WO2011055444A1 - ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法 - Google Patents

ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法 Download PDF

Info

Publication number
WO2011055444A1
WO2011055444A1 PCT/JP2009/068963 JP2009068963W WO2011055444A1 WO 2011055444 A1 WO2011055444 A1 WO 2011055444A1 JP 2009068963 W JP2009068963 W JP 2009068963W WO 2011055444 A1 WO2011055444 A1 WO 2011055444A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
low
stage compression
refrigerant
compressor
Prior art date
Application number
PCT/JP2009/068963
Other languages
English (en)
French (fr)
Inventor
真男 谷
篤義 深谷
寛行 中河
太郎 加藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP09851096.9A priority Critical patent/EP2497955B1/en
Priority to CN200980162317.2A priority patent/CN102597524B/zh
Priority to PCT/JP2009/068963 priority patent/WO2011055444A1/ja
Priority to JP2011539229A priority patent/JP5306478B2/ja
Priority to KR1020127008473A priority patent/KR101280155B1/ko
Publication of WO2011055444A1 publication Critical patent/WO2011055444A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • F04C28/065Capacity control using a multiplicity of units or pumping capacities, e.g. multiple chambers, individually switchable or controllable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor

Definitions

  • the present invention relates to a two-stage compressor in which two compression units are connected in series, and a heat pump apparatus using the two-stage compressor.
  • the low-stage compression section compresses the refrigerant sucked from the heat pump cycle up to a predetermined pressure (attainment pressure).
  • This ultimate pressure is determined by setting the compression chamber volume of the low-stage compression unit and the compression chamber volume of the high-stage compression unit.
  • the high stage compression unit further compresses the refrigerant compressed by the low stage compression unit.
  • coolant compressed by the high stage compression part is discharged from the high stage compression part to the internal space of an airtight container, and is discharged from the internal space of an airtight container to a heat pump cycle.
  • the ultimate pressure in the low-stage compression section is determined by setting the compression chamber volume of the low-stage compression section and the compression chamber volume of the high-stage compression section. Therefore, depending on the operating conditions of the heat pump cycle, there may be an overcompressed state in which only the low-stage compression section is compressed to the discharge pressure to be discharged to the heat pump cycle. In the overcompressed state, the compression work in the high-stage compression unit is wasted, and the efficiency of the compressor is deteriorated.
  • the overcompressed state is likely to occur when the load is small, such as when heating operation is performed when the outside air temperature is high. That is, the overcompressed state is a factor that causes a decrease in efficiency when the load is small.
  • Patent Document 1 describes a two-stage compressor provided with a bypass path that connects a communication path for flowing a refrigerant from a low-stage compression section to a high-stage compression section and a discharge-side space of the high-stage compression section.
  • this two-stage compressor when an over-compression state occurs, the refrigerant in the communication passage is caused to flow to the discharge side space of the high-stage compression section, bypassing the high-stage compression section.
  • the improvement of the efficiency in the case of becoming an overcompressed state is aimed at.
  • Patent Document 2 describes a heat pump device including a release mechanism that returns a part of the refrigerant compressed by the low-stage compression unit to the suction side of the low-stage compression unit.
  • the release mechanism is operated to improve the efficiency of the compressor when the load is low.
  • the refrigerant discharged from the low-stage compression section passes through a narrow and long communication path, and then is discharged from the bypass path to the discharge-side space of the high-stage compression section.
  • Pressure loss occurs when the refrigerant passes through the narrow and long communication path. Therefore, although effective for avoiding the temporary overcompression state, the effect of reducing the overcompression loss during steady operation is small.
  • the discharge pressure is low, so the specific volume of the refrigerant gas is large and the volume flow rate is large. Therefore, the pressure loss due to the shortage of the channel area is large.
  • the suction side and the discharge side of the low-stage compression unit are directly connected by operating the release mechanism, and a part of the refrigerant compressed by the low-stage compression unit is the suction side of the low-stage compression unit Return to.
  • the release mechanism is operated, compression work of a certain amount or more is generated in the low-stage compression unit.
  • the refrigerant is heated by passing through the low-stage compression section, and so-called preheat loss occurs. That is, a loss (preheat loss) occurs due to the refrigerant being heated before being compressed by the high-stage compression unit. Therefore, the degree of efficiency improvement when the load is low is small.
  • This invention is intended to improve the efficiency when the load is small in a two-stage compressor and a heat pump device using the two-stage compressor.
  • the heat pump device is A main refrigerant circuit in which a compressor, a first heat exchanger, a first expansion mechanism, and a second heat exchanger are sequentially connected by piping;
  • the compressor is A low-stage compression unit that compresses the refrigerant flowing in;
  • a high stage compression section for further compressing the refrigerant compressed by the low stage compression section;
  • a required load that is an amount of heat necessary to bring the temperature of the fluid that exchanges heat with the refrigerant flowing through the main refrigerant circuit to a predetermined temperature is higher than the preset first load.
  • the refrigerant compressed by the low-stage compression unit and the high-stage compression unit is discharged to the main refrigerant circuit, and when the necessary load is lower than the first load, the low-stage compression unit And a bypass mechanism that bypasses the compressed refrigerant without being compressed by the high-stage compression section and discharges the refrigerant to the main refrigerant circuit.
  • the refrigerant compressed by the low-stage compression unit is bypassed without being compressed by the high-stage compression unit and discharged to the main refrigerant circuit. Therefore, it is possible to reduce the overcompression loss that occurs when the load is low.
  • FIG. 1 is a plan view of a two-stage compressor 100 according to Embodiment 1.
  • FIG. FIG. 2 is a sectional view taken along line A-A ′ in FIG. 1.
  • FIG. 3 is an enlarged view of the compression mechanism unit 3 and the periphery of the compression mechanism unit 3 in FIG. 2.
  • FIG. 2 is a cross-sectional view along B-B ′ in FIG. 1.
  • FIG. 3 is a sectional view taken along the line C-C ′ in FIG. 2.
  • FIG. 3 is a cross-sectional view taken along the line D-D ′ in FIG. 2.
  • FIG. 3 is a cross-sectional view taken along line E-E ′ in FIG. 2.
  • FIG. 3 is a cross-sectional view taken along the line F-F ′ in FIG. 2.
  • FIG. 3 is a configuration diagram of a two-stage compressor 100 according to a second embodiment. Sectional drawing of the compression mechanism part 3 part of the two-stage compressor 100 which concerns on Embodiment 3.
  • FIG. Explanatory drawing of the force concerning the low stage vane 13.
  • FIG. The figure which shows the torque fluctuation
  • FIG. 1 The figure which shows the torque fluctuation
  • FIG. 1 The figure which shows the torque fluctuation at the time of carrying out the high stage side direct suction
  • FIG. 1 The figure which shows the torque fluctuation at the time of carrying out the high stage side direct suction
  • Embodiment 1 FIG.
  • a two-stage compressor 100 having a bypass port that bypasses the high-stage compression unit will be described.
  • FIG. 1 is a plan view of a two-stage compressor 100 according to the first embodiment.
  • 2 is a cross-sectional view taken along the line AA ′ in FIG. In FIG. 2, the intermediate connecting pipe 51 is shown in the aa ′ cross section.
  • FIG. 3 is an enlarged view of the compression mechanism unit 3 and the periphery of the compression mechanism unit 3 in FIG. 2.
  • 4 is a cross-sectional view taken along the line BB ′ in FIG.
  • FIG. 5 is a cross-sectional view along CC ′ in FIG. 6 is a cross-sectional view taken along the line DD ′ in FIG. 7 is a cross-sectional view taken along line EE ′ in FIG. 8 is a cross-sectional view taken along the line FF ′ in FIG.
  • the two-stage compressor 100 includes two electric motors 2 including a stator 2 a and a rotor 2 b, a low-stage compression unit 10, and a high-stage compression unit 30.
  • a compression mechanism unit 3 including a compression unit and a crankshaft 4 are provided.
  • a discharge pipe 5 is inserted into the upper part of the sealed container 1.
  • the lower part of the airtight container 1 forms the lubricating oil storage part 6, and lubricating oil is enclosed.
  • the two-stage compressor 100 includes a suction muffler 7 outside the sealed container 1.
  • the suction muffler 7 is connected to the lower stage compression unit 10 of the compression mechanism unit 3 in the hermetic container 1 by a suction pipe 8.
  • the low-stage compression unit 10 of the compression mechanism unit 3 closes the low-stage cylinder 11, the low-stage frame 14 that closes the upper side of the low-stage cylinder 11, and the lower side of the low-stage cylinder 11.
  • a low-stage compression chamber 15 is formed by the intermediate partition plate 50.
  • the low-stage compression unit 10 includes a low-stage rolling piston 12 that rotates eccentrically in the low-stage compression chamber 15, and a low-stage vane 13 that divides the low-stage compression chamber 15 into a suction-side space and a discharge-side space ( 7).
  • a suction pipe 8 is connected to the low stage suction port 21 of the low stage compression chamber 15.
  • the high stage compression unit 30 includes a high stage cylinder 31, a high stage frame 34 that closes the lower side of the high stage cylinder 31, and an intermediate partition plate 50 that closes the upper side of the high stage cylinder 31.
  • a high-stage compression chamber 35 having a smaller volume than the compression chamber 15 is formed.
  • the high stage compression unit 30 includes a high stage rolling piston 32 that rotates eccentrically in the high stage compression chamber 35, and a high stage vane 33 that divides the high stage compression chamber 35 into a suction side space and a compression side space (FIG. 8). See). That is, the two-stage compressor 100 is a rotary two-stage compressor.
  • the eccentric directions of the low-stage rolling piston 12 and the high-stage rolling piston 32 are shifted by about 180 degrees (see FIGS. 7 and 8).
  • the compression mechanism unit 3 forms a high-stage discharge space 40 between the low-stage cover 19 (low-stage discharge part) that forms the low-stage discharge space 20 between the low-stage frame 14 and the high-stage frame 34.
  • a high-stage cover 39 (high-stage discharge part) to be formed is provided.
  • an intermediate connecting pipe 51 that connects the intermediate outlet 22 of the low stage cover 19 and the high stage suction port 41 of the high stage cylinder 31 is provided, and the low stage discharge space 20 and the high stage compression chamber 35 communicate with each other. Yes.
  • a low-stage discharge port 16 that connects the low-stage compression chamber 15 and the low-stage discharge space 20 is formed in the low-stage frame 14.
  • the low-stage discharge port 16 is provided with a reed valve in which a low-stage discharge valve 17 and a low-stage valve presser 18 are attached by rivets 28 (see FIG. 6).
  • a high-stage discharge port 36 that connects the high-stage compression chamber 35 and the high-stage discharge space 40 is formed in the high-stage frame 34.
  • the high stage discharge port 36 is provided with a reed valve to which a high stage discharge valve 37 and a high stage valve presser 38 are attached by rivets.
  • the low-stage cover 19 is provided with a bypass port 23 that communicates the low-stage discharge space 20 and the discharge pressure space 53 that is the internal space of the sealed container 1.
  • the bypass port 23 is provided with a reed valve to which a bypass valve 24 and a bypass valve presser 25 are attached by a rivet 29 (see FIG. 5). These are called bypass mechanisms.
  • the high stage frame 34, the high stage cylinder 31, the intermediate partition plate 50, the low stage cylinder 11, the low stage frame 14, and the low stage cover 19 are penetrated, and the high stage discharge space 40 and the discharge pressure space are passed through.
  • a discharge passage 52 that communicates with 53 is provided.
  • an injector 60 is provided in the lower cover 19.
  • An injection pipe 61 is connected to the injector 60.
  • the electric motor 2 When electric power is supplied, the electric motor 2 operates.
  • the electric motor 2 and the compression mechanism unit 3 are connected by a crankshaft 4, and power generated by the electric motor 2 is transmitted to the compression mechanism unit 3 through the crankshaft 4.
  • the rotor 2b of the electric motor 2 rotates.
  • the crankshaft 4 fitted in the rotor 2b also rotates.
  • the crankshaft 4 rotates, the low-stage rolling piston 12 and the high-stage rolling piston 32 into which the crankshaft 4 is inserted rotate eccentrically inside the low-stage compression chamber 15 and the high-stage compression chamber 35, respectively.
  • the low stage compression unit 10 and the high stage compression unit 30 compress the refrigerant.
  • a low-pressure refrigerant flows into the suction muffler 7 from the outside.
  • the low-pressure refrigerant flowing into the suction muffler 7 is sucked into the low-stage compression chamber 15 through the suction pipe 8.
  • the low-pressure refrigerant sucked into the low stage compression chamber 15 is compressed to an intermediate pressure in the low stage compression chamber 15.
  • the low stage discharge valve 17 is opened due to the pressure difference between the refrigerant in the low stage compression chamber 15 and the refrigerant in the low stage discharge space 20, and the refrigerant in the low stage compression chamber 15 is low.
  • the intermediate pressure is a pressure determined from the ratio between the volume of the suction chamber of the low-stage compression chamber 15 and the volume of the suction chamber of the high-stage compression chamber 35.
  • the intermediate pressure refrigerant discharged to the low stage discharge space 20 is sucked into the high stage compression chamber 35 through the intermediate connecting pipe 51.
  • the intermediate-pressure refrigerant sucked into the high-stage compression chamber 35 is compressed to the discharge pressure in the high-stage compression chamber 35.
  • the high stage discharge valve 37 When the refrigerant is compressed to the discharge pressure, the high stage discharge valve 37 is opened due to the pressure difference between the refrigerant in the high stage compression chamber 35 and the refrigerant in the high stage discharge space 40, and the refrigerant in the high stage compression chamber 35 becomes high. Discharge from the stage discharge port 36 to the high stage discharge space 40. The refrigerant having the discharge pressure discharged to the high stage discharge space 40 is discharged to the discharge pressure space 53 above the low stage compression unit 10 via the discharge flow path 52. The refrigerant having the discharge pressure discharged into the discharge pressure space 53 is discharged from the discharge pipe 5 to the outside.
  • the injection refrigerant is injected into the low-stage discharge space 20 from the injection pipe 61 illustrated in FIG.
  • the injection refrigerant is mixed with the intermediate-pressure refrigerant discharged from the low-stage compression chamber 15 in the low-stage discharge space 20 and compressed by the high-stage compression unit 30.
  • an overcompressed state that becomes a discharge pressure may occur only by the compression by the low-stage compression unit 10. That is, the intermediate pressure of the refrigerant described above may be higher than the required discharge pressure.
  • the bypass valve 24 is opened by the pressure difference between the refrigerant in the low-stage discharge space 20 and the refrigerant in the discharge pressure space 53, and the refrigerant in the low-stage discharge space 20 is discharged from the bypass port 23 to the discharge pressure space 53. . That is, the refrigerant discharged from the low stage compression unit 10 to the low stage discharge space 20 is bypassed and discharged to the discharge pressure space 53 without being compressed by the high stage compression unit 30.
  • the compression by the low-stage compression unit 10 results in the discharge pressure. Therefore, the compression by the high-stage compression unit 30 is useless, and if the high-stage compression unit 30 performs compression, the efficiency deteriorates.
  • the refrigerant compressed by the low-stage compression unit 10 is discharged by bypassing the high-stage compression unit 30 when the over-compression state occurs. Therefore, loss (overcompression loss) when an overcompressed state occurs can be suppressed.
  • the bypass port 23 is provided in the low stage cover 19. Therefore, the refrigerant discharged from the bypass port 23 to the discharge pressure space 53 is discharged to the discharge pressure space 53 in the sealed container 1 without passing through the intermediate connecting pipe 51. That is, the refrigerant discharged from the bypass port 23 to the discharge pressure space 53 is discharged from the bypass port 23 to the discharge pressure space 53 without causing a compression loss by passing through the narrow and long intermediate connecting pipe 51. Therefore, over-compression loss can be effectively suppressed during steady operation.
  • the lower side of the airtight container 1 forms the lubricating oil storage part 6, and lubricating oil is enclosed. Since the lubricating oil is supplied to the mechanical portion of the compression mechanism unit 3, an amount of at least the compression unit disposed in the upper side (the low-stage compression unit 10 in FIG. 2) is enclosed.
  • the low-stage compression unit is provided below the high-stage compression unit. Therefore, the low stage discharge space is provided below the low stage compression section. That is, the low stage cover is provided below the low stage compression unit. Accordingly, the low-stage discharge cover is immersed in the lubricating oil.
  • the lubricating oil may enter the low-stage discharge space from the bypass port 23, or the lubricating oil may be wound up when the refrigerant is discharged from the bypass port 23, thereby increasing the outflow of the lubricating oil from the compressor. is there.
  • a bypass port cannot be provided in the low-stage cover, and as in Patent Document 1, the bypass port must be provided in a narrow and narrow flow path that connects the low-stage discharge space and the high-stage compression unit.
  • the low-stage compressor 10 is provided on the upper side of the high-stage compressor 30, contrary to normal.
  • the low-stage discharge space 20 is provided on the upper side of the low-stage compression unit 10, and the low-stage cover 19 can have a height that does not immerse in the lubricating oil.
  • the bypass port 23 can be provided in the low stage cover 19.
  • bypass valve 24 can be a reed valve having a simple structure. Therefore, the bypass valve 24 and the bypass valve presser 25 can be made the same parts as the low-stage discharge valve 17 and the low-stage valve presser 18. Costs can be kept low by sharing parts. Further, since the structure of the bypass valve 24 is simplified, the cost for assembly can be reduced.
  • FIG. 9 is a diagram illustrating an example of a circuit configuration of a heat pump apparatus having an injection circuit.
  • FIG. 10 is a Mollier diagram of the refrigerant state of the heat pump apparatus 101 shown in FIG. In FIG. 10, the horizontal axis represents specific enthalpy and the vertical axis represents refrigerant pressure.
  • the heat pump device 101 includes a two-stage compressor 100, a heat exchanger 71 (second heat exchanger), a first expansion valve 72, a receiver 78, a third expansion valve 74, and a heat exchanger 76 (first heat exchanger). It has a main refrigerant circuit that is sequentially connected by piping.
  • the heat pump apparatus 101 connects an injection circuit including a second expansion valve 75 in the middle of the pipe by connecting the pipe between the receiver 78 and the third expansion valve 74 to the injection pipe 61 of the two-stage compressor 100.
  • the heat pump device 101 includes an internal heat exchanger 73 that exchanges heat between the refrigerant in the main refrigerant circuit and the refrigerant in the injection circuit.
  • the heat pump device 101 includes a four-way valve 77 that changes the direction in which the refrigerant flows.
  • the heating operation includes not only heating used for air conditioning, but also hot water supply that heats water to make hot water.
  • the gas-phase refrigerant (point 1 in FIG. 10) that has become high temperature and high pressure in the two-stage compressor 100 is discharged from the discharge pipe 5 of the two-stage compressor 100 and is heated by the heat exchanger 71 that is a condenser and a radiator. It is exchanged and liquefied (point 2 in FIG. 10). At this time, air or water is warmed by heat radiated from the refrigerant, and heating or hot water is supplied.
  • the liquid-phase refrigerant liquefied by the heat exchanger 71 is depressurized by the first expansion valve 72 (decompression mechanism) and becomes a gas-liquid two-phase state (point 3 in FIG. 10).
  • the refrigerant in the gas-liquid two-phase state by the first expansion valve 72 is heat-exchanged with the refrigerant sucked into the two-stage compressor 100 by the receiver 78, cooled and liquefied (point 4 in FIG. 10).
  • the liquid-phase refrigerant liquefied by the receiver 78 branches and flows into the internal heat exchanger 73, the main refrigerant circuit on the third expansion valve 74 side, and the injection circuit on the second expansion valve 75 side.
  • the liquid-phase refrigerant flowing through the main refrigerant circuit is heat-exchanged by the internal heat exchanger 73 with the refrigerant flowing through the injection circuit that has been decompressed by the second expansion valve 75 and is in a gas-liquid two-phase state, and further cooled (FIG. 10). Point 5).
  • the liquid-phase refrigerant cooled by the internal heat exchanger 73 is decompressed by the third expansion valve 74 (decompression mechanism) and becomes a gas-liquid two-phase state (point 6 in FIG. 10).
  • the refrigerant in the gas-liquid two-phase state by the third expansion valve 74 is heat-exchanged and heated by the heat exchanger 76 serving as an evaporator (point 7 in FIG. 10).
  • the refrigerant heated by the heat exchanger 76 is further heated by the receiver 78 (point 8 in FIG. 10), and is sucked into the two-stage compressor 100 from the suction pipe 8.
  • the refrigerant flowing through the injection circuit is decompressed by the second expansion valve 75 (decompression mechanism) (point 9 in FIG. 10) and is heat-exchanged by the internal heat exchanger 73 (point in FIG. 10). 10).
  • the gas-liquid two-phase refrigerant (injection refrigerant) heat-exchanged by the internal heat exchanger 73 flows into the low-stage discharge space 20 from the injection pipe 61 of the two-stage compressor 100 in the gas-liquid two-phase state.
  • the refrigerant (point 8 in FIG. 10) flowing through the main refrigerant circuit and sucked from the suction pipe 8 is compressed and heated to an intermediate pressure by the low-stage compressor 10 (point 11 in FIG. 10). ).
  • the refrigerant discharged to the low-stage discharge space 20 compressed and heated to the intermediate pressure (point 11 in FIG. 10) and the injection refrigerant (point 8 in FIG. 10) merge to lower the temperature (FIG. 10). Point 12).
  • the refrigerant whose temperature has decreased (point 12 in FIG. 10) is further compressed and heated by the high-stage compression unit 30 to become high temperature and pressure, and is discharged from the discharge flow path 52 to the discharge pressure space 53 (point 1 in FIG. 10). ).
  • the opening of the second expansion valve 75 is fully closed. That is, when the injection operation is performed, the opening degree of the second expansion valve 75 is larger than the predetermined opening degree. However, when the injection operation is not performed, the opening degree of the second expansion valve 75 is predetermined. The opening is smaller than. Thereby, the refrigerant does not flow into the injection pipe 61 of the two-stage compressor 100. That is, all the refrigerant that has passed through the heat exchanger 71, the first expansion valve 72, and the receiver 78 is sucked into the two-stage compressor 100 from the suction pipe 8.
  • the opening degree of the second expansion valve 75 is controlled by electronic control by the control unit.
  • the control unit is, for example, a microcomputer.
  • the four-way valve 77 is set in a broken line direction.
  • the gas-phase refrigerant (point 1 in FIG. 10) that has become high temperature and high pressure in the two-stage compressor 100 is discharged from the discharge pipe 5 of the two-stage compressor 100 and is heated by the heat exchanger 76 that is a condenser and a radiator. It is exchanged and liquefied (point 2 in FIG. 10).
  • the liquid-phase refrigerant liquefied by the heat exchanger 76 is decompressed by the third expansion valve 74 and becomes a gas-liquid two-phase state (point 3 in FIG. 10).
  • the refrigerant in the gas-liquid two-phase state by the third expansion valve 74 is heat-exchanged by the internal heat exchanger 73, cooled and liquefied (point 4 in FIG. 10).
  • the refrigerant that has become a gas-liquid two-phase state by the third expansion valve 74 and the liquid-phase refrigerant that has been liquefied by the internal heat exchanger 73 are decompressed by the second expansion valve 75, and the gas-liquid two-phase Heat is exchanged with the refrigerant in the state (point 9 in FIG. 10).
  • heat-exchanged by the internal heat exchanger 73 branches and flows into the main refrigerant circuit on the receiver 78 side and the injection circuit on the internal heat exchanger 73 side.
  • the liquid-phase refrigerant flowing through the main refrigerant circuit is heat-exchanged with the refrigerant sucked into the two-stage compressor 100 by the receiver 78 and further cooled (point 5 in FIG. 10).
  • the liquid-phase refrigerant cooled by the receiver 78 is decompressed by the first expansion valve 72 and becomes a gas-liquid two-phase state (point 6 in FIG. 10).
  • the refrigerant in the gas-liquid two-phase state by the first expansion valve 72 is heat-exchanged and heated by the heat exchanger 71 serving as an evaporator (point 7 in FIG. 10). At this time, the refrigerant absorbs heat, thereby cooling air, water, etc., cooling, making cold water or ice, and freezing. Then, the refrigerant heated by the heat exchanger 71 is further heated by the receiver 78 (point 8 in FIG. 10), and is sucked into the two-stage compressor 100 from the suction pipe 8. On the other hand, as described above, the refrigerant flowing through the injection circuit is decompressed by the second expansion valve 75 (point 9 in FIG.
  • the gas-liquid two-phase refrigerant (injection refrigerant) heat-exchanged by the internal heat exchanger 73 flows into the low-stage discharge space 20 from the injection pipe 61 of the two-stage compressor 100 in the gas-liquid two-phase state.
  • the compression operation in the two-stage compressor 100 is the same as in the heating operation.
  • the opening of the second expansion valve 75 is fully closed so that the refrigerant does not flow into the injection pipe 61 of the two-stage compressor 100 as in the heating operation.
  • the heat exchanger 71 may be a heat exchanger that performs heat exchange between a gas-phase refrigerant having a high temperature and a high pressure or a liquid-phase refrigerant having a low temperature and a low pressure and a liquid such as water.
  • the heat exchanger 71 may be a heat exchanger that performs heat exchange between a gas-phase refrigerant that has become high temperature and pressure or a liquid-phase refrigerant that has become low temperature and low pressure and a gas such as air.
  • the heat pump apparatus 101 described in FIG. 9 may be an air conditioner, a hot water supply apparatus, a refrigeration apparatus, or a refrigeration apparatus.
  • the injection operation is performed when the load is high.
  • the load is a necessary load that is an amount of heat necessary to bring the temperature of the fluid that exchanges heat with the refrigerant flowing through the main refrigerant circuit in the heat exchanger 71 to a predetermined temperature.
  • the required load can be measured by using the outside air temperature, the rotational speed of the compressor, or the like as an index.
  • a required load detection unit (not shown) detects the required load by detecting the outside air temperature, the rotational speed of the compressor, and the like.
  • the injection operation is performed when the outside air temperature is equal to or lower than a predetermined temperature (for example, 2 ° C.) or when the rotational speed of the compressor is equal to or higher than a predetermined frequency (for example, 60 Hz).
  • a predetermined temperature for example, 2 ° C.
  • a predetermined frequency for example, 60 Hz
  • the bypass mechanism operates. Then, the refrigerant compressed by the low-stage compression unit 10 bypasses without being compressed by the high-stage compression unit 30, is discharged to the discharge pressure space 53, and is discharged from the discharge pipe 5 to the refrigerant circuit.
  • the heat pump device 101 performs the following operation control (1) to (3) according to the load height.
  • (1) When the load is high (when the load is higher than a preset second load), the opening of the second expansion valve 75 is increased and the injection operation is performed.
  • (2) When the load is medium (when the load is lower than the second load and higher than the first load set lower than the second load), the opening of the second expansion valve 75
  • the low-stage compression unit 10 and the high-stage compression unit 30 perform two-stage compression without reducing the injection operation.
  • the bypass valve 24 opens to bypass the high-stage compression unit 30 and compress mainly by the low-stage compression unit 10.
  • Embodiment 2 FIG. In the second embodiment, a description will be given of a two-stage compressor 100 having a mechanism that causes the refrigerant flowing into the suction muffler 7 to be sucked into the high-stage compression section 30 by bypassing the low-stage compression section 10.
  • FIG. 11 is a configuration diagram of the two-stage compressor 100 according to the second embodiment. Only the difference between the two-stage compressor 100 according to the second embodiment and the two-stage compressor 100 according to the first embodiment will be described.
  • the two-stage compressor 100 includes a suction pipe 8 that connects the suction muffler 7 and the low-stage suction port 21 of the low-stage compression unit 10, an intermediate outlet 22 of the low-stage cover 19, and a high stage of the high-stage compression unit 30.
  • a four-way valve 54 switching unit is provided in the middle of the intermediate connecting pipe 51 that connects the suction port 41.
  • the four-way valve 54 connects the suction muffler 7 and the low-stage suction port 21, and connects the intermediate outlet 22 and the high-stage suction port 41 (flow path indicated by a solid line), and the suction muffler 7 and the high-stage suction port. While switching the port 41, the state (flow path shown with a broken line) which connected the low-stage inlet 21 and the intermediate
  • the suction muffler 7 and the high-stage suction port 41 are connected, and the low-stage suction port 21 and the intermediate outlet 22 are connected (flow path indicated by a broken line). That is, during normal operation, the refrigerant flowing into the suction muffler 7 is sucked into the low-stage compression unit 10, and when the load is low, the refrigerant flowing into the suction muffler 7 is bypassed without being compressed by the low-stage compression unit 10. And sucked into the high-stage compression unit 30.
  • the two-stage compressor 100 according to the second embodiment has only a high-stage compressor 30 when the load is low and it is not necessary to compress both the low-stage compressor 10 and the high-stage compressor 30.
  • the refrigerant can be compressed. Therefore, the two-stage compressor 100 can improve the compressor efficiency when the load is low. Further, since the two-stage compressor 100 according to Embodiment 2 can cause the refrigerant flowing into the suction muffler 7 to be directly sucked into the high-stage compression unit 30 without passing through the low-stage compression unit 10, the low-stage compressor Preheat loss due to the compression unit 10 does not occur.
  • the refrigerant circulation amount is adjusted by changing the rotational speed of the electric motor according to the load fluctuation of the heat pump device. That is, when the load is low and the refrigerant circulation amount must be reduced, the refrigerant circulation amount is reduced by reducing the number of revolutions of the electric motor. On the other hand, when the load is high and the refrigerant circulation amount must be large, the refrigerant circulation amount is increased by increasing the number of revolutions of the electric motor.
  • the efficiency characteristics of an electric motor are designed to reach a peak at the rated rotational speed. Therefore, it is desirable from the viewpoint of compressor efficiency to operate the electric motor at a rotational speed close to the rated rotational speed.
  • the two-stage compressor 100 when the load is low, can compress the refrigerant mainly by the low-stage compression unit 10 by discharging the refrigerant from the bypass port 23. is there.
  • the two-stage compressor 100 can compress the refrigerant only by the high-stage compression unit 30 by switching the four-way valve 54 when the load is low. That is, the two-stage compressor 100 can mainly compress the refrigerant only by the low-stage compressor 10 or can compress the refrigerant only by the high-stage compressor 30.
  • the compression chamber volume of the high-stage compression unit 30 (volume of the high-stage compression chamber 35) is the compression chamber volume of the low-stage compression unit 10 (volume of the low-stage compression chamber 15). Smaller than.
  • the number of revolutions of the motor in the compressor having a large compression chamber volume is set to the electric motor in the compressor having a small compression chamber volume. It is necessary to make it less than the number of rotations.
  • the compression is mainly performed when the refrigerant is mainly compressed only by the low-stage compression unit 10 as compared with the case where the refrigerant is compressed only by the high-stage compression unit 30. Since the chamber volume is large, it is necessary to reduce the rotation speed of the electric motor. Therefore, when the load is low, the two-stage compressor 100 mainly compresses the refrigerant only by the low-stage compression unit 10 and compresses the refrigerant only by the high-stage compression unit 30 according to the degree of low load. Switch to driving.
  • the four-way valve 54 when the degree of low load is weak, the four-way valve 54 is not switched, and the refrigerant is mainly compressed only by the low-stage compression unit 10 by operating the bypass mechanism.
  • the degree of low load when the degree of low load is strong (that is, when the load is very low), the four-way valve 54 is switched and the refrigerant is compressed only by the high-stage compression unit 30. That is, when the refrigerant is compressed by the low-stage compression unit 10, the four-way valve 54 is switched so that the compression is performed only by the high-stage compression unit 30 when the rotation speed must be less than the rated rotation speed.
  • the rotation speed of an electric motor can be increased and the rotation speed of an electric motor can be closely approached to a rated rotation speed. As a result, efficiency can be improved.
  • the heat pump apparatus 101 including the two-stage compressor 100 according to the second embodiment performs operation control from (1) to (4) according to the load.
  • (1) When the load is high (when the load is higher than a preset second load), the opening of the second expansion valve 75 is increased and the injection operation is performed.
  • (2) When the load is medium (when the load is lower than the second load and higher than the first load set lower than the second load), the second expansion valve 75 is opened.
  • the two-stage compression is performed by the low-stage compression section 10 and the high-stage compression section 30 without reducing the degree and performing the injection operation.
  • (3) When the load is low (when the load is lower than the first load and higher than the third load set lower than the first load), the bypass valve 24 is opened to perform high-stage compression.
  • the compression is mainly performed only by the low-stage compression unit 10 by bypassing the unit 30.
  • the four-way valve 54 is switched to bypass the low-stage compressor 10 and from the suction muffler 7 to the high-stage compressor 30.
  • the refrigerant is sucked and compressed only by the high stage compression unit 30.
  • the heat pump apparatus 101 provided with the two-stage compressor 100 which concerns on Embodiment 2 can improve the efficiency in case a load is very low.
  • the four-way valve 54 is electronically controlled by the control unit.
  • Embodiment 3 FIG.
  • a description will be given of a two-stage compressor 100 that supplies the suction refrigerant of the high-stage compression unit 30 to the low-stage back pressure chamber 26 of the low-stage vane 13 of the low-stage compression unit 10.
  • FIG. 12 is a cross-sectional view of the compression mechanism section 3 portion of the two-stage compressor 100 according to the third embodiment. Only the parts different from the two-stage compressor 100 according to the second embodiment will be described with respect to the two-stage compressor 100 according to the third embodiment.
  • the two-stage compressor 100 passes through the intermediate partition plate 50 and has a high-stage suction channel 42 between the high-stage suction port 41 and the high-stage compression chamber 35, and the low-stage back pressure chamber of the low-stage compression unit 10. 26 is provided with a pressure introduction path 55 communicating with the H.26.
  • the pressure introduction path 55 By providing the pressure introduction path 55, the refrigerant sucked into the high stage compression chamber 35 flows into the low stage back pressure chamber 26. That is, the pressure in the low-stage back pressure chamber 26 is the same as the pressure of the suction refrigerant in the high-stage compression unit 30.
  • FIG. 13 is an explanatory diagram of the force applied to the low stage vane 13.
  • a force (Pv ⁇ v) expressed by the product of the above and a force Psp of the spring 27 are applied. That is, a force of “Pv ⁇ v + Psp” is applied to the low stage vane 13 from the low stage back pressure chamber 26 side toward the low stage compression chamber 15 side.
  • the intermediate-pressure refrigerant compressed by the low-stage compression unit 10 flows into the low-stage back pressure chamber 26.
  • the pressure Pv of the refrigerant in the low-stage back pressure chamber 26 is not the intermediate pressure discharged from the low-stage compression unit 10, but passes through the intermediate connection pipe 51 to reduce the resistance of the intermediate connection pipe 51.
  • the pressure is increased to the intermediate pressure by the amount. That is, the pressure Pv of the refrigerant in the low stage back pressure chamber 26 is slightly higher than the intermediate pressure.
  • the pressure in the low-stage compression chamber 15 will be described. During normal operation, the low-stage compressor 10 compresses low-pressure refrigerant to an intermediate pressure.
  • the pressure Ps of the suction refrigerant is low, and the pressure Pc of the discharge refrigerant is an intermediate pressure. That is, during normal operation, the pressure Pv in the low-stage back pressure chamber 26 (pressure slightly higher than the intermediate pressure) is higher than the pressure Ps (low pressure) and pressure Pc (intermediate pressure) in the low-stage compression chamber 15.
  • the force applied to the low stage vane 13 when the four-way valve 54 is a flow path indicated by a broken line in FIG. 11 (when the low stage compression unit 10 is bypassed) will be described.
  • the pressure Pv in the low stage back pressure chamber 26 will be described.
  • the refrigerant flowing into the suction muffler 7 bypasses the low-stage compression unit 10 and performs high-stage compression via the intermediate connection pipe 51 and the high-stage suction flow path 42. Inhaled into chamber 35.
  • the refrigerant passes through the high stage suction flow path 42, a part of the refrigerant flows from the pressure introduction path 55 into the low stage back pressure chamber 26.
  • the low-pressure refrigerant that has flowed into the suction muffler 7 flows into the low-stage back pressure chamber 26. That is, the pressure Pv in the low stage back pressure chamber 26 is low.
  • the pressure in the low-stage compression chamber 15 will be described.
  • the low-stage compression unit 10 does not suck the refrigerant from the suction muffler 7, and the refrigerant in the low-stage compression unit 10 passes through the low-stage compression chamber 15 and the low-stage discharge space 20. It is the refrigerant which circulates. Therefore, the same refrigerant is repeatedly compressed by the low stage compression unit 10.
  • the refrigerant having a pressure higher than the discharge pressure is discharged from the bypass port 23 to the discharge pressure space 53. Therefore, the pressure in the low-stage compression chamber 15 changes from a low pressure to a discharge pressure. That is, when the low-stage compression unit 10 is bypassed, the pressure Pv (low pressure) in the low-stage back pressure chamber 26 is equal to or lower than the pressure Ps and the pressure Pc in the low-stage compression chamber 15. Although the pressure Pv in the low-stage back pressure chamber 26 may temporarily be equivalent to the pressure in the low-stage compression chamber 15, the pressure Pv in the low-stage back pressure chamber 26 is immediately lower. It becomes lower than the pressure in the stage compression chamber 15.
  • the force Fv applied to the low-stage vane 13 becomes larger than 0 during normal operation, and the low-stage compression unit 10 is low when bypassed.
  • the force Fv applied to the stage vane 13 can be made smaller than zero. That is, during normal operation, the force applied to the low stage vane 13 from the low stage back pressure chamber 26 side to the low stage compression chamber 15 side is directed from the low stage compression chamber 15 side to the low stage back pressure chamber 26 side. It should be greater than this force.
  • the force applied to the low-stage vane 13 from the low-stage back pressure chamber 26 side to the low-stage compression chamber 15 side is low from the low-stage compression chamber 15 side.
  • the force is made smaller than the force applied toward the step back pressure chamber 26 side.
  • the heat pump device 101 including the two-stage compressor 100 according to the third embodiment has better efficiency when the load is very low. Can do.
  • Embodiment 4 FIG. In the fourth embodiment, a two-stage compressor 100 that controls the generated torque in accordance with the required torque will be described.
  • FIG. 14 is a diagram showing torque fluctuation of a normal twin rotary compressor.
  • the twin rotary compressor is a compressor in which two compression units operate in parallel.
  • FIG. 15 is a diagram illustrating torque fluctuation when the two-stage compressor 100 according to Embodiment 1 is normally operated.
  • the normal operation is an operation in which the refrigerant is sucked from the suction muffler 7 to the low-stage compression unit 10 and the bypass valve 24 is closed and the refrigerant is not discharged from the bypass port 23.
  • FIG. 16 is a diagram showing torque fluctuations when the two-stage compressor 100 according to Embodiment 1 is subjected to an overcompression relief operation.
  • the overcompression relief operation is an operation in which the refrigerant is sucked from the suction muffler 7 to the low-stage compression unit 10 and the refrigerant is discharged from the bypass port 23 by operating the bypass mechanism.
  • FIG. 17 is a diagram showing torque fluctuations when the two-stage compressor 100 according to the second embodiment is in the high-stage direct suction operation.
  • the high-stage direct suction operation is an operation in which the four-way valve 54 is switched to the broken-line flow path in FIG. 11 and sucked from the suction muffler 7 to the high-stage compression unit 30.
  • the rotational torque fluctuation accompanying the change in the crank angle of the crankshaft 4 is larger than that in the twin rotary compressor.
  • the efficiency of the electric motor is lowered and the vibration is increased.
  • a reduction in the efficiency of the motor due to a large rotational torque fluctuation accompanying a change in the crank angle has a large effect on the efficiency when the motor is operated at a low rotational speed, that is, when the load is small.
  • the vibration becomes large noise is caused and the reliability of the piping of the heat pump device is reduced.
  • the two compression parts having the same compression chamber volume are arranged with the eccentric phase of the rolling piston shifted by 180 degrees, so the torques cancel each other out. Therefore, as shown in FIG. 14, in the twin rotary compressor, the torque fluctuation accompanying the change in the crank angle is small.
  • the compression chamber volume of the high-stage compression unit 30 is smaller than the compression chamber volume of the low-stage compression unit 10. That is, there is a difference in the compression work between the low-stage compression unit 10 and the high-stage compression unit 30. Therefore, as shown in FIG. 15, the two-stage compressor 100 has a larger rotational torque fluctuation due to the change in the crank angle than the twin rotary compressor.
  • the rotational torque varies greatly between the timing at which the refrigerant is discharged from the low stage compression chamber 15 to the low stage discharge space 20 and the timing at which the refrigerant is discharged from the high stage compression chamber 35 to the high stage discharge space 40.
  • the rotational torque fluctuation accompanying the change of the crank angle becomes slightly larger than that in the normal operation shown in FIG. This is because the compression is mainly performed only by the low-stage compression unit 10, and thus the behavior is similar to that of a single rotary compressor having only one compression unit. That is, there is almost no torque cancellation between the two compression sections.
  • FIG. 17 when the high-stage direct suction operation is performed, the behavior is similar to that of the single rotary compressor as in the case of the overcompression relief operation shown in FIG. growing.
  • the control unit controls the electric motor 2 so that the torque (output torque) is generated in accordance with the necessary torque that is the torque necessary for operation (load torque).
  • the necessary torque can be determined from, for example, the rotational speed of the compressor, a change in current, a change in vibration, a crank angle, and the like.
  • the control unit determines the necessary torque from the rotation speed of the compressor and the crank angle.
  • the control unit stores in advance a table in which necessary torque is recorded for each rotation speed and crank angle of the compressor in a memory.
  • control unit detects the rotational speed and the crank angle of the compressor, and reads out the necessary torque corresponding to the detected rotational speed and crank angle of the compressor from the memory. And a control part controls the electric motor 2 so that the read required torque may generate
  • the two-stage compressor 100 is a rotary two-stage compressor in which the low-stage compression unit 10 is arranged on the upper side and the high-stage compression unit 30 is arranged on the lower side, and the low-stage discharge space 20 of the low-stage compression unit 10 constitutes the low-stage discharge space 20.
  • the cover 19 is provided with a bypass port 23 and a bypass valve 24 communicating with the discharge pressure space 53.
  • the two-stage compressor 100 includes a suction pipe connected to the suction muffler 7, a suction pipe of the low-stage compression section 10, a discharge pipe of the low-stage compression section 10, and a suction pipe of the high-stage compression section 30.
  • the suction pipe connected to the suction muffler 7 and the suction pipe of the high stage compression section 30 are communicated, and the suction refrigerant gas is directly sucked into the high stage compression section 30 without passing through the low stage compression section 10. It is characterized by comprising.
  • the two-stage compressor 100 is characterized in that the suction pressure of the high-stage compression section 30 is communicated with the low-stage back pressure chamber 26 of the low-stage compression section 10.
  • the two-stage compressor 100 is characterized in that it performs torque control in accordance with fluctuations in rotational torque.

