JP3566007B2 - デスクランブル回路、スクランブルパターン生成回路及びスクランブルパターン生成方法 - Google Patents

デスクランブル回路、スクランブルパターン生成回路及びスクランブルパターン生成方法 Download PDF

Info

Publication number
JP3566007B2
JP3566007B2 JP30064596A JP30064596A JP3566007B2 JP 3566007 B2 JP3566007 B2 JP 3566007B2 JP 30064596 A JP30064596 A JP 30064596A JP 30064596 A JP30064596 A JP 30064596A JP 3566007 B2 JP3566007 B2 JP 3566007B2
Authority
JP
Japan
Prior art keywords
data
scramble
scramble pattern
circuit
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30064596A
Other languages
English (en)
Other versions
JPH10144000A (ja
Inventor
昌史 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30064596A priority Critical patent/JP3566007B2/ja
Priority to US08/874,673 priority patent/US5987630A/en
Priority to KR1019970027469A priority patent/KR100269418B1/ko
Priority to EP97304760A priority patent/EP0843445B1/en
Priority to DE69732082T priority patent/DE69732082T2/de
Publication of JPH10144000A publication Critical patent/JPH10144000A/ja
Application granted granted Critical
Publication of JP3566007B2 publication Critical patent/JP3566007B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/02Analogue recording or reproducing
    • G11B20/04Direct recording or reproducing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03866Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using scrambling
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Detection And Correction Of Errors (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、所定のデータをスクランブルパターンを用いてスクランブルした記録データを再生するためのデスクランブル回路、スクランブルパターン生成回路及びスクランブルパターン生成方法に関する。
【0002】
近年、大容量メディアの模索が行われているが、その中でもDVD(Digital Video Disk)は有力な一つであり、各メーカーでも開発に力を入れている。最近、DVDは標準化に向けて規格も統一された。
【0003】
【従来の技術】
図6はDVD装置におけるデータ復調のフロー図である。現在、DVD装置はデータの読み取り専用であり、ディスク100はデータを記憶するための螺旋状のトラックを備え、同トラックにはセクタ単位で物理セクタデータが記憶されている。ディスク100の物理セクタデータが読み出されてEFM Plus復調されると、記録セクタデータ101になる。記録セクタデータ101は、複数のセクタデータ102と、セクタデータ102の横方向のデータ並びに対する複数の誤り訂正符号(ECC)データPIと、セクタデータ102の縦方向のデータ並びに対する複数の誤り訂正符号POとからなる。各セクタデータ102に続いて誤り訂正符号PIが記録されている。セクタデータ102及び誤り訂正符号PIに続いて誤り訂正符号POが記録されている。
【0004】
記録セクタデータ101における16個のセクタデータ102を記録された順に一箇所に集め、16個の誤り訂正符号PIを記録された順に一箇所に集め、さらに16個の誤り訂正符号POを記録された順に一箇所に集めることにより、ECC付加データ103が生成される。セクタデータ102の16個によって1ブロックが形成される。
【0005】
ECC付加データ103における誤り訂正符号PIに基づいて1ブロックのセクタデータ102の誤り訂正が行われるとともに、誤り訂正符号POに基づいて1ブロックのセクタデータ102の誤り訂正が行われると、16個のスクランブルデータ104が生成される。スクランブルデータは元データの各バイトとスクランブルパターンとの排他的論理和を取ることによって生成されている。
【0006】
各スクランブルデータ104と各スクランブルデータ104を作成するために使用したスクランブルパターンとの排他的論理和を取ることによってデスクランブルが行われ、元データよりなる16個のデータセクタ105が生成される。
【0007】
図7はDVDのデータセクタ105のフォーマットを示す。データセクタ105は、2048(=2K)バイトの主データの前部に対し、4バイトの識別データID、識別データIDに対する2バイトの誤り訂正符号IEC、6バイトの予約領域RSVが付加されている。また、主データの後部に対し、主データの誤りの有無を検出するための4バイトの誤り検出符号EDCが付加されている。識別データIDは、1バイトのセクタ情報部と、3バイトのセクタ番号部とからなる。
【0008】
従来、スクランブルデータのデスクランブルを行うためのスクランブルパターンの生成には、図8に示すスクランブルパターン生成回路110が使用される。スクランブルパターン生成回路110はビット14〜b0からなる帰還型シフトレジスタ111と、EOR回路112とを備える。
【0009】
EOR回路112はビットb14とビットb10との排他的論理和(以下、本明細書において、排他的論理和を∧で表す)を取り、その演算結果をビットb0に出力する。
【0010】
シフトレジスタ111はクロックCKの最初のパルスで図9に示すスクランブルパターンの初期値αを取り込み、以後、クロックCKのパルスが入力される毎にビット13〜b0の値をそれぞれビットb14〜b1にシフトさせるとともに、EOR回路112の出力をビットb0として取り込む。そして、スクランブルパターン生成回路110はクロックCKの8パルス毎に、そのときのビットb7〜b0をスクランブルパターンSKとして出力する。
【0011】
スクランブルパターンの初期値αは、図9に示すように、前記データセクタ105の識別データIDにおけるセクタ番号部のビットb7〜b4の値によって決定される。すなわち、スクランブルパターンの初期値αは各ブロック(16データセクタ)について1つである。例えば、セクタ番号部のビットb7〜b4の値が0(h) (h) :16進数を示す)、すなわち、1つ目のブロックの場合には、スクランブルパターンの初期値αは0001(h) となる。このとき、帰還型シフトレジスタ111のビットb14〜b0は00000000000001(2) (2) :2進数を示す)となり、ビットb7〜b0の値00000001(2) がスクランブル値SKとして出力される。
【0012】
そして、前記スクランブルデータ104のデスクランブルは、まず、スクランブル値SKの初期値の各ビットとスクランブルデータ104の主データの1バイト目の各ビットとの排他的論理和を取る。スクランブルデータ104の主データの2バイト目以降のデータのスクランブルは、帰還型シフトレジスタ111をクロックCKの8パルス分ずつ動作させた後のスクランブル値との排他的論理和を取ることにより行われる。
【0013】
【発明が解決しようとする課題】
しかしながら、従来のスクランブルパターン生成回路110では、帰還型シフトレジスタ111を動作させるクロックCKは、主データの転送レートの8逓倍の周波数が必要になる。例えば、主データの転送レートを10Mバイト/秒としただけで、帰還型シフトレジスタは80MHz(メガヘルツ)の周波数を持つクロックCKが必要になる。従って、主データの転送レートを向上することができず、データ処理の高速化を図ることができない。
【0014】
また、従来のスクランブルパターン生成回路110はスクランブルパターンの初期値αから2047×8個目のクロックパルスに基づいて、データセクタ105の最後(2048個目)のデータのデスクランブルを行うためのスクランブルパターンを生成することになる。この途中において、例えば、1023×8個目のクロックパルスにて生成されたスクランブルパターンに基づいてデスクランブルを行っている。もし、デスクランブル動作の最初に、データセクタ105の1024バイトのデスクランブル後のデータが必要となった場合においても、このデータは1023×8個目のクロックパルスの後にしか出力することができない。
【0015】
本発明は上記問題点を解決するためになされたものであって、その目的は、スクランブルパターンの生成を高速化でき、データの転送レートを向上してデータ処理の高速化を図ることができるデスクランブル回路、スクランブルパターン生成回路及びスクランブルパターン生成方法を提供することにある。
【0016】
また、本発明の別の目的は、デスクランブルを開始すべきデータの位置に応じてスクランブルパターンの初期値を変更することにより、デスクランブルをより早く開始することができ、データ処理の高速化を図ることができるデスクランブル回路、スクランブルパターン生成回路及びスクランブルパターン生成方法を提供することにある。
【0017】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、スクランブルされたデータを、同一のスクランブルパターン生成論理に基づいて順次生成される所定ビット長のスクランブルパターンによりデスクランブルするデスクランブル回路において、所定ビット長の現在のスクランブルパターンであるビット列を各ビット毎にそれぞれ保持する複数の保持回路と、前記現在のスクランブルパターンであるビット列に対して、予め定められている前記スクランブルパターン生成論理に基づく演算を施し、該演算の結果に基づいて所定ビット長の次のスクランブルパターンを生成する論理回路と、該論理回路から生成された前記次のスクランブルパターンによりスクランブルされたデータをデスクランブルするデータ再生回路とを有することを特徴とする。
【0018】
請求項2の発明は、所定ビット長のスクランブルパターンを、同一のスクランブルパターン生成論理に基づいて順次生成するスクランブルパターン生成回路において、所定ビット長の現在のスクランブルパターンであるビット列を各ビット毎にそれぞれ保持する複数の保持回路と、前記現在のスクランブルパターンであるビット列に対して、予め定められている前記スクランブルパターン生成論理に基づく演算を施し、該演算の結果に基づいて所定ビット長の次のスクランブルパターンを生成する論理回路とを有することを特徴とする。
請求項3の発明は、所定ビット長のスクランブルパターンを、同一のスクランブルパターン生成論理に基づいて順次生成するスクランブルパターン生成回路において、所定ビット長の現在のスクランブルパターンであるビット列を各ビット毎にそれぞれ保持する複数の保持回路と、前記現在のスクランブルパターンであるビット列に対して、予め定められている前記スクランブルパターン生成論理に基づく演算を施し、該演算の結果に基づいて所定ビット長の次のスクランブルパターンを生成する第1の論理回路と、前記次のスクランブルパターンであるビット列に対して、予め定められている前記スクランブルパターン生成論理に基づく演算を施し、該演算の結果に基づいて所定ビット長の次の次のスクランブルパターンを生成する第2の論理回路と
を有することを特徴とする。
請求項4の発明は、所定ビット長のスクランブルパターンを、同一のスクランブルパターン生成論理に基づいて順次生成するスクランブルパターン生成方法において、所定ビット長の現在のスクランブルパターンであるビット列に対して、予め定められている前記スクランブルパターン生成論理に基づく論理演算を行い、該論理演算の結果に基づいて所定ビット長の次のスクランブルパターンを算出することを特徴とする。
【0019】
(作用)
請求項1の発明によれば、次のスクランブルパターンを、現在のスクランブルパターンの論理演算により算出しているので、スクランブルパターンの生成を高速に行うことができる。
【0021】
【発明の実施の形態】
[第1の実施の形態]
以下、本発明を具体化した第1の実施の形態を図1,図2,図6に従って説明する。
【0022】
図1は本形態のDVD装置10の概略を示している。DVD装置10はDVDコントローラ11、MPU12、DRAM又はSRAMよりなる半導体メモリ13、ディスク100及びディスクドライブ15で構成されている。ディスクドライブ15はディスク100からデータを読み出し、その読み出したデータをEFM Plus復調して記録セクタデータ101をDVDコントローラ11に出力する。
【0023】
DVDコントローラ11は図示しない上位のコンピュータに接続され、DVDコントローラ11にはMPU12及び半導体メモリ13が接続されている。DVDコントローラ11はMPU12からの制御信号に基づいて、前記記録セクタデータ101に対して所定のデータ処理を施した後、データ処理後のデータを半導体メモリ13に格納する。また、DVDコントローラ11はMPU12からの制御信号に基づいて半導体メモリ13とコンピュータとの間でデータ処理後のデータの転送を行う。
【0024】
すなわち、DVDコントローラ11はデータ処理装置16を備えている。データ処理装置16はMPU12からの制御信号に基づいて、図6に示すように、記録セクタデータ101における16個のセクタデータ102を記録された順に一箇所に集め、16個の誤り訂正符号PIを記録された順に一箇所に集め、さらに16個の誤り訂正符号POを記録された順に一箇所に集めることにより、ECC付加データ103を生成する。また、データ処理装置16はMPU12からの制御信号に基づいて、ECC付加データ103における誤り訂正符号PI,POに基づいて各ブロックのセクタデータ102の誤り訂正を行うことによって、16個のスクランブルデータ104を生成する。
【0025】
また、データ処理装置16は本形態におけるデータ再生回路17を備えている。データ再生回路17はMPU12からの制御信号に基づいて、データ処理装置16によって生成されたスクランブルデータ104とスクランブルパターンとの排他的論理和を取ることによってデータセクタ105を生成する。なお、本形態において、スクランブルデータ104の転送レートは1バイトであり、クロックCKの1パルス毎に主データは1バイトずつデータ再生回路17に転送される。
【0026】
データ再生回路17は図2に示すように、スクランブルデータ104のデスクランブルに使用するためのスクランブルパターンを生成するためのスクランブルパターン生成回路21と、スクランブルパターン生成回路21によって生成されたスクランブルパターンに基づいて主データのデスクランブルを行うためのデスクランブル回路22とからなる。
【0027】
スクランブルパターン生成回路21は、セレクタ25と、15個のデータフリップフロップ(以下、単にDFFという)26A〜26Oと、8個のEOR回路27A〜27Hよりなる論理回路27とを備える。
【0028】
セレクタ25は図9に示すスクランブルパターンの初期値αを入力するとともに、スクランブルパターン生成回路21にて生成された新たなスクランブルパターンのビットb14’〜b0’を入力している。セレクタ25は選択信号SLのレベルに基づいて初期値α又は生成されたスクランブルパターンのビットb14’〜b0’のいずれかを選択し、ビットb14〜b0として出力する。本形態において、1回目のデスクランブル時には、選択信号SLはLレベルになり、2回目以降のデスクランブル時には選択信号SLはHレベルになる。Lレベルの選択信号SLに基づいてセレクタ25はスクランブルパターンの初期値αを選択する。また、Hレベルの選択信号SLに基づいて、セレクタ25は生成された新たなスクランブルパターンのビットb14’〜b0’を選択する。
【0029】
DFF26A〜26Oはセレクタ25から出力されるビットb14〜b0をそれぞれクロックCKのパルスに基づいてラッチする。8個のDFF26H〜26Oの出力データはスクランブル値SKの各ビットとして出力される。7個のDFF26I〜26Oの出力データは新たなスクランブルパターンのビットb14’,b13’,b12’,b11’,b10’,b9’,b8’としてそれぞれ出力される。
【0030】
EOR回路27AはDFF26Aの出力信号とDFF26Eの出力信号との排他的論理和に基づくデータを新たなスクランブルパターンのビットb7’として出力する。EOR回路27BはDFF26Bの出力信号とDFF26Fの出力信号との排他的論理和に基づくデータを新たなスクランブルパターンのビットb6’として出力する。EOR回路27CはDFF26Cの出力信号とDFF26Gの出力信号との排他的論理和に基づくデータを新たなスクランブルパターンのビットb5’として出力する。EOR回路27DはDFF26Dの出力信号とDFF26Hの出力信号との排他的論理和に基づくデータを新たなスクランブルパターンのビットb4’として出力する。EOR回路27EはDFF26Eの出力信号とDFF26Iの出力信号との排他的論理和に基づくデータを新たなスクランブルパターンのビットb3’として出力する。EOR回路27FはDFF26Fの出力信号とDFF26Jの出力信号との排他的論理和に基づくデータを新たなスクランブルパターンのビットb2’として出力する。EOR回路27GはDFF26Gの出力信号とDFF26Kの出力信号との排他的論理和に基づくデータを新たなスクランブルパターンのビットb1’として出力する。さらに、EOR回路27HはDFF26Hの出力信号とDFF26Lの出力信号との排他的論理和に基づくデータを新たなスクランブルパターンのビットb0’として出力する。
【0031】
従って、1回目のデスクランブル時には、スクランブルパターン生成回路21はスクランブルパターンの初期値αにおけるビットb7〜b0をスクランブル値SKとして出力する。2回目以降のデスクランブル時には、スクランブルパターン生成回路21は新たなスクランブルパターンにおけるビットb7’〜b0’をスクランブル値SKとして出力する。
【0032】
すなわち、図8に示された従来の帰還型シフトレジスタ111は、クロックCKの1パルス目にスクランブルパターンの初期値αをラッチし、以後クロックCKのパルスが入力される毎に、ビットb14とビットb10との排他的論理和をビットb0に代入する演算を行っており、デスクランブルに使用するスクランブル値SKはクロックCKの8パルス毎に出力される。例えば、現在のb14∧b10の値がクロックCKの8パルス後には、ビットb7の位置にあることになる。新たなスクランブルパターンの各ビットをb14’〜b0’とし、ビットb14〜ビットb0までのすべての場合について考えると、以下の表1のようになる。
【0033】
【表1】
Figure 0003566007
従って、本形態のスクランブルパターン生成回路21はクロックCKのパルス毎に1バイト分の主データに対するスクランブル値SKを生成することができる。
【0034】
デスクランブル回路22は8個(図2では1個のみ図示)のEOR回路28を備えている。各EOR回路28はスクランブルパターン生成回路21によって生成されたスクランブル値SKの各ビット(DFF26H〜26Aの出力信号)を入力するとともに、1バイト分の主データの各ビットを入力している。各EOR回路28はスクランブル値SKの各ビットと主データの各ビットとの排他的論理和を求めることにより、スクランブルデータのデスクランブルを行う。
【0035】
次に上記のように構成されたDVD装置10の作用について説明する。
ディスクドライブ15によってディスク100からデータが読み出され、その読み出されたデータはEFM Plus復調されて記録セクタデータ101(図6に示す)となり、記録セクタデータ101はDVDコントローラ11に出力される。
【0036】
MPU12からの制御信号に基づいて、データ処理装置16によって記録セクタデータ101からECC付加データ103が生成されるとともに、ECC付加データ103における誤り訂正符号PI,POに基づいて各ブロックのセクタデータ102の誤り訂正が行われ、その結果スクランブルデータ104が生成される。
【0037】
データ再生回路17によって各ブロックのスクランブルデータ104に対してデスクランブルが行われ、各ブロックのデータセクタ105が生成される。スクランブルデータ104のデスクランブル時において、1回目のデスクランブルには選択信号SLはLレベルになる。Lレベルの選択信号SLに基づいてセレクタ25によってスクランブルパターンの初期値αが選択される。このとき、スクランブルデータ104におけるセクタ番号部のビットb7〜b4の値が0(h) 、すなわち、1つ目のブロックの場合には、スクランブルパターンの初期値αは0001(h) となる。
【0038】
クロックCKの1パルス目に基づいて、セレクタ25から出力されるスクランブルパターンの初期値αのビットb14〜b0がDFF26A〜26Oにそれぞれラッチされる。8個のDFF26H〜26Oの出力データはスクランブル値SKの各ビット00000001(2) としてデスクランブル回路22に出力される。7個のDFF26I〜26Oの出力データは新たなスクランブルパターンのビットb14’,b13’,b12’,b11’,b10’,b9’,b8’としてそれぞれ出力される。また、EOR回路27A〜27Hから新たなスクランブルパターンのビットb7’〜b0’が出力される。因みにこの場合のビットb14’〜b0’は000000100000000(2) =0100(h) となる。
【0039】
デスクランブル回路22によってスクランブル値SKの各ビット00000001(2) とスクランブルデータ104における1バイト目の主データの各ビットとの排他的論理和を取ることによってデスクランブルが行われる。
【0040】
また、スクランブルデータ104の2回目のデスクランブル時には選択信号SLはHレベルになる。Hレベルの選択信号SLに基づいてセレクタ25によって新たなスクランブルパターンのビットb14’〜b0’が選択される。クロックCKの2パルス目に基づいて、新たなスクランブルパターンのビットb14’〜b0’がビットb14〜b0としてDFF26A〜26Oにそれぞれラッチされる。8個のDFF26H〜26Oの出力データはスクランブル値SKの各ビット00000000(2) として出力される。7個のDFF26I〜26Oの出力データは新たなスクランブルパターンのビットb14’,b13’,b12’,b11’,b10’,b9’,b8’としてそれぞれ出力され、EOR回路27A〜27Hから新たなスクランブルパターンのビットb7’〜b0’が出力される。因みにこの場合のビットb14’〜b0’は000000000000010(2) =0002(h) となる。
【0041】
デスクランブル回路22によってスクランブル値SKの各ビット00000000(2) とスクランブルデータ104における2バイト目の主データの各ビットとの排他的論理和を取ることによってデスクランブルが行われる。
【0042】
スクランブルデータ104の3回目以降のデスクランブル時には選択信号SLはHレベルになる。Hレベルの選択信号SLに基づいてセレクタ25によって新たなスクランブルパターンのビットb14’〜b0’が選択される。クロックCKの3パルス目以降に基づいて、新たなスクランブルパターンのビットb14’〜b0’がビットb14〜b0としてDFF26A〜26Oにそれぞれラッチされる。8個のDFF26H〜26Oの出力データはスクランブル値SKの各ビットとして出力される。7個のDFF26I〜26Oの出力データは新たなスクランブルパターンのビットb14’,b13’,b12’,b11’,b10’,b9’,b8’としてそれぞれ出力され、EOR回路27A〜27Hから新たなスクランブルパターンのビットb7’〜b0’が出力される。
【0043】
デスクランブル回路22によってスクランブル値SKの各ビットとスクランブルデータ104における3バイト目以降の主データの各ビットとの排他的論理和を取ることによってデスクランブルが行われる。
【0044】
1ブロック目における1セクタのスクランブルデータ104の2048バイト目のデスクランブルが完了すると、1ブロック目の2セクタ目以降のスクランブルデータ104のデスクランブルが行われるが、ブロックが変更されない限り、各セクタに対するスクランブルパターンの初期値は1セクタ目に対するスクランブルパターンの初期値と同一となる。そして、前記と同様にして1ブロックにおける2〜16セクタのスクランブルデータ104のデスクランブルが行われる。
【0045】
1ブロック目のスクランブルデータのデスクランブルが完了すると、2ブロック目のスクランブルデータのデスクランブルが行われるが、このとき、スクランブルパターンの初期値αとして5500(h) が使用され、2ブロック目の1〜16セクタのスクランブルデータのデスクランブルが行われる。
【0046】
以後、デスクランブルの対象となるブロックが変更されるのに伴って、当該ブロックのスクランブルデータをデスクランブルするためのスクランブルパターンの初期値αが図9に示すように、セクタ番号部のビットb7〜b4の値に基づいて順次変更され、各ブロックのスクランブルデータのデスクランブルが行われる。
【0047】
さて、本実施の形態は、以下の効果がある。
(1)本形態のスクランブルパターン生成回路21は、スクランブルパターンの初期値αと新たなスクランブルパターンとのいずれかを選択するセレクタ25と、セレクタ25から出力されたスクランブルパターンの各ビットb14〜b0をクロックCKのパルス毎にラッチするDFF26A〜26Oを設け、8個のDFF26H〜26Oの出力データをデスクランブルすべき1バイト分の主データに対するスクランブル値SKとして出力する。7個のDFF26I〜26Oの出力データを新たなスクランブルパターンのビットb14’,b13’,b12’,b11’,b10’,b9’,b8’としてそれぞれ出力し、8個のEOR回路27A〜27Hの出力データを新たなスクランブルパターンのビットb7’〜b0’として出力するようにした。
【0048】
そのため、スクランブルパターン生成回路21では、クロックCKのパルス毎に1バイト分の主データのデスクランブルを行うための新たなスクランブルパターン及びスクランブル値SKを生成することができ、スクランブルパターンの生成を高速化することができ、主データの転送レートとスクランブルパターンの生成速度とを等しくすることができる。従って、デスクランブルを行うべき主データの転送レートを高速化することができる。
【0049】
[第2の実施の形態]
次に、本発明の第2の実施の形態を図3に従って説明する。なお、重複説明を避けるため、図2において説明したものと同じ要素については、同じ参照番号が付されている。また、前述したデータ再生回路17との相違点を中心に説明する。
【0050】
図3は図1に示されたデータ処理装置16に備えられる本形態のデータ再生回路30を示す。データ再生回路30は前記MPU12からの制御信号に基づいて、データ処理装置16によって生成されたスクランブルデータ104とスクランブルパターンとの排他的論理和を取ることによってデータセクタ105を生成する。なお、本形態においては、スクランブルデータ104の転送レートは2バイトであり、クロックCKの1パルス毎に1バイト分の上位データと1バイト分の下位データとの合計2バイトのデータがデータ再生回路30に転送される。
【0051】
データ再生回路30はスクランブルデータ104の2バイト分の主データのデスクランブルに使用するためのスクランブルパターンを生成するためのスクランブルパターン生成回路31と、スクランブルパターン生成回路31によって生成されたスクランブルパターンに基づいて主データのデスクランブルを行うためのデスクランブル回路32とからなる。
【0052】
スクランブルパターン生成回路31は、セレクタ33と、15個のDFF26A〜26Oと、8個のEOR回路27A〜27Hよりなる論理回路27と、論理回路35とを備える。
【0053】
セレクタ33は図9に示すスクランブルパターンの初期値αを入力するとともに、スクランブルパターン生成回路31にて生成された新たなスクランブルパターンのビットb14”〜b0”を入力している。セレクタ33は選択信号SLのレベルに基づいて初期値α又は生成されたスクランブルパターンのビットb14”〜b0”のいずれかを選択し、ビットb14〜b0として出力する。本形態において、1回目のデスクランブル時には、選択信号SLはLレベルになり、2回目以降のデスクランブル時には選択信号SLはHレベルになる。Lレベルの選択信号SLに基づいてセレクタ33はスクランブルパターンの初期値αを選択する。Hレベルの選択信号SLに基づいて、セレクタ33は生成された新たなスクランブルパターンのビットb14”〜b0”を選択する。
【0054】
DFF26A〜26Oはセレクタ33から出力されるビットb14〜b0をそれぞれクロックCKのパルスに基づいてラッチする。8個のDFF26H〜26Oの出力データは1バイト分の上位データのデスクランブルのためのスクランブル値SK1の各ビットとして出力される。7個のDFF26I〜26Oの出力データはビットb14’〜b8’として論理回路35に出力される。
【0055】
EOR回路27A〜27Hの出力データは1バイト分の下位データのデスクランブルのためのスクランブル値SK2の各ビットb7’〜b0’として出力される。又、EOR回路27B〜27Hの出力データは新たなスクランブルパターンのビットb14”〜b8”として出力される。さらに、EOR回路27A〜27Eの出力データであるビットb7’〜b3’は論理回路35に出力される。
【0056】
論理回路35は論理回路27と同一の構成であり、8個のEOR回路27A〜27Hと同様の8個のEOR回路を備える。論理回路35における各EOR回路には、EOR回路27A〜27Hが入力するビットb14〜b3がビットb14’〜b3’に変更されて入力される。そして、論理回路35はビットb14’〜b3’に基づいて新たなスクランブルパターンにおけるビットb7”〜b0”を生成して出力する。
【0057】
すなわち、2バイトの主データのデスクランブルを行う場合には、前記表1に示されるビットb14’〜b0’を図8に示された帰還型シフトレジスタ111に用いてまったく同様の演算を行うことにより新たなスクランブルパターンのビットb14”〜b0”を生成することができる。これを以下の表2に示す。
【0058】
【表2】
Figure 0003566007
従って、本形態のスクランブルパターン生成回路31はクロックCKのパルス毎に1バイト分の上位データに対する新たなスクランブル値SK1と、1バイト分の下位データに対する新たなスクランブル値SK2とを生成することができる。
【0059】
デスクランブル回路32は8個(図3では1個のみ図示)のEOR回路28と、8個(図3では1個のみ図示)のEOR回路37とを備えている。各EOR回路28はスクランブルパターン生成回路31によって生成されたスクランブル値SK1の各ビットb7〜b0と1バイト分の上位データの各ビットとの排他的論理和を求めることにより、スクランブルデータのデスクランブルを行う。各EOR回路37はスクランブルパターン生成回路31によって生成されたスクランブル値SK2の各ビットb7’〜b0’と1バイト分の下位データの各ビットとの排他的論理和を求めることにより、スクランブルデータのデスクランブルを行う。
【0060】
次に上記のように構成されたデータ再生回路30の作用を説明する。
スクランブルデータ104のデスクランブルの1回目には選択信号SLはLレベルになる。Lレベルの選択信号SLに基づいてセレクタ33によってスクランブルパターンの初期値αが選択される。
【0061】
クロックCKの1パルス目に基づいて、セレクタ33から出力されるスクランブルパターンの初期値αのビットb14〜b0がDFF26A〜26Oにそれぞれラッチされる。8個のDFF26H〜26Oの出力データは8ビットのスクランブル値SK1としてデスクランブル回路32に入力される。DFF26A〜26Lの出力データに基づいてEOR回路27A〜27Hによって8ビットのスクランブル値SK2が生成され、スクランブル値SK2はデスクランブル回路32に入力される。
【0062】
また、EOR回路27B〜27Hの出力データは新たなスクランブルパターンのビットb14”〜b8”としてそれぞれ出力される。DFF26I〜26Oの出力データ及びEOR回路27A〜27Eの出力データに基づいて論理回路35によって新たなスクランブルパターンのビットb7”〜b0”が生成される。
【0063】
デスクランブル回路32にはクロックCKの1パルス毎にスクランブルデータ104における1バイト分の上位データと1バイト分の下位データとの2バイトのデータが転送される。複数のEOR回路28によってスクランブル値SK1の各ビットと1バイト分の上位データの各ビットとの排他的論理和を取ることによってデスクランブルが行われるとともに、複数のEOR回路37によってスクランブル値SK2の各ビットとスクランブルデータ104における1バイト分の下位データの各ビットとの排他的論理和を取ることによってデスクランブルが行われる。すなわち、デスクランブル回路32は一度に2バイト分のデータのデスクランブルを行う。
【0064】
また、スクランブルデータ104のデスクランブルの2回目には選択信号SLはHレベルになる。Hレベルの選択信号SLに基づいてセレクタ33によって新たなスクランブルパターンのビットb14”〜b0”が選択される。クロックCKの2パルス目に基づいて、新たなスクランブルパターンのビットb14”〜b0”がビットb14〜b0としてDFF26A〜26Oにそれぞれラッチされる。DFF26H〜26Oの出力データは8ビットのスクランブル値SK1としてデスクランブル回路32に入力される。DFF26A〜26Lの出力データに基づいてEOR回路27A〜27Hによって8ビットのスクランブル値SK2が生成され、スクランブル値SK2はデスクランブル回路32に入力される。
【0065】
また、EOR回路27B〜27Hの出力データは新たなスクランブルパターンのビットb14”〜b8”としてそれぞれ出力される。DFF26I〜26Oの出力データ及びEOR回路27A〜27Eの出力データに基づいて論理回路35によって新たなスクランブルパターンのビットb7”〜b0”が生成される。
【0066】
デスクランブル回路32は、スクランブル値SK1,SK2に基づいて2バイト分のデータのデスクランブルを行う。
スクランブルデータ104のデスクランブルの3回目以降には選択信号SLはHレベルになる。Hレベルの選択信号SLに基づいてセレクタ33によって新たなスクランブルパターンのビットb14’〜b0’が選択される。クロックCKの3パルス目以降に基づいて、新たなスクランブルパターンのビットb14”〜b0”がビットb14〜b0としてDFF26A〜26Oにそれぞれラッチされる。DFF26H〜26Oの出力データはスクランブル値SK1としてデスクランブル回路32に入力され、EOR回路27A〜27Hの出力データはスクランブル値SK2としてデスクランブル回路32に入力される。
【0067】
デスクランブル回路32によってスクランブル値SK1,SK2に基づいてスクランブルデータ104における主データが2バイトずつデスクランブルされる。
【0068】
1ブロック目における1セクタのスクランブルデータ104の2047バイト目及び2048バイト目のデスクランブルが完了すると、1ブロック目の2セクタ目以降のスクランブルデータ104のデスクランブルが行われるが、ブロックが変更されない限り、各セクタのスクランブルデータ104に対するスクランブルパターンの初期値は1セクタ目のスクランブルデータ104に対するスクランブルパターンの初期値と同一となる。そして、前記と同様にして1ブロックにおける2〜16セクタのスクランブルデータ104の主データが2バイトずつデスクランブルされる。
【0069】
1ブロック目のスクランブルデータのデスクランブルが完了すると、2ブロック目のスクランブルデータのデスクランブルが行われるが、このとき、スクランブルパターンの初期値αは、図9に示すようにセクタ番号部のビットb7〜b4の値に基づいて変更され、2ブロック目の1〜16セクタのスクランブルデータのデータが2バイトずつデスクランブルされる。
【0070】
以後、デスクランブルの対象となるブロックが変更されるのに伴って、当該ブロックのスクランブルデータをデスクランブルするためのスクランブルパターンの初期値αが図9に示すように、セクタ番号部のビットb7〜b4の値に基づいて順次変更され、各ブロックのスクランブルデータのデータが2バイトずつデスクランブルされる。
【0071】
さて、本実施の形態は、以下の効果がある。
(1)本形態のスクランブルパターン生成回路31は、スクランブルパターンの初期値αと新たなスクランブルパターンとのいずれかを選択するセレクタ33と、セレクタ33から出力されたスクランブルパターンの各ビットb14〜b0をクロックCKのパルス毎にラッチするDFF26A〜26Oを設け、8個のDFF26H〜26Oの出力データをデスクランブルすべき1バイト分の上位データに対するスクランブル値SK1として出力するとともに、8個のEOR回路27A〜27Hの出力データをデスクランブルすべき1バイト分の下位データに対するスクランブル値SK2として出力する。また、7個のEOR回路27B〜27Hの出力データを新たなスクランブルパターンのビットb14”,b13”,b12”,b11”,b10”,b9”,b8”としてそれぞれ出力し、論理回路35の出力データを新たなスクランブルパターンのビットb7”〜b0”として出力するようにした。
【0072】
そのため、スクランブルパターン生成回路31では、クロックCKのパルス毎に2バイト分の主データのデスクランブルを行うための新たなスクランブルパターン及びスクランブル値SK1,SK2を生成することができ、スクランブルパターンの生成をより高速化することができ、主データの転送レートとスクランブルパターンの生成速度とを等しくすることができる。従って、デスクランブルを行うべき主データの転送レートをより高速化することができる。
【0073】
[第3の実施の形態]
次に、本発明の第3の実施の形態を図4,図5に従って説明する。なお、重複説明を避けるため、図2において説明したものと同じ要素については、同じ参照番号が付されている。また、前述したデータ再生回路17との相違点を中心に説明する。
【0074】
図4は図1に示されたデータ処理装置16に備えられる本形態のデータ再生回路40を示す。データ再生回路40は前記MPU12からの制御信号に基づいて、データ処理装置16によって生成されたスクランブルデータ104とスクランブルパターンとの排他的論理和を取ることによってデータセクタ105を生成する。なお、本形態においては、スクランブルデータ104の転送レートは1バイトであり、クロックCKの1パルス毎に1バイト分の主データがデータ再生回路40に転送される。
【0075】
データ再生回路40は、スクランブルパターンの初期値を設定するための初期値設定回路41、前記スクランブルパターン生成回路21及びデスクランブル回路22を備える。
【0076】
初期値設定回路41は、デスクランブルすべきスクランブルデータの各ブロックにおける各セクタについて複数のスクランブルパターンの初期値を備えており、デスクランブルを行うデータのスクランブルデータにおける位置に基づいて、使用するスクランブルパターンの初期値を設定するものである。
【0077】
図5は本形態におけるスクランブルパターンの初期値を示す表であり、セクタ番号部のビットb7〜b4の値(ID値)に対応するブロックに対してそれぞれ4つの初期値α1〜α4が与えられている。図5において、番地はデータセクタにおける主データの先頭のバイトを0番地とした時のオフセット値を意味する。
【0078】
図5において、ID値0(h) に対するスクランブルパターンの初期値α1は0001(h) =000000000000001(2) であるが、ビットb13〜b0を上位に1ビットシフトさせるとともに、ビットb14(=0)とビットb10(=0)との排他的論理和をビットb0に代入すると、000000000000010(2) =0002(h) となり、これはID値1(h) に対するスクランブルパターンの初期値α1と等しくなる。ID値0(h) に対するスクランブルパターンの初期値α2,α3,α4は33FC(h) ,7FF0(h) ,1540(h) であるが、これらの初期値におけるビットb13〜b0を上位に1ビットシフトさせるとともに、ビットb14とビットb10との排他的論理和をビットb0に代入すると、それぞれ67F8(h) ,7FE0(h) ,2A81(h) となり、これはID値1(h) に対するスクランブルパターンの初期値α2,α3,α4と等しくなる。ID値2(h) とID値4(h) 、ID値4(h) とID値6(h) 、ID値6(h とID値8(h) 、ID値8(h) とID値A(h) 、ID値A(h) とID値C(h) 、ID値C(h) とID値E(h) におけるスクランブルパターンの初期値α1〜α4の関係も同様である。そこで、ID値0(h) ,ID値2(h) ,ID値4(h) ,ID値6(h) ,ID値8(h) ,ID値A(h) ,ID値C(h) ,ID値E(h) を第1のグループとする。
【0079】
また、ID値1(h) に対するスクランブルパターンの初期値α1〜α4はそれぞれ5500(h) ,33F8(h) ,3000(h) ,6A80(h) であるが、これらの初期値におけるビットb13〜b0を上位に1ビットシフトさせるとともに、ビットb14とビットb10との排他的論理和をビットb0に代入すると、それぞれ2A00(h) ,67F0(h) ,6000(h) ,5501(h) となり、これはID値3(h) に対するスクランブルパターンの初期値α1〜α4と等しくなる。ID値3(h) ,ID値5(h) ,ID値7(h) ,ID値9(h) ,ID値B(h) ,ID値D(h) に対するスクランブルパターンの初期値α1〜α4と、ID値5(h) ,ID値7(h) ,ID値9(h) ,ID値B(h) ,ID値D(h) ,ID値F(h) に対するスクランブルパターンの初期値α1〜α4との関係も同様である。そこで、ID値1(h) ,ID値3(h) ,ID値5(h) ,ID値7(h) ,ID値9(h) ,ID値B(h) ,ID値D(h) ,ID値F(h) を第2のグループとする。
【0080】
初期値設定回路41は、第1及び第2のセレクタ42,43及び7個のシフト回路44〜50を備える。第1のセレクタ42は8個の記憶領域を備えており、そのうち4個の記憶領域には図5に示すID値0(h) に対応するスクランブルパターンの初期値0001(h) ,33FC(h) ,7FF0(h) ,1540(h) がそれぞれ記憶され、残りの4個の記憶領域にはID値1(h) に対応するスクランブルパターンの初期値5500(h) ,33F8(h) ,3000(h) ,6A80(h) がそれぞれ記憶されている。
【0081】
第1のセレクタ42にはグループ選択信号SLGが入力されるとともに、オフセット選択信号SLOが入力されており、第1のセレクタ42はグループ選択信号SLG及びオフセット選択信号SLOに基づいて前記8つの初期値のうちいずれか1つを選択し、ビットb14〜b0を第1の信号群I1として出力する。グループ選択信号SLGは前記セクタ番号部のビットb4の値である。このグループ選択信号SLGが0であると、ID値0(h) に対応するスクランブルパターンの初期値0001(h) ,33FC(h) ,7FF0(h) ,1540(h) が選択される候補となる。グループ選択信号SLGが1であると、ID値1(h) に対応するスクランブルパターンの初期値5500(h) ,33F8(h) ,3000(h) ,6A80(h) が選択される候補となる。オフセット選択信号SLOは図5におけるデータのオフセット値に基づく信号である。データのオフセット値が0000番地〜0511番地の範囲内である場合には、スクランブルパターンの初期値0001(h) ,5500(h) が選択される候補となり、オフセット値が0512番地〜1023番地の範囲内である場合には、スクランブルパターンの初期値33FC(h) ,33F8(h) が選択される候補となり、オフセット値が1024番地〜1535番地の範囲内である場合には、スクランブルパターンの初期値7FF0(h) ,3000(h) が選択される候補となり、さらにオフセット値が1536番地〜2047番地の範囲内である場合には、スクランブルパターンの初期値1540(h) ,6A80(h) が選択される候補となる。
【0082】
従って、デスクランブル時において、例えば、デスクランブルすべき最初のデータが第1のグループのブロックにおけるスクランブルデータに含まれ、かつ、データのオフセット値が0513番地である場合には、第1のセレクタ42は第1のグループに対応する初期値0001(h) ,33FC(h) ,7FF0(h) ,1540(h) のうち、初期値33FC(h) を選択して出力する。
【0083】
シフト回路44はセレクタ42の出力データを上位に1ビット分シフトさせるための回路であり、EOR回路44Aを備える。EOR回路44Aはセレクタ42の出力データにおけるビットb14とビットb10との排他的論理和に基づく信号を出力する。シフト回路44はセレクタ42の出力データにおけるビットb13〜b0を上位に1ビットシフトさせて新たなビットb14〜b1とするとともに、EOR回路44Aの出力信号を新たなビットb0とすることにより第2の信号群I2を出力する。
【0084】
シフト回路45はセレクタ42の出力データを上位に2ビット分シフトさせるための回路であり、EOR回路45Aを備える。EOR回路45Aはセレクタ42の出力データにおけるビットb13とビットb9との排他的論理和に基づく信号を出力する。シフト回路45はセレクタ42の出力データにおけるビットb12〜b0を上位に2ビットシフトさせて新たなビットb14〜b2とし、EOR回路44Aの出力信号を新たなビットb1とし、さらにEOR回路45Aの出力信号を新たなビットb0とすることにより第3の信号群I3を出力する。
【0085】
シフト回路46はセレクタ42の出力データを上位に3ビット分シフトさせるための回路であり、EOR回路46Aを備える。EOR回路46Aはセレクタ42の出力データにおけるビットb12とビットb8との排他的論理和に基づく信号を出力する。シフト回路46はセレクタ42の出力データにおけるビットb11〜b0を上位に3ビットシフトさせて新たなビットb14〜b3とし、EOR回路44A,45Aの出力信号を新たなビットb2,b1とし、さらにEOR回路46Aの出力信号を新たなビットb0とすることにより第4の信号群I4を出力する。
【0086】
シフト回路47はセレクタ42の出力データを上位に4ビット分シフトさせるための回路であり、EOR回路47Aを備える。EOR回路47Aはセレクタ42の出力データにおけるビットb11とビットb7との排他的論理和に基づく信号を出力する。シフト回路47はセレクタ42の出力データにおけるビットb10〜b0を上位に4ビットシフトさせて新たなビットb14〜b4とし、EOR回路44A,45A,46Aの出力信号を新たなビットb3,b2,b1とし、さらにEOR回路47Aの出力信号を新たなビットb0とすることにより第5の信号群I5を出力する。
【0087】
シフト回路48はセレクタ42の出力データを上位に5ビット分シフトさせるための回路であり、EOR回路48Aを備える。EOR回路48Aはセレクタ42の出力データにおけるビットb10とビットb6との排他的論理和に基づく信号を出力する。シフト回路48はセレクタ42の出力データにおけるビットb9〜b0を上位に5ビットシフトさせて新たなビットb14〜b5とし、EOR回路44A,45A,46A,47Aの出力信号を新たなビットb4,b3,b2,b1とし、さらにEOR回路48Aの出力信号を新たなビットb0とすることにより第6の信号群I6を出力する。
【0088】
シフト回路49はセレクタ42の出力データを上位に6ビット分シフトさせるための回路であり、EOR回路49Aを備える。EOR回路49Aはセレクタ42の出力データにおけるビットb9とビットb5との排他的論理和に基づく信号を出力する。シフト回路49はセレクタ42の出力データにおけるビットb8〜b0を上位に6ビットシフトさせて新たなビットb14〜b6とし、EOR回路44A,45A,46A,47A,48Aの出力信号を新たなビットb5,b4,b3,b2,b1とし、さらにEOR回路49Aの出力信号を新たなビットb0とすることにより第7の信号群I7を出力する。
【0089】
さらに、シフト回路50はセレクタ42の出力データを上位に7ビット分シフトさせるための回路であり、EOR回路50Aを備える。EOR回路50Aはセレクタ42の出力データにおけるビットb8とビットb4との排他的論理和に基づく信号を出力する。シフト回路50はセレクタ42の出力データにおけるビットb7〜b0を上位に7ビットシフトさせて新たなビットb14〜b7とし、EOR回路44A,45A,46A,47A,48A,49Aの出力信号を新たなビットb6,b5,b4,b3,b2,b1とし、さらにEOR回路50Aの出力信号を新たなビットb0とすることにより第8の信号群I8を出力する。
【0090】
従って、例えば、第1のセレクタ42がスクランブルパターンの初期値33FC(h) を出力しているとすると、第2〜第8の信号群I2〜I8の値はそれぞれ67F8(h) ,4FF0(h) ,1FE0(h) ,3FC1(h) ,7F83(h) ,7F06(h) ,7E0C(h) となる。
【0091】
第2のセレクタ43には第1〜第8の信号群I1〜I8が入力されるとともに、3ビットからなる信号群選択信号SLIDが入力されており、信号群選択信号SLIDに基づいて第1〜第8の信号群I1〜I8のうちいずれか1つを選択して前記スクランブルパターン生成回路21に出力する。信号群選択信号SLIDは前記セクタ番号部のビットb7〜b5の3ビットの信号である。第2のセレクタ43は信号群選択信号SLIDの3ビットの組み合わせに基づいて第1〜第8の信号群I1〜I8を以下の表3に示すように選択する。
【0092】
【表3】
Figure 0003566007
従って、デスクランブル時において、例えば、デスクランブルすべき最初のデータがID値0(h) のブロックにおけるスクランブルデータに含まれ、かつ、データのオフセット値が0513番地である場合には、第1のセレクタ42によって初期値33FC(h) が選択される。そして、ID値0(h) であるため、信号群選択信号SLIDのビットb7〜b5は000となり、第2のセレクタ43によって第1の信号群I1(=33FC(h) )が選択される。
【0093】
スクランブルパターン生成回路21は第2のセレクタ43によって選択された信号群をスクランブルパターンの初期値αとして入力し、デスクランブルすべき最初のデータをデスクランブルするためのスクランブルパターンを生成する。例えば、デスクランブルすべき最初のデータがID値0(h) のブロックに含まれ、かつ、データのオフセット値が0513番地である場合には、スクランブルパターンの初期値として33FC(h) が選択される。最初にデスクランブルすべきデータのオフセット値が0513番地であり、初期値33FC(h) に対応するオフセット値よりも1番地大きいため、クロックCKの2パルス目においてスクランブルパターンが生成される。
【0094】
デスクランブル回路22はスクランブルパターン生成回路21によって生成されたスクランブルパターンに基づいてスクランブルデータのデスクランブルを行う。
【0095】
さて、本実施の形態は、以下の効果がある。
(1)本形態のスクランブルパターン生成回路31は、1セクタ分のスクランブルデータに対して複数のスクランブルパターンの初期値を持ち、スクランブルデータにおけるデスクランブルを開始すべき主データの位置に応じて複数のスクランブルパターンの初期値のいずれかを選択し、その選択したスクランブルパターンの初期値に基づいてデスクランブルに用いるためのスクランブルパターンを生成し、この生成したスクランブルパターンに基づいてスクランブルデータのデスクランブルを行うようにした。そのため、デスクランブルすべきデータのスクランブルパターンを生成するまでの時間を短縮することができ、デスクランブルをより早く開始することができ、データ処理の高速化を図ることができる。
【0096】
なお、本発明は以下のように実施してもよい。
(1)上記形態においては読み出し専用のDVD装置に具体化しているため、スクランブルパターン生成回路によって生成されたスクランブルパターンをデスクランブルにのみ使用しているが、ディスクに対してデータを書き込み可能な装置において、ディスクに書き込むべきデータのスクランブルを行う装置に用いてもよい。
(2)データの転送レートに応じて図3に示す論理回路35を順次追加することによってデスクランブルの処理バイト数を変更するようにしてもよい。
(3)DVD以外のデータをスクランブルするシステムに具体化してもよい。
【0097】
【発明の効果】
以上詳述したように、本発明は、スクランブルパターンの生成を高速化でき、データの転送レートを向上してデータ処理の高速化を図ることができる。
【図面の簡単な説明】
【図1】第1の実施の形態のDVD装置を示す概略ブロック図
【図2】第1の実施の形態におけるデータ再生回路を示す回路図
【図3】第2の実施の形態におけるデータ再生回路を示す回路図
【図4】第3の実施の形態におけるデータ再生回路を示す回路図
【図5】第3の実施の形態におけるスクランブルパターンを示す説明図
【図6】DVD装置におけるデータ復調のフロー図
【図7】DVDのデータセクタのフォーマットを示す説明図
【図8】従来のスクランブルパターン生成回路を示す回路図
【図9】スクランブルパターンを示す説明図
【符号の説明】
21 スクランブルパターン生成回路
25 セレクタ
26A〜26O レジスタとしてのデータフリップフロップ
27 論理回路
100 記録媒体としてのディスク
104 記録データとしてのスクランブルデータ

Claims (4)

  1. スクランブルされたデータを、同一のスクランブルパターン生成論理に基づいて順次生成される所定ビット長のスクランブルパターンによりデスクランブルするデスクランブル回路において、
    所定ビット長の現在のスクランブルパターンであるビット列を各ビット毎にそれぞれ保持する複数の保持回路と、
    前記現在のスクランブルパターンであるビット列に対して、予め定められている前記スクランブルパターン生成論理に基づく演算を施し、該演算の結果に基づいて所定ビット長の次のスクランブルパターンを生成する論理回路と、
    該論理回路から生成された前記次のスクランブルパターンによりスクランブルされたデータをデスクランブルするデータ再生回路と
    を有することを特徴とするデスクランブル回路。
  2. 所定ビット長のスクランブルパターンを、同一のスクランブルパターン生成論理に基づいて順次生成するスクランブルパターン生成回路において、
    所定ビット長の現在のスクランブルパターンであるビット列を各ビット毎にそれぞれ保持する複数の保持回路と、
    前記現在のスクランブルパターンであるビット列に対して、予め定められている前記スクランブルパターン生成論理に基づく演算を施し、該演算の結果に基づいて所定ビット長の次のスクランブルパターンを生成する論理回路と
    を有することを特徴とするスクランブルパターン生成回路。
  3. 所定ビット長のスクランブルパターンを、同一のスクランブルパターン生成論理に基づいて順次生成するスクランブルパターン生成回路において、
    所定ビット長の現在のスクランブルパターンであるビット列を各ビット毎にそれぞれ保持する複数の保持回路と、
    前記現在のスクランブルパターンであるビット列に対して、予め定められている前記スクランブルパターン生成論理に基づく演算を施し、該演算の結果に基づいて所定ビット長の次のスクランブルパターンを生成する第1の論理回路と、
    前記次のスクランブルパターンであるビット列に対して、予め定められている前記スクランブルパターン生成論理に基づく演算を施し、該演算の結果に基づいて所定ビット長の次の次のスクランブルパターンを生成する第2の論理回路と
    を有することを特徴とするスクランブルパターン生成回路。
  4. 所定ビット長のスクランブルパターンを、同一のスクランブルパターン生成論理に基づいて順次生成するスクランブルパターン生成方法において、
    所定ビット長の現在のスクランブルパターンであるビット列に対して、予め定められている前記スクランブルパターン生成論理に基づく論理演算を行い、該論理演算の結果に基づいて所定ビット長の次のスクランブルパターンを算出すること
    を特徴とするスクランブルパターン生成方法。
JP30064596A 1996-11-12 1996-11-12 デスクランブル回路、スクランブルパターン生成回路及びスクランブルパターン生成方法 Expired - Lifetime JP3566007B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP30064596A JP3566007B2 (ja) 1996-11-12 1996-11-12 デスクランブル回路、スクランブルパターン生成回路及びスクランブルパターン生成方法
US08/874,673 US5987630A (en) 1996-11-12 1997-06-13 Method of descrambling scrambled data using a scramble pattern and scramble pattern generator
KR1019970027469A KR100269418B1 (ko) 1996-11-12 1997-06-26 디스크램블 방법, 스크램블 패턴 생성 회로 및 디스크 장치
EP97304760A EP0843445B1 (en) 1996-11-12 1997-07-01 Method of descrambling scrambled data using a scramble pattern and scramble pattern generator
DE69732082T DE69732082T2 (de) 1996-11-12 1997-07-01 Verfahren zur Entschleierung von verschleierten Daten mittels eines Verschleierungsmusters und eines Verschleierungsmustergenerators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30064596A JP3566007B2 (ja) 1996-11-12 1996-11-12 デスクランブル回路、スクランブルパターン生成回路及びスクランブルパターン生成方法

Publications (2)

Publication Number Publication Date
JPH10144000A JPH10144000A (ja) 1998-05-29
JP3566007B2 true JP3566007B2 (ja) 2004-09-15

Family

ID=17887362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30064596A Expired - Lifetime JP3566007B2 (ja) 1996-11-12 1996-11-12 デスクランブル回路、スクランブルパターン生成回路及びスクランブルパターン生成方法

Country Status (5)

Country Link
US (1) US5987630A (ja)
EP (1) EP0843445B1 (ja)
JP (1) JP3566007B2 (ja)
KR (1) KR100269418B1 (ja)
DE (1) DE69732082T2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100214309B1 (ko) * 1997-05-09 1999-08-02 윤종용 디지털비디오디스크 재생장치에 있어서 디스크램블링 신뢰도를 향상시키는 방법 및 장치
US6247138B1 (en) * 1997-06-12 2001-06-12 Fujitsu Limited Timing signal generating circuit, semiconductor integrated circuit device and semiconductor integrated circuit system to which the timing signal generating circuit is applied, and signal transmission system
AU2358500A (en) * 1998-12-11 2000-06-26 Advanced Wireless Technologies, Inc. Method, system, and computer program product for error detection and correction in a synchronization word
KR100611955B1 (ko) * 1999-07-20 2006-08-11 삼성전자주식회사 스크램블러
US20020046359A1 (en) * 2000-03-16 2002-04-18 Boden Scott T. Method and apparatus for secure and fault tolerant data storage
US7155015B2 (en) * 2000-08-08 2006-12-26 Hitachi, Ltd. Optical disk apparatus and data randomizing method using for optical disk apparatus
JP2002124026A (ja) 2000-10-16 2002-04-26 Toshiba Corp 情報記録装置及び情報記録方法と情報再生装置及び情報再生方法
JP2002170333A (ja) * 2000-11-28 2002-06-14 Pioneer Electronic Corp 情報記録方法、情報記録装置、情報再生方法及び情報再生装置
US20030135798A1 (en) * 2001-12-13 2003-07-17 Yukari Katayama Optical disk device and data randomizing method for optical disk device
KR100830450B1 (ko) * 2001-12-29 2008-05-20 엘지전자 주식회사 Dvd 재생기에서의 디스크램블 제어 방법
KR100510492B1 (ko) * 2002-10-07 2005-08-26 삼성전자주식회사 광디스크 시스템에서의 워드 단위스크램블링/디스크램블링 장치 및 그 방법
CN1329911C (zh) * 2003-02-19 2007-08-01 威盛电子股份有限公司 扰频方法、写入数据产生方法及重复数据写入方法
KR100539261B1 (ko) * 2004-05-04 2005-12-27 삼성전자주식회사 디지털 데이터의 부호화 장치와 dvd로의 기록 장치 및그 방법
JP4643978B2 (ja) * 2004-12-01 2011-03-02 ルネサスエレクトロニクス株式会社 スクランブル回路、デ・スクランブル回路及び方法、並びにディスク装置
KR100840195B1 (ko) * 2006-11-28 2008-06-23 쎄텍 주식회사 표준 dvd 디스크 제작시 읽기 에러 생성 방법
US20080215893A1 (en) * 2006-12-31 2008-09-04 Broadcom Corporation Multiple levels of guided scrambling
JP2009048713A (ja) * 2007-08-21 2009-03-05 Toshiba Microelectronics Corp デスクランブル回路及びエラー検出コード計算回路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383322A (en) * 1980-05-02 1983-05-10 Harris Corporation Combined use of PN sequence for data scrambling and frame synchronization in digital communication systems
US5031129A (en) * 1989-05-12 1991-07-09 Alcatel Na Network Systems Corp. Parallel pseudo-random generator for emulating a serial pseudo-random generator and method for carrying out same
US5410600A (en) * 1991-11-18 1995-04-25 Broadband Communications Products, Inc. Pre-scramble encoding method and apparatus for digital communication
KR940009843B1 (ko) * 1992-02-07 1994-10-17 이병기 병렬 스크램블링 시스템
JP2927163B2 (ja) * 1993-11-30 1999-07-28 日本ビクター株式会社 情報信号記録方法及び情報信号記録装置
WO1996032716A1 (en) * 1995-04-10 1996-10-17 Matsushita Electric Industrial Co., Ltd. Optical record carrier and method for recording and reproducing signals therefrom

Also Published As

Publication number Publication date
EP0843445B1 (en) 2004-12-29
KR100269418B1 (ko) 2000-10-16
EP0843445A2 (en) 1998-05-20
EP0843445A3 (en) 2001-03-21
DE69732082T2 (de) 2005-06-16
JPH10144000A (ja) 1998-05-29
DE69732082D1 (de) 2005-02-03
KR19980041769A (ko) 1998-08-17
US5987630A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
JP3566007B2 (ja) デスクランブル回路、スクランブルパターン生成回路及びスクランブルパターン生成方法
CN100514482C (zh) 在高密度只读记录介质上形成的链接区域的结构及其制造/再现方法和设备
JPH10106148A (ja) 暗号化方法、復号方法、記録再生装置、復号装置、復号化ユニット装置、記録媒体、記録媒体の製造方法および鍵の管理方法
JP5115914B2 (ja) デジタルデータの符号化装置とdvdへの記録装置及びその方法
JPH10502205A (ja) 記録媒体、データ伝送方法及び装置、並びにデータ再生方法及び装置
US6370098B2 (en) Method of converting bits of optical disk, demodulating method and apparatus
US7796754B2 (en) Information recording processing apparatus, information reproduction processing apparatus, information recording medium, information recording processing method, information reproduction processing method, and computer program
JP4082300B2 (ja) パイプライン処理システムおよび情報処理装置
US8718277B2 (en) Information carrier comprising access information
JP2001023316A (ja) ディジタルデータ再生方法及びディジタルデータ再生回路並びに誤り検出方法
JP4171688B2 (ja) 光ディスクシステムにおけるワード単位のデータスクランブリング/デスクランブリング装置及びその方法
US6092232A (en) Disk data reproducing apparatus and disk data reproducing method
JP2001101806A (ja) ディジタル信号記録方法、及びその装置、記録媒体
JP2005078656A (ja) パイプライン処理システムおよび情報処理装置
JP3352348B2 (ja) 符号変調回路
CN101192423B (zh) 数据刻录装置及其方法
JP3639493B2 (ja) データ転送回路、データ転送回路を備えた記録再生装置およびデータ転送方法
JP3615969B2 (ja) データ処理装置
JP3651332B2 (ja) データ処理方法およびデータ処理装置
EP1199718B1 (en) Information recording apparatus and method, and information reproduction apparatus and method
CN1707676B (zh) 具有链接区域的记录介质及记录和再现数据的设备和方法
JP2002319233A (ja) デジタル信号記録再生装置
KR100315768B1 (ko) 고속의 데이타재생을 위한 메모리액세스방법 및 이를 채용한dvd시스템
TWI324766B (en) Recording medium with a linking area including dummy data thereon and apparatus and methods for forming, recording, and reproducing the recording medium
KR100957798B1 (ko) 고밀도 재생 전용 광디스크의 부가 정보 기록방법과, 그에따른 고밀도 재생 전용 광디스크

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term