JP3549963B2 - ディジタル無線受信機 - Google Patents

ディジタル無線受信機 Download PDF

Info

Publication number
JP3549963B2
JP3549963B2 JP28574295A JP28574295A JP3549963B2 JP 3549963 B2 JP3549963 B2 JP 3549963B2 JP 28574295 A JP28574295 A JP 28574295A JP 28574295 A JP28574295 A JP 28574295A JP 3549963 B2 JP3549963 B2 JP 3549963B2
Authority
JP
Japan
Prior art keywords
data
parameters
distortion
processing unit
offset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28574295A
Other languages
English (en)
Other versions
JPH09130337A (ja
Inventor
宏 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28574295A priority Critical patent/JP3549963B2/ja
Priority to US08/562,285 priority patent/US6035004A/en
Priority to CA002164027A priority patent/CA2164027C/en
Publication of JPH09130337A publication Critical patent/JPH09130337A/ja
Application granted granted Critical
Publication of JP3549963B2 publication Critical patent/JP3549963B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/061Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing hard decisions only; arrangements for tracking or suppressing unwanted low frequency components, e.g. removal of dc offset
    • H04L25/062Setting decision thresholds using feedforward techniques only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/007Demodulation of angle-, frequency- or phase- modulated oscillations by converting the oscillations into two quadrature related signals
    • H03D3/008Compensating DC offsets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
  • Noise Elimination (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、DSP(ディジタル信号処理プロセッサ)を搭載した携帯電話、自動車電話等のディジタル無線受信機に関するものである。
【0002】
すなわち、このDSPは本来ディジタル信号の復調用として機能するが、これを用いて、人手による調整や、調整用の回路や、高価な部品を極力排除し、温度変化に依存せず、IQ振幅を等しくし、DCオフセットを無くし、IQが直交しない場合も正常に復調可能とするアルゴリズムを備えたディジタル無線受信機に関するものである。なお、Iは同相成分(Inphase component)、Qは直交成分(Quadrature component)を表す。
【0003】
【従来の技術】
従来のディジタル無線受信機について図27、図28及び図29を参照しながら説明する。図27は、従来のディジタル無線受信機の復調系の構成を示すブロック図である。また、図28は、図27のDCオフセット除去回路を示す図である。さらに、図29は、図27のIQ振幅インバランス補正回路を示す図である。
【0004】
図27において、従来のディジタル無線受信機は、アンテナ1と、高周波を中間周波数に変換するRF/IF変換器2と、IQを分離しその差動出力I、Q、I、Q(サフィックスpは正、nは負を表す。)を出力するIQ分離器3と、高周波等のノイズを除去するフィルタ4と、前記フィルタ4の出力のDCオフセットを除去するDCオフセット除去回路5と、前記DCオフセット除去回路5の出力のIQ振幅インバランスを補正するIQ振幅インバランス補正回路6と、前記IQ振幅インバランス補正回路6の出力をサンプリングする逓倍サンプラ7と、直交位相復調を行うDSP等からなるディジタル信号処理部8とを備える。
【0005】
図28において、DCオフセット除去回路5は、抵抗器9〜11、13と、差動増幅器12と、抵抗器14〜16、18と、差動増幅器17とを備える。なお、信号ラインがI、Qそれぞれ2本あるのでオフセット除去回路も2つ必要になる。
【0006】
図29において、IQ振幅インバランス補正回路6は、抵抗器19、20と、可変抵抗器21、22とを備える。
【0007】
DCオフセット除去回路5によるDCオフセットの除去は、図28に示すように、I,Qそれぞれを差動増幅とすることによりDCの発生を防ぐことができる。
【0008】
IQ振幅インバランス補正回路6は、IQ振幅インバランスが発生している場合には製造時の調整が必要であった。このIQ振幅のインバランスは、図29に示す可変抵抗器21、22を調整することによって補正できる。
【0009】
直交位相変復調器を用いたディジタル無線受信機の製造において、部品のバラツキによりIQ振幅を等しくし、DCオフセットを無くすことは難しい。そのため、IQ振幅インバランスにおいては製造時の人手による調整が必要であり、また部品のバラツキを抑えるために高価な部品、大がかりな回路が必要であった。
【0010】
さらに、実動作時の温度変化に対しては、温度による特性変化の少ない高価な部品を使用するか、温度補償回路による回路規模の増大を招く傾向があり、小型化、低価格化を目指す場合にしばしば障害であった。つまり、温度変化に依存せずに正しい受信信号を得るためには、高価な部品、大がかりな回路が必要であった。
【0011】
【発明が解決しようとする課題】
上述したような従来のディジタル無線受信機では、部品のばらつきにより、製造においてIQ振幅を等しくし、DCオフセットを無くすことは難しいので、DCオフセット除去回路5とIQ振幅インバランス補正回路6とを備え、人手による調整が必要であるという問題点があった。
【0012】
また、実動作時の温度変化に対しては、温度による特性変化の少ない高価な部品を使用するか、温度補償回路を備える必要があるために、コスト上昇、回路規模の増大を招くという問題点があった。
【0013】
この発明は、前述した問題点を解決するためになされたもので、製造時の人手による調整をなくし、安価に、精度良く、IQ歪みを推定、補正することができるディジタル無線受信機を得ることを目的とする。
【0014】
また、この発明は、実動作時の温度変化に依存することなくIQ歪みを補正することができるディジタル無線受信機を得ることを目的とする。
【0015】
【課題を解決するための手段】
この発明に係るディジタル無線受信機は、予め試験信号について温度変化による歪みが推定されその歪みを保持する保持手段と、受信信号を受信する受信手段と、前記受信信号の歪みを推定し、前記受信信号から前記推定した歪み及び前記保持した歪みを排除して正常な受信信号を得て、前記正常な受信信号に基づいて復調し復調信号を出力する復調手段とを備えたディジタル無線受信機であって、前記受信手段は、高周波を受信するアンテナと、前記高周波を中間周波数に変換するRF/IF変換器、前記中間周波数のIQを分離するIQ分離器と、前記IQ分離器の出力からノイズを除去するフィルタと、前記フィルタの出力をサンプリングする逓倍サンプラとを含み、前記復調手段は、前記正常な受信信号に基づいて直交位相復調を行うディジタル信号処理部であり、前記保持手段は、温度変化毎の歪みデータを記憶するメモリであり、さらに、CPUと温度を検出する温度センサとを備え、実動作以前に、前記ディジタル信号処理部は、温度変化毎に前記サンプリングされた直交変調波試験信号のデータを入力し、所定のアルゴリズムにより前記直交変調波試験信号の歪みを推定し、前記CPUは、前記温度センサから取得できる温度と前記推定した歪みデータに関するテーブルを前記メモリに作成し、実動作時には、前記CPUは、前記温度センサによって検出された温度をキーとして前記テーブルより該当歪みデータを検索して前記ディジタル信号処理部へ通知し、前記ディジタル信号処理部は、IQ位相が直交していることが予め保証されている場合、前記サンプリングされた直交位相被復調波のデータを、複数のIQ座標毎のグループに分割し、各グループ毎に前記複数のIQ座標を通る楕円方程式のパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値に基づいて前記直交位相被復調波のデータから歪みを除去するとともに、前記検索された歪みデータに基づいて前記直交位相被復調波のデータから歪みを除去するものである。
【0019】
また、この発明に係るディジタル無線受信機は、前記ディジタル信号処理部が、DCオフセットとIQ振幅インバランスが発生しているときは、前記サンプリングデータを4つのIQ座標毎のグループに分割し、各グループ毎に前記4つのIQ座標を通る楕円方程式の振幅と中心座標に関するパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値をもってIQ振幅比とDCオフセット量とし、前記サンプリングデータから前記DCオフセット量を差し引き、さらに前記差し引いた値に前記IQ振幅比を乗算するものである。
【0020】
また、この発明に係るディジタル無線受信機は、前記ディジタル信号処理部が、DCオフセットが発生しているときは、前記サンプリングデータを3つのIQ座標毎のグループに分割し、各グループ毎に前記3つのIQ座標を通る円方程式の中心座標に関するパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値をもってDCオフセット量とし、前記サンプリングデータから前記DCオフセット量を差し引くものである。
【0021】
また、この発明に係るディジタル無線受信機は、前記ディジタル信号処理部が、IQ振幅インバランスが発生しているときは、前記サンプリングデータを2つのIQ座標毎のグループに分割し、各グループ毎に前記2つのIQ座標を通る楕円方程式の振幅に関するパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値をもってIQ振幅比とし、前記サンプリングデータに前記IQ振幅比を乗算するものである。
【0023】