Abstract

 二段圧縮機及び二段圧縮機を用いたヒートポンプ装置において、負荷の小さい時における効率を改善することを目的とする。ヒートポンプ装置は、二段圧縮機100と、第1熱交換器と、第1膨張機構と、第2熱交換器とが配管により順次接続された主冷媒回路を備える。二段圧縮機100は、負荷が所定の負荷よりも高い場合には、低段圧縮部10と高段圧縮部30とで二段圧縮した冷媒を冷媒回路へ吐出する。一方、二段圧縮機100は、負荷が所定の負荷よりも低い場合には、低段圧縮部10が圧縮した冷媒を高段圧縮部30に圧縮させることなくバイパスして主冷媒回路へ吐出する。

Description

ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法
 本発明は、2つの圧縮部が直列に接続された二段圧縮機、及び二段圧縮機を用いたヒートポンプ装置に関する。
 低段圧縮部と高段圧縮部とが直列に接続された二段圧縮機では、低段圧縮部は、所定の圧力(到達圧力)まで、ヒートポンプサイクルから吸入した冷媒を圧縮する。この到達圧力は、低段圧縮部の圧縮室容積と高段圧縮部の圧縮室容積との設定により決定される。高段圧縮部は、低段圧縮部で圧縮された冷媒を、さらに圧縮する。そして、高段圧縮部で圧縮された冷媒は、高段圧縮部から密閉容器の内部空間へ吐出され、密閉容器の内部空間からヒートポンプサイクルへ吐出される。
 上記の通り、二段圧縮機では、低段圧縮部の圧縮室容積と高段圧縮部の圧縮室容積との設定により低段圧縮部における到達圧力が決定される。そのため、ヒートポンプサイクルの運転条件によっては、低段圧縮部のみの圧縮によりヒートポンプサイクルへ吐出すべき吐出圧まで圧縮されてしまう過圧縮状態となることがある。過圧縮状態となった場合、高段圧縮部での圧縮仕事は無駄になり、圧縮機の効率が悪くなる。ここで、過圧縮状態は、外気温度が高い場合において暖房運転をする場合等の負荷の小さい場合に発生し易い。つまり、過圧縮状態は、負荷の小さい場合における効率の低下を引き起こす要因となる。
 特許文献1には、低段圧縮部から高段圧縮部へ冷媒を流す連通路と、高段圧縮部の吐出側の空間とを接続するバイパス路を備える二段圧縮機についての記載がある。この二段圧縮機では、過圧縮状態となった場合、連通路の冷媒を、高段圧縮部をバイパスさせて高段圧縮部の吐出側の空間へ流す。これにより、過圧縮状態となった場合における効率の改善を図っている。
 特許文献2には、低段圧縮部で圧縮した冷媒の一部を、低段圧縮部の吸入側へ戻すレリース機構を備えるヒートポンプ装置についての記載がある。このヒートポンプ装置では、負荷が低い場合に、レリース機構を作動させることにより、負荷が低い場合における圧縮機の効率の改善を図っている。
特開平5-133367号公報 特開平2-11886号公報
 特許文献1に記載された二段圧縮機では、低段圧縮部から吐出された冷媒は、狭く長い連通路を通過した後、バイパス路から高段圧縮部の吐出側の空間へ吐出される。冷媒が狭く長い連通路を通過することにより、圧力損失が生じる。そのため、一時的な過圧縮状態の回避に対しては効果があるものの、定常運転時における過圧縮損失を低減する効果は小さい。
 特に、負荷の小さい時は吐出圧が低い圧力のため冷媒ガスの比容積が大きく体積流量も大きい。そのため、流路面積の不足による圧力損失が大きい。
 特許文献2に記載されたヒートポンプ装置では、レリース機構を作動させることにより低段圧縮部の吸入側と吐出側が直結され、低段圧縮部で圧縮した冷媒の一部が低段圧縮部の吸入側へ戻る。しかし、レリース機構を作動させた場合であっても、低段圧縮部では、一定量以上の圧縮仕事が発生する。また、低段圧縮部を冷媒が通過することにより冷媒が加熱され、いわゆるプレヒートロスが発生する。つまり、冷媒が高段圧縮部で圧縮される前に加熱されてしまうことによるロス(プレヒートロス)が発生する。そのため、負荷が低い場合における効率改善の度合いが小さい。
 この発明は、二段圧縮機及び二段圧縮機を用いたヒートポンプ装置において、負荷の小さい時における効率を改善することを目的とする。
 この発明に係るヒートポンプ装置は、
 圧縮機と、第1熱交換器と、第1膨張機構と、第2熱交換器とが配管により順次接続された主冷媒回路を備え、
 前記圧縮機は、
 流入した冷媒を圧縮する低段圧縮部と、
 前記低段圧縮部が圧縮した冷媒をさらに圧縮する高段圧縮部と、
 前記第1熱交換器において前記主冷媒回路を流れる冷媒と熱交換される流体の温度を所定の温度にするのに必要な熱量である必要負荷が、予め設定された第1の負荷よりも高い場合には、前記低段圧縮部と前記高段圧縮部とが圧縮した冷媒を前記主冷媒回路へ吐出し、前記必要負荷が前記第1の負荷よりも低い場合には、前記低段圧縮部が圧縮した冷媒を前記高段圧縮部に圧縮させることなくバイパスして前記主冷媒回路へ吐出するバイパス機構と
を備えることを特徴とする。
 この発明に係るヒートポンプ装置は、負荷が低い場合に低段圧縮部が圧縮した冷媒を高段圧縮部に圧縮させることなくバイパスして主冷媒回路へ吐出する。そのため、負荷が低い場合において発生する過圧縮損失を低減することができる。
実施の形態1に係る二段圧縮機100の平面図。 図1におけるA-A’断面図。 図2における圧縮機構部3及び圧縮機構部3の周囲の拡大図。 図1におけるB-B’断面図。 図2におけるC-C’断面図。 図2におけるD-D’断面図。 図2におけるE-E’断面図。 図2におけるF-F’断面図。 インジェクション回路を有するヒートポンプ装置の回路構成の一例を示す図。 図9に示すヒートポンプ装置の冷媒の状態についてのモリエル線図。 実施の形態2に係る二段圧縮機100の構成図。 実施の形態3に係る二段圧縮機100の圧縮機構部3部分の断面図。 低段ベーン13にかかる力の説明図。 通常のツインロータリ圧縮機のトルク変動を示す図。 実施の形態1に係る二段圧縮機100を通常運転した場合におけるトルク変動を示す図。 実施の形態1に係る二段圧縮機100を過圧縮リリーフ運転した場合におけるトルク変動を示す図。 実施の形態2に係る二段圧縮機100を高段側直接吸入運転した場合におけるトルク変動を示す図。
 実施の形態1.
 実施の形態1では、高段圧縮部をバイパスするバイパス口を有する二段圧縮機100について説明する。
 図1は、実施の形態1に係る二段圧縮機100の平面図である。
 図2は、図1におけるA-A’断面図である。なお、図2では、中間連結管51部分についてはa-a’断面を示している。
 図3は、図2における圧縮機構部3及び圧縮機構部3の周囲の拡大図である。
 図4は、図1におけるB-B’断面図である。 図5は、図2におけるC-C’断面図である。
 図6は、図2におけるD-D’断面図である。
 図7は、図2におけるE-E’断面図である。
 図8は、図2におけるF-F’断面図である。
 まず、二段圧縮機100の構成について説明する。
 図2に示すように、二段圧縮機100は、密閉容器1の内部に、固定子2aと回転子2bとを有する電動機2と、低段圧縮部10と高段圧縮部30との2つの圧縮部を備える圧縮機構部3と、クランクシャフト4とを備える。また、密閉容器1の上部には、吐出管5が嵌入される。さらに、密閉容器1の下部は、潤滑油貯蔵部6を形成し、潤滑油が封入される。
 また、二段圧縮機100は、密閉容器1の外部に、吸入マフラ7を備える。吸入マフラ7は、吸入管8により密閉容器1内の圧縮機構部3の低段圧縮部10と接続される。
 図3に示すように、圧縮機構部3の低段圧縮部10は、低段シリンダ11と、低段シリンダ11の上側を閉塞する低段フレーム14と、低段シリンダ11の下側を閉塞する中間仕切板50とにより低段圧縮室15を形成する。また、低段圧縮部10は、低段圧縮室15内を偏芯回転する低段ローリングピストン12と、低段圧縮室15を吸入側の空間と吐出側の空間とに区切る低段ベーン13(図7参照)を備える。また、低段圧縮室15の低段吸入口21には、吸入管8が接続されている。
 同様に、高段圧縮部30は、高段シリンダ31と、高段シリンダ31の下側を閉塞する高段フレーム34と、高段シリンダ31の上側を閉塞する中間仕切板50とにより、低段圧縮室15よりも容積の小さい高段圧縮室35を形成する。高段圧縮部30は、高段圧縮室35内を偏芯回転する高段ローリングピストン32と、高段圧縮室35を吸入側の空間と圧縮側の空間とに区切る高段ベーン33(図8参照)を備える。
 つまり、二段圧縮機100は、ロータリ型の二段圧縮機である。
 なお、低段ローリングピストン12と高段ローリングピストン32との偏芯方向は、約180度ずれている(図7,8参照)。
 また、圧縮機構部3は、低段フレーム14との間に低段吐出空間20を形成する低段カバー19(低段吐出部)と、高段フレーム34との間に高段吐出空間40を形成する高段カバー39(高段吐出部)とを備える。また、低段カバー19の中間流出口22と高段シリンダ31の高段吸入口41とを接続する中間連結管51が設けられ、低段吐出空間20と高段圧縮室35とが連通している。
 低段フレーム14には、低段圧縮室15と低段吐出空間20とを連通する低段吐出口16が形成されている。低段吐出口16には、低段吐出弁17と低段弁押え18とがリベット28により取り付けられたリード弁が設けられている(図6参照)。同様に、高段フレーム34には、高段圧縮室35と高段吐出空間40とを連通する高段吐出口36が形成されている。高段吐出口36には、高段吐出弁37と高段弁押え38とがリベットにより取り付けられたリード弁が設けられている。
 また、低段カバー19には、低段吐出空間20と密閉容器1の内部空間である吐出圧空間53とを連通するバイパス口23が設けられている。バイパス口23には、バイパス弁24とバイパス弁押え25とがリベット29により取り付けられたリード弁が設けられている(図5参照)。これらをバイパス機構と呼ぶ。
 また、高段フレーム34と、高段シリンダ31と、中間仕切板50と、低段シリンダ11と、低段フレーム14と、低段カバー19とを貫通し、高段吐出空間40と吐出圧空間53とを連通する吐出流路52が設けられている。
 さらに、図4に示すように、低段カバー19には、インジェクタ60が設けられる。インジェクタ60には、インジェクションパイプ61が接続される。
 次に、二段圧縮機100の動作について説明する。
 電力が供給されると、電動機2が動作する。電動機2と圧縮機構部3とは、クランクシャフト4により接続されており、電動機2で発生した動力がクランクシャフト4を介して圧縮機構部3へ伝達される。具体的には、電力の供給を受けると、電動機2の回転子2bが回転する。回転子2bが回転すると、回転子2bに嵌挿されたクランクシャフト4も回転する。そして、クランクシャフト4が回転すると、クランクシャフト4が嵌挿された低段ローリングピストン12と高段ローリングピストン32とがそれぞれ低段圧縮室15と高段圧縮室35と内部で偏芯回転する。低段ローリングピストン12と高段ローリングピストン32とが偏芯回転することにより、低段圧縮部10と高段圧縮部30とで冷媒が圧縮される。
 次に、二段圧縮機100における冷媒の流れを説明する。
 まず、外部から低圧の冷媒が吸入マフラ7へ流入する。吸入マフラ7へ流入した低圧の冷媒は、吸入管8を介して低段圧縮室15へ吸入される。低段圧縮室15へ吸入された低圧の冷媒は、低段圧縮室15内で中間圧まで圧縮される。冷媒が中間圧まで圧縮されると、低段圧縮室15内の冷媒と低段吐出空間20内の冷媒との圧力差により低段吐出弁17が開き、低段圧縮室15内の冷媒が低段吐出口16から低段吐出空間20へ吐出する。ここで、中間圧は、低段圧縮室15の吸入室の容積と高段圧縮室35の吸入室の容積との比から決定される圧力である。
 低段吐出空間20へ吐出した中間圧の冷媒は、中間連結管51を介して高段圧縮室35へ吸入される。高段圧縮室35へ吸入された中間圧の冷媒は、高段圧縮室35内で吐出圧まで圧縮される。冷媒が吐出圧まで圧縮されると、高段圧縮室35内の冷媒と高段吐出空間40内の冷媒との圧力差により高段吐出弁37が開き、高段圧縮室35内の冷媒が高段吐出口36から高段吐出空間40へ吐出する。
 高段吐出空間40へ吐出した吐出圧の冷媒は、吐出流路52を介して低段圧縮部10の上方の吐出圧空間53へ吐出される。そして、吐出圧空間53へ吐出された吐出圧の冷媒は、吐出管5から外部へ吐出される。
 なお、二段圧縮機100を備えるヒートポンプ装置においてインジェクション運転がされている場合には、図4に示すインジェクションパイプ61からインジェクタ60を介して、インジェクション冷媒が低段吐出空間20へ注入される。インジェクション冷媒は、低段圧縮室15から吐出された中間圧の冷媒と低段吐出空間20で混合され、高段圧縮部30で圧縮される。
 ヒートポンプ装置101の負荷が小さい場合等に、低段圧縮部10による圧縮だけで、吐出圧となってしまう過圧縮状態となる場合がある。つまり、上述した冷媒の中間圧が必要な吐出圧より高い圧力となってしまう場合がある。
 この場合、低段吐出空間20の冷媒と、吐出圧空間53の冷媒との圧力差により、バイパス弁24が開き、低段吐出空間20の冷媒がバイパス口23から吐出圧空間53へ吐出される。つまり、低段圧縮部10から低段吐出空間20へ吐出された冷媒が、高段圧縮部30で圧縮されることなく、バイパスして吐出圧空間53へ吐出される。
 過圧縮状態では、低段圧縮部10による圧縮だけで吐出圧となっているため、高段圧縮部30による圧縮は無駄であり、高段圧縮部30で圧縮を行うと効率が悪化する。しかし、二段圧縮機100では、過圧縮状態になった場合に、低段圧縮部10で圧縮した冷媒を高段圧縮部30をバイパスして吐出させる。そのため、過圧縮状態が発生した場合における損失(過圧縮損失)を抑制できる。
 特に、バイパス口23は低段カバー19に設けられている。そのため、バイパス口23から吐出圧空間53へ吐出される冷媒は、中間連結管51を通ることなく、密閉容器1内の吐出圧空間53へ吐出される。つまり、バイパス口23から吐出圧空間53へ吐出される冷媒は、狭く長い中間連結管51を通ることで圧縮損失が生じることなく、バイパス口23から吐出圧空間53へ吐出される。したがって、定常運転時において、効果的に過圧縮損失を抑制できる。
 なお、上述したように、密閉容器1の下側は、潤滑油貯蔵部6を形成しており、潤滑油が封入されている。潤滑油は、圧縮機構部3における機械部分へ供給されるため、少なくとも上側に配置された圧縮部(図2では低段圧縮部10)まで浸る量が封入されている。
 一般的な二段圧縮機では、低段圧縮部は高段圧縮部の下側に設けられる。そのため、低段吐出空間は、低段圧縮部の下側に設けられる。つまり、低段カバーは、低段圧縮部の下側に設けられる。したがって、低段吐出カバーは、潤滑油に浸った状態になる。この場合、潤滑油がバイパス口23から低段吐出空間へ侵入することや、バイパス口23から冷媒を吐出する際に潤滑油を巻き上げてしまい、圧縮機からの潤滑油の流出を増加させることがある。そのため、低段カバーにバイパス口を設けることはできず、特許文献1のように、低段吐出空間と高段圧縮部とを繋ぐ狭く細い流路にバイパス口を設けるしかない。
 しかし、二段圧縮機100では、通常とは逆に、低段圧縮部10を高段圧縮部30の上側に設けた。そのため、低段吐出空間20は低段圧縮部10の上側に設けられ、低段カバー19は潤滑油に浸ることのない高さとすることができる。その結果、低段カバー19にバイパス口23を設けることができる。
 また、中間連結管51ではなく、低段カバー19にバイパス口23を設けたため、バイパス弁24を簡単な構造のリード弁とすることができる。そのため、バイパス弁24及びバイパス弁押え25を、低段吐出弁17及び低段弁押え18と同一の部品とすることが可能となる。部品を共通化することにより、コストを低く抑えることができる。また、バイパス弁24の構造が簡単となるため、組み立てにかかるコストを低く抑えることもできる。
 次に、二段圧縮機100を備えるヒートポンプ装置101について説明する。
 図9は、インジェクション回路を有するヒートポンプ装置の回路構成の一例を示す図である。図10は、図9に示すヒートポンプ装置101の冷媒の状態についてのモリエル線図である。図10において、横軸は比エンタルピ、縦軸は冷媒圧力を示す。
 ヒートポンプ装置101は、二段圧縮機100、熱交換器71(第2熱交換器)、第1膨張弁72、レシーバー78、第3膨張弁74、熱交換器76(第1熱交換器)を配管により順次接続した主冷媒回路を備える。また、ヒートポンプ装置101は、レシーバー78と第3膨張弁74との間から、二段圧縮機100のインジェクションパイプ61までを配管により接続し、配管の途中に第2膨張弁75を備えるインジェクション回路を備える。また、ヒートポンプ装置101は、主冷媒回路における冷媒とインジェクション回路における冷媒とを熱交換させる内部熱交換器73を備える。さらに、ヒートポンプ装置101は、冷媒の流れる向きを変更する四方弁77を備える。
 まず、ヒートポンプ装置101の暖房運転時の動作について説明する。暖房運転時には、四方弁77は実線方向に設定される。なお、この暖房運転とは、空調で使われる暖房だけでなく、水に熱を与えて温水を作る給湯も含む。
 二段圧縮機100で高温高圧となった気相冷媒(図10の点1)は、二段圧縮機100の吐出管5から吐出され、凝縮器であり放熱器となる熱交換器71で熱交換されて液化する(図10の点2)。このとき、冷媒から放熱された熱により空気や水などが温められ、暖房や給湯がされる。
 熱交換器71で液化された液相冷媒は、第1膨張弁72(減圧機構)で減圧され、気液二相状態になる(図10の点3)。第1膨張弁72で気液二相状態になった冷媒は、レシーバー78で二段圧縮機100へ吸入される冷媒と熱交換され、冷却されて液化される(図10の点4)。レシーバー78で液化された液相冷媒は、内部熱交換器73、第3膨張弁74側の主冷媒回路と、第2膨張弁75側のインジェクション回路とに分岐して流れる。
 主冷媒回路を流れる液相冷媒は、第2膨張弁75で減圧され気液二相状態となったインジェクション回路を流れる冷媒と内部熱交換器73で熱交換されて、さらに冷却される(図10の点5)。内部熱交換器73で冷却された液相冷媒は、第3膨張弁74(減圧機構)で減圧されて気液二相状態になる(図10の点6)。第3膨張弁74で気液二相状態になった冷媒は、蒸発器となる熱交換器76で熱交換され、加熱される(図10の点7)。そして、熱交換器76で加熱された冷媒は、レシーバー78でさらに加熱され(図10の点8)、吸入管8から二段圧縮機100に吸入される。
 一方、インジェクション回路を流れる冷媒は、上述したように、第2膨張弁75(減圧機構)で減圧されて(図10の点9)、内部熱交換器73で熱交換される(図10の点10)。内部熱交換器73で熱交換された気液二相状態の冷媒(インジェクション冷媒)は、気液二相状態のまま二段圧縮機100のインジェクションパイプ61から低段吐出空間20へ流入する。
 二段圧縮機100内では、主冷媒回路を流れ吸入管8から吸入された冷媒(図10の点8)が、低段圧縮部10で中間圧まで圧縮、加熱される(図10の点11)。中間圧まで圧縮、加熱された低段吐出空間20へ吐出された冷媒(図10の点11)と、インジェクション冷媒(図10の点8)とが合流して、温度が低下する(図10の点12)。そして、温度が低下した冷媒(図10の点12)が、さらに高段圧縮部30で圧縮、加熱され高温高圧となり、吐出流路52から吐出圧空間53へ吐出される(図10の点1)。
 なお、インジェクション運転を行わない場合には、第2膨張弁75の開度を全閉にする。つまり、インジェクション運転を行う場合には、第2膨張弁75の開度が所定の開度よりも大きくなっているが、インジェクション運転を行わない際には、第2膨張弁75の開度を所定の開度より小さくする。これにより、二段圧縮機100のインジェクションパイプ61へ冷媒が流入しない。つまり、熱交換器71、第1膨張弁72、レシーバー78を通過した冷媒の全てを吸入管8から二段圧縮機100へ吸入させる。
 ここで、第2膨張弁75の開度は、制御部により電子制御により制御される。なお、制御部とは、例えば、マイクロコンピュータ等である。
 次に、ヒートポンプ装置101の冷房運転時の動作について説明する。冷房運転時には、四方弁77は破線方向に設定される。
 二段圧縮機100で高温高圧となった気相冷媒(図10の点1)は、二段圧縮機100の吐出管5から吐出され、凝縮器であり放熱器となる熱交換器76で熱交換されて液化する(図10の点2)。熱交換器76で液化された液相冷媒は、第3膨張弁74で減圧され、気液二相状態になる(図10の点3)。第3膨張弁74で気液二相状態になった冷媒は、内部熱交換器73で熱交換され、冷却され液化される(図10の点4)。内部熱交換器73では、第3膨張弁74で気液二相状態になった冷媒と、内部熱交換器73で液化された液相冷媒を第2膨張弁75で減圧させて気液二相状態になった冷媒(図10の点9)とを熱交換させている。内部熱交換器73で熱交換された液相冷媒(図10の点4)は、レシーバー78側の主冷媒回路と、内部熱交換器73側のインジェクション回路とに分岐して流れる。
 主冷媒回路を流れる液相冷媒は、レシーバー78で二段圧縮機100に吸入される冷媒と熱交換されて、さらに冷却される(図10の点5)。レシーバー78で冷却された液相冷媒は、第1膨張弁72で減圧されて気液二相状態になる(図10の点6)。第1膨張弁72で気液二相状態になった冷媒は、蒸発器となる熱交換器71で熱交換され、加熱される(図10の点7)。このとき、冷媒が吸熱することにより空気や水などが冷やされ、冷房やされたり、冷水や氷を作ったり、冷凍がされる。
 そして、熱交換器71で加熱された冷媒は、レシーバー78でさらに加熱され(図10の点8)、吸入管8から二段圧縮機100に吸入される。
 一方、インジェクション回路を流れる冷媒は、上述したように、第2膨張弁75で減圧されて(図10の点9)、内部熱交換器73で熱交換される(図10の点10)。内部熱交換器73で熱交換された気液二相状態の冷媒(インジェクション冷媒)は、気液二相状態のまま二段圧縮機100のインジェクションパイプ61から低段吐出空間20へ流入する。
 二段圧縮機100内での圧縮動作については、暖房運転時と同様である。
 なお、インジェクション運転を行わない際には、暖房運転時と同様に、第2膨張弁75の開度を全閉にして、二段圧縮機100のインジェクションパイプ61へ冷媒が流入しないようにする。
 また、熱交換器71は、上述したとおり、高温高圧となった気相冷媒又は低温低圧となった液相冷媒と水等の液体との熱交換を行う熱交換器であってもよい。また、熱交換器71は、高温高圧となった気相冷媒又は低温低圧となった液相冷媒と空気等の気体との熱交換を行う熱交換器であってもよい。つまり、図9で説明したヒートポンプ装置101は、空調装置であってもよいし、給湯装置であってもよいし、冷凍装置や冷蔵装置であってもよい。
 ここで、インジェクション運転をするのは、負荷の高いときである。負荷とは、熱交換器71において主冷媒回路を流れる冷媒と熱交換される流体の温度を所定の温度にするのに必要な熱量である必要負荷である。必要負荷は、外気温や圧縮機の回転数等を指標として計ることができる。ここでは、図示されていない必要負荷検出部が、外気温や圧縮機の回転数等を検出して、必要負荷を検出しているものとする。
 例えば、暖房運転の場合であれば、外気温が所定の温度(例えば、2℃)以下の場合や、圧縮機の回転数が所定の周波数(例えば、60Hz)以上の場合に、インジェクション運転する。これにより、低外気温時における暖房能力を高くすることができ、暖房や給湯性能のよいヒートポンプ装置が得られる。インジェクション運転の必要がないこの他のような場合には、暖房運転時であっても、第2膨張弁75の開度を全閉にして、インジェクション運転を行わない。
 また、上述したように、二段圧縮機100は、負荷が低くなり、過圧縮状態となるとバイパス機構が作動する。すると、低段圧縮部10が圧縮した冷媒は、高段圧縮部30に圧縮されることなくバイパスして、吐出圧空間53へ吐出され、吐出管5から冷媒回路へ吐出する。
 つまり、ヒートポンプ装置101は、負荷の高さに応じて、以下の(1)から(3)の運転制御を行う。
(1)負荷が高い場合(負荷が予め設定された第2の負荷よりも高い場合)には、第2膨張弁75の開度を大きくしてインジェクション運転を行う。
(2)負荷が中程度の場合(負荷が、第2の負荷よりも低く、第2の負荷より低く設定された第1の負荷よりも高い場合)には、第2膨張弁75の開度を小さくしてインジェクション運転を行わず、低段圧縮部10と高段圧縮部30とで二段圧縮を行う。
(3)負荷が低い場合(負荷が第1の負荷よりも低い場合)には、バイパス弁24が開いて高段圧縮部30をバイパスさせて主に低段圧縮部10のみで圧縮する。
 これにより、負荷の高い場合には、高い能力を発揮する運転を行うことができ、負荷が低い場合には、能力を抑えて効率的な運転をすることができる。
 実施の形態2.
 実施の形態2では、吸入マフラ7へ流入した冷媒を、低段圧縮部10をバイパスさせて高段圧縮部30へ吸入させる機構を有する二段圧縮機100について説明する。
 図11は、実施の形態2に係る二段圧縮機100の構成図である。
 実施の形態2に係る二段圧縮機100について、実施の形態1に係る二段圧縮機100と異なる部分のみ説明する。
 二段圧縮機100は、吸入マフラ7と低段圧縮部10の低段吸入口21とを繋ぐ吸入管8の途中と、低段カバー19の中間流出口22と高段圧縮部30の高段吸入口41とを繋ぐ中間連結管51の途中とに、四方弁54(切替部)を備える。
 四方弁54は、吸入マフラ7と低段吸入口21とを繋ぐとともに、中間流出口22と高段吸入口41とを繋いだ状態(実線で示す流路)と、吸入マフラ7と高段吸入口41とを繋ぐとともに、低段吸入口21と中間流出口22とを繋いだ状態(破線で示す流路)とを切り替える。特に、四方弁54は、通常運転時には、吸入マフラ7と低段吸入口21とを繋ぐとともに、中間流出口22と高段吸入口41とを繋いだ状態(実線で示す流路)にする。一方、負荷の低い場合には、吸入マフラ7と高段吸入口41とを繋ぐとともに、低段吸入口21と中間流出口22とを繋いだ状態(破線で示す流路)にする。つまり、通常運転時には、吸入マフラ7へ流入した冷媒を低段圧縮部10へ吸入させ、負荷が低い場合には、吸入マフラ7へ流入した冷媒を低段圧縮部10に圧縮させることなくバイパスさせて高段圧縮部30へ吸入させる。
 これにより、実施の形態2に係る二段圧縮機100は、負荷が低く、低段圧縮部10と高段圧縮部30との両方で圧縮する必要がない場合に、高段圧縮部30のみで冷媒を圧縮することができる。そのため、二段圧縮機100は、負荷が低い場合における圧縮機効率をよくすることができる。
 また、実施の形態2に係る二段圧縮機100は、吸入マフラ7へ流入した冷媒を、低段圧縮部10を通過させることなく高段圧縮部30に直接吸入させることができるため、低段圧縮部10によるプレヒートロスが発生しない。
 なお、電動機の運転回転数が変更可能ないわゆるインバータ式の圧縮機では、ヒートポンプ装置の負荷変動に応じ、電動機の回転数を変更することにより冷媒循環量を調整する。つまり、負荷が低く冷媒循環量を少なくしなければならない場合には、電動機の回転数を少なくすることにより冷媒循環量を少なくする。一方、負荷が高く冷媒循環量が多くなければならない場合には、電動機の回転数を多くすることにより冷媒循環量を多くする。
 一般に、電動機の効率特性は定格回転数にピークとなるように設計されている。したがって、定格回転数に近い回転数で電動機を運転することが、圧縮機効率の観点からは望ましい。
 実施の形態1で説明したように、二段圧縮機100は、負荷が低い場合、バイパス口23から冷媒を吐出することで、主に低段圧縮部10のみで冷媒を圧縮することが可能である。また、実施の形態2では、上述したように、二段圧縮機100は、負荷が低い場合、四方弁54を切り替えることにより、高段圧縮部30のみで冷媒を圧縮することが可能である。つまり、二段圧縮機100は、主に低段圧縮部10のみで冷媒を圧縮することも、高段圧縮部30のみで冷媒を圧縮することも可能である。
 ここで、実施の形態1で説明したように、高段圧縮部30の圧縮室容積(高段圧縮室35の容積)は低段圧縮部10の圧縮室容積(低段圧縮室15の容積)よりも小さい。圧縮室容積が大きい圧縮機と、圧縮室容積が小さい圧縮機とで同じ冷媒循環量とするには、圧縮室容積が大きい圧縮機における電動機の回転数を、圧縮室容積が小さい圧縮機における電動機の回転数よりも少なくする必要がある。つまり、二段圧縮機100において同じ冷媒循環量とするには、高段圧縮部30のみで冷媒を圧縮する場合に比べ、主に低段圧縮部10のみで冷媒を圧縮する場合には、圧縮室容積が大きい分、電動機の回転数を少なくする必要がある。
 そこで、二段圧縮機100は、負荷が低い場合、負荷の低さの程度に応じて、主に低段圧縮部10のみで冷媒を圧縮する運転と、高段圧縮部30のみで冷媒を圧縮する運転とを切り替える。具体的には、負荷の低さの程度が弱い場合、四方弁54は切り替えず、バイパス機構を作動させることにより主に低段圧縮部10のみで冷媒を圧縮させる。一方、負荷の低さの程度が強い場合(つまり、非常に負荷が低い場合)、四方弁54を切り替えて、高段圧縮部30のみで冷媒を圧縮させる。
 つまり、低段圧縮部10で冷媒を圧縮したのでは、回転数を定格回転数よりも少なくしなければならない場合に、四方弁54を切り替えて高段圧縮部30のみで圧縮するように切り替える。これにより、電動機の回転数を多くすることができ、電動機の回転数を定格回転数に近づけることができる。その結果、効率をよくすることができる。
 すなわち、実施の形態2に係る二段圧縮機100を備えるヒートポンプ装置101は、負荷に応じて(1)から(4)までの運転制御を行う。
(1)負荷が高い場合(負荷が予め設定された第2の負荷よりも高い場合)には、第2膨張弁75の開度を大きくしてインジェクション運転を行う。
(2)負荷が中程度の場合(負荷が、第2の負荷よりも低く、第2の負荷よりも低く設定された第1の負荷よりも高い場合)には、第2膨張弁75の開度を小さくしてインジェクション運転を行わず、低段圧縮部10と高段圧縮部30とで二段圧縮を行う。
(3)負荷が低い場合(負荷が、第1の負荷よりも低く、第1の負荷よりも低く設定された第3の負荷よりも高い場合)には、バイパス弁24が開いて高段圧縮部30をバイパスさせて主に低段圧縮部10のみで圧縮する。
(4)負荷が非常に低い場合(負荷が第3の負荷よりも低い場合)には、四方弁54を切り替えて、低段圧縮部10をバイパスさせて吸入マフラ7から高段圧縮部30へ冷媒を吸入させ、高段圧縮部30のみで圧縮する。
 これにより、実施の形態2に係る二段圧縮機100を備えるヒートポンプ装置101は、負荷が非常に低い場合における効率をよくすることができる。
 なお、四方弁54は、制御部により電子制御される。
 実施の形態3.
 実施の形態3では、高段圧縮部30の吸入冷媒を低段圧縮部10の低段ベーン13の低段背圧室26へ供給する二段圧縮機100について説明する。
 図12は、実施の形態3に係る二段圧縮機100の圧縮機構部3部分の断面図である。
 実施の形態3に係る二段圧縮機100について、実施の形態2に係る二段圧縮機100と異なる部分のみ説明する。
 二段圧縮機100は、中間仕切板50を貫通して、高段吸入口41から高段圧縮室35までの間の高段吸入流路42と、低段圧縮部10の低段背圧室26とを連通する圧力導入路55を備える。
 圧力導入路55を備えることにより、低段背圧室26へは高段圧縮室35へ吸入される冷媒が流入する。つまり、低段背圧室26内の圧力は、高段圧縮部30の吸入冷媒の圧力と同一となる。
 次に、低段ベーン13にかかる力について説明する。
 図13は、低段ベーン13にかかる力の説明図である。
 低段ベーン13には、低段背圧室26側から低段圧縮室15側へ向かって、低段背圧室26内の圧力Pvと低段ベーン13において圧力Pvが作用する部分の面積vとの積で表される力(Pv×v)と、バネ27の力Pspとがかかる。つまり、低段ベーン13には、低段背圧室26側から低段圧縮室15側へ向かって、「Pv×v+Psp」の力がかかる。
 一方、低段ベーン13には、低段圧縮室15側から低段背圧室26側へ向かって、吸入冷媒の圧力Psと低段ベーン13において圧力Psが作用する部分の面積aとの積で表される力(Ps×a)と、吐出冷媒の圧力Pcと低段ベーン13において圧力Pcが作用する部分の面積bとの積で表される力(Pc×b)とがかかる。さらに、低段圧縮室15側から低段背圧室26側へ向かって、低段ローリングピストン12が偏芯回転することにより押される力x(ベーン遠心力)とがかかる。つまり、低段ベーン13には、低段圧縮室15側から低段背圧室26側へ向かって、「(Ps×a)+(Pc×b)+x」の力がかかる。
 すなわち、低段ベーン13には、Fv=(Pv×v+Psp)-((Ps×a)+(Pc×b)+x)の力がかかる。なお、面積v=面積a+面積bである。
 四方弁54を図11の実線で示す流路とした場合(通常運転時)の低段ベーン13にかかる力について説明する。
 まず、低段背圧室26内の圧力Pvについて説明する。
 通常運転時には、低段圧縮部10で圧縮され低段吐出空間20へ吐出された冷媒は、中間連結管51と高段吸入流路42とを介して高段圧縮部30の高段圧縮室35へ吸入される。高段吸入流路42を冷媒が通過する際、圧力導入路55から低段背圧室26へ一部の冷媒が流入する。したがって、低段背圧室26へは、低段圧縮部10で圧縮された中間圧の冷媒が流入する。なお、正確には、低段背圧室26内の冷媒の圧力Pvは、低段圧縮部10から吐出された中間圧ではなく、中間連結管51を通ることにより、中間連結管51の抵抗の分だけ中間圧に加圧された圧力である。つまり、低段背圧室26内の冷媒の圧力Pvは、中間圧よりも若干高い圧力である。
 次に、低段圧縮室15内の圧力について説明する。
 通常運転時には、低段圧縮部10では低圧の冷媒を中間圧まで圧縮する。つまり、吸入冷媒の圧力Psが低圧であり、吐出冷媒の圧力Pcが中間圧である。
 つまり、通常運転時には、低段背圧室26内の圧力Pv(中間圧よりも若干高い圧力)は、低段圧縮室15内の圧力Ps(低圧)や圧力Pc(中間圧)よりも高い。
 四方弁54を図11の破線で示す流路とした場合(低段圧縮部10をバイパスさせた場合)の低段ベーン13にかかる力について説明する。
 まず、低段背圧室26内の圧力Pvについて説明する。
 低段圧縮部10をバイパスさせた場合には、吸入マフラ7へ流入した冷媒が、低段圧縮部10をバイパスして、中間連結管51と高段吸入流路42とを介して高段圧縮室35へ吸入される。高段吸入流路42を冷媒が通過する際、圧力導入路55から低段背圧室26へ一部の冷媒が流入する。したがって、低段背圧室26へは、吸入マフラ7へ流入した低圧の冷媒が流入する。つまり低段背圧室26内の圧力Pvは低圧である。
 次に、低段圧縮室15内の圧力について説明する。
 低段圧縮部10をバイパスさせた場合には、低段圧縮部10は吸入マフラ7から冷媒を吸入せず、低段圧縮部10における冷媒は、低段圧縮室15と低段吐出空間20とを循環する冷媒である。したがって、同じ冷媒が繰り返し低段圧縮部10で圧縮される。しかし、吐出圧よりも高い圧力となった冷媒は、バイパス口23から吐出圧空間53へ吐出される。したがって、低段圧縮室15内の圧力は、低圧から吐出圧まで変化する。
 つまり、低段圧縮部10をバイパスさせた場合には、低段背圧室26内の圧力Pv(低圧)は、低段圧縮室15内の圧力Psや圧力Pcと同等、あるいは低い。なお、一時的に、低段背圧室26内の圧力Pvが低段圧縮室15内の圧力と同等になる場合があるものの、すぐに低段背圧室26内の圧力Pvの方が低段圧縮室15内の圧力よりも低くなる。
 そこで、バネ27の力Pspやベーン遠心力xを調整することにより、通常運転時には、低段ベーン13にかかる力Fvが0より大きくなり、低段圧縮部10をバイパスさせた場合には、低段ベーン13にかかる力Fvが0より小さくなるようにできる。つまり、通常運転時には、低段ベーン13に、低段背圧室26側から低段圧縮室15側へ向かってかかる力が、低段圧縮室15側から低段背圧室26側へ向かってかかる力よりも大きくなるようにする。一方、低段圧縮部10をバイパスさせた場合には、低段ベーン13に、低段背圧室26側から低段圧縮室15側へ向かってかかる力が、低段圧縮室15側から低段背圧室26側へ向かってかかる力よりも小さくなるようにする。
 このように設定することで、通常運転時には、低段ベーン13は低段ローリングピストン12へ押し付けられる。つまり、低段ローリングピストン12の公転に対して、低段ベーン13は高い追従性を持つ。一方、低段圧縮部10をバイパスさせた場合には、低段ベーン13は低段ローリングピストン12へ押し付けられることがほとんどない。つまり、低段ベーン13と低段ローリングピストン12との摩擦損失が小さくなる。
 低段ベーン13と低段ローリングピストン12との摩擦損失が小さくなるため、実施の形態3に係る二段圧縮機100を備えるヒートポンプ装置101は、負荷が非常に低い場合における効率をよりよくすることができる。
 実施の形態4.
 実施の形態4では、必要トルクに合わせて発生トルクを制御する二段圧縮機100について説明する。
 図14は、通常のツインロータリ圧縮機のトルク変動を示す図である。なお、ツインロータリ圧縮機とは、2つの圧縮部が並列に動作する圧縮機である。
 図15は、実施の形態1に係る二段圧縮機100を通常運転した場合におけるトルク変動を示す図である。なお、通常運転とは、吸入マフラ7から低段圧縮部10へ冷媒を吸入させる運転であって、バイパス弁24が閉じ、バイパス口23から冷媒が吐出されない運転である。
 図16は、実施の形態1に係る二段圧縮機100を過圧縮リリーフ運転した場合におけるトルク変動を示す図である。なお、過圧縮リリーフ運転とは、吸入マフラ7から低段圧縮部10へ冷媒を吸入させる運転であって、バイパス機構が作動してバイパス口23から冷媒が吐出される運転である。
 図17は、実施の形態2に係る二段圧縮機100を高段側直接吸入運転した場合におけるトルク変動を示す図である。なお、高段側直接吸入運転とは、四方弁54を図11の破線の流路に切り替え、吸入マフラ7から高段圧縮部30へ吸入させる運転である。
 図14から図17に示すように、ツインロータリ圧縮機に比べ、二段圧縮機においては、クランクシャフト4のクランク角度の変化に伴う回転トルク変動が大きい。クランク角度の変化に伴う回転トルク変動が大きい場合、電動機の効率が低下するとともに、振動が大きくなる。特に、クランク角度の変化に伴う回転トルク変動が大きいことによる電動機の効率の低下は、電動機が低回転数で運転される場合、つまり負荷が小さい場合における効率に大きな影響を及ぼす。また、振動が大きくなると、騒音を引き起こすとともに、ヒートポンプ装置の配管の信頼性を低下させることにつながる。
 ツインロータリ圧縮機では、同一圧縮室容積の2つの圧縮部が、ローリングピストンの偏芯位相を180度ずらして配置されているため、2つの圧縮部で互いにトルクを打ち消し合う。そのため、図14に示すように、ツインロータリ圧縮機ではクランク角度の変化に伴うトルク変動が小さい。
 これに対して、二段圧縮機100では、実施の形態1で説明したように、低段圧縮部10の圧縮室容積に比べ、高段圧縮部30の圧縮室容積が小さい。つまり、低段圧縮部10と高段圧縮部30との圧縮仕事には差がある。そのため、図15に示すように、ツインロータリ圧縮機に比べ、二段圧縮機100は、クランク角度の変化に伴う回転トルク変動が大きい。特に、低段圧縮室15から低段吐出空間20へ冷媒を吐出するタイミングと、高段圧縮室35から高段吐出空間40へ冷媒を吐出するタイミングとにおいて、回転トルクが大きく変動する。
 また、図16に示すように、過圧縮リリーフ運転した場合、図14に示す通常運転時よりも、クランク角度の変化に伴う回転トルク変動が若干大きくなる。これは、主に低段圧縮部10のみで圧縮されるため、圧縮部を1つしか有さないシングルロータリ圧縮機に近い挙動となるためである。つまり、2つの圧縮部間でトルクの打ち消しがほとんどなくなるためである。
 さらに、図17に示すように、高段側直接吸入運転した場合、図16に示す過圧縮リリーフ運転した場合と同様にシングルロータリ圧縮機に近い挙動となり、クランク角度の変化に伴う回転トルク変動が大きくなる。
 そこで、二段圧縮機100は、制御部により、運転に必要なトルク(負荷トルク)である必要トルクに合わせてトルク(出力トルク)が発生するように電動機2を制御する。これにより、トルク変動を小さく抑える。ここで、必要トルクは、例えば、圧縮機の回転数、電流の変化、振動の変化、クランク角度等から判断することが可能である。
 例えば、制御部は、圧縮機の回転数とクランク角度とから必要トルクを判断する。例えば、制御部は、予め圧縮機の回転数毎、クランク角度毎に必要トルクを記録したテーブルをメモリに記憶しておく。制御部は、運転中、圧縮機の回転数とクランク角度とを検出し、検出した圧縮機の回転数とクランク角度とに対応する必要トルクをメモリから読み出す。そして、制御部は読み出した必要トルクが発生するように電動機2を制御する。また、圧縮機の回転数やクランク角度等の諸指標に対応する必要トルクを運転中に学習する学習制御を行い、学習した結果に従いトルク制御をしてもよい。
 トルク変動を小さく抑えることにより、圧縮機の効率をさらに高くすることができるとともに、振動を小さくすることができる。
 以上をまとめると次のようになる。
 二段圧縮機100は、低段圧縮部10を上側、高段圧縮部30を下側に配置したロータリ二段圧縮機であり、低段圧縮部10の低段吐出空間20を構成する低段カバー19に、吐出圧空間53と連通するバイパス口23とバイパス弁24とを設置したことを特徴とする。
 また、二段圧縮機100は、吸入マフラ7に接続された吸入管と、低段圧縮部10の吸入管と、低段圧縮部10の吐出管、高段圧縮部30の吸入管を四方弁54にて接続し、吸入マフラ7に接続された吸入管と高段圧縮部30の吸入管を連通させ、吸入冷媒ガスを低段圧縮部10を介さず高段圧縮部30に直接吸入するように構成したことを特徴とする。
 さらに、二段圧縮機100は、低段圧縮部10の低段背圧室26に高段圧縮部30の吸入圧力を連通させたことを特徴とする。
 また、さらに、二段圧縮機100は、回転トルクの変動に応じたトルク制御を実施することを特徴とする。
 1 密閉容器、2 電動機、2a 固定子、2b 回転子、3 圧縮機構部、4 クランクシャフト、5 吐出管、6 潤滑油貯蔵部、7 吸入マフラ、8 吸入管、10 低段圧縮部、11 低段シリンダ、12 低段ローリングピストン、13 低段ベーン、14 低段フレーム、15 低段圧縮室、16 低段吐出口、17 低段吐出弁、18 低段弁押え、19 低段カバー、20 低段吐出空間、21 低段吸入口、22 中間流出口、23 バイパス口、24 バイパス弁、25 バイパス弁押え、26 低段背圧室、27 バネ、28,29 リベット、30 高段圧縮部、31 高段シリンダ、32 高段ローリングピストン、33 高段ベーン、34 高段フレーム、35 高段圧縮室、36 高段吐出口、37 高段吐出弁、38 高段弁押え、39 高段カバー、40 高段吐出空間、41 高段吸入口、42 高段吸入流路、46 高段背圧室、50 中間仕切板、51 中間連結管、52 吐出流路、53 吐出圧空間、54 四方弁、55 圧力導入路、60 インジェクタ、61 インジェクションパイプ、71 熱交換器、72 第1膨張弁、73 内部熱交換器、74 第3膨張弁、75 第2膨張弁、76 熱交換器、77 四方弁、78 レシーバー、100 二段圧縮機、101 ヒートポンプ装置。

Claims (15)

  1.  圧縮機と、第1熱交換器と、第1膨張機構と、第2熱交換器とが配管により順次接続された主冷媒回路を備え、
     前記圧縮機は、
     流入した冷媒を圧縮する低段圧縮部と、
     前記低段圧縮部が圧縮した冷媒をさらに圧縮する高段圧縮部と、
     前記第1熱交換器において前記主冷媒回路を流れる冷媒と熱交換される流体の温度を所定の温度にするのに必要な熱量である必要負荷が、予め設定された第1の負荷よりも高い場合には、前記低段圧縮部と前記高段圧縮部とが圧縮した冷媒を前記主冷媒回路へ吐出し、前記必要負荷が前記第1の負荷よりも低い場合には、前記低段圧縮部が圧縮した冷媒を前記高段圧縮部に圧縮させることなくバイパスして前記主冷媒回路へ吐出するバイパス機構と
    を備えることを特徴とするヒートポンプ装置。
  2.  前記ヒートポンプ装置は、さらに、
     前記主冷媒回路における前記第1熱交換器と前記第1膨張機構との間から、前記圧縮機における前記低段圧縮部と前記高段圧縮部とを繋ぐ中間流路に接続されたインジェクションパイプまでを配管により接続し、前記配管の途中に第2膨張機構が設けられたインジェクション回路と、
     前記第1の負荷よりも高く設定された第2の負荷よりも前記必要負荷が高い場合には、前記インジェクション回路に設けられた前記第2膨張機構の開度を所定の開度以上に広げて、前記主冷媒回路を前記第1熱交換器から前記膨張機構へ向かって流れる冷媒の一部が前記インジェクション回路を介して前記インジェクションパイプから前記圧縮機の前記中間流路へ注入するように制御する制御部と
    を備えることを特徴とする請求項1に記載のヒートポンプ装置。
  3.  前記圧縮機は、さらに、
     前記第1の負荷よりも低く設定された第3の負荷よりも前記必要負荷が低い場合には、前記主冷媒回路から流入する冷媒を、前記低段圧縮部に圧縮させることなくバイパスして、前記高段圧縮部に吸入させる切替部
    を備えることを特徴とする請求項1に記載のヒートポンプ装置。
  4.  前記圧縮機は、さらに、
     前記低段圧縮部の上側に設けられた低段吐出部であって、前記低段圧縮部が圧縮した冷媒が吐出される吐出空間を形成する低段吐出部と、前記低段吐出部と前記高段圧縮部とを接続する中間連結管とを有する中間流路と、
     前記低段圧縮部と前記高段圧縮部と前記低段吐出部とを収納する内部空間であって、前記高段圧縮部が圧縮した冷媒が吐出される内部空間を形成し、前記内部空間に吐出された冷媒を前記主冷媒回路へ吐出する密閉容器とを備え、
     前記高段圧縮部は、前記低段圧縮部の下側に設けられ、前記低段吐出部が形成する前記吐出空間に吐出された冷媒を前記中間連結管から自己の圧縮室へ吸入して圧縮し、
     前記バイパス機構は、前記低段吐出部に形成されたバイパス口であって、前記吐出空間と前記密閉容器の前記内部空間とを繋ぐバイパス口に、前記第1の負荷よりも前記必要負荷が低い場合に開くように構成された開閉弁が設けられた機構である
    ことを特徴とする請求項1に記載のヒートポンプ装置。
  5.  吸入口から圧縮室へ吸入した冷媒を圧縮して吐出口から吐出する低段圧縮部と、
     前記低段圧縮部の上側に設けられた低段吐出部であって、前記低段圧縮部が圧縮した冷媒が前記吐出口から吐出される吐出空間を形成する低段吐出部と、
     前記低段吐出部が形成する前記吐出空間に一端が接続された中間連結管と、
     前記低段圧縮部の下側に設けられた高段圧縮部であって、前記中間連結管の他端が接続され、前記吐出空間に吐出された冷媒を前記中間連結管から圧縮室へ吸入して圧縮する高段圧縮部と、
     前記低段圧縮部と前記高段圧縮部と前記低段吐出部とを収納する内部空間であって、前記高段圧縮部が圧縮した冷媒が吐出される内部空間を形成する密閉容器とを備え、
     前記低段吐出部は、前記吐出空間と前記密閉容器の前記内部空間とを繋ぐバイパス口が形成されるとともに、前記吐出空間における冷媒の圧力が前記内部空間における冷媒の圧力よりも高い場合に開く開閉弁を前記バイパス口に備えた
    ことを特徴とする二段圧縮機。
  6.  前記低段圧縮部の前記吐出口には、前記低段圧縮部の前記圧縮室における冷媒の圧力が前記吐出空間における冷媒の圧力よりも高くなった場合に開く開閉弁が設けられ、
     前記低段圧縮部の前記吐出口に設けられた開閉弁と、前記低段吐出部の前記バイパス口に設けられた開閉弁とは同一構造である
    ことを特徴とする請求項5に記載の二段圧縮機。
  7.  前記低段圧縮部の前記吐出口に設けられた開閉弁と、前記低段吐出部の前記バイパス口に設けられた開閉弁とは、いずれもリード弁である
    ことを特徴とする請求項6に記載の二段圧縮機。
  8.  前記二段圧縮機は、さらに、
     外部から冷媒が流入する吸入マフラと、
     前記吸入マフラと前記低段圧縮部の前記吸入口とを接続する吸入配管と、
     前記吸入マフラに流入した冷媒を前記吸入配管を介して前記吸入口から前記低段圧縮部へ吸入させる流路と、前記吸入配管の途中部分と前記中間連結管の途中部分とを接続して、前記吸入マフラに流入した冷媒を前記低段圧縮部に圧縮させることなくバイパスして、前記高段圧縮部へ吸入させる流路とを選択的に切り替える切替部と
    を備えることを特徴とする請求項5に記載の二段圧縮機。
  9.  前記切替部は、前記吸入配管により前記吸入マフラと前記低段圧縮部の前記吸入口とを接続するとともに、前記中間連結管により前記低段吐出部と前記高段圧縮部の吸入口とを接続する流路と、前記吸入配管の途中と前記中間連結管の途中とを接続して、前記吸入マフラと前記高段圧縮部の吸入口とを接続するとともに、前記低段吐出部と前記低段圧縮部の前記吸入口とを接続する流路とを選択的に切り替える
    ことを特徴とする請求項8に記載の二段圧縮機。
  10.  前記高段圧縮部は、圧縮室容積が前記低段圧縮部よりも小さい
    ことを特徴とする請求項8に記載の二段圧縮機。
  11.  前記低段圧縮部は、
     背圧室と、
     前記背圧室の内部の圧力により押圧されて前記圧縮室側へ突出し、前記圧縮室を前記吸入口側の空間と前記吐出口側の空間とに仕切るベーンとを備え、
     前記二段圧縮機は、さらに、
     前記低段圧縮部が備える前記背圧室へ前記高段圧縮部の前記圧縮室へ吸入される冷媒の一部を流入させる流入路
    を備えることを特徴とする請求項5に記載の二段圧縮機。
  12.  前記二段圧縮機は、さらに、
     前記低段圧縮部及び前記高段圧縮部を動作させる電動機と、
     前記低段圧縮部及び前記高段圧縮部を動作させるのに必要な必要トルクに合わせて、前記電動機で前記必要トルクが発生するように前記電動機の動作を制御する制御部と
    を備えることを特徴とする請求項5に記載の二段圧縮機。
  13.  低段圧縮部と高段圧縮部とが直列に接続された二段圧縮機と、第1熱交換器と、第1膨張機構と、第2熱交換器とが配管により順次接続された主冷媒回路を備えるヒートポンプ装置の運転方法であり、
     前記第1熱交換器において前記主冷媒回路を流れる冷媒と熱交換される流体の温度を所定の温度にするのに必要な熱量である必要負荷が、予め設定された第1の負荷よりも高い場合には、前記低段圧縮部と前記高段圧縮部とで圧縮した冷媒を前記主冷媒回路へ吐出し、
     前記必要負荷が前記第1の負荷よりも低い場合には、前記低段圧縮部が圧縮した冷媒を前記高段圧縮部に圧縮させることなくバイパスして前記主冷媒回路へ吐出する
    ことを特徴とするヒートポンプ装置の運転方法。
  14.  前記ヒートポンプ装置は、さらに、
     前記主冷媒回路における前記第1熱交換器と前記第1膨張機構との間から、前記圧縮機における前記低段圧縮部と前記高段圧縮部とを繋ぐ中間流路に接続されたインジェクションパイプまでを接続したインジェクション回路を備え、
     前記ヒートポンプ装置の運転方法は、さらに、
     前記第1の負荷よりも高く設定された第2の負荷よりも前記必要負荷が高い場合には、前記主冷媒回路を前記第1熱交換器から前記膨張機構へ向かって流れる冷媒の一部を前記インジェクション回路から前記中間流路へ注入する
    ことを特徴とする請求項13に記載のヒートポンプ装置の運転方法。
  15.  前記第1の負荷よりも低く設定された第3の負荷よりも前記必要負荷が低い場合には、前記主冷媒回路から流入する冷媒を、前記低段圧縮部に圧縮させることなくバイパスして、圧縮室容積が前記低段圧縮部よりも小さい前記高段圧縮部に吸入させる
    ことを特徴とする請求項13に記載のヒートポンプ装置の運転方法。
PCT/JP2009/068963 2009-11-06 2009-11-06 ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法 WO2011055444A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09851096.9A EP2497955B1 (en) 2009-11-06 2009-11-06 Heat pump device, two-stage compressor, and method of operating heat pump device
CN200980162317.2A CN102597524B (zh) 2009-11-06 2009-11-06 热泵装置、双级压缩机及热泵装置的运转方法
PCT/JP2009/068963 WO2011055444A1 (ja) 2009-11-06 2009-11-06 ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法
JP2011539229A JP5306478B2 (ja) 2009-11-06 2009-11-06 ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法
KR1020127008473A KR101280155B1 (ko) 2009-11-06 2009-11-06 히트 펌프 장치, 2단 압축기 및 히트 펌프 장치의 운전 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068963 WO2011055444A1 (ja) 2009-11-06 2009-11-06 ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法

Publications (1)

Publication Number Publication Date
WO2011055444A1 true WO2011055444A1 (ja) 2011-05-12

Family

ID=43969687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068963 WO2011055444A1 (ja) 2009-11-06 2009-11-06 ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法

Country Status (5)

Country Link
EP (1) EP2497955B1 (ja)
JP (1) JP5306478B2 (ja)
KR (1) KR101280155B1 (ja)
CN (1) CN102597524B (ja)
WO (1) WO2011055444A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001268A (ja) * 2011-06-17 2013-01-07 Nippon Soken Inc 車両用空調装置
CN102900669A (zh) * 2011-07-28 2013-01-30 三菱电机株式会社 旋转式双级压缩机
JP2013534140A (ja) * 2010-08-04 2013-09-02 セルラー ダイナミクス インターナショナル, インコーポレイテッド 不死化b細胞のリプログラミング
CN103375405A (zh) * 2012-04-26 2013-10-30 珠海格力电器股份有限公司 压缩机及具有其的空调系统和热泵热水器
CN103423129A (zh) * 2012-05-24 2013-12-04 三菱电机株式会社 密闭旋转式制冷剂压缩机
CN106286573A (zh) * 2016-09-28 2017-01-04 珠海格力节能环保制冷技术研究中心有限公司 双级压缩机曲轴及双级压缩机
WO2020059608A1 (ja) * 2018-09-18 2020-03-26 富士電機株式会社 多段圧縮機
CN112197453A (zh) * 2020-10-26 2021-01-08 珠海格力电器股份有限公司 压缩机、双压缩机串联热泵机组及其控制方法
US20220010796A1 (en) * 2019-08-23 2022-01-13 Guangdong Meizhi Compressor Co., Ltd. Rotary compressor and refrigeration cycle device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104075493B (zh) * 2013-03-27 2016-08-03 特灵空调系统(中国)有限公司 排气温度可控制的压缩系统及其排气温度控制方法
CN106104003B (zh) 2014-02-17 2019-12-17 开利公司 两级压缩机的热气体旁通
CN109595165A (zh) * 2017-09-30 2019-04-09 广东美芝制冷设备有限公司 高低压分割的多级压缩机
CN109595164A (zh) * 2017-09-30 2019-04-09 广东美芝制冷设备有限公司 压缩机
CN113340031B (zh) * 2021-05-27 2023-04-07 广东芬尼克兹节能设备有限公司 一种co2热泵系统的控制方法及其控制系统、存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211886A (ja) 1988-06-29 1990-01-16 Toshiba Corp 冷凍サイクル装置
JPH05133367A (ja) 1991-11-12 1993-05-28 Matsushita Electric Ind Co Ltd バイパス弁装置を備えた多段気体圧縮機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277695A (ja) * 1988-04-28 1989-11-08 Toshiba Corp 2シリンダ形ロータリコンプレッサ
JP3370026B2 (ja) * 1999-09-09 2003-01-27 三洋電機株式会社 2段圧縮式ロータリコンプレッサ
JP2003021089A (ja) * 2001-07-03 2003-01-24 Kobe Steel Ltd 2段圧縮冷凍機およびその運転方法
JP4300726B2 (ja) * 2001-09-21 2009-07-22 パナソニック株式会社 回転式気体圧縮機
JP2004309012A (ja) * 2003-04-07 2004-11-04 Sanyo Electric Co Ltd 冷媒サイクル装置
JP2006161659A (ja) * 2004-12-07 2006-06-22 Hitachi Ltd 冷凍サイクル装置
EP2088388B1 (en) * 2008-02-06 2019-10-02 STIEBEL ELTRON GmbH & Co. KG Heat pump system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211886A (ja) 1988-06-29 1990-01-16 Toshiba Corp 冷凍サイクル装置
JPH05133367A (ja) 1991-11-12 1993-05-28 Matsushita Electric Ind Co Ltd バイパス弁装置を備えた多段気体圧縮機

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534140A (ja) * 2010-08-04 2013-09-02 セルラー ダイナミクス インターナショナル, インコーポレイテッド 不死化b細胞のリプログラミング
JP2013001268A (ja) * 2011-06-17 2013-01-07 Nippon Soken Inc 車両用空調装置
EP2551526A3 (en) * 2011-07-28 2017-08-09 Mitsubishi Electric Corporation Two stage rotary compressor
CN102900669A (zh) * 2011-07-28 2013-01-30 三菱电机株式会社 旋转式双级压缩机
CN102900669B (zh) * 2011-07-28 2015-04-29 三菱电机株式会社 旋转式双级压缩机
CN103375405A (zh) * 2012-04-26 2013-10-30 珠海格力电器股份有限公司 压缩机及具有其的空调系统和热泵热水器
CN103423129A (zh) * 2012-05-24 2013-12-04 三菱电机株式会社 密闭旋转式制冷剂压缩机
CN106286573A (zh) * 2016-09-28 2017-01-04 珠海格力节能环保制冷技术研究中心有限公司 双级压缩机曲轴及双级压缩机
WO2020059608A1 (ja) * 2018-09-18 2020-03-26 富士電機株式会社 多段圧縮機
CN111868384A (zh) * 2018-09-18 2020-10-30 富士电机株式会社 多级压缩机
JPWO2020059608A1 (ja) * 2018-09-18 2021-02-15 富士電機株式会社 多段圧縮機
CN111868384B (zh) * 2018-09-18 2022-06-03 富士电机株式会社 多级压缩机
US20220010796A1 (en) * 2019-08-23 2022-01-13 Guangdong Meizhi Compressor Co., Ltd. Rotary compressor and refrigeration cycle device
CN112197453A (zh) * 2020-10-26 2021-01-08 珠海格力电器股份有限公司 压缩机、双压缩机串联热泵机组及其控制方法
CN112197453B (zh) * 2020-10-26 2023-08-08 珠海格力节能环保制冷技术研究中心有限公司 压缩机、双压缩机串联热泵机组及其控制方法

Also Published As

Publication number Publication date
EP2497955B1 (en) 2019-10-02
JP5306478B2 (ja) 2013-10-02
CN102597524B (zh) 2015-11-25
KR101280155B1 (ko) 2013-06-28
KR20120048039A (ko) 2012-05-14
EP2497955A4 (en) 2018-01-24
CN102597524A (zh) 2012-07-18
EP2497955A1 (en) 2012-09-12
JPWO2011055444A1 (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5306478B2 (ja) ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法
US8225624B2 (en) Refrigeration system
US7914267B2 (en) Multistage compressor for a CO2 cycle that includes a rotary compressing mechanism and a scroll compressing mechanism
US20090007590A1 (en) Refrigeration System
EP2578885B1 (en) Scroll compressor and air conditioner including the same
JP4367567B2 (ja) 圧縮機及び冷凍装置
WO2009147826A1 (ja) 冷凍サイクル装置
KR20080090528A (ko) 냉동장치
WO2006013959A1 (ja) 容積型膨張機及び流体機械
WO2011117924A1 (ja) 冷凍サイクル装置及びその運転方法
KR20150018200A (ko) 압축기 및 이를 포함하는 공기조화기
JP4039024B2 (ja) 冷凍装置
JP5328697B2 (ja) 二段圧縮機及びヒートポンプ装置
JPH02230995A (ja) ヒートポンプ用圧縮機及びその運転方法
WO2012042894A1 (ja) 容積型圧縮機
JP5971633B2 (ja) 冷凍サイクル装置
KR100677527B1 (ko) 로터리 압축기
JP5321055B2 (ja) 冷凍装置
KR20220134708A (ko) 스크롤 압축기 및 이를 포함하는 차량용 공조장치
JP5835299B2 (ja) 冷凍装置
KR100620030B1 (ko) 용량 가변 압축기
JP5240356B2 (ja) 冷凍装置
KR100608875B1 (ko) 용량 가변형 복식 로터리 압축기의 냉매온도 저감장치
JP2013209898A (ja) 二段圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162317.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011539229

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127008473

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009851096

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE