えのためにスイッチSWJ107,スイッチSWH112,スイッチSWI114が同時に閉となった場合でも、バイパス回路からの交流出力とインバータ部130からの交流出力とを同期させかつ同一電位とさせることになり、出力短絡などの不具合の発生することはない。
【0070】
この実施の形態の主回路構成では、入力側と出力側の一線を共通にしているため、三相回路状態が非対称となり相電圧を制御することは困難となる。従って、コンバータ部120及びインバータ部130をPWM制御するためには、線間電圧変調指令信号を生成したのちに、これを直流負極端子Nを基準とした各相の電圧指令信号に変換することが必要となる。
【0071】
例えば、S相とR相の線間電圧をV(SR)、T相とR相の線間電圧をV(TR)、V相とU相の線間電圧をV(VU)、W相とU相の線間電圧をV(WU)、U相とN点との間の電圧をV(UN)(ここで、U相とR相とは同電位であるとする。)、V相とN点との間の電圧をV(VN)、W相とN点との間の電圧をV(WN)、S相とN点との間の電圧をV(SN)、T相とN点との間の電圧をV(TN)、とすると、以下に示す関係式が得られる。即ち、
V(RN)=V(UN)
V(SN)=V(SR)+V(RN)
V(TN)=V(TR)+V(RN)
V(VN)=V(VU)+V(UN)
V(WN)=V(WU)+V(UN)
【0072】
このことから、図10において、U相の電圧変調指令信号V(UN)*を共通部電圧変調指令生成回路146から、コンバータSR間電圧変調指令信号V(SR)*をコンバータSR間電圧変調指令生成回路144から、コンバータTR間電圧変調指令信号V(TR)*をコンバータTR間電圧変調指令生成回路145から、インバータVU間電圧変調指令信号V(VU)*をインバータVU間電圧変調指令生成回路150から、インバータWU間電圧変調指令信号V(WU)*をインバータWU間電圧変調指令生成回路151からそれぞれ生成すれば、上式を用いて、加算器162、161、164、163により、コンバータS相の電圧変調指令信号V(SN)*、コンバータT相の電圧変調指令信号V(TN)*、インバータV相の電圧変調指令信号V(VN)*、インバータW相の電圧変調指令信号V(WN)*をそれぞれ生成することができる。
【0073】
さて、コンバータ部120の力率を1としなければなければならないので、コンバータ電流の制御を行う必要がある。以下にコンバータ部120の力率を1に制御する動作について述べる。まず、入力端子1S、1R間の線間電圧V(SR)を検出してPLL回路40に入力し、この線間電圧信号V(SR)を基準信号とする。この線間電圧信号V(SR)を位相変換回路A141Aへ入力し、更に三角関数発生回路A142Aにより、この線間電圧信号V(SR)と同一周期、同一振幅で互いに異なる位相差を有する二種類の正弦波信号を生成する。一つは線間電圧信号V(SR)と同期した(同じ位相を有する)正弦波信号sinθ(SR)、他の一つは線間電圧V(TR)と同じ位相関係を有する正弦波信号sinθ(TR)である。ここで、正弦波信号sinθ(TR)は、例えば正弦波信号sinθ(SR)に比べて位相がπ/3だけ遅れているものである。
【0074】
今、線間電圧の振幅を141vとすると、これらの正弦波信号は次のように表わすことができる。
Figure 0003588932
これらの正弦波信号は、図14において、(d)はV(SR)を、(e)はV(TR)を示している。
【0075】
次に、コンバータ電流指令生成回路143で平滑コンデンサ9の両端の測定電圧電圧信号V(DC)と直流電圧指令信号V(DC)*の差を求め、これにPI制御を行って誤差を増幅し、その誤差とsinθ(SR)及びsinθ(TR)との積を演算し、コンバータS相電流指令信号I(S)*及びコンバータT相電流指令信号I(T)*を生成する。
【0076】
一方、位相変換回路B141B及び三角関数発生回路B142Bでは、入力された線間電圧信号V(SR)に比べて5π/6だけ位相の進んだ正弦波信号sinθ(R)を生成する。この正弦波信号は直流負極端子Nを基準とした共通部の電圧指令に同期した位相を有する信号となる。そして、共通部電圧変調指令生成回路146では、三角関数発生回路B142Bからの正弦波信号sinθ(R)と平滑コンデンサ9の両端の測定電圧信号V(DC)とを入力して、共通部電圧であるU相(又はR相)電圧のU相の電圧変調指令信号V(UN)*を生成する。ここで、U相の電圧変調指令信号V(UN)*は下式で表わされる。
V(UN)*=(V(DC)/2)・(1+sin(θ+5π/6))
【0077】
一方、コンバータSR間電圧変調指令生成回路144では、コンバータ電流指令生成回路143からのS相電流指令信号I(S)*とS相電流の測定値信号I(S)との差を比例制御などで増幅しコンバータSR間電圧変調指令信号V(SR)*を生成する。又、コンバータTR間電圧変調指令生成回路145においても、コンバータSR間電圧変調指令生成回路144と同様にして、コンバータ電流指令生成回路143からのT相電流指令信号I(T)*とT相電流の測定値信号I(T)との差を比例制御などで増幅しコンバータTR間電圧変調指令信号V(TR)*を生成する。
【0078】
そして、加算器162、161において、これらのコンバータ線間電圧変調指令信号V(SR)*及びV(TR)*にU相の電圧変調指令信号V(UN)*を加算することにより、コンバータS相の電圧変調指令信号V(SN)*及びコンバータT相の電圧変調指令信号V(TN)*を生成する。そして、これらの信号をコンバータ部120のそれぞれ対応するS相、T相の上及び下アームスイッチ部122a、122b、121a、121bをPWM制御するコンバータ部ドライブ回路149へ入力する。
【0079】
他方、コンバータ部のR相の電圧を制御する部分としては、主回路として共通部110が、コンバータR相の電圧変調指令信号V(RN)*として共通部ドライブ回路149に入力されるU相の電圧変調指令信号V(UN)*がその役目を負うことになり、コンバータ部120とコンバータS相の電圧変調指令信号V(SN)*及びコンバータT相の電圧変調指令信号V(TN)*と合わせて、コンバータを力率1でPWM制御することになる。
【0080】
図14において、(a)はコンバータR相の電圧変調指令信号V(RN)*に相当するU相の電圧変調指令信号V(UN)*を、(b)はコンバータS相の電圧変調指令信号V(SN)*を、(c)はコンバータT相の電圧変調指令信号V(TN)*を、それぞれの信号の振幅や位相関係が分かるように示している。ここで、これらの信号の振幅については、(d)に示すV(SR)、(e)に示すV(TR)と合わせるために、V(DC)の値を次に示すように設定する。
(V(DC)/2)×31/2=141v
即ち、V(DC)=163vとなる。
【0081】
次にインバータ制御について述べる。インバータ電圧指令生成回路148において、インバータ電圧振幅指令信号V(AC)*及び三角関数発生回路A142Aからの二つの正弦波信号sinθ(SR)とsinθ(TR)を入力して、二種類のインバータ電圧指令信号V(AC)*・sinθ(SR)とV(AC)*・sinθ(TR)とを生成する。次に、インバータVU間電圧変調指令生成回路150において、インバータ電圧指令信号V(AC)*・sinθ(SR)とV相U相間の線間電圧検出値信号V(VU)との差を演算し、この誤差信号をPID制御して増幅し、この信号に、V相電流の検出値信号I(V)を微分しリアクトルL22による電圧降下を生成するリアクトル分電圧降下生成回路1503からの信号を加算してインバータVU間電圧変調指令信号V(VU)*を生成する。
【0082】
同様にして、インバータWU間電圧変調指令生成回路151においても、インバータ電圧指令信号V(AC)*・sinθ(TR)とW相U相間の線間電圧検出値信号V(WU)との差を演算し、この誤差信号をPID制御して増幅し、この信号に、W相電流の検出値信号I(W)を微分しリアクトルL21による電圧降下に関する信号を加算してインバータWU間電圧変調指令信号V(WU)*を生成する。
【0083】
そして、加算器164、163において、これらのインバータ線間電圧変調指令信号V(VU)*及びV(WU)*にU相の電圧変調指令信号V(UN)*を加算することにより、インバータV相の電圧変調指令信号V(VN)*及びインバータW相の電圧変調指令信号V(WN)*を生成する。そして、これらの信号をインバータ部130のそれぞれ対応するV相、W相の上及び下アームスイッチ部132a、132b、131a、131bをPWM制御するインバータ部ドライブ回路152へ入力する。
【0084】
他方、インバータ部のU相の電圧を制御する部分としては、主回路として共通部110が、インバータU相の電圧変調指令信号V(UN)*として共通部ドライブ回路149に入力されるU相の電圧変調指令信号V(UN)*がその役目を負うことになり、インバータ部130とインバータV相の電圧変調指令信号V(VN)*及びインバータW相の電圧変調指令信号V(WN)*と合わせて、インバータを入力電源の交流電圧と周波数、位相、振幅に関して同期した交流電圧を出力するようにPWM制御することになる。
【0085】
図14において、(a)はインバータU相の電圧変調指令信号V(UN)*を、(b)はインバータV相の電圧変調指令信号V(VN)*を、(c)はインバータW相の電圧変調指令信号V(WN)*を、(d)はインバータVU間電圧変調指令信号V(VU)*を、(e)はインバータWU間電圧変調指令信号V(WU)*を、それぞれの信号の振幅や位相関係が分かるように示している。
【0086】
ここで、以上のような方法で制御すると図14から明らかなように、コンバータの各相の電圧変調指令信号V(RN)*(V(UN)*と同じ)、V(SN)*、V(TN)*、及びインバータの各相の電圧変調指令信号V(UN)*、V(VN)*、V(WN)*のピーク間電圧値よりも、コンバータの各線間の電圧変調指令V(SR)*(V(SU)*と同じ)、V(TR)*、及びインバータの各線間の電圧変調指令V(VU)*、V(WU)*のピーク値の方が小さいことが分かる。
【0087】
このことは、コンバータやインバータの各相の電圧のピークの生じる位置と各線間の電圧のピークの生じる位置とが位相的に30°ずれているので、線間電圧のピーク値は相電圧のピーク間電圧(この場合はV(DC)となる。)に等しくならなく、ピーク間電圧を(31/2/2)倍した値(この場合は(V(DC)/2)×31/2となる。)に小さくなってしまう。従って、線間電圧のピーク値を平滑コンデンサ9の両端の電圧V(DC)の値に等しくすることができなく、平滑コンデンサ9の両端の電圧V(DC)の利用率が悪くなってしまう。
【0088】
そこで、電圧V(DC)の利用率を上げるために、図15に示すように、例えば、インバータV相の電圧変調指令信号V(VN)*及びインバータU相の電圧変調指令信号V(UN)*に適当な振幅の3次高調波を重畳させ各相の電圧変調指令信号のピーク値を小さくする。このようにすると、平滑コンデンサ9の両端の電圧V(DC)に対して、インバータのVU間線間電圧も電圧V(DC)をピーク値とする線間電圧を得ることができる。この場合、各相の電圧に3次高調波を重畳しても線間電圧には影響がないことは言うまでもない。
【0089】
図15において、(a)は電圧V(DC)をピーク値とするインバータのVU間線間電圧を示し、これを、例えばV(VU)と表わすと、
V(VU)=V(DC)・sinθ
となる。一方、(b)は適当な振幅を有する3次高調波を含ませたインバータU相の電圧変調指令信号V(UN)3*であり、
V(UN)3*=(V(DC)/2)・(1+sin(θ+5π/6))+α・sin(3θ+5π/6)
となる。又、(c)は同様に適当な振幅を有する3次高調波を含ませたインバータV相の電圧変調指令信号V(VN)3*であり、
V(VN)3*=(V(DC)/2)・(1+sin(θ+π/6))+α・sin(3θ+π/6)
となる。そして、インバータU相の電圧変調指令信号V(UN)3*とインバータV相の電圧変調指令信号V(VN)3*との合成から、電圧V(DC)をピーク値とするインバータVU間線間電圧V(VU)が得られることになる。
【0090】
以上の説明においては、共通部電圧であるU相(又はR相)の電圧のU相の電圧変調指令信号V(UN)*を生成する共通部電圧変調指令生成回路146へ入力される関数信号は三角関数発生回路B142Bからの正弦波信号sinθ(R)であったが、この関数信号の波形としては台形波,三角波であっても同様の制御動作を得ることができる。
【0091】
以上詳述したように、この実施の形態によれば、コンバータ部としてコンバータ部120と共通部110とから構成し、インバータ部としてインバータ部130と共通部110とから構成することにより、コンバータ部とインバータ部との両者に共通なスイッチ部を設け、コンバータ部120、共通部110、インバータ部130の各スイッチ部を、各相が所定の振幅と位相関係を有する電圧変調指令信号に基づいてPWM制御を行ったので、主回路を構成する上下アームスイッチ部を一組減少させることができ、それに伴って制御回路を構成する部品点数をも減少させることができる。又装置の軽量化や小形化にも効果がある。更に、損失や発熱の根源となるスイッチ部を減少させるので、装置の高効率化や冷却方法の簡易化を図ることが可能となる。
【0092】
又、インバータ部130によって発生された交流出力と三相交流電源からインバータ部130をバイパスして直接得られる交流出力とを無瞬断で切り替える場合においては、三相交流入力の内の一つの相、例えばR相を、三相交流出力の内の一つの相、例えばU相と共通に接続したので、コンバータ部とインバータ部との両者に共通なスイッチ部を設けたことによって両者が同一の共通な基準を持って制御されることと相まって、バイパス回路との切り替えのためにスイッチSWJ107,スイッチSWH112,スイッチSWI114が同時に閉となった場合でも、バイパス回路からの交流出力とインバータ部130からの交流出力とを同期させかつ同一電位とさせることになり、出力短絡などの不具合の発生することはない。更に、両者の間に電位差を発生させないので従来例に示したような絶縁トランス13をも必要としない効果がある。
【0093】
更に、コンバータ部ドライブ回路147、共通部ドライブ回路149、インバータ部ドライブ回路152に与えられる各相の電圧変調指令信号は、共通部電圧変調指令生成回路146から生成されるU相の電圧変調指令信号V(UN)*に各線間の電圧変調指令信号を加算することによって生成されるので、容易に測定することのできる線間電圧検出値をそのまま使用して各線間の電圧変調指令信号を生成するだけでよく、従来例のように各種の電圧変調指令信号を生成するのに電圧変換回路49を用いて線間電圧検出値をわざわざ相電圧に変換する必要がなく回路構成が少なく信頼性の高い制御回路を構成することのできる効果が有る。
【0094】
実施の形態2.
この発明の第2の実施の形態として、交流入力と同一の周波数を有する交流出力であるが、入力と出力の相数が異なる場合、特に単相と三相の場合の電力変換装置を用いた無停電電源装置について説明する。図16〜図21は入力が三相で出力が単相の場合、図22〜図26は入力が単相で出力が三相の場合である。まず、図16〜図21に基づいて、入力が三相で出力が単相の場合の電力変換装置を用いた無停電電源装置について説明する。
【0095】
図16は三相入力単相出力の電力変換装置を用いた無停電電源装置の主回路構成を示すブロック図、図17はフィルタ211の詳細を示す内部構成図、図18はスイッチSWH212の詳細を示す内部構成図、図19はスイッチSWI214の詳細を示す内部構成図、図20はインバータ部230の詳細を示す内部構成図、図21は三相入力単相出力の無停電電源装置の制御回路構成を示すブロック図である。
【0096】
図において、従来例及び第1の実施の形態と同一符号は同一又は相当部分を示し、72は電力変換装置、82は無停電電源装置、211は一相のリアクトルL22とC2とから構成されるフィルタ、212は一相のスイッチSWH2から構成されるスイッチSWH、214は一相のスイッチSWI2から構成されるスイッチSWI、230は共通部110と協働して直流を単相交流に変換するインバータ部であり、230aはV相の上下アームスイッチ部230の上アームスイッチ部、230bはV相の上下アームスイッチ部230の下アームスイッチ部である。
【0097】
次に、この実施の形態の制御動作について説明する。コンバータ部120及び共通部110の制御動作については第1の実施の形態と同様であるので、ここではインバータ部230と共通部110とが協働して行うインバータ動作について説明する。248はインバータ電圧指令生成回路で、三角関数発生回路A142Aで生成された二つの正弦波信号の内の線間電圧信号V(SR)と同期した(同じ位相を有する)正弦波信号sinθ(SR)だけが入力される。
【0098】
そして、同時に入力されたインバータ電圧振幅指令信号V(AC)*とによりインバータ電圧指令信号V(AC)*・sinθ(SR)を生成する。次に、インバータVU間電圧変調指令生成回路150において、インバータ電圧指令信号V(AC)*・sinθ(SR)とV相U相間の線間電圧検出値信号V(VU)との差を演算し、この誤差信号をPID制御して増幅し、この信号に、V相電流の検出値信号I(V)を微分しリアクトルL22による電圧降下を生成するリアクトル分電圧降下生成回路1503からの信号を加算してインバータVU間電圧変調指令信号V(VU)*を生成する。
【0099】
更に、加算器164において、このインバータVU間電圧変調指令信号V(VU)*にU相の電圧変調指令信号V(UN)*を加算することにより、インバータV相の電圧変調指令信号V(VN)*を生成する。そして、252はインバータ部230のV相の上及び下アームスイッチ部230a、230bをPWM制御するインバータ部ドライブ回路であり、このインバータV相の電圧変調指令信号V(VN)*を入力してインバータ部230のPWM制御を行う。
【0100】
他方、インバータ部のU相の電圧を制御する部分としては、主回路として共通部110が、インバータU相の電圧変調指令信号V(UN)*として共通部ドライブ回路149に入力されるU相の電圧変調指令信号V(UN)*がその役目を負うことになり、インバータ部230及びインバータV相の電圧変調指令信号V(VN)*と合わせて、インバータを入力電源のS相R相間の交流電圧と周波数、位相、振幅に関して同期したV相U相間の単相交流電圧を出力するようにPWM制御することになる。
【0101】
次に、図22〜図26に基づいて、入力が単相で出力が三相の場合の電力変換装置を用いた無停電電源装置について説明する。図22は単相入力三相出力の電力変換装置を用いた無停電電源装置の主回路構成を示すブロック図、図23はスイッチSWJ207の詳細を示す内部構成図、図24はリアクトル208の詳細を示す内部構成図、図25はコンバータ部220の詳細を示す内部構成図、図26は単相入力三相出力の電力変換装置を用いた無停電電源装置の制御回路構成を示すブロック図である。
【0102】
図において、従来例及び第1の実施の形態と同一符号は同一又は相当部分を示し、73は電力変換装置、83は無停電電源装置、207は一相のスイッチSWJ2から構成されるスイッチSWJ、208は一相のリアクトルL12から構成されるリアクトル、220は共通部110と協働して単相交流を直流に変換するコンバータ部であり、220aはS相の上下アームスイッチ部220の上アームスイッチ部、220bはV相の上下アームスイッチ部230の下アームスイッチ部である。
【0103】
次に、この実施の形態の制御動作について説明する。インバータ部130及び共通部110の制御動作については第1の実施の形態と同様であるので、ここではコンバータ部220と共通部110とが協働して行うコンバータ動作について説明する。243はコンバータ電流指令生成回路で、三角関数発生回路A142Aで生成された二つの正弦波信号の内の線間電圧信号V(SR)と同期した(同じ位相を有する)正弦波信号sinθ(SR)だけが入力される。
【0104】
そして、同時に入力された平滑コンデンサ9の両端の測定電圧電圧信号V(DC)と直流電圧指令信号V(DC)*の差を求め、これにPI制御を行って誤差を増幅し、その誤差とsinθ(SR)との積を演算し、コンバータS相電流指令信号I(S)*を生成する。次に、コンバータSR間電圧変調指令生成回路144において、コンバータ電流指令生成回路243からのS相電流指令信号I(S)*とS相電流の測定値信号I(S)との差を比例制御などで増幅しコンバータSR間電圧変調指令信号V(SR)*を生成する。
【0105】
更に、加算器162において、このコンバータSR間電圧変調指令信号V(SR)*にU相の電圧変調指令信号V(UN)*を加算することにより、コンバータS相の電圧変調指令信号V(SN)*を生成する。そして、247はコンバータ部220のS相の上及び下アームスイッチ部220a、220bをPWM制御するコンバータ部ドライブ回路であり、このコンバータS相の電圧変調指令信号V(SN)*を入力してコンバータ部220のPWM制御を行う。
【0106】
他方、コンバータ部のR相の電圧を制御する部分としては、主回路として共通部110が、コンバータR相の電圧変調指令信号V(RN)*として共通部ドライブ回路149に入力されるU相の電圧変調指令信号V(UN)*がその役目を負うことになる。そして、コンバータ部220及びコンバータS相の電圧変調指令信号V(SN)*と合わせて、三相交流電源の内の二相の単相電圧を直流に変換すると共に、同三相交流電源からの入力電流を正弦波とし、入力電圧と電流の位相を一致させるように、所定の指令でPWM制御し、入力力率がほぼ1でかつ平滑コンデンサ9の両端の電圧が所定の直流電圧値となるよう動作する。
【0107】
以上詳述したように、この実施の形態によれば、コンバータ部としてコンバータ部120と共通部110とから、又はコンバータ部220と共通部110とから構成し、インバータ部としてインバータ部230と共通部110とから、又はインバータ部130と共通部110とからそれぞれ構成することにより、コンバータ部とインバータ部との両者に共通なスイッチ部を設け、コンバータ部120、共通部110、インバータ部230からなる構成、又はコンバータ部220、共通部110、インバータ部130からなる構成の各スイッチ部を、各相が所定の振幅と位相関係を有する電圧変調指令信号に基づいてPWM制御を行ったので、主回路を構成する上下アームスイッチ部を一組減少させることができ、それに伴って制御回路を構成する部品点数をも減少させることができる。又装置の軽量化や小形化にも効果がある。更に、損失や発熱の根源となるスイッチ部を減少させるので、装置の高効率化や冷却方法の簡易化を図ることが可能となる。
【0108】
又、インバータ部230又は130によって発生された交流出力と三相交流電源からインバータ部230又は130をバイパスして直接得られる交流出力とを無瞬断で切り替える場合においては、三相交流入力の内の一つの相、例えばR相を、単相交流出力又は三相交流出力の内の一つの相、例えばU相と共通に接続したので、コンバータ部とインバータ部との両者に共通なスイッチ部を設けたことによって両者が同一の共通な基準を持って制御されることと相まって、バイパス回路との切り替えのためにスイッチSWJ107,スイッチSWH212,スイッチSWI214が同時に閉となった場合又はスイッチSWJ207,スイッチSWH112,スイッチSWI114が同時に閉となった場合でも、バイパス回路からの交流出力とインバータ部230又は130からの交流出力とを同期させかつ同一電位とさせることになり、出力短絡などの不具合の発生することはない。更に、両者の間に電位差を発生させないので従来例に示したような絶縁トランス13をも必要としない効果がある。
【0109】
更に、コンバータ部ドライブ回路147又は247、共通部ドライブ回路149、インバータ部ドライブ回路252又は152に与えられる各相の電圧変調指令信号は、共通部電圧変調指令生成回路146から生成されるU相の電圧変調指令信号V(UN)*に各線間の電圧変調指令信号を加算することによって生成されるので、容易に測定することの線間電圧検出値をそのまま使用して各線間の電圧変調指令信号を生成するだけでよく、従来例のように各種の電圧変調指令信号を生成するのに電圧変換回路49を用いて線間電圧検出値をわざわざ相電圧に変換する必要がなく回路構成が少なく信頼性の高い制御回路を構成することのできる効果が有る。
【0110】
実施の形態3.
この発明の第3の実施の形態として、n相交流を入力し入力と同一周波数のn相交流を出力する電力変換装置を用いた無停電電源装置について、図27〜図35に基づいて説明する。図27はn相入力n相出力の電力変換装置を用いた無停電電源装置の主回路構成を示すブロック図、図28はスイッチSWJ307の詳細を示す内部構成図、図29はリアクトル308の詳細を示す内部構成図、図30はフィルタ311の詳細を示す内部構成図、図31はスイッチSWH312の詳細を示す内部構成図、図32はスイッチSWI314の詳細を示す内部構成図、図33はコンバータ部320の詳細を示す内部構成図、図34はインバータ部330の詳細を示す内部構成図、図35は共通部310の詳細を示す内部構成図である。
【0111】
図において従来例及び第1、第2の実施の形態と同一符号は同一又は相当部分を示し、74は電力変換装置、84は無停電電源装置、307は(n−1)相のスイッチSWJ(1)〜SWJ(n−1)から構成されるスイッチSWJ、308は(n−1)相のリアクトルL1(1)〜L1(n−1)から構成されるリアクトル,311は(n−1)相のリアクトルL2(1)〜L2(n−1)とC(1)〜C(n−1)とから構成されるフィルタ、312は(n−1)相のスイッチSWH(1)〜SWH(n−1)から構成されるスイッチSWH、314は(n−1)相のスイッチSWI(1)〜SWI(n−1)から構成されるスイッチSWI、320は入力される(n−1)相交流を直流に変換するコンバータ部、330は後述の共通部310と協働して直流をn相交流に変換するインバータ部、310はコンバータ部320とインバータ部330の両方の役目を備えた第n相の上下アームスイッチ部である共通部である。
【0112】
320(1)〜320(n−1)はそれぞれ第1相〜第(n−1)相の上下アームスイッチ部、320(1)a〜320(n−1)aはそれぞれ第1相〜第(n−1)相の上アームスイッチ部、320(1)b〜320(n−1)bはそれぞれ第1相〜第(n−1)相の下アームスイッチ部、ここで、各々の上又は下アームスイッチ部320(1)a〜320(n−1)a、及び320(1)b〜320(n−1)bは、トランジスタ、FET、IGBT等のスイッチング素子とこれに逆並列に接続されたダイオードから構成されている。
【0113】
330(1)〜330(n−1)はそれぞれ第1相〜第(n−1)相の上下アームスイッチ部、330(1)a〜330(n−1)aはそれぞれ第1相〜第(n−1)相の上アームスイッチ部、330(1)b〜330(n−1)bはそれぞれ第1相〜第(n−1)相の下アームスイッチ部、ここで、各々の上又は下アームスイッチ部330(1)a〜330(n−1)a、及び330(1)b〜330(n−1)bは、トランジスタ、FET、IGBT等のスイッチング素子とこれに逆並列に接続されたダイオードから構成されている。
【0114】
310aは第n相の上下アームスイッチ部310の上アームスイッチ部、310bは第n相の上下アームスイッチ部310の下アームスイッチ部である。
【0115】
1IN(1)〜1IN(n)はそれぞれ交流入力電源の第1相〜第n相の電力が供給される端子、6OUT(1)〜6OUT(n)は駆動される負荷(図示せず。)に出力されるn相交流の出力端子であり、1IN(n)端子と6OUT(n)端子とは直結されている。そして、端子1IN(1)〜1IN(n−1)と端子2IN(1)〜2IN(n−1)とは、それぞれスイッチSWJ307のSWJ(1)〜SWJ(n−1)を介して接続され、端子2IN(1)〜2IN(n−1)と端子3IN(1)〜3IN(n−1)とは、それぞれリアクトル308のL1(1)〜L1(n−1)を介して接続され、端子3IN(1)〜3IN(n−1)は、それぞれ第1相の上アームスイッチ部320(1)aと下アームスイッチ部320(1)bの接続点〜第(n−1)相の上アームスイッチ部320(n−1)aと下アームスイッチ部320(n−1)bの接続点に接続されている。
【0116】
1INOUT(n)は共通部310の上アームスイッチ部310aと下アームスイッチ部310bの接続点に接続されている端子である。P1、P2はそれぞれ共通部310とインバータ部330との間の直流正極端子、直流負極端子であり、それぞれ直流正極端子P、直流負極端子Nと同電位である。
【0117】
端子4OUT(1)〜4OUT(n−1)はそれぞれインバータ部330の第1相の上アームスイッチ部330(1)aと下アームスイッチ部330(1)bの接続点〜第(n−1)相の上アームスイッチ部330(n−1)aと下アームスイッチ部330(n−1)bの接続点に接続されている。そして、端子4OUT(1)〜4OUT(n−1)はそれぞれフィルタ311のリアクトルL2(1)〜L2(n−1)を介して端子5OUT(1)〜5OUT(n−1)に接続され、更に、2INOUT(n)はフィルタ311のコンデンサC(1)〜C(n−1)の共通接続点に接続されている端子である。
【0118】
端子5OUT(1)〜5OUT(n−1)はそれぞれ端子6OUT(1)〜6OUT(n−1)にスイッチSWH312のSWH(1)〜SWH(n−1)を介して接続され、端子1IN(1)〜1IN(n−1)と端子6OUT(1)〜6OUT(n−1)はそれぞれスイッチSWI314のSWI(1)〜SWI(n−1)を介して接続されている。
【0119】
次に、この実施の形態のn相交流を入力し入力と同一周波数のn相交流を出力する電力変換装置を用いた無停電電源装置の動作について説明する。コンバータ部の動作においては、コンバータ部320,共通部310及びリアクトル308により、n相交流電源のn相電圧を直流に変換すると共に、同n相交流電源からの入力電流を正弦波とし、入力電圧と電流の位相を一致させるように、コンバータ部320及び共通部310の上及び下アームスイッチ部を所定の指令でPWM制御することより、入力力率がほぼ1で、平滑コンデンサ9の両端電圧が所定の直流電圧値となるように動作する。そして、詳細な制御動作は、n=3とした場合の第1の実施の形態と同様であり、ただ異なる点は各相間の位相差をπ/3ではなくπ/nとして制御する点である。
【0120】
又、インバータ部の動作においては、インバータ部330,共通部310及びフィルタ311により、正弦波形のn相出力電圧が入力電源のn相交流電圧と同一の電圧値、周波数及び位相関係で得られるように、インバータ部330及び共通部310の上及び下アームスイッチ部を所定の指令でPWM制御することになる。そして、詳細な制御動作は、n=3とした場合の第1の実施の形態と同様であり、ただ異なる点は各相間の位相差をπ/3ではなくπ/nとして制御する点である。
【0121】
以上詳述したように、この実施の形態によれば、単相や三相の場合だけでなく四相以上の多相の場合についても入力と出力の相数が等しい場合においては、コンバータ部としてコンバータ部320と共通部310とから構成し、インバータ部としてインバータ部330と共通部310とから構成することにより、コンバータ部とインバータ部との両者に共通なスイッチ部を設け、コンバータ部320、共通部310、インバータ部330の各スイッチ部を、各相が所定の振幅と位相関係を有するような電圧変調指令信号に基づいてPWM制御を行ったので、主回路を構成する上下アームスイッチ部を一組減少させることができ、それに伴って制御回路を構成する部品点数をも減少させることができる。又装置の軽量化や小形化にも効果がある。更に、損失や発熱の根源となるスイッチ部を減少させるので、装置の高効率化や冷却方法の簡易化を図ることが可能となる。
【0122】
又、インバータ部330によって発生された交流出力と三相交流電源からインバータ部330をバイパスして直接得られる交流出力とを無瞬断で切り替える場合においては、n相交流入力の内の一つの相、例えば第n相を、n相交流出力の内の一つの相、例えば第n相と共通に接続したので、コンバータ部とインバータ部との両者に共通なスイッチ部を設けたことによって両者が同一の共通な基準を持って制御されることと相まって、バイパス回路との切り替えのためにスイッチSWJ307,スイッチSWH312,スイッチSWI314が同時に閉となった場合でも、バイパス回路からの交流出力とインバータ部330からの交流出力とを同期させかつ同一電位とさせることになり、出力短絡などの不具合の発生することはない。更に、両者の間に電位差を発生させないので従来例に示したような絶縁トランス13をも必要としない効果がある。
【0123】
更に、コンバータ部ドライブ回路、共通部ドライブ回路及びインバータ部ドライブ回路に与えられる各相の電圧変調指令信号についても、第1の実施の形態と同様の方法で生成されるので、共通部電圧変調指令生成回路から生成される第n相の電圧変調指令信号に各線間の電圧変調指令信号を加算することによって生成されることになり、容易に測定することの線間電圧検出値をそのまま使用して各線間の電圧変調指令信号を生成するだけでよく、従来例のように各種の電圧変調指令信号を生成するのに電圧変換回路49を用いて線間電圧検出値をわざわざ相電圧に変換する必要がなく、特に相数の多い場合においては、回路構成が少なく信頼性の高い制御回路を構成することのできるより大きな効果が有る。
【0124】
実施の形態4.
この発明の第4の実施の形態として、m相交流を入力し入力と同一周波数のn相交流を出力する電力変換装置について、図36〜図38に基づいて説明する。図36はm相入力n相出力の電力変換装置の主回路構成を示すブロック図、図37はリアクトル408の詳細を示す内部構成図、図38はコンバータ部420の詳細を示す内部構成図である。
【0125】
図において従来例及び第1、第2、第3の実施の形態と同一符号は同一又は相当部分を示し、75は電力変換装置、408は(m−1)相のリアクトルL1(1)〜L1(m−1)から構成されるリアクトル,420は入力される(m−1)相交流を直流に変換するコンバータ部である。
【0126】
420(1)〜420(m−1)はそれぞれ第1相〜第(m−1)相の上下アームスイッチ部、420(1)a〜420(m−1)aはそれぞれ第1相〜第(m−1)相の上アームスイッチ部、420(1)b〜420(n−1)bはそれぞれ第1相〜第(m−1)相の下アームスイッチ部、ここで、各々の上又は下アームスイッチ部420(1)a〜420(n−1)a、及び420(1)b〜420(n−1)bは、トランジスタ、FET、IGBT等のスイッチング素子とこれに逆並列に接続されたダイオードから構成されている。
【0127】
1IN(1)〜1IN(m)はそれぞれ三相交流入力電源の第1相〜第m相の電力が供給される端子、端子1IN(1)〜1IN(m−1)と端子3IN(1)〜3IN(m−1)とは、それぞれリアクトル408のL1(1)〜L1(m−1)を介して接続され、端子3IN(1)〜3IN(m−1)は、それぞれ第1相の上アームスイッチ部420(1)aと下アームスイッチ部420(1)bの接続点〜第(m−1)相の上アームスイッチ部420(m−1)aと下アームスイッチ部420(m−1)bの接続点に接続されている。
【0128】
1INOUT(mn)は共通部310の上アームスイッチ部310aと下アームスイッチ部310bの接続点に接続されている端子、2INOUT(mn)はフィルタ311のコンデンサC(1)〜C(n−1)の共通接続点に接続されている端子である。
【0129】
次に、この実施の形態のm相交流を入力し入力と同一周波数のn相交流を出力する電力変換装置の動作について説明する。コンバータ部の動作においては、コンバータ部420,共通部310及びリアクトル408により、m相交流電源のm相電圧を直流に変換すると共に、同m相交流電源からの入力電流を正弦波とし、入力電圧と電流の位相を一致させるように、コンバータ部420及び共通部310の上及び下アームスイッチ部を所定の指令でPWM制御することより、入力力率がほぼ1で、平滑コンデンサ9の両端電圧が所定の直流電圧値となるように動作する。そして、詳細な制御動作は、m=3とした場合の第1の実施の形態と同様であり、ただ異なる点は各相間の位相差をπ/3ではなくπ/mとして制御する点である。
【0130】
又、インバータ部の動作においては、インバータ部330,共通部310及びフィルタ311により、正弦波形のn相出力電圧が入力電源のn相交流電圧と同一の電圧値、周波数及び位相関係で得られるように、インバータ部330及び共通部310の上及び下アームスイッチ部を所定の指令でPWM制御することになる。そして、詳細な制御動作は、n=3とした場合の第1の実施の形態と同様であり、ただ異なる点は各相間の位相差をπ/3ではなくπ/nとして制御する点である。
【0131】
以上詳述したように、この実施の形態によれば、任意の相数を有する入力電源に対してその入力電源の相数と異なる任意の相数を出力する場合においても、コンバータ部としてコンバータ部420と共通部310とから構成し、インバータ部としてインバータ部330と共通部310とから構成することにより、コンバータ部とインバータ部との両者に共通なスイッチ部を設け、コンバータ部420、共通部310、インバータ部330の各スイッチ部を、各相が所定の振幅と位相関係を有するような電圧変調指令信号に基づいてPWM制御を行ったので、主回路を構成する上下アームスイッチ部を一組減少させることができ、それに伴って制御回路を構成する部品点数をも減少させることができる。又装置の軽量化や小形化にも効果がある。更に、損失や発熱の根源となるスイッチ部を減少させるので、装置の高効率化や冷却方法の簡易化を図ることが可能となる。
【0132】
又、コンバータ部ドライブ回路、共通部ドライブ回路及びインバータ部ドライブ回路に与えられる各相の電圧変調指令信号についても、第1の実施の形態と同様の方法で生成されるので、共通部電圧変調指令生成回路から生成される第n相又は第n相の電圧変調指令信号に、各線間の電圧変調指令信号を加算することによって生成されることになり、容易に測定することの線間電圧検出値をそのまま使用して各線間の電圧変調指令信号を生成するだけでよく、従来例のように各種の電圧変調指令信号を生成するのに電圧変換回路49を用いて線間電圧検出値をわざわざ相電圧に変換する必要がなく、特に相数の多い場合においては、回路構成が少なく信頼性の高い制御回路を構成することのできるより大きな効果が有る。
【0133】
【発明の効果】
この発明は、以上のように構成されているので、以下に記載されるような効果を奏する。
【0134】
複数のスイッチ部を有しPWM制御する共通部と、複数のスイッチ部を有し、前記共通部の複数のスイッチ部と組合せて、PWM制御して交流を直流に変換するコンバータ部と、複数のスイッチ部を有し、前記共通部の複数のスイッチ部と組合せて、PWM制御して直流を交流へ変換するインバータ部とこの共通部とコンバータ部との組合せにより入力される交流を直流に変換するPWM制御を行うコンバータ制御部と、共通部とインバータ部との組合せにより直流を交流として出力するPWM制御を行うインバータ制御部と、を備えたので、共通部をコンバータ部とインバータ部とに共通に用いてコンバータ部とインバータ部のそれぞれの機能を果たさせることになり、主回路の構成部品やそれに伴う制御回路の構成部品を減少させ、装置の軽量化や小形化ができる効果がある。更に損失や発熱の根源となるスイッチ部を減少させることになり、装置の高効率化や冷却方法の簡易化ができる効果がある。
【0135】
又、コンバータ部、インバータ部及び共通部はそれぞれ少なくとも一組の上下アームスイッチ部を備え、入力される交流の一つの相を出力される交流の一つの相と共通に接続し、この共通に接続された相を共通部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、入力される交流の他の相をコンバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、出力される交流の他の相をインバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続したので、コンバータ部とインバータ部とが同一の共通な基準を持ってPWM制御されることになり、主回路の構成部品やそれに伴う制御回路の構成部品を減少させると共に、入力される交流とインバータ部から出力される交流とを同期させかつ同一電位とさせる効果がある。
【0136】
又、コンバータ部及びインバータ部は二組の上下アームスイッチ部を、共通部は一組の上下アームスイッチ部を備え、入力される三相交流の内の二相をコンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、出力される三相交流の内の二相をインバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続したので、入力交流が三相で出力交流が三相の場合において、コンバータ部とインバータ部とが同一の共通な基準を持ってPWM制御されることになり、主回路の構成部品やそれに伴う制御回路の構成部品を減少させると共に、入力される交流とインバータ部から出力される交流とを同期させかつ同一電位とさせる効果がある。
【0137】
又、コンバータ部は二組の上下アームスイッチ部を、インバータ部及び共通部は一組の上下アームスイッチ部を備え、入力される三相交流の内の二相をコンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、出力される単相交流の内の一相をインバータ部の一組の上アームスイッチ部と下アームスイッチ部の中間点に接続したので、入力交流が三相で出力交流が単相の場合において、コンバータ部とインバータ部とが同一の共通な基準を持ってPWM制御されることになり、主回路の構成部品やそれに伴う制御回路の構成部品を減少させると共に、入力される交流とインバータ部から出力される交流とを同期させかつ同一電位とさせる効果がある。
【0138】
又、コンバータ部及び共通部は一組の上下アームスイッチ部を、インバータ部は二組の上下アームスイッチ部を備え、入力される単相交流の内の一相をコンバータ部の一組の上アームスイッチ部と下アームスイッチ部の中間点に接続し、出力される三相交流の内の二相をインバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続したので、入力交流が単相で出力交流が三相の場合において、コンバータ部とインバータ部とが同一の共通な基準を持ってPWM制御されることになり、主回路の構成部品やそれに伴う制御回路の構成部品を減少させると共に、入力される交流とインバータ部から出力される交流とを同期させかつ同一電位とさせる効果がある。
【0139】
又、複数のスイッチ部をPWM制御して交流を直流へ変換するコンバータ部と、複数のスイッチ部をPWM制御して直流を交流へ変換するインバータ部と、複数のスイッチ部をPWM制御して交流を直流へ又は直流を交流へ変換する共通部と、この共通部とコンバータ部との組合せにより入力される交流を直流に変換するPWM制御を行うコンバータ制御部と、共通部とインバータ部との組合せにより直流を交流として出力するPWM制御を行うインバータ制御部と、を備え、入力される交流の少なくとも一つの相を基準信号とし、この基準信号に基づいて共通部をPWM制御する共通部電圧変調信号を生成し、この共通部電圧変調信号と所定の位相差を有するコンバータ部電圧変調信号及びインバータ部電圧変調信号を生成し、このコンバータ部電圧変調信号と共通部電圧変調信号とをコンバータ制御部のPWM変調信号とし、インバータ部電圧変調信号と共通部電圧変調信号とをインバータ制御部のPWM変調信号としたので、共通部をコンバータ部とインバータ部とに共通に用いてコンバータ部とインバータ部のそれぞれの機能を果たさせることになり、主回路の構成部品やそれに伴う制御回路の構成部品を減少させ、装置の軽量化や小形化ができる効果がある。更に損失や発熱の根源となるスイッチ部を減少させることになり、装置の高効率化や冷却方法の簡易化ができる効果がある。
【0140】
又、コンバータ部、インバータ部及び共通部はそれぞれ少なくとも一組の上下アームスイッチ部を備え、入力される交流の一つの相を出力される交流の一つの相と共通に接続し、この共通に接続された相を共通部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、入力される交流の他の相をコンバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、出力される交流の他の相をインバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、基準信号は前記入力される交流の前記共通に接続される相と他の相との線間電圧から生成したので、コンバータ部とインバータ部とが同一の共通な基準を持ってPWM制御されることになり、主回路の構成部品やそれに伴う制御回路の構成部品を減少させると共に、入力される交流とインバータ部から出力される交流とを同期させかつ同一電位とさせる効果がある。
【0141】
又、コンバータ部及びインバータ部は二組の上下アームスイッチ部を、又共通部は一組の上下アームスイッチ部を備え、入力される三相交流の内の二相をコンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、出力される三相交流の内の二相をインバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、共通部電圧変調信号は基準信号から線間と相の位相関係を有して生成し、インバータ部電圧変調信号は入力される交流の一つの相と共通に接続された出力される交流の一つの相と出力される交流の他の二つ相との間の線間電圧に基づいて生成した線間電圧変調信号と共通部電圧変調信号とから生成したので、入力交流が三相で出力交流が三相の場合において、コンバータ部やインバータ部に与えられる各相の電圧変調指令信号は、共通部電圧変調信号に各線間の電圧変調指令信号を加算することによって生成されるので、容易に測定することの線間電圧検出値をそのまま使用して各線間の電圧変調指令信号を生成するだけでよくなり、線間電圧検出値をわざわざ相電圧に変換する必要がなく回路構成が少ない信頼性の高い制御回路を構成することのできる効果がある。
【0142】
又、コンバータ部及びインバータ部は二組の上下アームスイッチ部を、又共通部は一組の上下アームスイッチ部を備え、入力される三相交流の内の二相をコンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、出力される三相交流の内の二相をインバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、共通部電圧変調信号は基準信号から線間と相の位相関係を有して生成し、コンバータ部電圧変調信号は入力される交流の一つの相と共通に接続された出力される交流の一つの相と入力される交流の他の二つ相との間の線間電圧に基づいて生成した線間電圧変調信号と共通部電圧変調信号とから生成したので、入力交流が三相で出力交流が三相の場合において、コンバータ部やインバータ部に与えられる各相の電圧変調指令信号は、共通部電圧変調信号に各線間の電圧変調指令信号を加算することによって生成されるので、容易に測定することの線間電圧検出値をそのまま使用して各線間の電圧変調指令信号を生成するだけでよくなり、線間電圧検出値をわざわざ相電圧に変換する必要がなく回路構成が少ない信頼性の高い制御回路を構成することのできる効果がある。
【0143】
又、共通部をPWM制御する共通部電圧変調信号を生成する関数信号は、正弦波信号、台形波信号又は三角波信号であるので、各信号の周波数、振幅及び位相関係を正確に定めることになり、コンバータ部やインバータ部に与える各相の電圧変調指令信号を効率良く正確に生成することのできる効果がある。
【0144】
又、複数のスイッチ部をPWM制御して交流を直流へ変換するコンバータ部と、複数のスイッチ部をPWM制御して直流を交流へ変換するインバータ部と、複数のスイッチ部をPWM制御して交流を直流へ又は直流を交流へ変換する共通部と、この共通部とコンバータ部との組合せにより入力される交流を直流に変換するPWM制御を行うコンバータ制御部と、共通部とインバータ部との組合せにより前記直流を交流として出力するPWM制御を行うインバータ制御部と、入力される交流とインバータ部から出力され入力される交流に対応する相の交流とを選択的に出力するスイッチ部と、を備えたので、入力される交流とインバータ部から出力される交流とを同期させかつ同一電位とさせることになり、入力される交流とインバータ部から出力される交流とを無瞬断で切換えた場合においても出力短絡などの不具合を発生することはなく、無瞬断での切換え時に発生する電位差を吸収させるための絶縁トランス等の特別な装置を必要としない効果がある。
【0145】
又、コンバータ部、インバータ部及び共通部はそれぞれ少なくとも一組の上下アームスイッチ部を備え、入力される交流の一つの相を前記出力される交流の一つの相と共通に接続し、この共通に接続された相を共通部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、入力される交流の他の相をコンバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、出力される交流の他の相をインバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続したので、入力される交流とインバータ部から出力される交流とを同期させかつ同一電位とさせることになり、入力される交流とインバータ部から出力される交流とを無瞬断で切換えた場合においても出力短絡などの不具合を発生することはなく、無瞬断での切換え時に発生する電位差を吸収させるための絶縁トランス等の特別な装置を必要としない効果がある。
【0146】
又、コンバータ部及びインバータ部は二組の上下アームスイッチ部を、共通部は一組の上下アームスイッチ部を備え、入力される三相交流の内の二相をコンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、出力される三相交流の内の二相をインバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続したので、入力交流が三相で出力交流が三相の場合において、入力される交流とインバータ部から出力される交流とを同期させかつ同一電位とさせることになり、入力される交流とインバータ部から出力される交流とを無瞬断で切換えた場合においても出力短絡などの不具合を発生することはなく、無瞬断での切換え時に発生する電位差を吸収させるための絶縁トランス等の特別な装置を必要としない効果がある。
【0147】
更に、コンバータ部は二組の上下アームスイッチ部を、インバータ部及び共通部は一組の上下アームスイッチ部を備え、入力される三相交流の内の二相をコンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、出力される単相交流の内の一相をインバータ部の一組の上アームスイッチ部と下アームスイッチ部の中間点に接続したので、入力交流が三相で出力交流が単相の場合において、入力される交流とインバータ部から出力される交流とを同期させかつ同一電位とさせることになり、入力される交流とインバータ部から出力される交流とを無瞬断で切換えた場合においても出力短絡などの不具合を発生することはなく、無瞬断での切換え時に発生する電位差を吸収させるための絶縁トランス等の特別な装置を必要としない効果がある。
【0148】
そして、コンバータ部及び共通部は一組の上下アームスイッチ部を、インバータ部は二組の上下アームスイッチ部を備え、入力される単相交流の内の一相をコンバータ部の一組の上アームスイッチ部と下アームスイッチ部の中間点に接続し、出力される三相交流の内の二相をインバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続したので、入力交流が単相で出力交流が三相の場合において、入力される交流とインバータ部から出力される交流とを同期させかつ同一電位とさせることになり、入力される交流とインバータ部から出力される交流とを無瞬断で切換えた場合においても出力短絡などの不具合を発生することはなく、無瞬断での切換え時に発生する電位差を吸収させるための絶縁トランス等の特別な装置を必要としない効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1による三相入力三相出力の無停電電源装置の主回路構成を示すブロック図である。
【図2】この発明の実施の形態1によるスイッチSWJ107の詳細を示す内部構成図である。
【図3】この発明の実施の形態1によるリアクトル108の詳細を示す内部構成図である。
【図4】この発明の実施の形態1によるフィルタ111の詳細を示す内部構成図である。
【図5】この発明の実施の形態1によるスイッチSWH112の詳細を示す内部構成図である。
【図6】この発明の実施の形態1によるスイッチSWI114の詳細を示す内部構成図である。
【図7】この発明の実施の形態1によるコンバータ部120の詳細を示す内部構成図である。
【図8】この発明の実施の形態1によるインバータ部130の詳細を示す内部構成図である。
【図9】この発明の実施の形態1による共通部110の詳細を示す内部構成図である。
【図10】この発明の実施の形態1による三相入力三相出力の無停電電源装置の制御回路構成を示すブロック図である。
【図11】この発明の実施の形態1によるインバータVU間電圧変調指令生成回路150の詳細構成を示すブロック図である。
【図12】この発明の実施の形態1によるコンバータ電流指令生成回路143の詳細構成を示すブロック図である。
【図13】この発明の実施の形態1によるコンバータSR間電圧変調指令生成回路144の詳細構成を示すブロック図である。
【図14】この発明の実施の形態1によるコンバータ及びインバータの各種電圧変調指令信号の関係を示す波形図である。
【図15】この発明の実施の形態1による3次高調波を含んだ相の電圧変調指令信号とそれに基づく線間電圧との関係を示す波形図である。
【図16】この発明の実施の形態2による三相入力単相出力の電力変換装置を用いた無停電電源装置の主回路構成を示すブロック図である。
【図17】この発明の実施の形態2によるフィルタ211の詳細を示す内部構成図である。
【図18】この発明の実施の形態2によるスイッチSWH212の詳細を示す内部構成図である。
【図19】この発明の実施の形態2によるスイッチSWI214の詳細を示す内部構成図である。
【図20】この発明の実施の形態2によるインバータ部230の詳細を示す内部構成図である。
【図21】この発明の実施の形態2による三相入力単相出力の電力変換装置を用いた無停電電源装置の制御回路構成を示すブロック図である。
【図22】この発明の実施の形態2による単相入力三相出力の電力変換装置を用いた無停電電源装置の主回路構成を示すブロック図である。
【図23】この発明の実施の形態2によるスイッチSWJ207の詳細を示す内部構成である。
【図24】この発明の実施の形態2によるリアクトル208の詳細を示す内部構成図である。
【図25】この発明の実施の形態2によるコンバータ部220の詳細を示す内部構成図である。
【図26】この発明の実施の形態2による単相入力三相出力の電力変換装置を用いた無停電電源装置の制御回路構成を示すブロック図である。
【図27】この発明の実施の形態3によるn相入力n相出力の電力変換装置を用いた無停電電源装置の主回路構成を示すブロック図である。
【図28】この発明の実施の形態3によるスイッチSWJ307の詳細を示す内部構成図である。
【図29】この発明の実施の形態3によるリアクトル308の詳細を示す内部構成図である。
【図30】この発明の実施の形態3によるフィルタ311の詳細を示す内部構成図である。
【図31】この発明の実施の形態3によるスイッチSWH312の詳細を示す内部構成図である。
【図32】この発明の実施の形態3によるスイッチSWI314の詳細を示す内部構成図である。
【図33】この発明の実施の形態3によるコンバータ部320の詳細を示す内部構成図である。
【図34】この発明の実施の形態3によるインバータ部330の詳細を示す内部構成図である。
【図35】この発明の実施の形態3による共通部310の詳細を示す内部構成図である。
【図36】この発明の実施の形態4によるm相入力n相出力の電力変換装置の主回路構成を示すブロック図である。
【図37】この発明の実施の形態4によるリアクトル408の詳細を示す内部構成図である。
【図38】この発明の実施の形態4によるコンバータ部420の詳細を示す内部構成図である。
【図39】従来の三相入力三相出力の電力変換装置を用いた無停電電源装置の主回路構成を示すブロック図である。
【図40】従来のスイッチSWJ7の詳細を示す内部構成図である。
【図41】従来のリアクトル8の詳細を示す内部構成図である。
【図42】従来のフィルタ11の詳細を示す内部構成図ある。
【図43】従来のスイッチSWH12の詳細を示す内部構成図である。
【図44】従来のスイッチSWI14の詳細を示す内部構成図である。
【図45】従来のコンバータ部20の詳細を示す内部構成図ある。
【図46】従来のインバータ部30の詳細を示す内部構成図である。
【図47】従来の三相入力三相出力の電力変換装置を用いた無停電電源装置の制御回路構成を示すブロック図である。
【図48】従来のインバータU相電圧変調指令生成回路50の詳細構成を示すブロック図である。
【図49】従来のコンバータ電流指令生成回路43の詳細構成を示すブロック図である。
【図50】従来のコンバータR相電圧変調指令生成回路44の詳細構成を示すブロック図である。
【符号の説明】
40 PLL回路、71、72、73、74、75 電力変換装置、81、82、83、84 無停電電源装置、107、207、307 スイッチSWJ、112、212、312 スイッチSWH、114、214、314 スイッチSWI、110、310 共通部、110a R又はU相上アームスイッチ部、110b R又はU相下アームスイッチ部、120、220、320、420 コンバータ部、121 T相上下アームスイッチ部、121a T相上アームスイッチ部、121b T相下アームスイッチ部、122 S相上下アームスイッチ部、122a、220a S相上アームスイッチ部、122b、220b S相下アームスイッチ部、130、230、330 インバータ部、131 W相上下アームスイッチ部、131a W相上アームスイッチ部、131b W相下アームスイッチ部、132 V相上下アームスイッチ部、132a、230a V相上アームスイッチ部、132b、230b V相下アームスイッチ部、141A 位相変換回路A、141B 位相変換回路B、142A 三角関数発生回路A、142B 三角関数発生回路B、143、243 コンバータ電流指令生成回路、144 コンバータSR間電圧変調指令生成回路、145 コンバータTR間電圧変調指令生成回路、146 共通部電圧変調指令生成回路、147、247 コンバータ部ドライブ回路、148、248 インバータ電圧指令生成回路、149、249 共通部ドライブ回路、152、252 インバータ部ドライブ回路、150 インバータVU間電圧変調指令生成回路、151 インバータWU間電圧変調指令生成回路、161、162、163、164 加算器、310a n相上アームスイッチ部、310b n相下アームスイッチ部、320(1)〜320(n−1) コンバータ部320の第1相〜第(nー1)相上下アームスイッチ部、330(1)〜330(n−1) インバータ部330の第1相〜第(nー1)相上下アームスイッチ部、420(1)〜420(m−1) コンバータ部420の第1相〜第(mー1)相上下アームスイッチ部、1RU、1INOUT(n)、1INOUT(mn) 共通部110、310の上下アームスイッチ部の中間点との接続端子。

Claims (15)

  1. 複数のスイッチ部を有しPWM制御する共通部と、複数のスイッチ部を有し、前記共通部の複数のスイッチ部と組合せて、PWM制御して交流を直流に変換するコンバータ部と、複数のスイッチ部を有し、前記共通部の複数のスイッチ部と組合せて、PWM制御して直流を交流へ変換するインバータ部とこの共通部と前記コンバータ部との組合せにより入力される交流を直流に変換するPWM制御を行うコンバータ制御部と、前記共通部と前記インバータ部との組合せにより前記直流を交流として出力するPWM制御を行うインバータ制御部と、を備えたことを特徴とする電力変換装置。
  2. 前記コンバータ部、前記インバータ部及び前記共通部はそれぞれ少なくとも一組の上下アームスイッチ部を備え、前記入力される交流の一つの相を前記出力される交流の一つの相と共通に接続し、この共通に接続された相を前記共通部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、前記入力される交流の他の相を前記コンバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、出力される交流の他の相を前記インバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続したことを特徴とする請求項1に記載の電力変換装置。
  3. 前記コンバータ部及び前記インバータ部は二組の上下アームスイッチ部を、前記共通部は一組の上下アームスイッチ部を備え、前記入力される三相交流の内の二相を前記コンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、前記出力される三相交流の内の二相を前記インバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続したことを特徴とする請求項2に記載の電力変換装置。
  4. 前記コンバータ部は二組の上下アームスイッチ部を、前記インバータ部及び前記共通部は一組の上下アームスイッチ部を備え、前記入力される三相交流の内の二相を前記コンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、前記出力される単相交流の内の一相を前記インバータ部の一組の上アームスイッチ部と下アームスイッチ部の中間点に接続したことを特徴とする請求項2に記載の電力変換装置。
  5. 前記コンバータ部及び前記共通部は一組の上下アームスイッチ部を、前記インバータ部は二組の上下アームスイッチ部を備え、前記入力される単相交流の内の一相を前記コンバータ部の一組の上アームスイッチ部と下アームスイッチ部の中間点に接続し、前記出力される三相交流の内の二相を前記インバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続したことを特徴とする請求項2に記載の電力変換装置。
  6. 複数のスイッチ部をPWM制御して交流を直流へ変換するコンバータ部と、複数のスイッチ部をPWM制御して直流を交流へ変換するインバータ部と、複数のスイッチ部をPWM制御して交流を直流へ又は直流を交流へ変換する共通部と、この共通部と前記コンバータ部との組合せにより入力される交流を直流に変換するPWM制御を行うコンバータ制御部と、前記共通部と前記インバータ部との組合せにより前記直流を交流として出力するPWM制御を行うインバータ制御部と、を備え、前記入力される交流の少なくとも一つの相を基準信号とし、この基準信号に基づいて前記共通部をPWM制御する共通部電圧変調信号を生成し、この共通部電圧変調信号と所定の位相差を有するコンバータ部電圧変調信号及びインバータ部電圧変調信号を生成し、このコンバータ部電圧変調信号と前記共通部電圧変調信号とを前記コンバータ制御部のPWM変調信号とし、前記インバータ部電圧変調信号と前記共通部電圧変調信号とを前記インバータ制御部のPWM変調信号としたことを特徴とする電力変換装置の制御方法。
  7. 前記コンバータ部、前記インバータ部及び前記共通部はそれぞれ少なくとも一組の上下アームスイッチ部を備え、前記入力される交流の一つの相を前記出力される交流の一つの相と共通に接続し、この共通に接続された相を前記共通部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、前記入力される交流の他の相を前記コンバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、出力される交流の他の相を前記インバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、前記基準信号は前記入力される交流の前記共通に接続される相と他の相との線間電圧から生成したことを特徴とする請求項6に記載の電力変換装置の制御方法。
  8. 前記コンバータ部及び前記インバータ部は二組の上下アームスイッチ部を、前記共通部は一組の上下アームスイッチ部を備え、前記入力される三相交流の内の二相を前記コンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、前記出力される三相交流の内の二相を前記インバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、前記共通部電圧変調信号は前記基準信号から線間と相の位相関係を有して生成し、前記インバータ部電圧変調信号は前記入力される交流の一つの相と共通に接続された出力される交流の一つの相と出力される交流の他の二つ相との間の線間電圧に基づいて生成した線間電圧変調信号と前記共通部電圧変調信号とから生成したことを特徴とする請求項7に記載の電力変換装置の制御方法。
  9. 前記コンバータ部及び前記インバータ部は二組の上下アームスイッチ部を、前記共通部は一組の上下アームスイッチ部を備え、前記入力される三相交流の内の二相を前記コンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、前記出力される三相交流の内の二相を前記インバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、前記共通部電圧変調信号は前記基準信号から線間と相の位相関係を有して生成し、前記コンバータ部電圧変調信号は前記入力される交流の一つの相と共通に接続された出力される交流の一つの相と入力される交流の他の二つ相との間の線間電圧に基づいて生成した線間電圧変調信号と前記共通部電圧変調信号とから生成したことを特徴とする請求項7に記載の電力変換装置の制御方法。
  10. 前記共通部をPWM制御する共通部電圧変調信号を生成する関数信号は、正弦波信号、台形波信号又は三角波信号であることを特徴とする請求項6〜9のいずれかに記載の電力変換装置の制御方法。
  11. 複数のスイッチ部をPWM制御して交流を直流へ変換するコンバータ部と、複数のスイッチ部をPWM制御して直流を交流へ変換するインバータ部と、複数のスイッチ部をPWM制御して交流を直流へ又は直流を交流へ変換する共通部と、この共通部と前記コンバータ部との組合せにより入力される交流を直流に変換するPWM制御を行うコンバータ制御部と、前記共通部と前記インバータ部との組合せにより前記直流を交流として出力するPWM制御を行うインバータ制御部と、前記入力される交流と前記インバータ部から出力され前記入力される交流に対応する相の交流とを選択的に出力するスイッチ部と、を備えたことを特徴とする電力変換装置を用いた無停電電源装置。
  12. 前記コンバータ部、前記インバータ部及び前記共通部はそれぞれ少なくとも一組の上下アームスイッチ部を備え、前記入力される交流の一つの相を前記出力される交流の一つの相と共通に接続し、この共通に接続された相を前記共通部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、前記入力される交流の他の相を前記コンバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続し、出力される交流の他の相を前記インバータ部の上アームスイッチ部と下アームスイッチ部の中間点に接続したことを特徴とする請求項11に記載の電力変換装置を用いた無停電電源装置。
  13. 前記コンバータ部及び前記インバータ部は二組の上下アームスイッチ部を、前記共通部は一組の上下アームスイッチ部を備え、前記入力される三相交流の内の二相を前記コンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、前記出力される三相交流の内の二相を前記インバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続したことを特徴とする請求項11に記載の電力変換装置を用いた無停電電源装置。
  14. 前記コンバータ部は二組の上下アームスイッチ部を、前記インバータ部及び前記共通部は一組の上下アームスイッチ部を備え、前記入力される三相交流の内の二相を前記コンバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続し、前記出力される単相交流の内の一相を前記インバータ部の一組の上アームスイッチ部と下アームスイッチ部の中間点に接続したことを特徴とする請求項11に記載の電力変換装置を用いた無停電電源装置。
  15. 前記コンバータ部及び前記共通部は一組の上下アームスイッチ部を、前記インバータ部は二組の上下アームスイッチ部を備え、前記入力される単相交流の内の一相を前記コンバータ部の一組の上アームスイッチ部と下アームスイッチ部の中間点に接続し、前記出力される三相交流の内の二相を前記インバータ部の二組の上アームスイッチ部と下アームスイッチ部のそれぞれの中間点に接続したことを特徴とする請求項11に記載の電力変換装置を用いた無停電電源装置。
JP23932996A 1996-09-10 1996-09-10 電力変換装置とその制御方法及びこの電力変換装置を用いた無停電電源装置 Expired - Fee Related JP3588932B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP23932996A JP3588932B2 (ja) 1996-09-10 1996-09-10 電力変換装置とその制御方法及びこの電力変換装置を用いた無停電電源装置
TW085115487A TW443030B (en) 1996-09-10 1996-12-14 Power converter, control method, and uninterruptible power equipment using the power converter
KR1019970003742A KR100233957B1 (ko) 1996-09-10 1997-02-06 전력변환장치와 그 제어방법 및 이 전력변환장치를 사용한 무정 전 전원장치
CN97110231A CN1067499C (zh) 1996-09-10 1997-03-31 电力变换装置及其控制方法以及采用它的不间断电源装置
US08/881,665 US5889661A (en) 1996-09-10 1997-06-24 Power conversion apparatus, control method and uninterruptible power supply equipped with the apparatus
DE19730364A DE19730364A1 (de) 1996-09-10 1997-07-15 Leistungsumrichter, Steuerverfahren und eine damit ausgestattete unterbrechungsfreie Stromversorgungseinrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23932996A JP3588932B2 (ja) 1996-09-10 1996-09-10 電力変換装置とその制御方法及びこの電力変換装置を用いた無停電電源装置

Publications (2)

Publication Number Publication Date
JPH1084679A JPH1084679A (ja) 1998-03-31
JP3588932B2 true JP3588932B2 (ja) 2004-11-17

Family

ID=17043112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23932996A Expired - Fee Related JP3588932B2 (ja) 1996-09-10 1996-09-10 電力変換装置とその制御方法及びこの電力変換装置を用いた無停電電源装置

Country Status (6)

Country Link
US (1) US5889661A (ja)
JP (1) JP3588932B2 (ja)
KR (1) KR100233957B1 (ja)
CN (1) CN1067499C (ja)
DE (1) DE19730364A1 (ja)
TW (1) TW443030B (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2165774B1 (es) * 1999-07-27 2002-12-16 Salicru S A Convertidor de potencia electronico de corriente alterna a corriente alterna.
JP3900822B2 (ja) * 2000-11-16 2007-04-04 株式会社豊田自動織機 非接触で給電される移動体の電源回路
JP4133413B2 (ja) * 2003-02-18 2008-08-13 デンセイ・ラムダ株式会社 無停電電源装置
TWI350046B (en) * 2003-08-18 2011-10-01 Mks Instr Inc System and method for controlling the operation of a power supply
FR2875970B1 (fr) * 2004-09-27 2008-01-18 Schneider Electric Ind Sas Dispositif et procede de commande d'un convertisseur d'energie electrique et convertisseur comportant un tel dispositif
JP5061343B2 (ja) * 2006-09-11 2012-10-31 国立大学法人徳島大学 電力変換制御方法
JP5221286B2 (ja) * 2007-11-09 2013-06-26 エヌ・ティ・ティ・データ先端技術株式会社 電源供給システム
JP2009124836A (ja) * 2007-11-14 2009-06-04 Fuji Electric Systems Co Ltd 無停電電源システムの制御装置
CA2718937C (en) * 2008-03-20 2014-07-29 Abb Research Ltd. A voltage source converter
US8309878B2 (en) * 2009-12-30 2012-11-13 Itt Manufacturing Enterprises, Inc. Universal input power supply utilizing parallel power modules
JP5344063B2 (ja) * 2012-04-02 2013-11-20 富士電機株式会社 電力変換装置
US20140204629A1 (en) * 2013-01-18 2014-07-24 Chyng Hong Electronic Co. Acpower pupply power circuit
US9240730B2 (en) * 2013-01-18 2016-01-19 Chyng Hong Electronic Co., Ltd. Power circuit of an AC power supply with an adjustable DC voltage regulation circuit
JP6303819B2 (ja) 2014-05-29 2018-04-04 住友電気工業株式会社 電力変換装置及び三相交流電源装置
CN112865554A (zh) * 2021-01-19 2021-05-28 江苏金智科技股份有限公司 一种单相或三相交流电源复用型的电力电子负载装置
CN112953251B (zh) * 2021-02-05 2022-11-08 张勇松 交流调压电路、方法及变压器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194697A (ja) * 1983-04-18 1984-11-05 Toshiba Corp 電動機駆動装置
JPH03230764A (ja) * 1990-02-01 1991-10-14 Toshiba Corp Pwm制御による電源装置
JP3028268B2 (ja) * 1992-11-12 2000-04-04 株式会社日立製作所 電力変換装置
JPH0759360A (ja) * 1993-04-03 1995-03-03 Hirotami Nakano 無停電電源装置
JPH0787753A (ja) * 1993-09-13 1995-03-31 Fuji Electric Co Ltd 交流電源装置の循環電流抑制回路
JPH0865920A (ja) * 1994-08-22 1996-03-08 Hitachi Ltd 無停電電源装置
JPH08126228A (ja) * 1994-10-19 1996-05-17 Hitachi Ltd 電源装置
JPH08196077A (ja) * 1994-11-18 1996-07-30 Toshiba Corp 電力変換装置及びこれを利用した空気調和装置

Also Published As

Publication number Publication date
DE19730364A1 (de) 1998-03-12
CN1176523A (zh) 1998-03-18
US5889661A (en) 1999-03-30
JPH1084679A (ja) 1998-03-31
TW443030B (en) 2001-06-23
CN1067499C (zh) 2001-06-20
KR19980023943A (ko) 1998-07-06
KR100233957B1 (ko) 1999-12-15

Similar Documents

Publication Publication Date Title
JP3588932B2 (ja) 電力変換装置とその制御方法及びこの電力変換装置を用いた無停電電源装置
Waltrich et al. Three-phase cascaded multilevel inverter using power cells with two inverter legs in series
Azer et al. A novel fault-tolerant technique for active-neutral-point-clamped inverter using carrier-based PWM
JP4512117B2 (ja) 多重電力変換装置、及び多重変圧器
JP3221828B2 (ja) 電力変換方法及び電力変換装置
JPH09308263A (ja) 系統連系インバータ装置
Saito et al. A single to three phase matrix converter with a power decoupling capability
JP3337041B2 (ja) 単相3線式インバータ装置の制御方法
Nguyen et al. Carrier-based PWM technique for three-to-five phase indirect matrix converters
JP4011534B2 (ja) 多重変換器で構成される直流送電設備及びその運転方法
Kumar et al. Asymmetrical Three-Phase Multilevel Inverter for Grid-Integrated PLL-Less System
CN112352366A (zh) 不间断电源装置
Benachour et al. Study and implementation of indirect space vector modulation (ISVM) for direct matrix converter
Zhang Investigation of switching schemes for three-phase four-leg voltage source inverters
JP3363070B2 (ja) 電力変換装置
JPH11252992A (ja) 電力変換装置
JP2000308368A (ja) 電力変換回路
JP4132316B2 (ja) 三相電圧形インバータの制御方法
JPH11127540A (ja) 交流グリッドシステムへの無効電力の供給方法およびこの方法に用いるインバータ
JPH0880060A (ja) 単相インバータ装置
JP2020102934A (ja) 電力変換装置
JPH10191641A (ja) 無停電電源装置
JP3801834B2 (ja) 直接周波数変換回路の制御方法
JP3246584B2 (ja) Ac/dcコンバータ
JP3295929B2 (ja) 直流電源装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

TRDD Decision of grant or rejection written
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

LAPS Cancellation because of no payment of annual fees