JP3585149B2 - 圧縮機および空気調和機 - Google Patents

圧縮機および空気調和機 Download PDF

Info

Publication number
JP3585149B2
JP3585149B2 JP00698497A JP698497A JP3585149B2 JP 3585149 B2 JP3585149 B2 JP 3585149B2 JP 00698497 A JP00698497 A JP 00698497A JP 698497 A JP698497 A JP 698497A JP 3585149 B2 JP3585149 B2 JP 3585149B2
Authority
JP
Japan
Prior art keywords
compression
compressor
refrigerant
valve
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00698497A
Other languages
English (en)
Other versions
JPH10196569A (ja
Inventor
公二 永江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP00698497A priority Critical patent/JP3585149B2/ja
Priority to TW086119654A priority patent/TW336270B/zh
Priority to US09/007,382 priority patent/US6024547A/en
Priority to ES98100643T priority patent/ES2195203T3/es
Priority to EP98100643A priority patent/EP0854293B1/en
Priority to DE69813048T priority patent/DE69813048T2/de
Priority to PT98100643T priority patent/PT854293E/pt
Priority to KR10-1998-0001212A priority patent/KR100470586B1/ko
Priority to CNB981041051A priority patent/CN1134591C/zh
Publication of JPH10196569A publication Critical patent/JPH10196569A/ja
Application granted granted Critical
Publication of JP3585149B2 publication Critical patent/JP3585149B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、能力可変型の圧縮機とその圧縮機を備えた空気調和機に係り、消費エネルギーの低減を図りながら、多段階での能力制御を実現する技術に関する。
【0002】
【従来の技術】
近年の空気調和機では、冷暖房時における室温のオーバシュートやハンチングを防止するため、利用側(室内熱交換器)の能力要求に応じて、熱源側(圧縮機)で能力制御を行うものが主流となっている。圧縮機の能力制御方法としては、インバータ装置を用いて交流電流の周波数を変換し、これにより圧縮機の駆動回転数をリニアに制御するものが多い。この方法によれば、圧縮機の能力を0〜定格点まで任意に変動させることができるため、略完全な空気調和制御が実現可能となる。ところが、インバータ装置には、周波数変換に伴うエネルギーロスが避けられない他、望ましくない電磁波を環境に放出したり、大型のものでは装置コストが高くなる等、種々の問題がある。
【0003】
そこで、特開平8−247560号等では、一定速度で駆動される圧縮機構が内装された定速圧縮機を用いながら、パワーセーブ機構や冷媒戻し回路により能力制御を行う能力可変型定速圧縮機が提案されている。パワーセーブ機構は、圧縮機構のシリンダ側壁等に弁装置を付設したもので、この弁装置を開放することにより、例えば、圧縮行程前半における圧縮仕事が行われなくなる。また、冷媒戻し回路は、例えば、圧縮機の吐出側冷媒回路と吸込側冷媒回路との間にバイパス回路を設け、このバイパス回路に介装された弁装置を開放することにより、圧縮後の冷媒の一部を吸込側冷媒回路に環流させる。
【0004】
能力可変型定速圧縮機と通常の定速圧縮機とを組み合わせた場合、両圧縮機を個別に運転あるいは停止させたり、パワーセーブ機構や冷媒戻し回路を用いることにより、多段階の能力制御が可能となる。例えば、能力可変型定速圧縮機の定格能力を4馬力、定速圧縮機の定格能力を6馬力とし、パワーセーブ機構による能力可変型定速圧縮機の能力低減量を2馬力、冷媒戻し回路による能力低減量を1馬力とすると、1〜10馬力の範囲で1馬力毎(すなわち、10段階)に能力が切換えられる。
【0005】
【発明が解決しようとする課題】
ところで、上述した冷媒戻し回路を開放させると、圧縮後の冷媒の一部が吸込側冷媒回路に環流するため、圧縮機は無駄な圧縮仕事を行うことになる。例えば、9馬力の能力で運転が行われる際には、冷媒戻し回路により1馬力の圧縮仕事が廃棄されるが、エネルギー消費は10馬力の能力で運転が行われるときと略同等となる。これにより、インバータ装置と同等あるいはそれ以上のエネルギーロスが発生し、能力可変型定速圧縮機の採用を難しくさせる要因となっていた。尚、冷媒戻し回路を設けず、パワーセーブ機構のみによる能力制御を行うことも考慮されたが、その場合には、上述した圧縮機構成では能力切換えが2馬力毎(すなわち、5段階)となってしまう。そのため、空気調和機においては、利用側の能力要求が小さい(例えば、1〜3馬力程度)場合等には、室温のオーバシュートやハンチングが起こり、被空調空間におけるユーザーの快適性を損なう虞があった。
【0006】
本発明は上記状況に鑑みなされたものであり、消費エネルギーの低減等を図りながら、多段階での能力制御を実現した圧縮機とこの圧縮機を備えた空気調和機とを提供することを目的としている。
【0007】
【課題を解決するための手段】
そこで、請求項1の発明では、シリンダ内で偏心回転するロータと、このロータの外周面に摺接して吸入空間と圧縮空間とを画成するベーンとからなる圧縮要素を複数有した複ロータ型の圧縮機であって、一の圧縮要素における圧縮空間と他の圧縮要素における吸入空間とを所定の位相で連通させる連通路と、当該連通路内での流体の流通を遮断する遮断弁と、当該連通路に設けられ、流体を一方向のみに通過させる逆止弁とからなるパワーセイブ手段を備えたものを提案する。
【0008】
この発明によれば、パワーセイブ手段の遮断弁が閉鎖されると、各圧縮要素において全ての圧縮仕事が行われ、圧縮機は定格能力をもって運転される。また、遮断弁が開放されると、連通路に設けられた逆止弁の作用により、一方の圧縮要素の圧縮空間から他方の圧縮要素の吸込空間にのみ流体が流出し、圧縮機はパワーセーブされた状態で運転される。
【0011】
また、請求項2の発明では、シリンダ内で偏心回転するロータと、このロータの外周面に摺接して吸入空間と圧縮空間とを画成するベーンとからなる圧縮要素を複数有した複ロータ型の圧縮機であって、一の圧縮要素における圧縮空間と他の圧縮要素における吸入空間とを所定の位相で連通させる連通路と、当該連通路内での流体の流通を遮断する遮断弁と、当該連通路に設けられ、流体を一方向のみに通過させる逆止弁とからなるパワーセイブ手段と、前記圧縮要素の少なくとも一つに設けられ、その圧縮要素の吸入空間と圧縮空間とを連通させる圧縮停止手段とを備えたものを提案する。
【0012】
この発明によれば、パワーセイブ手段と圧縮停止手段の作動状態とにより、圧縮機は、定格能力をもって運転される他、能力を複数の段階をもってセーブされた状態でも運転される。
【0013】
また、請求項3の発明では、請求項1〜2のいずれか一項に記載の圧縮機を備えた空気調和機を提案する。
【0014】
この発明では、例えば、室外ユニット内に2台の定速圧縮機を配設し、1方の定速圧縮機にパワーセーブ手段と圧縮停止手段とを設ける。これにより、両定速圧縮機の駆動制御と遮断弁および圧縮停止手段の駆動制御とを行うことで、エネルギーロスの要因となる冷媒戻し回路を設けることなく、多段階の能力制御が実現される。
【0015】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づき詳細に説明する。図1は、1台の室外ユニット1と複数台の室内ユニット3とからなる空気調和機の概略構成図であり、同図中には実線で冷媒回路を示し、一点鎖線で電気回路を示してある。
【0016】
室外ユニット1側には、第1,第2圧縮機5,7、電磁式の四方弁9、室外熱交換器11、電動ファン13、アキュムレータ15、オイルセパレータ17等が設置されている。また、室内ユニット3側には、電動膨張弁21、室内熱交換器23、電動ファン25等が設置されている。冷媒回路を構成する機器は、ガス冷媒あるいは液冷媒の流通に供される冷媒配管31〜48により接続されている。図中、27は後述するパワーセーブ機構の駆動に供される常閉形の電磁弁である。
【0017】
室外ユニット1内には、CPUを始め、入出力インタフェースやROM、RAM等から構成された、室外側コントロールユニット(以下、室外側ECUと記す)51が設置されている。室外側ECU51は、内蔵した制御プログラムや図示しない各種センサ等からの入力情報に基づき、両圧縮機5,7や四方弁9、電動ファン13、電磁弁27を駆動制御する。
【0018】
一方、室内ユニット3内には、CPUを始め、入出力インタフェースやROM、RAM等から構成された、室内側コントロールユニット(以下、室内側ECUと記す)52が設置されている。室内側ECU52は、内蔵した制御プログラムや図示しないリモートコントローラおよび各種センサ等からの入力信号に基づき、電動膨張弁21や電動ファン25の駆動制御を行うと共に、室外側ECU51との間で相互に信号の授受を行う。
【0019】
本実施形態の場合、第1,第2圧縮機5,7は共に上下一対の回転圧縮要素を有する電動ツインロータ型の定速圧縮機であり、第1圧縮機5側の定格出力が4馬力、第2圧縮機7側の定格出力が6馬力となっている。また、第1圧縮機5には、図2に示すパワーセーブ機構と図3に示す圧縮停止機構とが設けられており、それらの作動により第1圧縮機5の圧縮仕事が4段階に切り換えられる。
【0020】
以下、本実施形態におけるパワーセーブ機構の構造および作用を説明する。
【0021】
第1圧縮機5の圧縮機構61は、図2にその半裁縦断面を示すように、メインフレーム65とベアリングプレート67とに挟持された上下一対のシリンダ69,70と、両シリンダ69,70および中間プレート71により画成された上下一対のシリンダ室73,75と、両シリンダ室73,75の内周面に沿い相互に180゜の位相をもって偏心回転する上下一対のロータ77,79とからなっている。図中、80は圧縮機ケーシングである。
【0022】
パワーセーブ機構81は、両シリンダ室73,75を所定の連通部位(後述するベーンと180゜位相のずれた部位)で連通させるもので、シリンダ69,70および中間プレート71の外周部を上下方向に貫通するバルブ孔83と、このバルブ孔83に摺動自在に保持された上下一対のピストンバルブ85,86と、これらピストンバルブ85,86を互いに離間する方向に付勢するバルブスプリング(圧縮コイルスプリング)87とを主要構成部材としている。尚、中間プレート71の部分では、ピストンバルブ85,86に対するストッパを形成するべく、バルブ孔83の内径がピストンバルブ85,86の外径より小径となっている。また、バルブスプリング87は、両ピストンバルブ85,86の受圧面に所定値以上の高圧(例えば、第1圧縮機5の最大吐出圧の40%)が作用したときに、完全に圧縮するように設定されている。
【0023】
バルブ孔83は、中間プレート71の近傍に穿孔された一対の連通孔88,89を介して、両シリンダ室73,75と連通されている。図中、90は上方のシリンダ69の連通孔88内に設けられたリードバルブ型の逆止弁90であり、バルブ孔83側から上方シリンダ室73側へのみ流体を通過させる。また、両シリンダ69,70および中間プレート71には、バルブ孔83に平行する冷媒導入孔91が貫通しており、この冷媒導入孔91に冷媒配管46からのガス冷媒が導入される。更に、メインフレーム65とベアリングプレート67とには、それぞれ、バルブ孔83と冷媒導入孔91とを連通させる連通凹部93,94が形成されている。
【0024】
前述した電磁弁27は、第1圧縮機5の吐出側冷媒配管31と吸入側冷媒配管43とを連通する第1,第2バイパス配管45,46の間に介装されている。そして、冷媒導入孔91に連通するパワーセーブ配管47は、第1バイパス配管45に接続しており、その接続部位の上流にはガス冷媒の流量を絞るためのキャピラリチューブ95が配設されている。
【0025】
本実施形態では、パワーセーブ機構81を作動させる場合、室外側ECU51は、電磁弁27を開放して第1バイパス配管45と第2バイパス配管46とを連通させる。電磁弁27の閉鎖時において、パワーセーブ配管47には、第1バイパス配管45を介して、吐出側冷媒配管31からの高圧冷媒ガスが導入されているが、電磁弁27が開放されると、この高圧冷媒ガスが第2バイパス配管46を介して吸入側冷媒配管43に流出する。
【0026】
そして、第1バイパス配管45からの高圧冷媒ガスの供給がキャピラリチューブ95の作用によりごく少量であることから、パワーセーブ配管47には吸入側冷媒配管43からの低圧冷媒ガスが流入することになる。尚、キャピラリチューブ95には、第1,第2バイパス配管45,46を介して連通された際において、吐出側冷媒配管31から吸入側冷媒配管43に流出する高圧冷媒ガスの量をごく少なくする作用もある。
【0027】
これにより、両ピストンバルブ85,86は、バルブスプリング87のばね力により、図2に示したように、メインフレーム65またはベアリングプレート67の端面に押し付けられる。その結果、両シリンダ室73,75は、連通孔88,89、バルブ孔83、逆止弁90を介して連通され、下方シリンダ室75の圧縮空間から上方シリンダ室73の吸入空間にガス冷媒が流出することになり、圧縮機構61の下方シリンダ室75における圧縮仕事の半分(すなわち、圧縮機構61全体としては25%=1馬力)がセーブされる。
【0028】
一方、パワーセーブ機構81の作動を停止させる場合、室外側ECU51は、電磁弁27を閉鎖して第1バイパス配管45と第2バイパス配管46との連通を遮断させる。すると、パワーセーブ配管47には、第1バイパス配管45を介して、吐出側冷媒配管31からの高圧冷媒ガスが導入され、更に、この高圧冷媒ガスが、図4に示したように、冷媒導入孔91および連通凹部93,94を介して、バルブ孔83に流入する。
【0029】
すると、両ピストンバルブ85,86の受圧面に高圧(この場合、第1圧縮機5の最大吐出圧の75%)が作用し、バルブスプリング87が圧縮することにより、両ピストンバルブ85,86が互いに接近して中間プレート71に当接する。その結果、両ピストンバルブ85,86の外周面により連通孔88,89が閉鎖され、両シリンダ室73,75間が連通されなくなる。これにより、圧縮機構61では圧縮仕事が全て行われ、第1圧縮機5が定格出力(本実施形態では、4馬力)を発生することになる。
【0030】
次に、本実施形態における圧縮停止機構の構造および作用を説明する。
【0031】
第1圧縮機5の上方シリンダ69には、図4にその半裁横断面を示すように、圧縮停止機構101が組み込まれている。圧縮停止機構101は、上方シリンダ69に埋設された電磁ストッパ103と、ベーン105に形成された係止凹部107とからなっている。電磁ストッパ103は、ソレノイド式のアクチュエータ(図示せず)を内蔵しており、その作動時にはロックピン109が図4中で左方に突出する。
【0032】
通常運転時においては、図4に示したように、電磁ストッパ103のロックピン109とベーン105の係止凹部107とが離間しており、ベーン105は図示しないベーンスプリングによりロータ77の外周面に押し付けられる。これにより、上方シリンダ室73が吸入空間121と圧縮空間123に画成され、ロータ77の回転に伴って圧縮仕事がなされる。
【0033】
ところが、室外側ECU51からの駆動電流により電磁ストッパ103が駆動(ソレノイドが励磁)されると、図5に示したように、ロックピン109が図中左方に突出し、その先端がベーン105の係止凹部107に嵌入する。これにより、ベーン105は上方シリンダ69の内周面から突出しなくなり、上方シリンダ室73では冷媒の吸入および圧縮が全く行われなくなり、圧縮機構61全体の圧縮仕事の一部(本実施形態では、50%=2馬力)がセーブされる。尚、電磁ストッパ103の作動時には、ロックピン109が瞬時に左方に突出するが、その先端が係止凹部107に嵌入するタイミングは、ベーン105がロータ77により上方シリンダ69内に押し込まれた瞬間となる。
【0034】
次に、冷房運転時における冷媒の流れを説明する。
【0035】
アキュムレータ15から冷媒配管43,44を経由して第1,第2圧縮機5,7に吸引されたガス冷媒は、断熱圧縮されることにより高温の高圧ガス冷媒となって両圧縮機5,7から吐出される。吐出された高圧ガス冷媒は、冷媒配管32,33、オイルセパレータ17、冷媒配管34を経由して、四方弁9により進路を制御された後、冷媒配管35を経由して室外熱交換器11に流入する。高温高圧のガス冷媒は、室外熱交換器11内を通過する間に外気により冷却され、凝縮することによって液冷媒となった後、冷媒配管36〜38を経由して各室内ユニット3の電動膨張弁21に流入する。
【0036】
液冷媒は、電動膨張弁21で流量を制御された後、室内熱交換器23に流入し、室内熱交換器23内を通過する間に気化してガス冷媒となり、気化潜熱により電動ファン25が送風した室内空気を冷却する。この際、室内側ECU52は、設定温度と室温との偏差に基づき電動ファン7の回転数を制御すると共に、室内熱交換器23の入口側冷媒温度と出口側冷媒温度との偏差が所定値(例えば、0〜1℃)となるように電動膨張弁21の開弁量(弁体駆動用ステップモータのステップ数)を制御する。
【0037】
室内熱交換器23で気化したガス冷媒は、冷媒配管39〜41、四方弁9、冷媒配管42を経由してアキュムレータ15に流入し、冷媒配管43,44から再び第1,第2圧縮機5,7に吸引される。
【0038】
一方、暖房運転時には、四方弁9が破線で示すように切り換えられ、破線の矢印で示すように、冷媒の流れも冷房運転時とは逆になる。すなわち、第1,第2圧縮機5,7から吐出された高温の高圧ガス冷媒は、室内熱交換器23に導入された後、室内熱交換器23内を通過する間に凝縮して液冷媒となり、凝縮潜熱により電動ファン25が送風した室内空気を加熱する。次に、液冷媒は、室外熱交換器11に流入し、室外熱交換器11内を通過する間に外気により加熱され、気化することによってガス冷媒となった後、アキュムレータ15から第1,第2圧縮機5,7に再び吸入される。
【0039】
さて、空気調和機の運転が開始されると、室外側ECU51は、各室内側ECU52からの入力信号に基づき目標圧縮仕事を決定し、第1,第2圧縮機5,7の駆動制御の他、パワーセーブ制御および圧縮停止制御を行う。
【0040】
すなわち、図10に示すように、目標圧縮仕事が10馬力の場合、室外側ECU51は、第1,第2圧縮機5,7を共に起動し(起動用マグネットスイッチをONにし)、電磁弁27と電磁ストッパ103とをOFFにする。すると、パワーセーブ機構81と圧縮停止機構101とが共に作動しないため、図6の模式図に示したように、第1圧縮機5の両シリンダ室73,75内では規定の圧縮仕事が行われ、第1,第2圧縮機5,7の定格出力が4馬力および6馬力であることから、室外ユニット1全体としては10馬力の圧縮仕事がなされる。
【0041】
目標圧縮仕事が9馬力の場合、室外側ECU51は、第1,第2圧縮機5,7を共に起動し、電磁弁27をONにする。すると、パワーセーブ機構81が作動し、図7の模式図に示したように、下方シリンダ室75の圧縮空間123から上方シリンダ室73の吸入空間121にガス冷媒が流出し、前述したように、第1圧縮機5において1馬力の圧縮仕事がセーブされる。その結果、室外ユニット1全体としては、10馬力から1馬力が減じられて、9馬力の圧縮仕事がなされる。
【0042】
目標圧縮仕事が8馬力の場合、室外側ECU51は、第1,第2圧縮機5,7を共に起動し、電磁ストッパ103をONにする。すると、圧縮停止機構101が作動し、図8の模式図に示したように、上方シリンダ室73では圧縮仕事が全くなされなくなり、前述したように、第1圧縮機5において2馬力の圧縮仕事がセーブされる。その結果、室外ユニット1全体としては、10馬力から2馬力が減じられて、8馬力の圧縮仕事がなされる。
【0043】
目標圧縮仕事が7馬力の場合、室外側ECU51は、第1,第2圧縮機5,7を共に起動し、電磁弁27と電磁ストッパ103とをONにする。すると、パワーセーブ機構81と圧縮停止機構101とが共に作動し、図8の模式図に示したように、下方シリンダ室75の圧縮空間123から上方シリンダ室73にガス冷媒が流出する一方で、上方シリンダ室73では圧縮仕事が全くなされなくなり、第1圧縮機5において計3馬力の圧縮仕事がセーブされる。その結果、室外ユニット1全体としては、10馬力から3馬力が減じられて、7馬力の圧縮仕事がなされる。
【0044】
目標圧縮仕事が5馬力および6馬力の場合、室外側ECU51は、第2圧縮機7のみを起動し、これにより、室外ユニット1全体としては、6馬力の圧縮仕事がなされる。尚、本実施形態では、第1圧縮機5が4馬力、第2圧縮機が6馬力であるため、第1圧縮機5に付設されたパワーセーブ機構81や圧縮停止機構101を用いても、5馬力の圧縮仕事を行わせることはできない。
【0045】
目標圧縮仕事が4馬力の場合、室外側ECU51は、第1圧縮機5のみを起動し、電磁弁27と電磁ストッパ103とをOFFにする。すると、パワーセーブ機構81と圧縮停止機構101とが共に作動しないため、第1圧縮機5の両シリンダ室73,75内では規定の圧縮仕事が行われ、これにより、室外ユニット1全体としては、4馬力の圧縮仕事がなされる。
【0046】
目標圧縮仕事が3馬力の場合、室外側ECU51は、第1圧縮機5のみを起動し、電磁弁27をONにする。すると、パワーセーブ機構81が作動し、前述したように、第1圧縮機5において1馬力の圧縮仕事がセーブされる。その結果、室外ユニット1全体としては、4馬力から1馬力が減じられて、3馬力の圧縮仕事がなされる。
【0047】
目標圧縮仕事が2馬力の場合、室外側ECU51は、第1圧縮機5のみを起動し、電磁ストッパ103をONにする。すると、圧縮停止機構101が作動し、前述したように、第1圧縮機5において2馬力の圧縮仕事がセーブされる。その結果、室外ユニット1全体としては、4馬力から2馬力が減じられて、2馬力の圧縮仕事がなされる。
【0048】
目標圧縮仕事が1馬力の場合、室外側ECU51は、第1圧縮機5のみを起動し、電磁弁27と電磁ストッパ103とをONにする。すると、パワーセーブ機構81と圧縮停止機構101とが共に作動し、前述したように、第1圧縮機5において3馬力の圧縮仕事がセーブされる。その結果、室外ユニット1全体としては、4馬力から3馬力が減じられて、1馬力の圧縮仕事がなされる。
【0049】
このように、本実施形態では、図10に示したように、目標圧縮仕事が5馬力の場合を除き、第1,第2圧縮機5,7の駆動制御とパワーセーブ機構81および圧縮停止機構101の駆動制御とを組み合わせることにより、1〜10馬力まで1馬力毎の能力制御を実現できた。そして、この能力制御にあたっては、圧縮仕事を廃棄する冷媒戻し制御を行わないことにより、エネルギ効率を向上させることができた。
【0050】
以上で具体的実施形態の説明を終えるが、本発明の態様はこの実施形態に限られるものではない。例えば、上記実施形態では2台の定速圧縮機のうち1台にパワーセーブ機構と圧縮停止機構とを設けるようにしたが、単一の定速圧縮機を用いるようにしてもよいし、3台以上の圧縮機を用いるようにしてもよい。また、上記実施形態では、パワーセーブ機構や圧縮停止機構をツインロータ型の定速圧縮機に設けるようにしたが、トリプルロータ以上の圧縮機構を備えた定速圧縮機に設けるようにしてもよい。また、パワーセーブ機構については、例えば、圧縮機ケーシングの外部に連通回路と電磁弁とを設ける等、種々の構造が考えられるし、そのセーブ量についても自由に設定可能である。また、圧縮停止機構の駆動源として、高圧冷媒ガスを用いるようにしてもよい。その他、冷媒回路の具体的構成等についても、本発明の趣旨を逸脱しない範囲で、適宜変更可能である。
【0051】
【発明の効果】
以上説明したように、本発明によれば、パワーセーブ機構と圧縮停止機構により定速圧縮機の能力制御を行うようにしたため、圧縮仕事を廃棄する冷媒戻し制御を行うことなく多段階の能力制御が可能になり、エネルギ効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る空気調和機の一実施形態を示す冷媒および電気回路図である。
【図2】パワーセーブ機構の作動状態を示す半裁縦断面図である。
【図3】パワーセーブ機構の不作動状態を示す半裁縦断面図である。
【図4】圧縮停止機構の不作動状態を示す半裁横断面図である。
【図5】圧縮停止機構の作動状態を示す半裁横断面図である。
【図6】実施形態の作用を示す模式図である。
【図7】実施形態の作用を示す模式図である。
【図8】実施形態の作用を示す模式図である。
【図9】実施形態の作用を示す模式図である。
【図10】目標圧縮仕事と各機器の作動との関係を示す図である。
【符号の説明】
1 室外ユニット
3 室内ユニット
5 第1圧縮機
7 第2圧縮機
27 電磁弁
51 室外側ECU
81 パワーセーブ機構
101 圧縮停止機構
103 電磁ストッパ
105 ベーン
121 吸入空間
123 圧縮空間

Claims (3)

  1. シリンダ内で偏心回転するロータと、このロータの外周面に摺接して吸入空間と圧縮空間とを画成するベーンとからなる圧縮要素を複数有した複ロータ型の圧縮機であって、一の圧縮要素における圧縮空間と他の圧縮要素における吸入空間とを所定の位相で連通させる連通路と、当該連通路内での流体の流通を遮断する遮断弁と、当該連通路に設けられ、流体を一方向のみに通過させる逆止弁とからなるパワーセイブ手段を備えたことを特徴とする圧縮機。
  2. シリンダ内で偏心回転するロータと、このロータの外周面に摺接して吸入空間と圧縮空間とを画成するベーンとからなる圧縮要素を複数有した複ロータ型の圧縮機であって、一の圧縮要素における圧縮空間と他の圧縮要素における吸入空間とを所定の位相で連通させる連通路と、当該連通路内での流体の流通を遮断する遮断弁と、当該連通路に設けられ、流体を一方向のみに通過させる逆止弁とからなるパワーセイブ手段と、前記圧縮要素の少なくとも一つに設けられ、その圧縮要素の吸入空間と圧縮空間とを連通させる圧縮停止手段とを備えたことを特徴とする圧縮機。
  3. 請求項1〜2のいずれか一項に記載の圧縮機を備えた空気調和機。
JP00698497A 1997-01-17 1997-01-17 圧縮機および空気調和機 Expired - Fee Related JP3585149B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP00698497A JP3585149B2 (ja) 1997-01-17 1997-01-17 圧縮機および空気調和機
TW086119654A TW336270B (en) 1997-01-17 1997-12-24 Compressor and air conditioner
ES98100643T ES2195203T3 (es) 1997-01-17 1998-01-15 Compresor de potencia variable y acondicionador de aire que incorpora dicho compresor.
EP98100643A EP0854293B1 (en) 1997-01-17 1998-01-15 Power-variable compressor and air conditioner using the same
US09/007,382 US6024547A (en) 1997-01-17 1998-01-15 Power-variable compressor and air conditioner using the same
DE69813048T DE69813048T2 (de) 1997-01-17 1998-01-15 Leistungsveränderlicher Verdichter und Klimaanlage mit einem solchen Verdichter
PT98100643T PT854293E (pt) 1997-01-17 1998-01-15 Compressor de potencia variavel e dispositivo de climatizacao utilizando o mesmo
KR10-1998-0001212A KR100470586B1 (ko) 1997-01-17 1998-01-16 압축기및공기조화장치
CNB981041051A CN1134591C (zh) 1997-01-17 1998-01-17 压缩机与空气调节器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00698497A JP3585149B2 (ja) 1997-01-17 1997-01-17 圧縮機および空気調和機

Publications (2)

Publication Number Publication Date
JPH10196569A JPH10196569A (ja) 1998-07-31
JP3585149B2 true JP3585149B2 (ja) 2004-11-04

Family

ID=11653441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00698497A Expired - Fee Related JP3585149B2 (ja) 1997-01-17 1997-01-17 圧縮機および空気調和機

Country Status (1)

Country Link
JP (1) JP3585149B2 (ja)

Also Published As

Publication number Publication date
JPH10196569A (ja) 1998-07-31

Similar Documents

Publication Publication Date Title
WO2004063642A1 (ja) 冷凍装置
WO2011055444A1 (ja) ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法
EP0854293B1 (en) Power-variable compressor and air conditioner using the same
AU2005258417A1 (en) Refrigeration apparatus
EP1996875A1 (en) Heat pump with pulse width modulation control
JPH05149634A (ja) 空気調和装置
CN111854216B (zh) 空调系统
JP3561598B2 (ja) 圧縮機および空気調和機
JP3585149B2 (ja) 圧縮機および空気調和機
JP3754645B2 (ja) エンジン駆動式熱ポンプ空調装置
JP3588216B2 (ja) 圧縮機および空気調和機
EP2716999A1 (en) Refrigeration cycle device
JP3979717B2 (ja) 空気調和装置
JP5068477B2 (ja) 圧縮機及びヒートポンプ式給湯機
JP2003042585A (ja) 空気調和機
JP3819510B2 (ja) 空気調和機
JP3837208B2 (ja) 空気調和装置
JP3617742B2 (ja) スクロールコンプレッサ及び空調装置
KR101128797B1 (ko) 공기조화기의 제어방법
KR20070054461A (ko) 공기조화기
JPS6229789A (ja) ロ−タリコンプレツサ
JPS6036841Y2 (ja) ヒ−トポンプ式冷暖房装置
KR20220134708A (ko) 스크롤 압축기 및 이를 포함하는 차량용 공조장치
CN110671833A (zh) 压缩机和制冷系统
JP3634472B2 (ja) 空気調和機

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040730

LAPS Cancellation because of no payment of annual fees