また、この発明に係るディジタル無線受信機は、予め試験信号について温度変化による歪みが推定されその歪みを保持する保持手段と、受信信号を受信する受信手段と、前記受信信号の歪みを推定し、前記受信信号から前記推定した歪み及び前記保持した歪みを排除して正常な受信信号を得て、前記正常な受信信号に基づいて復調し復調信号を出力する復調手段とを備えたディジタル無線受信機であって、前記受信手段は、高周波を受信するアンテナと、前記高周波を中間周波数に変換するRF/IF変換器、前記中間周波数のIQを分離するIQ分離器と、前記IQ分離器の出力からノイズを除去するフィルタと、前記フィルタの出力をサンプリングする逓倍サンプラとを含み、前記復調手段は、前記正常な受信信号に基づいて直交位相復調を行うディジタル信号処理部であり、前記保持手段は、温度変化毎の歪みデータを記憶するメモリであり、さらに、CPUと温度を検出する温度センサとを備え、実動作以前に、前記ディジタル信号処理部は、温度変化毎に前記サンプリングされた直交変調波試験信号のデータを入力し、所定のアルゴリズムにより前記直交変調波試験信号の歪みを推定し、前記CPUは、前記温度センサから取得できる温度と前記推定した歪みデータに関するテーブルを前記メモリに作成し、実動作時には、前記CPUは、前記温度センサによって検出された温度をキーとして前記テーブルより該当歪みデータを検索して前記ディジタル信号処理部へ通知し、前記ディジタル信号処理部が、IQ位相が非直交の場合、前記サンプリングされた直交位相被復調波のデータを、複数のIQ座標毎のグループに分割し、各グループ毎に前記複数のIQ座標を通る楕円方程式のパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値及び前記検索された歪みデータに基づいて正しい位相角を推定し、半径1の円周上にその位相角に該当するデータを配置しなおすものである。
【0024】
また、この発明に係るディジタル無線受信機は、前記ディジタル信号処理部が、DCオフセットとIQ振幅インバランスが発生しているときは、前記サンプリングデータを5つのIQ座標毎のグループに分割し、各グループ毎に前記5つのIQ座標を通る楕円方程式のパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値からDCオフセット量を推定し、前記サンプリングデータから前記DCオフセット量を差し引き、さらに前記妥当なパラメータの平均値より正しい位相角を推定し、半径1の円周上にその位相角に該当するデータを配置しなおすものである。
【0025】
また、この発明に係るディジタル無線受信機は、前記ディジタル信号処理部が、IQ振幅インバランスが発生しているときは、前記サンプリングデータを3つのIQ座標毎のグループに分割し、各グループ毎に前記3つのIQ座標を通る楕円方程式のパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値から正しい位相角を推定し、半径1の円周上にその位相角に該当するデータを配置しなおすものである。
【0031】
さらに、この発明に係るディジタル無線受信機は、予め試験信号について温度変化による歪みが推定されその歪みを保持する保持手段と、受信信号を受信する受信手段と、前記受信信号の歪みを推定し、前記受信信号から前記推定した歪み及び前記保持した歪みを排除して正常な受信信号を得て、前記正常な受信信号に基づいて復調し復調信号を出力する復調手段とを備えたディジタル無線受信機であって、前記受信手段は、高周波を受信するアンテナと、前記高周波を中間周波数に変換するRF/IF変換器、前記中間周波数のIQを分離するIQ分離器と、前記IQ分離器の出力からノイズを除去するフィルタと、前記フィルタの出力をサンプリングする逓倍サンプラとを含み、前記復調手段は、前記正常な受信信号に基づいて直交位相復調を行うディジタル信号処理部であり、前記保持手段は、温度変化毎の歪みデータを記憶するメモリであり、さらに、CPUと温度を検出する温度センサとを備え、DCオフセットのみが発生することが予め保証されている場合、実動作以前に、前記ディジタル信号処理部が、温度変化毎に位相平面上で偏りの無い前記サンプリングされた直交試験信号のデータを入力し、得られたIデータ、Qデータをそれぞれ全て平均してDCオフセットを推定し、前記CPUが、前記温度センサから取得できる温度と前記推定したDCオフセットに関するテーブルを前記メモリに作成し、実動作時には、前記CPUが、前記温度センサによって検出された温度をキーとして前記テーブルより該当推定DCオフセットを検索し、前記ディジタル信号処理部が、前記検索された推定DCオフセットに基づいて前記受信信号から前記推定DCオフセットを減算するものである。
【0032】
【発明の実施の形態】
この発明の実施の形態1〜6は、部品、素子のバラツキによって生じた受信信号の劣化を、本来ディジタル信号の復調処理に用いるDSPを利用することにより補正している。従って、本来のディジタル直交位相復調回路に専用の回路を追加することを排除して、IQ歪みの推定、補正を可能としている。
【0033】
また、この発明の実施の形態7は、温度センサと、上記実施の形態1〜6のいずれかのIQ歪み推定、補正アルゴリズムとを内蔵し、予め製造時に温度試験を行い、IQ歪みのパラメータと温度とのテーブルを作成しておく。そして、実動作時には、温度センサからの温度情報をキーとして、先のテーブルから該当するIQ歪みのパラメータを検索し、上記補正アルゴリズムに設定することで、IQ歪みを補正している。従って、上記IQ歪みの推定、補正アルゴリズムを利用することで、実動作時において温度変化に依存すること無く、IQ歪みの補正ができる。
【0034】
さらに、この発明の実施の形態8は、DCオフセットのみが問題となる場合において、上記温度試験時に用いられる試験信号として、位相平面上で分布が一様な信号を用いることにより、DCオフセットの推定アルゴリズムが非常に簡単になる一例を示した。
【0035】
また、DCオフセット、IQ振幅インバランス、IQ位相の非直交それぞれの程度に応じてアルゴリズムを示したことにより(実施の形態1〜8)、メモリの使用量、DSPの処理速度に適した選択が可能となっている。
【0036】
実施の形態1.
この発明の実施の形態1は、受信信号を検波後、基底帯域にまでダウンコンバートされた直交位相被復調波において、IQ位相が直交していることが予め保証されている場合、前記被復調波をサンプリングし、適当なIQ4座標毎のグループに分割し、各グループ毎にIQ4座標を通る楕円方程式の振幅と中心座標に関する各パラメータを推定する。その後、各パラメータの物理的妥当性を検証し、妥当なパラメータを持つグループを選定する。それらグループのパラメータを平均し、その平均値をもってIQ振幅比とDCオフセット量とし、前記サンプリングされた点から前記DCオフセット量を差し引き、その後、振幅比を乗算することでIQ振幅インバランスを補正し、DCオフセットを除去する。
【0037】
この発明の実施の形態1の構成について図1を参照しながら説明する。図1は、この発明の実施の形態1の復調系の構成を示すブロック図である。なお、各図中、同一符号は同一又は相当部分を示す。
【0038】
図1において、この実施の形態1に係るディジタル無線受信機は、アンテナ1と、高周波を中間周波数に変換するRF/IF変換器2と、IQを分離するIQ分離器3と、高周波等のノイズを除去するフィルタ4と、前記フィルタ4の出力をサンプリングする逓倍サンプラ7と、以下説明するアルゴリズムを実行するとともに直交位相復調を行うDSP等からなるディジタル信号処理部8Aとを備える。なお、上記逓倍サンプラ7は、例えば4倍オーバーサンプラである。また、上記以外にシステム制御用のCPUを備えるが図示は省略している。
【0039】
つぎに、この実施の形態1の動作について図2、図3及び図4を参照しながら説明する。図2は、この実施の形態1に係るディジタル信号処理部の動作(アルゴリズム)を示すフローチャートである。なお、上記アルゴリズムは電源スイッチのON等によりスタートする。また、図3は、この実施の形態1に係るIQ平面の直交位相被復調波であって、IQ位相が直交し、DCオフセット、IQ振幅インバランスが発生している直交位相被復調波を示す図である。なお、同図において、点の数は適当であり、点を結ぶ点線は形状を表すために描いてある。以下、同様な図は同じ趣旨で点と点線が描いてある。さらに、図4は、IQ歪みのない望ましいIQ平面の直交位相被復調波を示す図である。
【0040】
この実施例1は、RF/IF変換器2によって受信信号を基底帯域までダウンコンバートし、フィルタ4によって不用雑音をろ波し、4倍オーバーサンプラ7によってサンプリングするものである。そして、ディジタル信号処理部8Aによって、IQの位相が直交することが予め保証されている場合、IQ振幅インバランス量とDCオフセット量を推定し、受信信号を補正するものである。
【0041】
ステップ100において、ディジタル信号処理部8Aは、前記逓倍オーバーサンプリングされた受信IQデータのグループ分けを行う。すなわち、図3に示すような、データ(I,Q)の先頭から3個おきに4個毎のグループ分けを行う。但し、j=0,・・・,L−1であり、Lは受信IQデータバッファのバッファサイズを示す。
【0042】
各グループ要素はIチャネルに対しては{I1i,I2i,I3i,I4i}={I,Ii+4,Ii+8,Ii+12},Qチャネルに対しては{Q1i,Q2i,Q3i,Q4i}={Q,Qi+4,Qi+8,Qi+12}となる。グループは添字iで示されており、i=0,・・・,L−13である。
【0043】
グループ分けに関しては本実施の形態以外にも様々な方法が考えられる。例えば、上記グループ分けにおいて、あるグループに属する要素が他のグループの要素とはならないような処置を行う等がある。本実施の形態はその一例に過ぎない。
【0044】
次に、ステップ110において、ディジタル信号処理部8Aは、楕円パラメータの演算を行う。楕円方程式は、式(1)で表される。但し、条件式(2),(3)が必要である。また、式(3)中の「det」は行列式を表している。
【0045】
式(1)を展開すれば式(4)が得られる。このとき、(I1i,Q1i)、(I2i,Q2i),(I3i,Q3i)、(I4i,Q4i)の4座標を式(4)の(I,Q)に代入すれば、4つの方程式(5)、(6)、(7)及び(8)が得られる。
【0046】
ここで、方程式(5)、(6)、(7)及び(8)のパラメータb,c,g,fについて解く。これらのパラメータb,c,g,fは、式(9),(10),(11),(12),(13)を演算することで得られる。
【0047】
次に、ステップ120において、ディジタル信号処理部8Aは、得られたパラメータb,c,f,gそれぞれについて妥当な値の選別を行う。
【0048】
先ず、パラメータbについて、式(14)が満足することを確認する。この条件を満足すれば後で行う平均処理のデータとして採用するが、そうでなければこのグループで算出した全てのパラメータを無効とし、平均処理から除外する。
【0049】
次に、{楕円のI軸方向の半径}=r が一定の大きさの範囲内にあることを式(15)にて確認する。ここでの確認もこれまでと同様に、この条件が満足すれば後で行う平均処理のデータとして採用するが、そうでなければこのグループで算出した全てのパラメータを無効とし、平均処理から除外する。上記2条件が満足されれば自ずから条件式(2),(3)は満足する。
【0050】
次に、楕円の中心と原点までの距離がある一定の大きさであることを式(16)にて確認する。ここでの確認もこれまでと同様に、この条件が満足すれば後で行う平均処理のデータとして採用するが、そうでなければこのグループで算出した全てのパラメータを無効とし、平均処理から除外する。
【0051】
上記ステップ120で行う確認は、条件式(2),(3)が楕円の成立条件であるので必ず必要であるが、他の条件に関しては省略することも可能である。また、ここに挙げた条件以外の追加条件も考えられる。
【0052】
次に、ステップ130において、ディジタル信号処理部8Aは、上記演算で選別された有効なパラメータを持つグループ(以下、VGと称する。)に関して平均処理を行う。この平均処理はVG総数をNとすれば、式(17)、(18)及び(19)を実行することで算出される。
【0053】
次に、ステップ140において、ディジタル信号処理部8Aは、各受信IQデータ(I,Q)から、得られた楕円の中心(−g,(f/b))座標の引き算を式(20)に従って行い、DCオフセットをキャンセルする。キャンセルされた値は(I’,Q’)と表す。なお、上記b、f、gは式(17)、(18)及び(19)の各パラメータの平均を示す。
【0054】
次に、ステップ150において、ディジタル信号処理部8Aは、上記DCオフセットがキャンセルされたデータ(I’,Q’)を式(21)を用いてIQ振幅インバランス補正を行う。
【0055】
ここで得られたデータ(Inew,Qnew)が、図4に示すような、DCオフセット、及びIQ振幅インバランスが除去された受信データとなる。この後、ディジタル信号処理部8Aは、データ(Inew,Qnew)を直交位相復調処理して復調信号を出力する。
【0056】
実施の形態2.
この発明の実施の形態2は、受信信号を検波後、基底帯域にまでダウンコンバートされた直交位相被復調波において、IQ位相が直交しており、かつDCオフセットのみが発生し、IQ振幅インバランスの発生が無い、もしくは軽微であることが予め保証されている場合、前記被復調波をサンプリングし、適当なIQ3座標毎のグループに分割し、各グループ毎にIQ3座標を通る円方程式の中心座標に関する各パラメータを推定する。その後、各パラメータの物理的妥当性を検証し、妥当なパラメータを持つグループを選定する。それらグループのパラメータを平均し、その平均値をもってDCオフセット量とし、前記サンプリングされた点から前記DCオフセット量を差し引き、DCオフセットを除去する。
【0057】
この実施の形態2について図5及び図6を参照しながら説明する。図5は、この実施の形態2に係るディジタル信号処理部の動作を示すフローチャートである。また、図6は、この実施の形態2に係るIQ平面の直交位相被復調波であって、IQ位相が直交し、IQ振幅インバランスが生じない、もしくはその程度が軽微であることが予め保証されていて、DCオフセットのみが発生している直交位相被復調波を示す図である。なお、システム構成は、図1に示す上記実施の形態1と同じである。
【0058】
ステップ200において、ディジタル信号処理部8Aは、前記逓倍オーバーサンプリングされた受信IQデータのグループ分けを行う。本実施の形態では、図6に示すような、受信IQデータ(I,Q)の先頭から3点おきに3個毎のグループ分けを行う。但し、j=0,・・・,L−1であり、Lは受信IQデータバッファのバッファサイズを示す。
【0059】
各グループの要素はIチャンネルに対しては{I1i,I2i,I3i}={I,Ii+4,Ii+8}、Qチャンネルに対しては{Q1i,Q2i,Q3i}={Q,Qi+4,Qi+8}となる。グループは添字iで示されており、i=0,・・・,L−9である。
【0060】
グループ分けに関しては本実施の形態以外にも様々な方法が考えられる。本実施の形態はその一例にすぎない。
【0061】
次に、ステップ210において、ディジタル信号処理部8Aは、円パラメータの演算を行う。円方程式は式(22)で表される。但し、条件式(23)が必要である。
【0062】
このとき、(I1i,Q1i),(I2i,Q2i),(I3i,Q3i)の3座標を式(22)の(I,Q)に代入して、3つの方程式(24)、(25)及び(26)が得られる。
【0063】
結局、式(27),(28),(29)及び(30)を演算すれば円パラメータは算出できる。
【0064】
次に、ステップ220において、ディジタル信号処理部8Aは、得られたパラメータc,f,gそれぞれについて妥当なパラメータの選別を行う。
【0065】
先ず、円の半径rについて、条件式(31)を満足することを確認する。このとき自ずから条件式(23)は満足される。条件式(31)を満足すれば後で行う平均処理のデータとして採用するが、そうでなければこのグループで算出した全てのパラメータを無効とし、平均処理から除外する。
【0066】
次に、パラメータf,gに関しても条件式(32)を満足することを確認する。ここでも条件を満足すれば後で行う平均処理のデータとして採用するが、そうでなければこのグループで算出した全てのパラメータを無効とし、平均処理から除外する。
【0067】
次に、ステップ230において、ディジタル信号処理部8Aは、上記演算で選別された有効なパラメータを持つグループ(以下、VGと称する。)に関して平均処理を行う。この平均処理はVG総数をNとすれば、式(33)及び(34)を実行することで算出される。
【0068】
次に、ステップ240において、ディジタル信号処理部8Aは、各受信IQデータ(I,Q)から、得られた(−g,−f)座標の引き算を式(35)に従って行い、DCオフセットをキャンセルする。キャンセルされた値は(Inew,Qnew)と表す。
【0069】
ここで得られたデータ(Inew,Qnew)が、図4に示すような、DCオフセットが除去された受信データとなる。
【0070】
なお、DCオフセットのみが発生する場合、IQを単純平均してオフセット量を推定する方法が考えられるが、精度を維持しようとすると非常に多くのサンプル点が必要となる。これは、図7に示すように、サンプル数が少ないとIQ平面上において偏りが生じることに起因する。図7は、IQ平面においてサンプル点に偏りのある場合を示す図である。
【0071】
実施の形態3.
この発明の実施の形態3は、受信信号を検波後、基底帯域にまでダウンコンバートされた直交位相被復調波において、IQ位相が直交しており、かつ振幅インバランスのみが発生し、DCオフセットの発生が無い、もしくは軽微であることが予め保証されている場合、前記被復調波をサンプリングし、適当なIQ2座標毎のグループに分割し、各グループ毎にIQ2座標を通る楕円方程式の振幅に関するパラメータを推定する。その後、各パラメータの物理的妥当性を検証し、妥当なパラメータを持つグループを選定する。それらグループのパラメータを平均し、その平均値から振幅比を抽出し、前記のサンプリング点に前記振幅比を乗算しIQ振幅インバランスを除去する。
【0072】
この実施の形態3について図8及び図9を参照しながら説明する。図8は、この実施の形態3に係るディジタル信号処理部の動作を示すフローチャートである。また、図9は、この実施の形態3に係るIQ平面の直交位相被復調波であって、IQ位相が直交し、DCオフセットが生じない、もしくはその程度が軽微であり、IQ振幅インバランスのみ発生している直交位相被復調波を示す図である。なお、システム構成は、図1に示す上記実施の形態1と同じである。
【0073】
ステップ300において、ディジタル信号処理部8Aは、前記逓倍オーバーサンプリングされた受信IQデータのグループ分けを行う。本実施の形態では、図9に示すような、受信IQデータ(I,Q)の先頭から2個毎にグループ分けを行う。但し、j=0,・・・,L−1であり、Lは受信IQデータバッファのバッファサイズを示す。
【0074】
各グループの構成はIチャンネルに対しては{I1i,I2i}={I,Ii+4}、Qチャンネルに対しては{Q1i,Q2i}={Q,Qi+4}となる。グループは添字iで示されており、i=0,・・・,L−5である。
【0075】
グループ分けに関しては本実施の形態以外にも様々な方法が考えられる。本実施の形態はその一例にすぎない。
【0076】
次に、ステップ310において、ディジタル信号処理部8Aは、原点に中心を持つ楕円パラメータの算出を行う。楕円方程式は、式(36)で表される。但し、条件式(37)が必要である。
【0077】
このとき、(I1i,Q1i),(I2i,Q2i)の2座標を式(36)の(I,Q)に代入して、2つの方程式(38)及び(39)が得られる。
【0078】
ここでパラメータb,cを、式(40),(41)及び(42)を演算することで算出する。
【0079】
次に、ステップ320において、ディジタル信号処理部8Aは、得られたパラメータb,cそれぞれについて妥当なパラメータの選別を行う。
【0080】
先ず、パラメータbについて、条件式(43)を確認する。この条件を満足すれば後で行う平均処理のデータとして採用するが、そうでなければこのグループで算出したパラメータb,cを無効とし、以下の演算対象から除外する。
【0081】
次に、パラメータcに関して、条件式(44)を確認する。この条件を満足すれば後で行う平均処理のデータとして採用するが、そうでなければこのグループで算出したパラメータb,cを無効とし、以下の演算対象から除外する。上記2条件を満足する時、自ずから条件式(37)を満足することになる。
【0082】
次に、ステップ330において、ディジタル信号処理部8Aは、上記演算で算出された有効なパラメータを持つグループ(以下、VGと称する。)に関して平均処理を行う。この平均処理はVG総数をNとすれば、式(45)を実行することで算出される。
【0083】
次に、ステップ340において、ディジタル信号処理部8Aは、上記演算で算出された平均値bを用いて式(46)の演算を行うことで、IQ振幅インバランスは除去できる。
【0084】
ここで得られたデータ(Inew,Qnew)が、図4に示すような、IQ振幅インバランスが補正された受信データとなる。
【0085】
実施の形態4.
この発明の実施の形態4は、受信信号を検波後、基底帯域にまでダウンコンバートされたπ/4シフトQPSK被復調波において、IQ位相が直交しており、かつDCオフセットのみが発生し、IQ振幅インバランスの発生が無い、もしくは軽微であることが予め保証されている場合、前記被復調波をサンプリングし、各サンプリングデータ間の差分を算出し、(I,Q)={K(1,1),K(1,−1)},(Kは適当な実数値)の内のいずれかを起点とし、その起点ベクトルに対して前記差分を順次ベクトル加算することにより、DCオフセットを除去する。
【0086】
この実施の形態4について図10、図11及び図12を参照しながら説明する。図10は、この実施の形態4に係るディジタル信号処理部の動作を示すフローチャートである。また、図11は、この実施の形態4に係るIQ平面のπ/4シフトQPSK被復調波であって、IQ位相が直交し、IQ振幅はバランスし、DCオフセットのみが発生しているπ/4シフトQPSK被復調波を示す図である。さらに、図12は、IQ歪みのない望ましいIQ平面のπ/4シフトQPSK被復調波を示す図である。なお、π/4シフトQPSKを用いた受信機という点以外、つまりアンテナから入力される信号のパターンとアルゴリズムだけが異なり、シスタム構成は図1の上記実施の形態1と同じである。
【0087】
ステップ400において、ディジタル信号処理部8Aは、前記逓倍オーバーサンプリングされた、図11に示すような、受信IQデータの各点毎の差分を求める。差分は式(47)を演算することで得られる。上記式(47)のベクトル(Idiff,Qdiff)においては、既に定常的なDCオフセットの影響は除去されている。
【0088】
次に、ステップ410において、ディジタル信号処理部8Aは、ベクトル(Idiff,Qdiff)の大きさの平均をとる。大きさの平均は式(48)を演算することで求められる。
【0089】
次に、ステップ420において、ディジタル信号処理部8Aは、起点ベクトルを求める。すなわち、round×norm/√2・(1,1)を起点として、(Inew,Qnew)を算出する。
【0090】
図12に示すように、π/4シフトQPSKの変移ベクトルは大きさが√{(4−2√2)/2}と√{(4+2√2)/2}を持つものが等確率で出現する。このため、round=[√{(4−2√2)/2}+√{(4+2√2)/2}]/2≒1.30656とする。
【0091】
尚、起点となるベクトルはround×norm/√2・(1,1)、round×norm/√2・(−1,1)、round×norm/√2・(−1,−1)、及びround×norm/√2・(1,−1)の4ベクトルのうちのいずれかであればよいが、本実施の形態においてはround×norm/√2・(1,1)を用いることとした。
【0092】
次に、ステップ430において、ディジタル信号処理部8Aは、DCオフセットが除去されたデータを求める。つまり、データ(Inewj,Qnew)は式(49)及び(50)を実行することで求められる。ここで、得られたデータ(Inew,Qnew)が、図12に示すような、定常的なDCオフセットがキャンセルされた信号となる。
【0093】
実施の形態5.
この発明の実施の形態5は、受信信号を検波後、基底帯域にまでダウンコンバートされた直交位相被復調波において、IQ位相が非直交、かつDCオフセットと、IQ振幅インバランスが発生している場合、前記被復調波をサンプリングし、適当なIQ5座標毎のグループに分割し、各グループ毎にIQ5座標を通る楕円方程式の各パラメータを推定する。その後、各パラメータの物理的妥当性を検証し、妥当なパラメータを持つグループを選定する。それらグループのパラメータを平均し、その平均値からDCオフセット量を推定し、前記サンプリングされた受信データからDCオフセット量を引き算し、さらに前記妥当なパラメータの平均値より正しい位相角を推定し、半径1の円周上にその位相角に該当する点を配置しなおすことでIQ振幅のインバランス、IQ位相の非直交、DCオフセットを補正する。
【0094】
この実施の形態5について図13及び図14を参照しながら説明する。図13は、この実施の形態5に係るディジタル信号処理部の動作を示すフローチャートである。また、図14は、この実施の形態5に係るIQ平面の直交位相被復調波であって、IQが直交することが保証されず、IQ振幅インバランス及びDCオフセットが発生している直交位相被復調波を示す図である。なお、システム構成は、図1に示す上記実施の形態1と同じである。
【0095】
ステップ500において、ディジタル信号処理部8Aは、前記逓倍オーバーサンプリングされた受信IQデータのグループ分けを行う。本実施の形態では、図14に示すような、受信IQデータ(I,Q)の先頭から3個おきに5個毎のグループ分けを行う。但し、j=0,・・・,L−1であり、Lは受信IQデータバッファのバッファサイズを示す。
【0096】
各グループの構成はIチャンネルに対しては{I1i,I2i,I3i,I4i,I5i}={I,Ii+4,Qi+8,Qi+12,Qi+16}、Qチャンネルに対しては{Q1i,Q2i,Q3i,Q4i,Q5i}={Q,Qi+4,Qi+8,Qi+12,Qi+16}となる。グループは添字iで示されており、i=0,・・・,L−17となっている。
【0097】
グループ分けに関しては本実施の形態以外にも様々な方法が考えられる。本実施の形態はその一例にすぎない。
【0098】
次に、ステップ510において、ディジタル信号処理部8Aは、楕円パラメータの演算を行う。楕円方程式は、式(51)で表される。但し、条件式(52)及び(53)が必要である。
【0099】
式(51)の左辺を計算すれば式(54)が得られる。この式(54)のI,Qに対して前記(I1i,Q1i),(I2i,Q2i),(I3i,Q3i),(I4i,Q4i),(I5i,Q5i)を代入することで、式(55),(56),(57),(58),(59)が得られる。
【0100】
次に、式(55),(56),(57),(58),(59)をパラメータb,c,f,g,hに関して解けば良い。厳密解は式(60),(61),(62),(63),(64),(65)によって得られるが計算量がかなり多くなるため、Gauss−sidel法、傾斜法等により算出する方法も考えられる。
【0101】
次に、ステップ520において、ディジタル信号処理部8Aは、得られたパラメータb,c,f,g,hそれぞれについて妥当な値の選別を行う。条件式(52)を確認し、この条件を満足すれば後で行う平均処理のデータとして採用するが、そうでなければこのグループで算出した全てのパラメータを無効とし、平均処理から除外する。
【0102】
さらに、パラメータbに関して、条件式(66)を確認する。ここでも前記条件を満足すれば後で行う平均処理のデータとして採用するが、そうでなければこのグループで算出した全てのパラメータを無効とし、平均処理から除外する。
【0103】
次に、楕円の{I軸方向の半径}=r がある適当な範囲内にあることを条件式(67)により確認する。ここでも前記条件を満足すれば後で行う平均処理のデータとして採用するが、そうでなければこのグループで算出した全てのパラメータを無効とし、平均処理から除外する。前記条件式(67)を満足する時、自ずから条件式(53)は満足される。
【0104】
次に、楕円の中心までの距離がある一定の適当な大きさ以下であることを条件式(68)により確認する。ここでも前記条件を満足すれば後で行う平均処理のデータとして採用するが、そうでなければこのグループで算出した全てのパラメータを無効とし、平均処理から除外する。
【0105】
次に、ステップ530において、ディジタル信号処理部8Aは、上記演算で選別された有効なパラメータを持つグループ(以下、VGと称する。)に関して平均処理を行う。この平均処理はVG総数をNとすれば、式(69)、(70)、(71)、(72)及び(73)を実行することで算出される。
【0106】
次に、ステップ540において、ディジタル信号処理部8Aは、各受信IQデータ(I,Q)から、得られた楕円の中心ベクトル1/(h −b)・(b−f,f−g)の引き算を式(74)に従って行い、DCオフセットをキャンセルする。キャンセルされた値は(I’,Q’)と表す。
【0107】
次に、ステップ550において、ディジタル信号処理部8Aは、データ(I’,Q’)を半径1の円周上に再配置する。つまり、上記DCオフセットがキャンセルされたデータ(I’,Q’)は変調時の角度θjを用いて、式(75)と表される。ここで(Inew’,Qnew’)=(cosθ,sinθ)とすることで半径1の円周の正しい位相点にマッピングすることができる。
【0108】
式(76)の演算を行う。ここで得られたデータ(Inew’,Qnew’)が、図4に示すような、DCオフセット,IQ振幅インバランスが除去され、IQの位相差が正しくπ/4に補正された受信データとなる。
【0109】
実施の形態6.
この発明の実施の形態6は、受信信号を検波後、基底帯域にまでダウンコンバートされた直交位相被復調波において、IQ位相が非直交かつDCオフセットの発生は無く、IQ振幅インバランスが発生している場合、前記被復調波をサンプリングし、適当なIQ3座標毎のグループに分割し、各グループ毎にIQ3座標を通る楕円方程式の各パラメータを推定する。その後、各パラメータの物理的妥当性を検証し、妥当なパラメータを持つグループを選定する。それらグループのパラメータを平均し、その平均値から正しい位相角を推定し、半径1の円周上にその位相角に該当する点を配置しなおすことでIQ振幅のインバランス、IQ位相の非直交を補正する。
【0110】
この実施の形態6について図15及び図16を参照しながら説明する。図15は、この実施の形態6に係るディジタル信号処理部の動作を示すフローチャートである。また、図16は、この実施の形態6に係るIQ平面の直交位相被復調波であって、IQのDCオフセットは発生していない、もしくは軽微であることが予め保証されていて、位相が非直交で、IQ振幅インバランスが発生している直交位相被復調波を示す図である。なお、システム構成は、図1に示す上記実施の形態1と同じである。
【0111】
ステップ600において、ディジタル信号処理部8Aは、前記逓倍オーバーサンプリングされた受信IQデータのグループ分けを行う。本実施の形態では、図16に示すような、受信IQデータ(I,Q)の先頭から3個おきに3個毎のグループ分けを行う。但し、j=0,・・・,L−1であり、Lは受信IQデータバッファのバッファサイズを示す。
【0112】
各グループの構成はIチャンネルに対しては{I1i,I2i,I3i}={I,Ii+4,Ii+8}、Qチャンネルに対しては{Q1i,Q2i,Q3i}={Q,Qi+4,Qi+8}となる。グループは添字iで示されており、i=0,・・・,L−9となっている。
【0113】
グループ分けに関しては本実施の形態以外にも様々な方法が考えられる。本実施の形態はその一例にすぎない。
【0114】
次に、ステップ610において、ディジタル信号処理部8Aは、楕円パラメータの演算を行う。楕円方程式は、式(77)で表される。但し、条件式(78)及び(79)が必要である。
【0115】
式(77)の左辺を計算すれば式(80)が得られる。この式(80)のI,Qに対して前記(I1i,Q1i),(I2i,Q2i),(I3i,Q3i)を代入することで式(81),(82)及び(83)が得られる。
【0116】
次に、式(81),(82),(83)をパラメータb,c,hに関して解けば良い。つまり、パラメータb,c,hは、式(84),(85),(86),(87)によって得られる。
【0117】
次に、ステップ620において、ディジタル信号処理部8Aは、得られたパラメータb,c,hそれぞれについて妥当な値の選別を行う。条件式(78)を確認し、上記条件を満足すれば後で行う平均処理のデータとして採用するが、そうでなければこのグループで算出した全てのパラメータを無効とし、平均処理から除外する。
【0118】
次に、パラメータbについて、条件式(88)を確認する。ここでも前記条件を満足すれば後で行う平均処理のデータとして採用するが、そうでなければこのグループで算出した全てのパラメータを無効とし、平均処理から除外する。
【0119】
次に、楕円の{I軸方向の半径}=−cがある適当な範囲内にあることを条件式(89)により確認する。ここでも前記条件を満足すれば後で行う平均処理のデータとして採用するが、そうでなければこのグループで算出した全てのパラメータを無効とし、平均処理から除外する。条件式(89)を満足する時、自ずから条件式(79)は満足される。
【0120】
次に、ステップ630において、ディジタル信号処理部8Aは、上記演算で選別された有効なパラメータを持つグループ(以下、VGと称する。)に関して平均処理を行う。この平均処理はVG総数をNとすれば、式(90)、(91)及び(92)を実行することで算出される。
【0121】
次に、ステップ640において、ディジタル信号処理部8Aは、データ(I,Q)を半径1の円周上に再配置する。つまり、もとのサンプルデータ(I,Q)は変調時の角度θjを用いて、式(93)と表される。ここで(Inew,Qnew)=(cosθ,sinθ)とすることで半径1の円周の正しい位相点にマッピングすることができる。
【0122】
式(94)の演算を行う。ここで得られたデータ(Inew,Qnew)が、図4に示すような、IQ振幅インバランスを除去し、IQの位相差を正しくπ/4に補正した受信データとなる。
【0123】
実施の形態7.
この発明の実施の形態7は、IQ歪みの推定かつ補正アルゴリズムと温度センサを内蔵する。まず、実動作以前、つまり製造時に、予め温度変化を与え、かつ、アンテナ端子より試験信号となる直交変調波を入力し、その際、前記温度センサから取得できる温度と、上記推定アルゴリズムを利用して推定できるIQ歪みに関するテーブルを作成しておく。そして、実動作時には、上記温度センサからの温度をキーとして上記テーブルよりIQ歪みの該当値を検索し、それを上記補正アルゴリズムに対して設定することによりIQ歪みを補正する。なお、上記IQ歪みは、上記各実施の形態で説明したDCオフセット、IQ振幅インバランス、あるいはIQの非直交を指す。
【0124】
この実施の形態7の構成について図17を参照しながら説明する。図17は、この発明の実施の形態7の復調系の構成を示すブロック図である。
【0125】
図17において、この実施の形態7に係るディジタル無線受信機は、アンテナ1と、高周波を中間周波数に変換するRF/IF変換器2と、IQを分離するIQ分離器3と、高周波等のノイズを除去するフィルタ4と、前記フィルタ4の出力をサンプリングする逓倍サンプラ7と、以下説明するアルゴリズムを実行するとともに直交位相復調を行うDSP等からなるディジタル信号処理部8Bと、温度を検出する温度センサ30と、テーブルを格納するEEPROM31と、上記テーブルを検索するCPU32とを備える。なお、上記逓倍サンプラ7は、例えば4倍オーバーサンプラである。また、上記CPU32はシステム制御用であって、マンマシン制御や上記各回路のタイミング制御などを行う。
【0126】
つぎに、この実施の形態7の動作について図18から図22までを参照しながら説明する。図18は、この実施の形態7に係るディジタル無線受信機の実動作前の動作を示すフローチャートである。図19は、この実施の形態7に係るディジタル無線受信機の実動作前の温度試験の様子を示す図である。図20は、この実施の形態7に係る恒温槽の時間と温度の関係を示す図である。図21は、この実施の形態7に係る温度とIQ歪みに関するテーブルを示す図である。また、図22は、この実施の形態7に係るディジタル無線受信機の実動作時の動作を示すフローチャートである。
【0127】
ここでは、IQ歪みの推定、補正方式に、例えば上記実施の形態1のアルゴリズムを用い、実動作中の温度変化に依存すること無くIQ歪みを除去可能な方式について説明する。
【0128】
まず、実動作以前(製品の場合は出荷前)について説明する。この実施の形態7に係るディジタル無線受信機が、図19に示すように、恒温槽40に入れられる。
【0129】
ステップ700において、ディジタル信号処理部8Bは、試験信号生成器41から発せられた直交変調波試験信号をアンテナ1を通じて入力し続ける。
【0130】
次に、ステップ710において、上記無線受信機に対し、恒温槽40にて、図20に示すように、温度変化が与えられる。この恒温槽40の温度は、上記無線受信機の温度とほぼ一致し、上記推定アルゴリズムが完了するまで保たれる。
【0131】
次に、ステップ720及び730において、ディジタル信号処理部8Bは、上記実施の形態1のアルゴリズムを用いて、DCオフセットに相当するパラメータ(g,f/b)と、IQ振幅インバランスを示すパラメータ√(b)を温度変化させるたびに推定し、CPU32に通知する。
【0132】
次に、ステップ740において、CPU32は、温度センサ30から温度を取得し、図21に示すような、温度とIQ歪みのテーブルを作成し、EEPROM31に記憶する。なお、上記ステップ710から上記ステップ740までの処理を温度を例えば10度づつ変化させながら繰り返す。温度変化は20度あるいは5度づつでもよく最適な値を選べばよい。
【0133】
つづいて、実動作時について図22を参照しながら説明する。
【0134】
ステップ750、760及び770において、CPU32は、温度センサ30から検出した温度を取得し、その温度をキーとして、EEPROM31のテーブルを検索する。そして、該当パラメータをディジタル信号処理部8Bへ通知する。
【0135】
ステップ780において、ディジタル信号処理部8Bは、CPU32から検索結果をうけとり、前記該当するパラメータを式(20)及び(21)に設定することにより、正しいIQ信号を得ることができる。
【0136】
なお、上記説明では上記実施の形態1のアルゴリズムを利用する場合を述べたが、他の実施の形態2〜6のアルゴリズムのいずれでもよい。
【0137】
実施の形態8.
この発明の実施の形態8は、DCオフセットの補正アルゴリズムと温度センサとを内蔵する。まず、実動作以前に、予め温度変化を与え、かつアンテナ端子より、試験信号となる位相平面上で偏りの無い直交信号を入力する。その際、得られたIデータ、Qデータをそれぞれ全て平均して、DCオフセットを算出する。温度センサから取得できる温度と、前記DCオフセットに関するテーブルを作成しておく。次に、実動作時には、温度センサからの温度をキーとして上記テーブルよりDCオフセットの該当値を検索し、受信したIQデータより、上記DCオフセットを減算することによりDCオフセット補正を行う。
【0138】
この実施の形態8について図23から図26までを参照しながら説明する。図23は、この実施の形態8に係るディジタル無線受信機の実動作前の動作を示すフローチャートである。図24は、この実施の形態8に係る恒温槽の時間と温度の関係を示す図である。図25は、この実施の形態8に係る温度とDCオフセットに関するテーブルを示す図である。また、図26は、この実施の形態8に係るディジタル無線受信機の実動作時の動作を示すフローチャートである。なお、システム構成は、図17に示す上記実施の形態7と同じである。
【0139】
ここでは、IQ位相が直交し、IQ振幅がバランスし、DCオフセットのみが発生する場合、実動作中の温度変化に依存すること無く、上記DCオフセットを除去可能な方式について説明する。上記実施の形態7では上記実施の形態1〜6のいずれかのアルゴリズムを利用したが、ここでは、より簡単に上記DCオフセットを推定、補正できる。
【0140】
温度試験の際に用いられる試験信号生成器41の出力であるIQ信号に、位相面上でその分布に偏りが無い直交信号、例えば式(95)及び(96)に示す信号を利用する。ここで、ωは適当な角周波数、tは時間、φは位相角を示す。
【0141】
まず、実動作以前(製品の場合は出荷前)について説明する。
【0142】
ステップ800において、ディジタル信号処理部8Bは、試験信号生成器41から発せられた上記直交信号試験信号をアンテナ1を通じて入力し続ける。
【0143】
次に、ステップ810において、上記無線受信機に対し、恒温槽40にて、図24に示すように、温度変化が与えられる。この恒温槽40の温度は、上記無線受信機の温度とほぼ一致し、上記推定アルゴリズムが完了するまで保たれる。
【0144】
次に、ステップ820において、ディジタル信号処理部8Bは、DCオフセットを算出する。すなわち、式(97)及び(98)の演算を実行する。ここで、Nはサンプル個数である。
【0145】
次に、ステップ830において、DCオフセットに相当するIoffset,Qoffsetを温度変化させるたびに推定し、CPU32に通知する。
【0146】
次に、ステップ840において、CPU32は、温度センサ30から温度を読み取り、図25に示すような、温度とDCオフセットのテーブルを作成し、EEPROM31に記憶する。なお、上記ステップ810から上記ステップ840までの処理を温度を例えば10度づつ変化させながら繰り返す。温度変化は20度あるいは5度づつでもよく最適な値を選べばよい。
【0147】
つづいて、実動作時について図26を参照しながら説明する。
【0148】
ステップ850、860及び870において、CPU32は、温度センサ30から検出した温度を取得し、その温度をキーとして、EEPROM31のテーブルを検索する。そして、該当DCオフセットをディジタル信号処理部8Bへ通知する。
【0149】
次に、ステップ880において、ディジタル信号処理部8Bは、CPU32から検索結果をうけとり、該当するDCオフセットを、得られた受信IQデータから減算することにより、正しいIQ信号を得ることができる。
【0150】
【数1】
Figure 0003549963
【0151】
【数2】
Figure 0003549963
【0152】
【数3】
Figure 0003549963
【0153】
【数4】
Figure 0003549963
【0154】
【数5】
Figure 0003549963
【0155】
【数6】
Figure 0003549963
【0156】
【数7】
Figure 0003549963
【0157】
【数8】
Figure 0003549963
【0158】
【数9】
Figure 0003549963
【0159】
【数10】
Figure 0003549963
【0160】
【数11】
Figure 0003549963
【0161】
【数12】
Figure 0003549963
【0162】
【数13】
Figure 0003549963
【0163】
【数14】
Figure 0003549963
【0164】
【数15】
Figure 0003549963
【0165】
【数16】
Figure 0003549963
【0166】
【数17】
Figure 0003549963
【0167】
【数18】
Figure 0003549963
【0168】
【数19】
Figure 0003549963
【0169】
【数20】
Figure 0003549963
【0170】
【数21】
Figure 0003549963
【0171】
【数22】
Figure 0003549963
【0172】
【数23】
Figure 0003549963
【0173】
【数24】
Figure 0003549963
【0174】
【数25】
Figure 0003549963
【0175】
【数26】
Figure 0003549963
【0176】
【数27】
Figure 0003549963
【0177】
【数28】
Figure 0003549963
【0178】
【数29】
Figure 0003549963
【0179】
【数30】
Figure 0003549963
【0180】
【数31】
Figure 0003549963
【0181】
【数32】
Figure 0003549963
【0182】
【数33】
Figure 0003549963
【0183】
【数34】
Figure 0003549963
【0184】
【数35】
Figure 0003549963
【0185】
【数36】
Figure 0003549963
【0186】
【数37】
Figure 0003549963
【0187】
【数38】
Figure 0003549963
【0188】
【数39】
Figure 0003549963
【0189】
【数40】
Figure 0003549963
【0190】
【数41】
Figure 0003549963
【0191】
【数42】
Figure 0003549963
【0192】
【数43】
Figure 0003549963
【0193】
【数44】
Figure 0003549963
【0194】
【数45】
Figure 0003549963
【0195】
【数46】
Figure 0003549963
【0196】
【数47】
Figure 0003549963
【0197】
【数48】
Figure 0003549963
【0198】
【数49】
Figure 0003549963
【0199】
【数50】
Figure 0003549963
【0200】
【数51】
Figure 0003549963
【0201】
【数52】
Figure 0003549963
【0202】
【数53】
Figure 0003549963
【0203】
【数54】
Figure 0003549963
【0204】
【数55】
Figure 0003549963
【0205】
【数56】
Figure 0003549963
【0206】
【数57】
Figure 0003549963
【0207】
【数58】
Figure 0003549963
【0208】
【数59】
Figure 0003549963
【0209】
【数60】
Figure 0003549963
【0210】
【数61】
Figure 0003549963
【0211】
【数62】
Figure 0003549963
【0212】
【数63】
Figure 0003549963
【0213】
【数64】
Figure 0003549963
【0214】
【数65】
Figure 0003549963
【0215】
【数66】
Figure 0003549963
【0216】
【数67】
Figure 0003549963
【0217】
【数68】
Figure 0003549963
【0218】
【数69】
Figure 0003549963
【0219】
【数70】
Figure 0003549963
【0220】
【数71】
Figure 0003549963
【0221】
【数72】
Figure 0003549963
【0222】
【数73】
Figure 0003549963
【0223】
【数74】
Figure 0003549963
【0224】
【数75】
Figure 0003549963
【0225】
【数76】
Figure 0003549963
【0226】
【数77】
Figure 0003549963
【0227】
【数78】
Figure 0003549963
【0228】
【数79】
Figure 0003549963
【0229】
【数80】
Figure 0003549963
【0230】
【数81】
Figure 0003549963
【0231】
【数82】
Figure 0003549963
【0232】
【数83】
Figure 0003549963
【0233】
【数84】
Figure 0003549963
【0234】
【数85】
Figure 0003549963
【0235】
【数86】
Figure 0003549963
【0236】
【数87】
Figure 0003549963
【0237】
【数88】
Figure 0003549963
【0238】
【数89】
Figure 0003549963
【0239】
【数90】
Figure 0003549963
【0240】
【数91】
Figure 0003549963
【0241】
【数92】
Figure 0003549963
【0242】
【数93】
Figure 0003549963
【0243】
【数94】
Figure 0003549963
【0244】
【数95】
Figure 0003549963
【0245】
【数96】
Figure 0003549963
【0246】
【数97】
Figure 0003549963
【0247】
【数98】
Figure 0003549963
【0248】
【発明の効果】
この発明に係るディジタル無線受信機は、以上説明したとおり、予め試験信号について温度変化による歪みが推定されその歪みを保持する保持手段と、受信信号を受信する受信手段と、前記受信信号の歪みを推定し、前記受信信号から前記推定した歪み及び前記保持した歪みを排除して正常な受信信号を得て、前記正常な受信信号に基づいて復調し復調信号を出力する復調手段とを備えたディジタル無線受信機であって、前記受信手段は、高周波を受信するアンテナと、前記高周波を中間周波数に変換するRF/IF変換器、前記中間周波数のIQを分離するIQ分離器と、前記IQ分離器の出力からノイズを除去するフィルタと、前記フィルタの出力をサンプリングする逓倍サンプラとを含み、前記復調手段は、前記正常な受信信号に基づいて直交位相復調を行うディジタル信号処理部であり、前記保持手段は、温度変化毎の歪みデータを記憶するメモリであり、さらに、CPUと温度を検出する温度センサとを備え、実動作以前に、前記ディジタル信号処理部は、温度変化毎に前記サンプリングされた直交変調波試験信号のデータを入力し、所定のアルゴリズムにより前記直交変調波試験信号の歪みを推定し、前記CPUは、前記温度センサから取得できる温度と前記推定した歪みデータに関するテーブルを前記メモリに作成し、実動作時には、前記CPUは、前記温度センサによって検出された温度をキーとして前記テーブルより該当歪みデータを検索して前記ディジタル信号処理部へ通知し、前記ディジタル信号処理部は、IQ位相が直交していることが予め保証されている場合、前記サンプリングされた直交位相被復調波のデータを、複数のIQ座標毎のグループに分割し、各グループ毎に前記複数のIQ座標を通る楕円方程式のパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値に基づいて前記直交位相被復調波のデータから歪みを除去するとともに、前記検索された歪みデータに基づいて前記直交位相被復調波のデータから歪みを除去するので、特別なハードウエアの実装を必要とせず効率的にIQ歪みの推定、補正を行うことができるという効果を奏する。
【0252】
また、この発明に係るディジタル無線受信機は、以上説明したとおり、前記ディジタル信号処理部が、DCオフセットとIQ振幅インバランスが発生しているときは、前記サンプリングデータを4つのIQ座標毎のグループに分割し、各グループ毎に前記4つのIQ座標を通る楕円方程式の振幅と中心座標に関するパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値をもってIQ振幅比とDCオフセット量とし、前記サンプリングデータから前記DCオフセット量を差し引き、さらに前記差し引いた値に前記IQ振幅比を乗算するので、特別なハードウエアの実装を必要とせず効率的にIQ歪みの推定、補正を行うことができるという効果を奏する。
【0253】
また、この発明に係るディジタル無線受信機は、以上説明したとおり、前記ディジタル信号処理部が、DCオフセットが発生しているときは、前記サンプリングデータを3つのIQ座標毎のグループに分割し、各グループ毎に前記3つのIQ座標を通る円方程式の中心座標に関するパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値をもってDCオフセット量とし、前記サンプリングデータから前記DCオフセット量を差し引くので、特別なハードウエアの実装を必要とせず効率的にIQ歪みの推定、補正を行うことができるという効果を奏する。
【0254】
また、この発明に係るディジタル無線受信機は、以上説明したとおり、前記ディジタル信号処理部が、IQ振幅インバランスが発生しているときは、前記サンプリングデータを2つのIQ座標毎のグループに分割し、各グループ毎に前記2つのIQ座標を通る楕円方程式の振幅に関するパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値をもってIQ振幅比とし、前記サンプリングデータに前記IQ振幅比を乗算するので、特別なハードウエアの実装を必要とせず効率的にIQ歪みの推定、補正を行うことができるという効果を奏する。
【0256】
また、この発明に係るディジタル無線受信機は、以上説明したとおり、予め試験信号について温度変化による歪みが推定されその歪みを保持する保持手段と、受信信号を受信する受信手段と、前記受信信号の歪みを推定し、前記受信信号から前記推定した歪み及び前記保持した歪みを排除して正常な受信信号を得て、前記正常な受信信号に基づいて復調し復調信号を出力する復調手段とを備えたディジタル無線受信機であって、前記受信手段は、高周波を受信するアンテナと、前記高周波を中間周波数に変換するRF/IF変換器、前記中間周波数のIQを分離するIQ分離器と、前記IQ分離器の出力からノイズを除去するフィルタと、前記フィルタの出力をサンプリングする逓倍サンプラとを含み、前記復調手段は、前記正常な受信信号に基づいて直交位相復調を行うディジタル信号処理部であり、前記保持手段は、温度変化毎の歪みデータを記憶するメモリであり、さらに、CPUと温度を検出する温度センサとを備え、実動作以前に、前記ディジタル信号処理部は、温度変化毎に前記サンプリングされた直交変調波試験信号のデータを入力し、所定のアルゴリズムにより前記直交変調波試験信号の歪みを推定し、前記CPUは、前記温度センサから取得できる温度と前記推定した歪みデータに関するテーブルを前記メモリに作成し、実動作時には、前記CPUは、前記温度センサによって検出された温度をキーとして前記テーブルより該当歪みデータを検索して前記ディジタル信号処理部へ通知し、前記ディジタル信号処理部が、IQ位相が非直交の場合、前記サンプリングされた直交位相被復調波のデータを、複数のIQ座標毎のグループに分割し、各グループ毎に前記複数のIQ座標を通る楕円方程式のパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値及び前記検索された歪みデータに基づいて正しい位相角を推定し、半径1の円周上にその位相角に該当するデータを配置しなおすので、特別なハードウエアの実装を必要とせず効率的にIQ歪みの推定、補正を行うことができるという効果を奏する。
【0257】
また、この発明に係るディジタル無線受信機は、以上説明したとおり、前記ディジタル信号処理部が、DCオフセットとIQ振幅インバランスが発生しているときは、前記サンプリングデータを5つのIQ座標毎のグループに分割し、各グループ毎に前記5つのIQ座標を通る楕円方程式のパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値からDCオフセット量を推定し、前記サンプリングデータから前記DCオフセット量を差し引き、さらに前記妥当なパラメータの平均値より正しい位相角を推定し、半径1の円周上にその位相角に該当するデータを配置しなおすので、特別なハードウエアの実装を必要とせず効率的にIQ歪みの推定、補正を行うことができるという効果を奏する。
【0258】
また、この発明に係るディジタル無線受信機は、以上説明したとおり、前記ディジタル信号処理部が、IQ振幅インバランスが発生しているときは、前記サンプリングデータを3つのIQ座標毎のグループに分割し、各グループ毎に前記3つのIQ座標を通る楕円方程式のパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値から正しい位相角を推定し、半径1の円周上にその位相角に該当するデータを配置しなおすので、特別なハードウエアの実装を必要とせず効率的にIQ歪みの推定、補正を行うことができるという効果を奏する。
【0264】
さらに、この発明に係るディジタル無線受信機は、以上説明したとおり、予め試験信号について温度変化による歪みが推定されその歪みを保持する保持手段と、受信信号を受信する受信手段と、前記受信信号の歪みを推定し、前記受信信号から前記推定した歪み及び前記保持した歪みを排除して正常な受信信号を得て、前記正常な受信信号に基づいて復調し復調信号を出力する復調手段とを備えたディジタル無線受信機であって、前記受信手段は、高周波を受信するアンテナと、前記高周波を中間周波数に変換するRF/IF変換器、前記中間周波数のIQを分離するIQ分離器と、前記IQ分離器の出力からノイズを除去するフィルタと、前記フィルタの出力をサンプリングする逓倍サンプラとを含み、前記復調手段は、前記正常な受信信号に基づいて直交位相復調を行うディジタル信号処理部であり、前記保持手段は、温度変化毎の歪みデータを記憶するメモリであり、さらに、CPUと温度を検出する温度センサとを備え、DCオフセットのみが発生することが予め保証されている場合、実動作以前に、前記ディジタル信号処理部が、温度変化毎に位相平面上で偏りの無い前記サンプリングされた直交試験信号のデータを入力し、得られたIデータ、Qデータをそれぞれ全て平均してDCオフセットを推定し、前記CPUが、前記温度センサから取得できる温度と前記推定したDCオフセットに関するテーブルを前記メモリに作成し、実動作時には、前記CPUが、前記温度センサによって検出された温度をキーとして前記テーブルより該当推定DCオフセットを検索し、前記ディジタル信号処理部が、前記検索された推定DCオフセットに基づいて前記受信信号から前記推定DCオフセットを減算するので、実動作中の温度変化が顕著な場合でも、特別なハードウエアの実装を必要とせず効率的にIQ歪みの推定、補正を行うことができるという効果を奏する。
【図面の簡単な説明】
【図1】この発明の実施の形態1の復調系の構成を示すブロック図である。
【図2】前記実施の形態1に係るディジタル信号処理部の動作(アルゴリズム)を示すフローチャートである。
【図3】前記実施の形態1に係るIQ平面の直交位相被復調波であって、IQ位相が直交し、DCオフセット、IQ振幅インバランスが発生している直交位相被復調波を示す図である。
【図4】前記実施の形態1に係るIQ歪みのない望ましいIQ平面の直交位相被復調波を示す図である。
【図5】この発明の実施の形態2に係るディジタル信号処理部の動作を示すフローチャートである。
【図6】前記実施の形態2に係るIQ平面の直交位相被復調波であって、IQ位相が直交し、IQ振幅インバランスが生じない、もしくはその程度が軽微であることが予め保証されていて、DCオフセットのみが発生している直交位相被復調波を示す図である。
【図7】前記実施の形態2に係るIQ平面においてサンプル点に偏りのある場合を示す図である。
【図8】この発明の実施の形態3に係るディジタル信号処理部の動作を示すフローチャートである。
【図9】前記実施の形態3に係るIQ平面の直交位相被復調波であって、IQ位相が直交し、DCオフセットが生じない、もしくはその程度が軽微であり、IQ振幅インバランスのみ発生している直交位相被復調波を示す図である。
【図10】この発明の実施の形態4に係るディジタル信号処理部の動作を示すフローチャートである。
【図11】前記実施の形態4に係るIQ平面のπ/4シフトQPSK被復調波であって、IQ位相が直交し、IQ振幅はバランスし、DCオフセットのみが発生しているπ/4シフトQPSK被復調波を示す図である。
【図12】前記実施の形態4に係るIQ歪みのない望ましいIQ平面のπ/4シフトQPSK被復調波を示す図である。
【図13】この発明の実施の形態5に係るディジタル信号処理部の動作を示すフローチャートである。
【図14】前記実施の形態5に係るIQ平面の直交位相被復調波であって、IQが直交することが保証されず、IQ振幅インバランス及びDCオフセットが発生している直交位相被復調波を示す図である。
【図15】この発明の実施の形態6に係るディジタル信号処理部の動作を示すフローチャートである。
【図16】前記実施の形態6に係るIQ平面の直交位相被復調波であって、IQのDCオフセットは発生していない、もしくは軽微であることが予め保証されていて、位相が非直交で、IQ振幅インバランスが発生している直交位相被復調波を示す図である。
【図17】この発明の実施の形態7の復調系の構成を示すブロック図である。
【図18】前記実施の形態7に係るディジタル無線受信機の実動作前の動作を示すフローチャートである。
【図19】前記実施の形態7に係るディジタル無線受信機の実動作前の温度試験の様子を示す図である。
【図20】前記実施の形態7に係る恒温槽の時間と温度の関係を示す図である。
【図21】前記実施の形態7に係る温度とIQ歪みに関するテーブルを示す図である。
【図22】前記実施の形態7に係るディジタル無線受信機の実動作時の動作を示すフローチャートである。
【図23】この発明の実施の形態8に係るディジタル無線受信機の実動作前の動作を示すフローチャートである。
【図24】前記実施の形態8に係る恒温槽の時間と温度の関係を示す図である。
【図25】前記実施の形態8に係る温度とDCオフセットに関するテーブルを示す図である。
【図26】前記実施の形態8に係るディジタル無線受信機の実動作時の動作を示すフローチャートである。
【図27】従来のディジタル無線受信機の復調系の構成を示すブロック図である。
【図28】図27のDCオフセット除去回路を示す図である。
【図29】図27のIQ振幅インバランス補正回路を示す図である。
【符号の説明】
1 アンテナ、2 RF/IF変換器、3 IQ分離器、4 フィルタ、7 逓倍サンプラ、8A、8B ディジタル信号処理部、30 温度センサ、31 EEPROM、32 CPU、40 恒温槽、41 試験信号生成器。

Claims (8)

  1. 予め試験信号について温度変化による歪みが推定されその歪みを保持する保持手段と、受信信号を受信する受信手段と、前記受信信号の歪みを推定し、前記受信信号から前記推定した歪み及び前記保持した歪みを排除して正常な受信信号を得て、前記正常な受信信号に基づいて復調し復調信号を出力する復調手段とを備えたディジタル無線受信機であって、
    前記受信手段は、高周波を受信するアンテナと、前記高周波を中間周波数に変換するRF/IF変換器、前記中間周波数のIQを分離するIQ分離器と、前記IQ分離器の出力からノイズを除去するフィルタと、前記フィルタの出力をサンプリングする逓倍サンプラとを含み、
    前記復調手段は、前記正常な受信信号に基づいて直交位相復調を行うディジタル信号処理部であり、
    前記保持手段は、温度変化毎の歪みデータを記憶するメモリであり、
    さらに、CPUと温度を検出する温度センサとを備え、
    実動作以前に、前記ディジタル信号処理部は、温度変化毎に前記サンプリングされた直交変調波試験信号のデータを入力し、所定のアルゴリズムにより前記直交変調波試験信号の歪みを推定し、前記CPUは、前記温度センサから取得できる温度と前記推定した歪みデータに関するテーブルを前記メモリに作成し、
    実動作時には、前記CPUは、前記温度センサによって検出された温度をキーとして前記テーブルより該当歪みデータを検索して前記ディジタル信号処理部へ通知し、
    前記ディジタル信号処理部は、IQ位相が直交していることが予め保証されている場合、前記サンプリングされた直交位相被復調波のデータを、複数のIQ座標毎のグループに分割し、各グループ毎に前記複数のIQ座標を通る楕円方程式のパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値に基づいて前記直交位相被復調波のデータから歪みを除去するとともに、前記検索された歪みデータに基づいて前記直交位相被復調波のデータから歪みを除去する
    ディジタル無線受信機。
  2. 前記ディジタル信号処理部は、DCオフセットとIQ振幅インバランスが発生しているときは、前記サンプリングデータを4つのIQ座標毎のグループに分割し、各グループ毎に前記4つのIQ座標を通る楕円方程式の振幅と中心座標に関するパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値をもってIQ振幅比とDCオフセット量とし、前記サンプリングデータから前記DCオフセット量を差し引き、さらに前記差し引いた値に前記IQ振幅比を乗算する請求項1記載のディジタル無線受信機。
  3. 前記ディジタル信号処理部は、DCオフセットが発生しているときは、前記サンプリングデータを3つのIQ座標毎のグループに分割し、各グループ毎に前記3つのIQ座標を通る円方程式の中心座標に関するパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値をもってDCオフセット量とし、前記サンプリングデータから前記DCオフセット量を差し引く請求項1記載のディジタル無線受信機。
  4. 前記ディジタル信号処理部は、IQ振幅インバランスが発生しているときは、前記サンプリングデータを2つのIQ座標毎のグループに分割し、各グループ毎に前記2つのIQ座標を通る楕円方程式の振幅に関するパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値をもってIQ振幅比とし、前記サンプリングデータに前記IQ振幅比を乗算する請求項1記載のディジタル無線受信機。
  5. 予め試験信号について温度変化による歪みが推定されその歪みを保持する保持手段と、受信信号を受信する受信手段と、前記受信信号の歪みを推定し、前記受 信信号から前記推定した歪み及び前記保持した歪みを排除して正常な受信信号を得て、前記正常な受信信号に基づいて復調し復調信号を出力する復調手段とを備えたディジタル無線受信機であって、
    前記受信手段は、高周波を受信するアンテナと、前記高周波を中間周波数に変換するRF/IF変換器、前記中間周波数のIQを分離するIQ分離器と、前記IQ分離器の出力からノイズを除去するフィルタと、前記フィルタの出力をサンプリングする逓倍サンプラとを含み、
    前記復調手段は、前記正常な受信信号に基づいて直交位相復調を行うディジタル信号処理部であり、
    前記保持手段は、温度変化毎の歪みデータを記憶するメモリであり、
    さらに、CPUと温度を検出する温度センサとを備え、
    実動作以前に、前記ディジタル信号処理部は、温度変化毎に前記サンプリングされた直交変調波試験信号のデータを入力し、所定のアルゴリズムにより前記直交変調波試験信号の歪みを推定し、前記CPUは、前記温度センサから取得できる温度と前記推定した歪みデータに関するテーブルを前記メモリに作成し、
    実動作時には、前記CPUは、前記温度センサによって検出された温度をキーとして前記テーブルより該当歪みデータを検索して前記ディジタル信号処理部へ通知し、
    前記ディジタル信号処理部は、IQ位相が非直交の場合、前記サンプリングされた直交位相被復調波のデータを、複数のIQ座標毎のグループに分割し、各グループ毎に前記複数のIQ座標を通る楕円方程式のパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値及び前記検索された歪みデータに基づいて正しい位相角を推定し、半径1の円周上にその位相角に該当するデータを配置しなおす
    ディジタル無線受信機。
  6. 前記ディジタル信号処理部は、DCオフセットとIQ振幅インバランスが発生しているときは、前記サンプリングデータを5つのIQ座標毎のグループに分割し、各グループ毎に前記5つのIQ座標を通る楕円方程式のパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値からDCオフセット量を推定し、前記サンプリングデータから前記DCオフセット量を差し引き、さらに前記妥当なパラメータの平均値より正しい位相角を推定し、半径1の円周上にその位相角に該当するデータを配置しなおす請求項5記載のディジタル無線受信機。
  7. 前記ディジタル信号処理部は、IQ振幅インバランスが発生しているときは、前記サンプリングデータを3つのIQ座標毎のグループに分割し、各グループ毎に前記3つのIQ座標を通る楕円方程式のパラメータを推定し、前記パラメータの物理的妥当性を検証して妥当なパラメータを持つグループを選定し、前記選定したグループのパラメータを平均し、その平均値から正しい位相角を推定し、半径1の円周上にその位相角に該当するデータを配置しなおす請求項5記載のディジタル無線受信機。
  8. 予め試験信号について温度変化による歪みが推定されその歪みを保持する保持手段と、受信信号を受信する受信手段と、前記受信信号の歪みを推定し、前記受信信号から前記推定した歪み及び前記保持した歪みを排除して正常な受信信号を得て、前記正常な受信信号に基づいて復調し復調信号を出力する復調手段とを備えたディジタル無線受信機であって、
    前記受信手段は、高周波を受信するアンテナと、前記高周波を中間周波数に変換するRF/IF変換器、前記中間周波数のIQを分離するIQ分離器と、前記IQ分離器の出力からノイズを除去するフィルタと、前記フィルタの出力をサンプリングする逓倍サンプラとを含み、
    前記復調手段は、前記正常な受信信号に基づいて直交位相復調を行うディジタル信号処理部であり、
    前記保持手段は、温度変化毎の歪みデータを記憶するメモリであり、
    さらに、CPUと温度を検出する温度センサとを備え、DCオフセットのみが発生することが予め保証されている場合、
    実動作以前に、前記ディジタル信号処理部は、温度変化毎に位相平面上で偏りの無い前記サンプリングされた直交試験信号のデータを入力し、得られたIデータ、Qデータをそれぞれ全て平均してDCオフセットを推定し、前記CPUは、前記温度センサから取得できる温度と前記推定したDCオフセットに関するテーブルを前記メモリに作成し、
    実動作時には、前記CPUは、前記温度センサによって検出された温度をキーとして前記テーブルより該当推定DCオフセットを検索し、前記ディジタル信号処理部は、前記検索された推定DCオフセットに基づいて前記受信信号から前記推定DCオフセットを減算する
    ディジタル無線受信機。
JP28574295A 1995-11-02 1995-11-02 ディジタル無線受信機 Expired - Fee Related JP3549963B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28574295A JP3549963B2 (ja) 1995-11-02 1995-11-02 ディジタル無線受信機
US08/562,285 US6035004A (en) 1995-11-02 1995-11-22 Digital radio receiver
CA002164027A CA2164027C (en) 1995-11-02 1995-11-29 Digital radio receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28574295A JP3549963B2 (ja) 1995-11-02 1995-11-02 ディジタル無線受信機

Publications (2)

Publication Number Publication Date
JPH09130337A JPH09130337A (ja) 1997-05-16
JP3549963B2 true JP3549963B2 (ja) 2004-08-04

Family

ID=17695468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28574295A Expired - Fee Related JP3549963B2 (ja) 1995-11-02 1995-11-02 ディジタル無線受信機

Country Status (3)

Country Link
US (1) US6035004A (ja)
JP (1) JP3549963B2 (ja)
CA (1) CA2164027C (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864754A (en) 1996-02-05 1999-01-26 Hotto; Robert System and method for radio signal reconstruction using signal processor
US8280334B2 (en) 1996-02-05 2012-10-02 American Radio Llc System and method for radio signal reconstruction using signal processor
US20050195911A1 (en) * 1999-10-13 2005-09-08 Cellaxon Co. Communication system
US6801581B1 (en) * 2000-09-13 2004-10-05 Intel Corporation DC offset cancellation
US7167513B2 (en) * 2001-12-31 2007-01-23 Intel Corporation IQ imbalance correction
US20050111593A1 (en) * 2002-08-30 2005-05-26 Fujitsu Limited Decoding apparatus
US7272375B2 (en) 2004-06-30 2007-09-18 Silicon Laboratories Inc. Integrated low-IF terrestrial audio broadcast receiver and associated method
US20060070160A1 (en) * 2004-10-05 2006-04-06 Reitz Neal M Decorative face mask for use at sporting events
US20060182209A1 (en) * 2005-02-17 2006-08-17 Lockheed Martin Corporation Multi-sampling monobit receiver
GB2427090B (en) * 2005-06-08 2011-01-12 Zarlink Semiconductor Ltd Method of reducing imbalance in a quadrature frequency converter, method of measuring imbalance in such a converter, and apparatus for performing such method
US7747177B2 (en) * 2005-08-15 2010-06-29 Alcatel-Lucent Usa Inc. Coherent phase-shift-keying
US7622987B1 (en) 2007-01-25 2009-11-24 Pmc-Sierra, Inc. Pattern-based DC offset correction
US20120300818A1 (en) * 2011-03-31 2012-11-29 Qualcomm Incorporated Self-calibration i/q imbalance reduction
US8611479B2 (en) * 2011-12-08 2013-12-17 Motorola Solutions, Inc. Method for correcting imbalance errors in a direct conversion receiver
JP6116807B2 (ja) * 2012-03-07 2017-04-19 古河電気工業株式会社 レーダ装置およびレーダ装置の調整方法
US9042487B2 (en) * 2012-08-13 2015-05-26 Texas Instruments Incorporated Blind I/Q mismatch compensation with receiver non-linearity
JP6003418B2 (ja) * 2012-09-05 2016-10-05 日本電気株式会社 無線通信装置、無線通信装置iqインバランス補正制御方法およびそのプログラム
CA2954946C (en) * 2014-07-30 2019-04-09 Halliburton Energy Services, Inc. Distributed sensing systems and methods with i/q data balancing based on ellipse fitting
JP6452145B2 (ja) * 2014-12-12 2019-01-16 Necスペーステクノロジー株式会社 レーダ装置の信号処理装置、レーダ装置、および校正式作成方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825746A (ja) * 1981-08-10 1983-02-16 Fujitsu Ltd 搬送波再生回路
US5168507A (en) * 1986-08-07 1992-12-01 International Mobile Machines Corporation Automatic adaptive equalizer
US5245611A (en) * 1991-05-31 1993-09-14 Motorola, Inc. Method and apparatus for providing carrier frequency offset compensation in a tdma communication system
JPH05122263A (ja) * 1991-10-25 1993-05-18 Sharp Corp 復調回路
JP3156439B2 (ja) * 1993-04-20 2001-04-16 三菱電機株式会社 歪補償回路
JP2883260B2 (ja) * 1993-04-20 1999-04-19 三菱電機株式会社 歪補償回路
JP3426045B2 (ja) * 1994-10-06 2003-07-14 東洋通信機株式会社 シンセサイザ発振器の温度補償方法
US5552749A (en) * 1995-06-26 1996-09-03 Motorola, Inc. Method for automatically compensating for accuracy degradation of a reference oscillator

Also Published As

Publication number Publication date
CA2164027A1 (en) 1997-05-03
US6035004A (en) 2000-03-07
JPH09130337A (ja) 1997-05-16
CA2164027C (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP3549963B2 (ja) ディジタル無線受信機
KR100770924B1 (ko) 무선 통신 시스템에서 주파수 오차 보상 장치 및 방법
JP3556047B2 (ja) ディジタル放送受信機
CN103262488B (zh) 用于同相和正交(iq)失衡估计的可控频率偏移
JP2010525710A (ja) Ofdm受信機におけるiqインバランス補正方法及び装置
US8976914B2 (en) Multi-tap IQ imbalance estimation and correction circuit and method
GB2313270A (en) Digital Broadcasting Receiver
JP2001505016A (ja) デジタル直角変調及び復調方法、並びにデジタル直角変調器及び復調器
JP4279027B2 (ja) Ofdm復調方法及び半導体集積回路
JPWO2009041671A1 (ja) Cfoおよびi/qインバランスの補正係数の算出方法とそれを用いた補正方法とパイロット信号の送信方法
JP2005102169A (ja) Ofdm受信装置およびofdm受信方法
CN108512802A (zh) 用于同相和正交相位失配补偿的电路、方法和接收装置
CN112887238A (zh) 一种iq不平衡的校正方法及装置、接收机
JPH1023086A (ja) 変調精度測定装置
JPH10303851A (ja) デジタル放送受信機
US8064542B1 (en) Systems and methods for I/Q imbalance correction and calibration of variable modulus signals
JP2003032313A (ja) デジタル通信受信機における受信信号のデジタル復調装置および方法
US20110206105A1 (en) Method for determining hybrid domain compensation parameters for analog loss in ofdm communication systems and compensating for the same
TWI502935B (zh) 估測補償方法及裝置
JPH0823358A (ja) 周波数誤差検出方法
JP3229486B2 (ja) 移動通信端末機
EP1838030A2 (en) Uplink signal receiving method and apparatus using successive interference cancellation in wireless transmission system based on OFDMA
KR100760793B1 (ko) 동기 수신기에서의 직교 및 이득 에러의 정정
JP2000124961A (ja) オフセットqpsk変調解析方式
JPH10210093A (ja) 信号オフセット除去方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees