JP3486859B2 - Liquid crystal display - Google Patents

Liquid crystal display

Info

Publication number
JP3486859B2
JP3486859B2 JP21489696A JP21489696A JP3486859B2 JP 3486859 B2 JP3486859 B2 JP 3486859B2 JP 21489696 A JP21489696 A JP 21489696A JP 21489696 A JP21489696 A JP 21489696A JP 3486859 B2 JP3486859 B2 JP 3486859B2
Authority
JP
Japan
Prior art keywords
liquid crystal
common electrode
electrode
video signal
scanning signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21489696A
Other languages
Japanese (ja)
Other versions
JPH103092A (en
Inventor
直人 広田
Original Assignee
大林精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16663362&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3486859(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 大林精工株式会社 filed Critical 大林精工株式会社
Priority to JP21489696A priority Critical patent/JP3486859B2/en
Priority to TW86108024A priority patent/TW494265B/en
Publication of JPH103092A publication Critical patent/JPH103092A/en
Application granted granted Critical
Publication of JP3486859B2 publication Critical patent/JP3486859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、広視野角・高画質の大
画面アクティブマトリックス型液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large screen active matrix type liquid crystal display device having a wide viewing angle and high image quality.

【0002】[0002]

【従来の技術】従来のアクティブマトリックス型液晶表
示装置の一方の基板上に形成した櫛歯状電極対を用いて
液晶組成物層に電界を印加する方式が、例えば、特開平
7−36058号や特開平7−159786号公報によ
り提案されている。以下液晶組成物層に印加する主たる
電界方向が、基板界面にほぼ平行な方向である表示方式
を横電界方式と称する。図1と図2が従来の横電界方式
の例である。共通電極と走査信号配線は同じ層に形
成されている。さらに映像信号配線と液晶駆動電極
も同じ層に形成されている。共通電極と液晶駆動電極
とは、異なる層に分離形成されているが、直線状で平
行櫛歯状に配置されている。走査信号配線と映像信号
配線も同様に直線状平行配置で形成されている。共通
電極と映像信号配線とは、重ならないように配置さ
れている。付加容量は、共通電極と、液晶駆動電極
とを、絶縁膜を介して互いに重畳させることで形成して
いる。画素面積の半分ちかくをしめる共通電極と液晶
駆動電極の表面に関しては、使用している金属材料そ
のままか、ショートをふせぐための自己酸化膜か、自己
窒化膜で被覆している。
2. Description of the Related Art A method of applying an electric field to a liquid crystal composition layer using a comb-teeth-shaped electrode pair formed on one substrate of a conventional active matrix type liquid crystal display device is disclosed in, for example, Japanese Patent Laid-Open No. 7-36058. It is proposed by Japanese Patent Laid-Open No. 7-159786. Hereinafter, a display system in which the main electric field direction applied to the liquid crystal composition layer is a direction substantially parallel to the substrate interface is referred to as a lateral electric field system. 1 and 2 show an example of a conventional lateral electric field method. The common electrode and the scanning signal wiring are formed in the same layer. Further, the video signal wiring and the liquid crystal drive electrode are also formed in the same layer. Although the common electrode and the liquid crystal drive electrode are formed separately in different layers, they are linearly arranged in parallel comb teeth. Similarly, the scanning signal lines and the video signal lines are also formed in a linear parallel arrangement. The common electrode and the video signal wiring are arranged so as not to overlap each other. The additional capacitance is formed by overlapping the common electrode and the liquid crystal driving electrode with each other with an insulating film interposed therebetween. The surfaces of the common electrode and the liquid crystal driving electrode, which occupy half of the pixel area, are covered with the metal material used as it is, or with a self-oxidizing film or a self-nitriding film for preventing a short circuit.

【0003】[0003]

【発明が解決しようとする課題】上記の従来技術で横電
界方式の液晶表示装置を作る場合、走査信号配線と共
通電極が同じ層に形成されているために、ショートす
る確率が高い。同様に映像信号配線と液晶駆動電極
も同じ層に形成されているのでショートする確率が高
い。前者の場合には、水平ライン欠陥となり、後者は点
欠陥となって画像品位をいちじるしく低下させる。この
ために従来の構造では歩留りが低く生産コストが高くな
る問題があった。
When the horizontal electric field type liquid crystal display device is manufactured by the above-mentioned conventional technique, the probability of short circuit is high because the scanning signal wiring and the common electrode are formed in the same layer. Similarly, since the video signal wiring and the liquid crystal drive electrode are formed in the same layer, there is a high probability of short circuit. In the former case, a horizontal line defect occurs, and in the latter case, a point defect occurs, and the image quality is significantly deteriorated. Therefore, the conventional structure has a problem of low yield and high production cost.

【0004】横電界方式では、付加容量を形成しない
と、液晶駆動電極の容量が非常に小さくなるためにTF
Tのリーク電流の画面全体の不均一性がムラとなって見
えやすい。そのために、従来技術では共通電極と液晶
駆動電極とを異なる層に絶縁膜を介して分離形成し、
互いに重畳させることで形成しているが、大きな付加容
量を形成しようとした場合有効画面を縮少して重畳部分
の面積を拡大する方法しかなく光の透過率が悪い原因と
なっていた。
In the horizontal electric field system, the capacitance of the liquid crystal drive electrode becomes very small unless an additional capacitance is formed.
The non-uniformity of the leak current of T on the entire screen is likely to be uneven and visible. Therefore, in the conventional technique, the common electrode and the liquid crystal driving electrode are separately formed in different layers via an insulating film,
Although they are formed by overlapping each other, when trying to form a large additional capacitance, there is no other way but to enlarge the area of the overlapping portion by shrinking the effective screen, which causes a poor light transmittance.

【0005】図2にあるように共通電極と液晶駆動電
極が直線状で平行櫛歯状に配置されている従来型の横
電界方式では、図24にあるように、配向膜と液晶
のプレチルト角が視野角に大きな影響を与えることが知
られている。このため従来のTN液晶を用いたTFTで
使用されていたプレチルト3°〜8°の液晶と配向膜は
使用することができず、ひとつの製造ラインでTN方式
と横電界方式を生産する場合、配向膜と液晶を交換しな
けれがならず、生産効率が、いちじるしく低下する問題
があった。
In the conventional horizontal electric field system in which the common electrode and the liquid crystal driving electrode are linearly arranged in a parallel comb shape as shown in FIG. 2, the pretilt angle between the alignment film and the liquid crystal is as shown in FIG. Is known to greatly affect the viewing angle. Therefore, the liquid crystal having the pretilt of 3 ° to 8 ° and the alignment film, which are used in the TFT using the conventional TN liquid crystal, cannot be used, and when the TN method and the horizontal electric field method are produced in one production line, Since the alignment film and the liquid crystal must be exchanged, there was a problem that the production efficiency was drastically reduced.

【0006】横電界方式では、開口率が低く、うまく設
計しても高々50%程度である。有効画面の半分ちかく
が共通電極と液晶駆動電極とでしめられており、従
来の技術では、これらの電極の表面に反射防止の膜を形
成していないため、外部からカラーフィルターを通過し
て液晶層に侵入してきた光は、共通電極と液晶駆動電
極で反射され再度カラーフィルターを通過して外部に
出ていく。このため黒レベルが灰色側にうきあがるため
に、画面全体の黒レベルが従来のTN液晶方式よりも悪
るいという問題があった。
In the horizontal electric field system, the aperture ratio is low, and even if it is designed well, it is about 50% at most. Half of the effective screen is occupied by the common electrode and the liquid crystal drive electrode.In the conventional technology, since the antireflection film is not formed on the surface of these electrodes, the liquid crystal passes through the color filter from the outside. The light that has entered the layer is reflected by the common electrode and the liquid crystal driving electrode, passes through the color filter again, and goes out. For this reason, the black level is raised to the gray side, so that there is a problem that the black level of the entire screen is worse than that of the conventional TN liquid crystal system.

【0007】本発明は、上記の問題を解決するものであ
り、その目的は、より製造歩留りが高く、かつ開口率を
大きくでき、コントラストの高い大画面高精細アクティ
ブマトリックス型液晶表示装置をコスト安く提供するこ
とにある。
The present invention solves the above problems, and an object of the present invention is to provide a large-screen high-definition active matrix type liquid crystal display device having a high contrast, a high manufacturing yield, a large aperture ratio, and a high contrast. To provide.

【0008】[0008]

【課題を解決するための手段】本発明では、上記の課題
を解決するために以下のような手段を採用します。
[Means for Solving the Problems] The present invention adopts the following means in order to solve the above problems.

【0009】基板上に走査信号配線と映像信号配線と前
記走査信号配線と映像信号配線との各交差部に形成され
た薄膜トランジスターと、前記薄膜トランジスタに接続
された液晶駆動電極と、少なくとも一部が、前記液晶駆
動電極と対向して形成された共通電極とを有するアクテ
ィブマトリックス基板と前記対向期板に狭持された液晶
層とからなる液晶表示装置において、〔手段1〕前記走
査信号配線と前記映像信号配線と、前記共通電極と前記
液晶駆動電極とが、それぞれ絶縁膜を介して互いに異な
った層に形成分離した。
At least a part of a scanning signal line, a video signal line, a thin film transistor formed on each intersection of the scanning signal line and the video signal line on the substrate, a liquid crystal driving electrode connected to the thin film transistor, A liquid crystal display device comprising an active matrix substrate having a common electrode formed facing the liquid crystal driving electrode and a liquid crystal layer sandwiched between the counter plates, [Means 1] the scanning signal wiring and the The video signal wiring, the common electrode, and the liquid crystal driving electrode are formed and separated in different layers via an insulating film.

【0010】〔手段2〕手段1において、前記映像信号
配線と前記共通電極少なくとも一部、または、前記走査
信号配線と前記共通電極の少なくとも一部を絶縁膜を介
して互いに重畳させた。
[Means 2] In the means 1, the video signal wiring and at least a part of the common electrode, or the scanning signal wiring and at least a part of the common electrode are overlapped with each other via an insulating film.

【0011】〔手段3〕手段1において、前記液晶駆動
電極と前記走査信号配線ならびに前記共通電極の少なく
とも一部を絶縁膜を介して互いに重畳させ、その重畳部
をもって付加容量を形成した。
[Means 3] In the means 1, at least a part of the liquid crystal drive electrode, the scanning signal line, and the common electrode are overlapped with each other through an insulating film, and the overlapping portion forms an additional capacitance.

【0012】〔手段4〕手段1において、正の誘電率異
方性液晶(P型LC)を用いる場合、前記映像信号配線
と画素電極(液晶駆動電極と液晶駆動電極に対向してい
る共通電極の一部)とが液晶配向方向に対し、±1度〜
±45度の範囲で屈曲している構造配置にした。
[Means 4] In the means 1, when the positive dielectric constant anisotropic liquid crystal (P-type LC) is used, the video signal wiring and the pixel electrode (the liquid crystal driving electrode and the common electrode facing the liquid crystal driving electrode) Is a ± 1 degree to the liquid crystal alignment direction.
The structure is arranged so that it is bent within a range of ± 45 degrees.

【0013】〔手段5〕手段1において、正の誘電率異
方性液晶(P型LC)を用いる場合、前記走査信号配線
と画素電極とが、液晶配向方向に対して、±1度〜±4
5度の範囲で屈曲している構造配置にした。
[Means 5] In the means 1, when the positive dielectric constant anisotropic liquid crystal (P-type LC) is used, the scanning signal wiring and the pixel electrode are ± 1 ° to ±± with respect to the liquid crystal alignment direction. Four
The structure is arranged to be bent in the range of 5 degrees.

【0014】〔手段6〕手段1において、負の誘電率異
方性液晶(N型LC)を用いる場合、前記映像信号配線
と画素電極とが、液晶配向方向に対して、90度をのぞ
く45度〜135度の範囲で屈曲している構造配置にし
た。
[Means 6] In the means 1, when the negative dielectric constant anisotropic liquid crystal (N-type LC) is used, the video signal wiring and the pixel electrode except 90 degrees with respect to the liquid crystal alignment direction. The structure is arranged to be bent in the range of degrees to 135 degrees.

【0015】〔手段7〕手段1において、負の誘電率異
方性液晶(N型LC)を用いる場合、前記走査信号配線
と画素電極とが、液晶配向方向に対して、90度をのぞ
く45度〜135度の範囲で屈曲している構造配置にし
た。
[Means 7] When the negative dielectric constant anisotropic liquid crystal (N-type LC) is used in the means 1, the scanning signal wiring and the pixel electrode except 90 degrees with respect to the liquid crystal alignment direction. The structure is arranged to be bent in the range of degrees to 135 degrees.

【0016】〔手段8〕前記液晶駆動電極と、共通電極
の両方、または、すくなくとも一方の電極表面に光の反
射防止膜層を形成した。
[Means 8] A light antireflection film layer is formed on the surface of both the liquid crystal driving electrode and the common electrode, or at least one of the electrodes.

【0017】[0017]

【作用】上記手段1の如く、走査信号配線と映像信号配
線と共通電極と、液晶駆動電極とが、それぞれ絶縁膜を
介して互いに異なった層に存在するために、走査信号配
線と共通電極の短絡発生確率が小さくなり水平ライン欠
陥を低減可能となる。映像信号配線と液晶駆動電極の短
絡も発生確率が小さくなり点欠陥が低減する。
Since the scanning signal wiring, the video signal wiring, the common electrode, and the liquid crystal driving electrode are present in different layers with the insulating films interposed therebetween as in the above means 1, the scanning signal wiring and the common electrode are The probability of short circuit is reduced, and horizontal line defects can be reduced. The probability of occurrence of a short circuit between the video signal wiring and the liquid crystal drive electrode is also reduced, and point defects are reduced.

【0018】上記手段2と上記手段3により、共通電極
の一部と映像信号配線ならびに走査信号配線とが絶縁膜
を介して互いに重畳させることができるので、画素開口
率を大きく出来る。また液晶駆動電極と走査信号配線な
らびに共通電極の少なくとも一部を絶縁膜を介して互い
に重畳させて形成した付加量を大きくできるので、TF
Tのオフ抵抗の低下による画質の低下を防止できる。ま
たこの大きな付加量が走査信号線による液晶駆動電圧の
変動を低減する効果があるので、残像の発生を防止でき
る。
By the means 2 and 3, a part of the common electrode and the video signal wiring and the scanning signal wiring can be overlapped with each other through the insulating film, so that the pixel aperture ratio can be increased. In addition, since at least a part of the liquid crystal drive electrode, the scanning signal line, and the common electrode are overlapped with each other through the insulating film, the added amount can be increased, so that the TF can be increased.
It is possible to prevent the deterioration of the image quality due to the decrease of the off resistance of T. Further, since this large addition amount has an effect of reducing the fluctuation of the liquid crystal drive voltage due to the scanning signal line, it is possible to prevent the occurrence of an afterimage.

【0019】上記手段4〜上記手段7により図17,図
18にあるように、画素電極(液晶駆動電極と共通電
極)内で、横電界が印加された場合、液晶分子は、画素
電極内部で、左回転と右回転の2通りの回転運動が発生
する。図23にあるように一方向の回転運動だけでは、
プレチルト角が大きい場合図24のように、視野角の特
性により片よりが発生する。ひとつの画素電極内部で左
回転と右回転の2通りの液晶分子の回転運動が発生する
場合には、プレチルト角が大きくても視野角の特性の片
よりが発生しない。このことから本発明の構造を用いた
液晶表示装置では、プレチルト角の制限をうけずに、配
向膜と、液晶の選択の自由度が大きくなる。残像や応答
速度の改善がやりやすくなり、従来の配向膜や液晶を使
用することも可能となるので、生産効率を上げることが
可能となる。偏光板の有効利用率もあがるので、コスト
downができる。
When the horizontal electric field is applied in the pixel electrode (the liquid crystal drive electrode and the common electrode) by the means 4 to 7 as shown in FIGS. 17 and 18, the liquid crystal molecules are generated in the pixel electrode. There are two types of rotational movements, left rotation and right rotation. As shown in FIG. 23, the unidirectional rotary motion alone
When the pretilt angle is large, as shown in FIG. 24, due to the characteristics of the viewing angle, a twist occurs. When two types of rotational movements of the liquid crystal molecules, that is, left rotation and right rotation, occur inside one pixel electrode, even if the pretilt angle is large, one of the characteristics of the viewing angle does not occur. Therefore, in the liquid crystal display device using the structure of the present invention, the degree of freedom in selecting the alignment film and the liquid crystal is increased without being restricted by the pretilt angle. Afterimages and response speed can be easily improved, and conventional alignment films and liquid crystals can be used, so that production efficiency can be improved. Since the effective utilization rate of the polarizing plate also increases, the cost can be downed.

【0020】上記手段8により、外部からカラーフィル
ターを通過して液晶層に侵入してきた光は、図22にあ
るように共通電極や液晶駆動電極の上層に形成され
た反射防止膜によって、反射されなくなるので黒レベル
が改善されコントラストが高くなる。見やすい高品質の
画像が得られる。
By the means 8 described above, the light that has passed through the color filter from the outside and has entered the liquid crystal layer is reflected by the antireflection film formed on the common electrode and the liquid crystal driving electrode as shown in FIG. Since it disappears, the black level is improved and the contrast is increased. A high-quality image that is easy to see can be obtained.

【0021】上記手段1,2,3より、有効画素以外か
らのバックライト光の光もれがすくなくなるので、カラ
ーフィルターのBM(ブラックマスク)領域を小さくす
ることが可能となる。さらに図37,38,39,4
0,41,42にあるように、共通電極の1部、または
液晶駆動電極の1部によってTFTの部分を完全におお
うことで、TFTの半導体活性層に直接外部からの光が
あたらなくなる。これによりTFTのオフ時のホトリー
ク電流が激減する。従来どうしても必要とされたカラー
フィルターのBM(ブラックマスク)が必要なくなり、
カラーフィルターの製造プロセスを短縮化でき、歩留り
をあげられるのでコストをさげることができる。
With the means 1, 2, 3 described above, light leakage of the backlight light from other than the effective pixels is reduced, so that the BM (black mask) area of the color filter can be reduced. 37, 38, 39, 4
0, 41, and 42 completely cover the part of the TFT with one part of the common electrode or one part of the liquid crystal driving electrode, so that the semiconductor active layer of the TFT is not directly exposed to external light. This drastically reduces the photo leak current when the TFT is off. The BM (black mask) of the color filter that was absolutely necessary in the past is no longer necessary,
The manufacturing process of the color filter can be shortened and the yield can be increased, so that the cost can be reduced.

【0022】[0022]

【実施例】〔実施例1〕図3,図4,図5,図31,図
35,図36,図37,図38は、本発明の第1部類の
実施例の単位画素の断面及び平面図である。ガラス基板
▲10▼上に、共通電極(コモン電極)を形成し、こ
れを覆うように窒化シリコン(SiN)膜や酸化シリコ
ン(SiO)膜などからなる下地絶縁膜▲14▼を形
成した。次に走査信号配線(ゲート電極)を形成し
た。走査信号配線は、Alなどの陽極酸化処理可能な金
属が良いが、Cr,Mo,Ti,W,Taなどの純金属
や合金でも良い。電気抵抗値の低い金属を用い、二層、
三層にかさね合せた複合金属でも良い。走査信号配線
の上にゲート絶縁膜を形成してから非晶質シリコン
(a−si)膜を形成し、トランジスタの能動層とす
る。非晶質シリコンの一部に重畳するように映像信号配
線とドレイン電極を形成する。これらすべてを被覆
するようにSiN膜よりなる保護絶縁膜を形成する。
次にドレイン電極の上のSiNにスルーホール▲15
▼を形成する。液晶駆動電極を形成し、スルーホール
▲15▼を介してドレイン電極と電気的に連結され
る。以上よりなる単位画素をマトリックス状に配置した
アクティブマトリックス基板の表面にポリイミドよりな
る配向膜を形成し、表面にラビング処理を施した。同
じく表面にラビング処理を施した配向膜を表面に形成
した対向基板▲11▼と前記アクティブマトリックス基
板の間に棒状の液晶分子を含む液晶組成物を封入し、
二枚の基板の外表面に偏光板▲12▼,▲13▼を配置
した。
EXAMPLE 1 FIG. 3, FIG. 4, FIG. 5, FIG. 31, FIG. 31, FIG. 36, FIG. 37, FIG. 38 are sectional and plane views of a unit pixel of an example of the first category of the present invention. It is a figure. A common electrode (common electrode) was formed on a glass substrate (10), and a base insulating film (14) made of a silicon nitride (SiN) film or a silicon oxide (SiO 2 ) film was formed so as to cover the common electrode. Next, scan signal wiring (gate electrode) was formed. The scan signal wiring is preferably a metal such as Al that can be anodized, but may be a pure metal or alloy such as Cr, Mo, Ti, W or Ta. Using a metal with a low electric resistance, two layers,
It may be a composite metal layered in three layers. A gate insulating film is formed on the scan signal wiring and then an amorphous silicon (a-si) film is formed to be an active layer of the transistor. The video signal wiring and the drain electrode are formed so as to overlap with part of the amorphous silicon. A protective insulating film made of a SiN film is formed so as to cover all of them.
Next, through hole in SiN on the drain electrode (15)
Form ▼. A liquid crystal driving electrode is formed and is electrically connected to the drain electrode through the through hole 15. An alignment film made of polyimide was formed on the surface of the active matrix substrate in which the unit pixels made of the above were arranged in a matrix, and the surface was rubbed. Similarly, a liquid crystal composition containing rod-shaped liquid crystal molecules is enclosed between the counter substrate (11) having an alignment film on the surface of which a rubbing treatment is formed and the active matrix substrate,
Polarizing plates (12) and (13) were arranged on the outer surfaces of the two substrates.

【0023】配向膜,は、ラビング処理の必要な
い、光重合型耐熱性高分子を直線偏光光線を用いて光重
合反応をおこさせて液晶配向性をもたせた膜でもよい。
光重合型耐熱性高分子配向膜による配向では、プレチル
ト角が発生しにくいが、横電界方式の液晶表示モードで
はプレチルト角が小さい方が視角特性が良いので、横電
界方式表示モードでは光重合型耐熱性高分子配向膜も使
用できる。液晶分子は、無電界時には図23にあるよ
うに、ストライプ状の液晶駆動電極および共通電極
の長手方向に対して若干の角度(1度〜45度)を持つ
ように配向されている。尚、上下基板との界面での液晶
分子の配向は、互いに平行とした。また液晶分子の誘電
率異方性は、正である。負の誘電率異方性の液晶分子を
用いる場合には、液晶の配向方向の軸と画素電極,
の交差角を45度〜89度の範囲で設定すれば良い。
The alignment film may be a film which does not require rubbing treatment and which has a liquid crystal alignment property by causing a photopolymerization reaction of a photopolymerization type heat-resistant polymer using linearly polarized light.
The pretilt angle is less likely to occur in the alignment by the photopolymerization type heat-resistant polymer alignment film, but the smaller the pretilt angle in the horizontal electric field type liquid crystal display mode is, the better the viewing angle characteristic is. A heat resistant polymer alignment film can also be used. As shown in FIG. 23, the liquid crystal molecules are oriented so as to form a slight angle (1 to 45 degrees) with respect to the longitudinal direction of the stripe-shaped liquid crystal drive electrode and the common electrode as shown in FIG. The alignment of liquid crystal molecules at the interface with the upper and lower substrates was parallel to each other. The dielectric anisotropy of liquid crystal molecules is positive. When liquid crystal molecules with negative dielectric anisotropy are used, the axis of the liquid crystal alignment direction and the pixel electrode,
It is sufficient to set the intersection angle of 45 degrees to 89 degrees.

【0024】さらに本実施例では、図3にあるように共
通電極と液晶駆動電極を絶縁膜▲14▼,,を
介して絶縁分離してあるので、図4のように重畳させる
ことが可能であり、この重畳部は付加容量として作用さ
せることができる。さらに図5にあるように、液晶駆動
電極を共通電極だけでなく走査信号配線に重畳させる
ことが可能である。これにより付加容量を開口率を低下
させることなく大きくすることができる。さらに図3
7,図38にあるように、TFTの非晶質能動層を全
面おおうように液晶駆動電極を形成することもできる。
図31,図35,図36にあるように共通電極の一部
を走査信号配線や映像信号配線と重畳させることで
有効画素以外からの光のもれを激減させることができ
る。
Further, in this embodiment, as shown in FIG. 3, the common electrode and the liquid crystal driving electrode are insulated and separated by the insulating film (14), so that they can be overlapped as shown in FIG. Yes, this overlapping portion can act as an additional capacitance. Further, as shown in FIG. 5, the liquid crystal driving electrode can be superimposed not only on the common electrode but also on the scanning signal wiring. Thereby, the additional capacitance can be increased without lowering the aperture ratio. Furthermore, FIG.
As shown in FIG. 7 and FIG. 38, the liquid crystal driving electrode can be formed so as to cover the entire surface of the amorphous active layer of the TFT.
By overlapping a part of the common electrode with the scanning signal wiring or the video signal wiring as shown in FIGS. 31, 35 and 36, it is possible to drastically reduce the leakage of light from other than the effective pixels.

【0025】〔実施例2〕図6,図7,図8,図9,図
10は、本発明の第2分類の実施例の単位画素の断面及
び平面図である。ガラス基板▲10▼の上に、走査信号
配線(ゲート電極)を形成し、陽極酸化処理をする。
陽極酸化可能な金属はAl,Ta,Nbなどである。こ
れらの金属の合金でもよいし、積層構造のゲート電極で
もよい。次に共通電極(コモン電極)を形成し、これ
を覆うゲート絶縁膜を形成する。これ以後は実施例1
と同じである。本発明では走査信号配線(ゲート電極)
の陽極酸化膜が走査信号配線と共通電極との完全絶
縁分離作用を持つ。これにより走査信号配線と共通電
極のシートが完全に防止できる。実施例1にあるよう
に共通電極の一部と映像信号配線を重畳させることも
可能である。さらに、液晶駆動電極の一部を用いてTF
Tの能動層を完全におおうことも可能である。
[Embodiment 2] FIGS. 6, 7, 8, 9, and 10 are a sectional view and a plan view of a unit pixel according to a second embodiment of the present invention. A scanning signal wiring (gate electrode) is formed on the glass substrate (10), and anodization processing is performed.
The anodizable metal is Al, Ta, Nb or the like. It may be an alloy of these metals or a gate electrode having a laminated structure. Next, a common electrode (common electrode) is formed, and a gate insulating film that covers the common electrode is formed. After this, Example 1
Is the same as. In the present invention, scanning signal wiring (gate electrode)
The anodic oxide film has a function of completely insulating and separating the scanning signal wiring and the common electrode. As a result, the sheet of the scanning signal wiring and the common electrode can be completely prevented. It is possible to overlap a part of the common electrode and the video signal wiring as in the first embodiment. Furthermore, by using a part of the liquid crystal driving electrode, TF
It is also possible to completely cover the active layer of T.

【0026】〔実施例3〕図11,図12,図13は、
本発明の第3部類の実施例の単位画素の断面及び平面図
である。ガラス基板▲10▼の上に走査信号配線と共
通電極中央線▲18▼を同時に、同一層に形成する。次
に共通電極中央線▲18▼と画素電極▲20▼とがコン
タクトスルーホール部分▲19▼で電気的に結合できる
ように、処理した後、走査信号配線と共通電極中央線
▲18▼を陽極酸化処理する。陽極酸化可能な金属は、
Al,Ta,Nbなどである。これらの金属の合金でも
よいし、積層構造のゲート電極でもよい。次に画素電極
20を形成し、これらを覆うゲート絶縁膜を形成す
る。これ以後は実施例1と同じである。本発明では、走
査信号配線(ゲート電極)の陽極酸化膜が、走査信号配
線と、共通電極の一部である画素電極▲20▼との完
全絶縁分離作用を持つ。走査信号配線と、共通電極中
央線▲18▼との距離は一般的に非常に大きく、同じ層
に形成してもほとんどショートすることはない。実施例
1にあるように共通電極画素電極▲20▼の一部と、映
像信号配線を重畳させることも、可能である。さらに液
晶駆動電極の一部を用いてTFTの能動層を完全にお
おうことも、可能である。
[Embodiment 3] FIGS. 11, 12 and 13 show
FIG. 6 is a cross-sectional view and a plan view of a unit pixel according to an example of the third class of the present invention. On the glass substrate (10), the scanning signal wiring and the common electrode central line (18) are simultaneously formed in the same layer. Next, the common electrode center line (18) and the pixel electrode (20) are processed so that they can be electrically coupled at the contact through hole portion (19), and then the scanning signal line and the common electrode center line (18) are anodized. Oxidize. Anodizable metals are
Al, Ta, Nb and the like. It may be an alloy of these metals or a gate electrode having a laminated structure. Next, the pixel electrodes 20 are formed and a gate insulating film that covers them is formed. The subsequent steps are the same as in the first embodiment. In the present invention, the anodic oxide film of the scanning signal wiring (gate electrode) has a function of completely insulating and separating the scanning signal wiring from the pixel electrode (20) which is a part of the common electrode. The distance between the scanning signal wiring and the common electrode center line (18) is generally very large, and even if they are formed in the same layer, there is almost no short circuit. It is also possible to overlap a part of the common electrode pixel electrode 20 with the video signal wiring as in the first embodiment. Furthermore, it is possible to completely cover the active layer of the TFT by using a part of the liquid crystal driving electrode.

【0027】〔実施例4〕図14,図15,図16,図
32,図33,図34,図39,図40,図41,図4
2,図43,図44は、本発明の第4部類の実施例の単
位画素の断面及び平面図である。ガラス基板▲10▼上
に、走査信号配線(ゲート電極)を形成し、これを覆
うようにゲート絶縁膜を形成してから、非晶質シリコ
ン(a−si)膜を形成し、トランジスタの能動層と
する。次に、映像信号配線と、ドレイン電極を形成
する。これらすべてを被覆するようにSiN膜やSiO
膜よりなる保護絶縁膜を形成する。次にドレイン電
極の上にスルーホールを形成する。液晶駆動電極
を形成し、スルーホールを介してドレイン電極と電
気的に連結される。次に上層絶縁膜を形成してからその
上に共通電極を形成する。以上よりなる単位画素をマ
トリックス状に配置したアクティブマトリックス基板の
表面に、配向膜を形成し、表面にラビング処理を施し
た。本実施例では、図14にあるように、共通電極と
液晶駆動電極を絶縁膜▲21▼を介して絶縁分離して
あるので、図15のように重畳させることが可能であ
り、この重畳部は、付加容量として作用させることがで
きる。さらに図16にあるように液晶駆動電極を共通電
極だけでなく、走査信号配線に重畳させることが可能
である。これにより付加容量を開口率を低下させること
なく大きくすることができる。次に、図39,図40,
図41,図42にあるようにTFTの非晶質能動層を
全面おおうように、液晶駆動電極や、共通電極を形成す
ることもできる。図32,図33,図34,にあるよう
に、共通電極の一部を走査信号配線や映像信号配線
と重畳させることで有効画素以外からの光のもれを激
減させることができる。これによりブラックマスク(B
M)の必要ないカラーフィルターを用いることができ
る。
[Embodiment 4] FIGS. 14, 15, 16, 32, 33, 34, 39, 40, 41 and 4.
2, FIG. 43, and FIG. 44 are a sectional view and a plan view of a unit pixel according to a fourth embodiment of the present invention. The scanning signal wiring (gate electrode) is formed on the glass substrate (10), the gate insulating film is formed so as to cover the wiring, and then the amorphous silicon (a-si) film is formed. Layer. Next, the video signal wiring and the drain electrode are formed. SiN film or SiO to cover all of these
A protective insulating film composed of two films is formed. Next, a through hole is formed on the drain electrode. A liquid crystal driving electrode is formed and is electrically connected to the drain electrode through the through hole. Next, an upper insulating film is formed and then a common electrode is formed thereon. An alignment film was formed on the surface of an active matrix substrate in which the unit pixels made of the above were arranged in a matrix, and the surface was rubbed. In this embodiment, as shown in FIG. 14, the common electrode and the liquid crystal drive electrode are insulated and separated via the insulating film (21), so that they can be overlapped as shown in FIG. Can act as an additional capacitance. Further, as shown in FIG. 16, the liquid crystal drive electrode can be superimposed not only on the common electrode but also on the scanning signal wiring. Thereby, the additional capacitance can be increased without lowering the aperture ratio. Next, FIG. 39, FIG.
As shown in FIGS. 41 and 42, the liquid crystal driving electrode and the common electrode may be formed so as to cover the entire surface of the amorphous active layer of the TFT. As shown in FIGS. 32, 33, and 34, the leakage of light from other than the effective pixels can be drastically reduced by overlapping a part of the common electrode with the scanning signal wiring and the video signal wiring. As a result, the black mask (B
A color filter that does not require M) can be used.

【0028】さらに本実施例では、図43,図44にあ
るように有効画素内の液晶駆動電極の上に形成された
上層絶縁膜をとりのぞいて、オープンウィンドウを形
成することができる。これにより、液晶駆動電極と共
通電極の表面に直接配向膜を形成できる。液晶は交流
駆動が基本であり、直流成分のバイアス電圧が印加され
た場合、配向膜が分極したり、配向膜と絶縁膜の界面に
チャージがトラップされたりして残像現象が発生する。
本実施例のように両方の電極が配向膜と直接接している
場合、チャージのトラップが少なく残像は発生しにくく
なる。実施例1,2,3においても、図43,図44に
おいて形成されたオープンウィンドウを形成すること
は可能である。
Further, in this embodiment, as shown in FIGS. 43 and 44, an open window can be formed by removing the upper insulating film formed on the liquid crystal drive electrode in the effective pixel. Thereby, the alignment film can be directly formed on the surfaces of the liquid crystal drive electrode and the common electrode. The liquid crystal is basically driven by an alternating current, and when a bias voltage of a direct current component is applied, the alignment film is polarized, or charge is trapped at the interface between the alignment film and the insulating film, so that an afterimage phenomenon occurs.
When both electrodes are in direct contact with the alignment film as in this embodiment, charge traps are small and afterimages are less likely to occur. In the first, second, and third embodiments, it is possible to form the open window formed in FIGS. 43 and 44.

【0029】〔実施例5〕図17,図19,図20,図
21,図25,図26,図27,図28,図29,図3
0は、第5部類の動作原理と、実施例の平面図である。
液晶分子の誘電率異方性は、正である。画素内部の共通
電極と液晶駆動電極、液晶分子の配向軸(光学軸)
に対して±1度〜±45度の範囲で屈曲している。こ
のような構造になっている場合、図17にあるように共
通電極と液晶駆動電極に電圧が印加され電極間に電
界が発生した時に、液晶分子は屈曲部を境にして左回転
と右回転の2通りの回転運動をする。単位画素内部で2
通りの回転運動が可能になる点が視角特性の改善に非常
な効果をもたらすのである。図19,図20,図21は
単位画素の平面図である。画素電極の屈曲にあわせて、
映像信号配線や走査信号配線が屈曲しているのだ特
徴である。図25,図26,図27図28は、カラーフ
ィルターの色の混色を良くするためにデルタ配置に画素
を配列した場合の共通電極と液晶駆動電極と走査信
号配線と映像信号配線の配列位置に関する平面図で
ある。このデルタ配列は、おもにAV用に使用されるも
のである。図29,図30は、ストライプ配列に画素を
配置した場合の共通電極と液晶駆動電極と、走査信
号配線と映像信号配線の配列関係の平面図である。
このストライプ配列は、おもにOA用に使用されるもの
である。
[Embodiment 5] FIG. 17, FIG. 19, FIG. 20, FIG. 21, FIG. 25, FIG. 26, FIG. 27, FIG. 28, FIG. 29, FIG.
0 is a plan view of the fifth embodiment of the operating principle and the embodiment.
The dielectric anisotropy of liquid crystal molecules is positive. Common electrode inside the pixel and liquid crystal drive electrode, alignment axis of liquid crystal molecules (optical axis)
Bends within a range of ± 1 ° to ± 45 °. With such a structure, as shown in FIG. 17, when a voltage is applied to the common electrode and the liquid crystal driving electrode and an electric field is generated between the electrodes, the liquid crystal molecules rotate left and right with the bending portion as a boundary. There are two types of rotational movement. 2 inside the unit pixel
The fact that street rotation is possible has a great effect on the improvement of the viewing angle characteristics. 19, 20, and 21 are plan views of a unit pixel. According to the bending of the pixel electrode,
The feature is that the video signal wiring and the scanning signal wiring are bent. FIG. 25, FIG. 26, and FIG. 28 show arrangement positions of common electrodes, liquid crystal drive electrodes, scanning signal wirings, and video signal wirings when pixels are arranged in a delta arrangement in order to improve color mixing of color filters. It is a top view. This delta arrangement is mainly used for AV. 29 and 30 are plan views showing the arrangement relationship between the common electrodes, the liquid crystal drive electrodes, the scanning signal wirings, and the video signal wirings when the pixels are arranged in a stripe arrangement.
This stripe array is mainly used for OA.

【0030】〔実施例6〕図18,図19,図20,図
21,図25,図26,図27,図28,図29,図3
0は、第6部類の動作原理と実施例の平面図である。液
晶分子の誘電率異方性は負である。画素内部の共通電極
と液晶駆動電極は、液晶分子の配向軸(光学軸)
に対して90度をのぞく45度〜135度の範囲内で屈
曲している。図18にあるように、共通電極と液晶駆
動電極に電圧が印加されて電極間に電界が発生した時
に、液晶分子は、屈曲部を境にして、左回転と右回転の
2通りの回転運動をする。単位画素内部で2通りの回転
運動が可能になる点が視角特性の改善に効果があるとい
う点では、実施例5とまったく同じである。単位画素の
平面図構造や画素配列に関する平面図構造は実施例5
と、まったく同じである。画素電極の屈曲にあわせて映
像信号配線や走査信号配が屈曲しているのが特徴で
ある。実施例5,実施例6ともに上下基板との界面での
液晶分子の配向は互いに平行になるようにラビング処理
してある。偏光板の偏光軸(光学軸)は上下ともに直交
配置にしてあり、無電界時には、画素から光が通過しな
いノーマリーブラックモードである。
[Sixth Embodiment] FIGS. 18, 19, 20, 21, 25, 26, 27, 28, 29 and 3
0 is a plan view of the operation principle of the sixth class and the embodiment. The dielectric anisotropy of liquid crystal molecules is negative. The common electrode and the liquid crystal drive electrode inside the pixel are the alignment axis (optical axis) of the liquid crystal molecules.
With respect to 90 degrees, it is bent within a range of 45 degrees to 135 degrees. As shown in FIG. 18, when a voltage is applied to the common electrode and the liquid crystal driving electrode to generate an electric field between the electrodes, the liquid crystal molecules rotate in two ways, a left rotation and a right rotation, with the bending portion as a boundary. do. This is exactly the same as the fifth embodiment in that the fact that two types of rotational movements are possible inside the unit pixel is effective in improving the viewing angle characteristics. The plan view structure of the unit pixel and the plan view structure regarding the pixel array are described in the fifth embodiment.
Is exactly the same. The feature is that the video signal wiring and the scanning signal distribution are bent in accordance with the bending of the pixel electrode. In both Example 5 and Example 6, the rubbing treatment is performed so that the alignment of liquid crystal molecules at the interface with the upper and lower substrates is parallel to each other. The polarizing axes (optical axes) of the polarizing plates are vertically arranged vertically, and in a normally black mode, light does not pass from the pixels when there is no electric field.

【0031】〔実施例7〕図22は、第7部類の実施例
の断面図である。画素電極(共通電極と、液晶駆動電
極)の表面に外部からの光が液晶層に侵入してきた時
に、この光が画素電極により反射され再度外部に出てい
くのを防止する反射防止層が形成されいる。代表的例と
しては、Cr金属の場合にはCr\CrN\CrOやC
r\CrOなどの窒化膜と酸化膜の二層構造か、酸化膜
だけの一層構造がある。Mo金属の場合にも同様にMo
\MoN\MoOやMo\MoOの構造が用いられる。
そのほかに画素電極の表面にa−si層をコートした
り、カーボンをコートしたり、することでかなりの反射
防止効果が得られる。Cr\CrSixやMo\MoS
ix,Ti\TiSix,W\WSixTa\TaSi
x,Nb\NbSixなどのメタルシリサイドも光反射
防止効果があるので用いることができる。
[Embodiment 7] FIG. 22 is a sectional view of an embodiment of the seventh category. An antireflection layer is formed on the surface of the pixel electrode (common electrode and liquid crystal drive electrode) to prevent the light from being reflected by the pixel electrode and going out again when light from the outside enters the liquid crystal layer. Has been done. As a typical example, in the case of Cr metal, Cr \ CrN \ CrO or C
There is a double-layer structure of a nitride film such as r \ CrO and an oxide film, or a single-layer structure of only an oxide film. Similarly for Mo metal, Mo
The structure of \ MoN \ MoO or Mo \ MoO is used.
In addition, a considerable antireflection effect can be obtained by coating the surface of the pixel electrode with an a-si layer or carbon. Cr \ CrSix or Mo \ MoS
ix, Ti \ TiSix, W \ WSixTa \ TaSi
Metal silicide such as x, Nb \ NbSix can be used because it has a light reflection preventing effect.

【0032】さらに図45にあるように画素電極の上の
絶縁膜上に反射防止膜層を形成しても同様に効果があ
る。この場合には、絶縁膜の反射防止膜が適している。
a−si層や、カラーフィルターで用いられているブル
ーの顔料系レジストやブラックの顔料系レジストなどが
使用できる。
Further, the same effect can be obtained by forming an antireflection film layer on the insulating film on the pixel electrode as shown in FIG. In this case, an antireflection film of an insulating film is suitable.
An a-si layer, a blue pigment resist used in a color filter, a black pigment resist, or the like can be used.

【0033】対向基板▲11▼の方にブラックマスクが
ないようなカラーフィルターの場合には、走査信号電極
や映像信号電極の表面に図22のように、反射防止膜層
を形成することで、コントラストの非常に良い横電界方
式の液晶表示装置を作ることができる。
In the case of a color filter having no black mask on the counter substrate (11), an antireflection film layer is formed on the surfaces of the scanning signal electrodes and the video signal electrodes as shown in FIG. A horizontal electric field type liquid crystal display device having a very good contrast can be manufactured.

【0034】[0034]

【発明の効果】以上のように本発明によれば、走査信号
配線と映像信号配線と共通電極と液晶駆動電極とを絶縁
膜によってそれぞれ別々に異層化したことにより、ショ
ートの発生がなく、開口率が高く、コントラストの高い
残像の少ない液晶パネルを作れる。さらに画素電極を液
晶配向方向に対して屈曲させることで単位画素内で2つ
の液晶分子の回転方向を作り出すことができ、視野角を
拡大することが可能となる。従来使用していた配向材料
を使用できるのでコストも低くできる。
As described above, according to the present invention, since the scanning signal wiring, the video signal wiring, the common electrode, and the liquid crystal driving electrode are formed in different layers by insulating films, respectively, a short circuit does not occur. A liquid crystal panel with high aperture ratio and high contrast and little afterimage can be produced. Further, by bending the pixel electrode with respect to the liquid crystal alignment direction, the rotation directions of the two liquid crystal molecules can be created in the unit pixel, and the viewing angle can be expanded. The cost can be reduced because the orientation material that has been used conventionally can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来の横電界方式単位画素の断面図FIG. 1 is a sectional view of a conventional horizontal electric field type unit pixel.

【図2】 従来の横電界方式単位画素の平面図FIG. 2 is a plan view of a conventional horizontal electric field type unit pixel.

【図3】 本発明の横電界方式単位画素の断面図(実施
例1)
FIG. 3 is a sectional view of a horizontal electric field type unit pixel of the present invention (Example 1).

【図4】 本発明の横電界方式単位画素の平面図(実施
例1)
FIG. 4 is a plan view of a horizontal electric field type unit pixel of the present invention (Example 1).

【図5】 本発明の横電界方式単位画素の平面図(実施
例1)
FIG. 5 is a plan view of a horizontal electric field type unit pixel of the present invention (Example 1).

【図6】 本発明の横電界方式単位画素の断面図(実施
例2)
FIG. 6 is a cross-sectional view of a horizontal electric field type unit pixel of the present invention (Example 2).

【図7】 本発明の横電界方式単位画素の平面図(実施
例2)
FIG. 7 is a plan view of a horizontal electric field type unit pixel of the present invention (Example 2).

【図8】 本発明の横電界方式単位画素の平面図(実施
例2)
FIG. 8 is a plan view of a horizontal electric field type unit pixel of the present invention (Example 2).

【図9】 本発明の横電界方式単位画素の平面図(実施
例2)
FIG. 9 is a plan view of a horizontal electric field type unit pixel of the present invention (Example 2).

【図10】 本発明の横電界方式単位画素の平面図(実
施例2)
FIG. 10 is a plan view of a horizontal electric field type unit pixel of the present invention (Example 2).

【図11】 本発明の横電界方式単位画素の断面図(実
施例3)
FIG. 11 is a sectional view of a horizontal electric field type unit pixel of the present invention (Example 3).

【図12】 本発明の横電界方式単位画素の平面図(実
施例3)
FIG. 12 is a plan view of a horizontal electric field type unit pixel of the present invention (Example 3).

【図13】 本発明の横電界方式単位画素の平面図(実
施例3)
FIG. 13 is a plan view of a horizontal electric field type unit pixel of the present invention (Example 3).

【図14】 本発明の横電界方式単位画素の断面図(実
施例4)
FIG. 14 is a sectional view of a horizontal electric field type unit pixel of the present invention (Example 4).

【図15】 本発明の横電界方式単位画素の平面図(実
施例4)
FIG. 15 is a plan view of a horizontal electric field type unit pixel of the present invention (Example 4).

【図16】 本発明の横電界方式単位画素の平面図(実
施例4)
FIG. 16 is a plan view of a horizontal electric field type unit pixel of the present invention (Example 4).

【図17】 本発明の横電界方式屈曲画素電極内の正の
誘電率異方性液晶の配向方向図(実施例5)
FIG. 17 is an alignment direction diagram of a positive dielectric constant anisotropic liquid crystal in a lateral electric field type bent pixel electrode of the present invention (Example 5).

【図18】 本発明の横電界方式屈曲画素電極内の負の
誘電率異方性液晶の配向方向図(実施例6)
FIG. 18 is a view showing the alignment direction of the negative dielectric constant anisotropic liquid crystal in the horizontal electric field type bent pixel electrode of the present invention (Example 6).

【図19】 本発明の横電界方式単位画素の平面図(実
施例5,実施例6)
FIG. 19 is a plan view of a horizontal electric field type unit pixel of the present invention (Examples 5 and 6).

【図20】 本発明の横電界方式単位画素の平面図(実
施例5,実施例6)
FIG. 20 is a plan view of a horizontal electric field type unit pixel of the present invention (Examples 5 and 6).

【図21】 本発明の横電界方式単位画素の平面図(実
施例5,実施例6)
FIG. 21 is a plan view of a horizontal electric field type unit pixel of the present invention (Examples 5 and 6).

【図22】 本発明の横電界方式反射防止膜付画素電極
の断面図(実施例7)
FIG. 22 is a sectional view of a pixel electrode with an in-plane switching type antireflection film of the present invention (Example 7).

【図23】 横電界方式画素電極内の正の誘電率異方性
の液晶の配向方向図(実施例1,実施例2,実施例3,
実施例4)
FIG. 23 is an alignment direction diagram of a liquid crystal having a positive dielectric constant anisotropy in a horizontal electric field type pixel electrode (Example 1, Example 2, Example 3,
Example 4)

【図24】 横電界方式液晶表示装置の液晶分子のプレ
チルト角と視角特性
FIG. 24: Pretilt angle and viewing angle characteristics of liquid crystal molecules of a horizontal electric field type liquid crystal display device

【図25】 本発明の横電界方式画素配列の平面図(実
施例5,実施例6)
FIG. 25 is a plan view of a horizontal electric field type pixel array according to the present invention (Examples 5 and 6).

【図26】 本発明の横電界方式画素配列の平面図(実
施例5,実施例6)
FIG. 26 is a plan view of a horizontal electric field type pixel array according to the present invention (Examples 5 and 6).

【図27】 本発明の横電界方式画素配列の平面図(実
施例5,実施例6)
FIG. 27 is a plan view of a horizontal electric field type pixel array according to the present invention (Examples 5 and 6).

【図28】 本発明の横電界方式画素配列の平面図(実
施例5,実施例6)
FIG. 28 is a plan view of a horizontal electric field type pixel array according to the present invention (Examples 5 and 6).

【図29】 本発明の横電界方式画素配列の平面図(実
施例5,実施例6)
FIG. 29 is a plan view of a horizontal electric field type pixel array according to the present invention (Examples 5 and 6).

【図30】 本発明の横電界方式画素配列の平面図(実
施例5,実施例6)
FIG. 30 is a plan view of a horizontal electric field type pixel array according to the present invention (Examples 5 and 6).

【図31】 本発明の共通電極と映像信号配線の重畳部
断面図(実施例1)
FIG. 31 is a sectional view of the overlapping portion of the common electrode and the video signal wiring according to the present invention (Example 1).

【図32】 本発明の共通電極と映像信号配線の重畳部
断面図(実施例4)
FIG. 32 is a sectional view of the overlapping portion of the common electrode and the video signal wiring according to the present invention (Example 4).

【図33】 本発明の共通電極と液晶駆動電極と走査信
号配線の重畳部の断面図(実施例4)
FIG. 33 is a cross-sectional view of the overlapping portion of the common electrode, the liquid crystal drive electrode, and the scanning signal wiring according to the present invention (Example 4)

【図34】 本発明の共通電極と液晶駆動電極と走査信
号配線の重畳部の断面図(実施例4)
FIG. 34 is a cross-sectional view of the overlapping portion of the common electrode, the liquid crystal drive electrode, and the scanning signal wiring according to the present invention (Example 4)

【図35】 本発明の共通電極と液晶駆動電極と走査信
号配線の重畳部の断面図(実施例1)
FIG. 35 is a cross-sectional view of the overlapping portion of the common electrode, the liquid crystal drive electrode, and the scanning signal wiring according to the present invention (Example 1).

【図36】 本発明の共通電極と液晶駆動電極と走査信
号配線の重畳部の断面図(実施例1)
FIG. 36 is a cross-sectional view of the overlapping portion of the common electrode, the liquid crystal drive electrode, and the scanning signal line according to the present invention (Example 1).

【図37】 本発明の走査信号配線と液晶駆動電極によ
るトランジスタ部の能動層を、はさみこんだ断面図(実
施例1)
FIG. 37 is a cross-sectional view of the active layer of the transistor portion including the scanning signal line and the liquid crystal drive electrode according to the present invention, sandwiched between the embodiments (Example 1).

【図38】 本発明の横電界方式単位画素の平面図(実
施例1)
FIG. 38 is a plan view of a horizontal electric field type unit pixel of the present invention (Example 1).

【図39】 本発明の走査信号配線と液晶駆動電極によ
るトランジスタ部の能動層を、はさみこんだ断面図(実
施例4)
FIG. 39 is a cross-sectional view of an active layer of a transistor portion including a scanning signal line and a liquid crystal driving electrode according to the present invention, sandwiched between the layers (Example 4).

【図40】 本発明の横電界方式単位画素の平面図(実
施例4)
FIG. 40 is a plan view of a horizontal electric field type unit pixel of the present invention (Example 4).

【図41】 本発明の走査信号配線と共通電極によるト
ランジスタ部の能動層を、はさみこんだ断面図(実施例
4)
FIG. 41 is a cross-sectional view of the active layer of the transistor portion including the scanning signal line and the common electrode according to the present invention, sandwiched between the layers (Example 4).

【図42】 本発明の横電界方式単位画素の平面図(実
施例4)
FIG. 42 is a plan view of a horizontal electric field type unit pixel of the present invention (Example 4).

【図43】 本発明の横電界方式単位画素の断面図(実
施例4)
FIG. 43 is a sectional view of a horizontal electric field type unit pixel of the present invention (Example 4).

【図44】 本発明の横電界方式単位画素の平面図(実
施例4)
FIG. 44 is a plan view of a horizontal electric field type unit pixel of the present invention (Example 4).

【図45】 本発明の横電界方式反射防止膜付画素電極
の断面図(実施例7)
FIG. 45 is a cross-sectional view of a pixel electrode with a lateral electric field type antireflection film of the present invention (Example 7).

【符号の説明】[Explanation of symbols]

1−−走査信号配線 2−−映像信号配線 3−−共通電極 4−−液晶駆動電極 5−−ゲート絶縁膜 6−−保護絶縁膜 7−−TFT基板側配向膜 8−−対向基板側配向膜 9−−液晶分子(正の誘電率異方性液晶) 10−−TFT側ガラス基板 11−−対向ガラス基板 12−−TFT側偏光板 13−−対向基板側偏光板 14−−地下絶縁膜 15−−ドレインスルーホール 16−−保持容量形成領域 17−−陽極酸化膜 18−−走査信号配線と同じ材料で同時に形成された共
通電極(中央線) 19−−共通電極スルーホール 20−−共通電極スルーホールで共通電極(中央線)と
コンタクトしている画素電極 21−−上層絶縁膜 22−−可視光反射防止膜 23−−液晶分子(負の誘電率異方性液晶) 3−F−共通電極と同じ材料で同時に形成された光シー
ルド膜 A−−P型液晶分子の配向方向と画素電極(共通電極と
液晶駆動電極)の交差する角度 B−−N型液晶分子の配向方向と画素電極(共通電極と
液晶駆動電極)の交差する角度 P−−液晶分子の配向方向と偏光板の偏光軸方向(光学
軸) Q−−偏光板の偏光軸方向(光学軸) D−−映像信号配線と同時に形成されたトランジスタド
レイン電極 T−−半導体層 W−−液晶駆動電極オープンウィンドウ
1 --- scanning signal wiring 2--video signal wiring 3--common electrode 4--liquid crystal driving electrode 5--gate insulating film 6-protecting insulating film 7-TFT substrate side alignment film 8--counter substrate side alignment Film 9--Liquid crystal molecule (positive dielectric constant anisotropic liquid crystal) 10--TFT side glass substrate 11--Counter glass substrate 12--TFT side polarizing plate 13--Counter substrate side polarizing plate 14--Underground insulating film 15 --- Drain Through Hole 16 --- Retention Capacitance Forming Region 17 --- Anodic Oxide Film 18 --- Common Electrode (Center Line) Simultaneously Formed of the Same Material as the Scan Signal Wiring 19--Common Electrode Through Hole 20--Common Pixel electrode 21 that is in contact with the common electrode (center line) through the electrode through hole --- Upper insulating film 22 --- Visible light antireflection film 23 --- Liquid crystal molecule (negative dielectric constant anisotropic liquid crystal) 3-F- Made of the same material as the common electrode at the same time Shielding film A--P-type liquid crystal molecule alignment direction and pixel electrode (common electrode and liquid crystal drive electrode) intersecting angle B--N-type liquid crystal molecule alignment direction and pixel electrode (common electrode and liquid crystal drive electrode) intersecting Angle P --- Alignment direction of liquid crystal molecules and polarization axis direction of polarizing plate (optical axis) Q --- Polarization axis direction of polarizing plate (optical axis) D --- Transistor drain electrode T-formed simultaneously with video signal wiring -Semiconductor layer --- Liquid crystal drive electrode open window

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−36058(JP,A) 特開 平7−43744(JP,A) 特開 平4−309928(JP,A) 特開 平7−306417(JP,A) 特開 平6−273803(JP,A) 特開 平7−134301(JP,A) 特開 平7−234414(JP,A) 特開 平7−128683(JP,A) 特開 平7−72507(JP,A) 特開 平9−230311(JP,A) 特開 昭60−12770(JP,A) 特開 平8−286176(JP,A) 国際公開97/10530(WO,A1) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1343 G02F 1/1362 G02F 1/1333 G02F 1/1335 G02F 1/133 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-7-36058 (JP, A) JP-A-7-43744 (JP, A) JP-A-4-309928 (JP, A) JP-A-7- 306417 (JP, A) JP-A-6-273803 (JP, A) JP-A-7-134301 (JP, A) JP-A-7-234414 (JP, A) JP-A-7-128683 (JP, A) JP-A-7-72507 (JP, A) JP-A-9-230311 (JP, A) JP-A-60-12770 (JP, A) JP-A-8-286176 (JP, A) International Publication 97/10530 ( WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) G02F 1/1343 G02F 1/1362 G02F 1/1333 G02F 1/1335 G02F 1/133

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に走査信号配線と映像信号配線と前
記走査信号配線と映像信号配線との各交差部に形成され
た薄膜トランジスタと前記薄膜トランジスタに接続され
た液晶駆動電極と、少なくとも一部が前記液晶駆動電極
と対向して形成された共通電極とを有するアクティブマ
トリックス基板と、前記アクティブマトリックス基板に
対向する対向基板と、前記アクティブマトリックス基板
と前記対向基板に挟持された液晶層とからなる横電界方
式液晶表示装置において、前記走査線信号配線と前記映
像信号配線と前記液晶駆動電極と前記共通電極とがそれ
ぞれ絶縁膜を介して互いに異なった層に形成分離されて
おり、かつ共通電極がアクティブマトリックス基板のパ
ッシベージョン層の上に形成され、配向膜と直接接触し
ており、かつ映像信号配線の両側に映像信号配線とオー
バーラップするように共通電極が配置され、かつ各画素
の共通電極は映像信号配線の上層で互いに連結されてい
ることを特徴とする横電界方式液晶表示装置
1. A scanning signal line, a video signal line, a thin film transistor formed at each intersection of the scanning signal line and the video signal line on a substrate, and a liquid crystal drive electrode connected to the thin film transistor, and at least a part of the thin film transistor. An active matrix substrate having a common electrode formed to face the liquid crystal drive electrode, a counter substrate facing the active matrix substrate, and a horizontal substrate including the active matrix substrate and a liquid crystal layer sandwiched between the counter substrates. In the electric field type liquid crystal display device, the scanning line signal wiring, the video signal wiring, the liquid crystal drive electrode, and the common electrode are formed and separated in different layers via an insulating film, respectively, and the common electrode is active. Formed on the passivation layer of the matrix substrate, in direct contact with the alignment film, and No. common electrode is disposed so as to overlap with the video signal lines on both sides of the wiring, and the common electrode of each pixel plane switching mode liquid crystal display device characterized by being connected to each other in the upper layer of the video signal lines
【請求項2】基板上に走査信号配線と映像信号配線と前
記走査信号配線と映像信号配線との各交差部部に形成さ
れた薄膜トランジスタと前記薄膜トランジスタに接続さ
れた液晶駆動電極と、少なくとも一部が前記液晶駆動電
極と対向して形成された共通電極とを有するアクティブ
マトリックス基板と前記アクティブマトリックス基板に
対向する対向基板と、前記アクティブマトリックス基板
と前記対向基板に挟持された液晶層とからなる横電界方
式液晶表示装置において、前記走査信号配線と前記映像
信号配線と前記液晶駆動電極と前記共通電極とがそれぞ
れ絶縁膜を介して互いに異なった層に形成分離されてお
り、かつ共通電極がアクティブマトリックス基板のパッ
シベーション層の上に形成され、配向膜と直接接触して
おり、かつ走査信号配線の両側に走査信号配線とオーバ
ーラップするように共通電極が配置され、かつ映像信号
配線の両側に映像信号配線とオーバーラップするように
共通電極が配置され、かつ各画素の共通電極は映像信号
配線の上層で互いに連結されていることを特徴とする横
電解方式液晶表示装置
2. A scanning signal line, a video signal line, a thin film transistor formed at each intersection of the scanning signal line and the video signal line on a substrate, and a liquid crystal drive electrode connected to the thin film transistor, and at least a part of the thin film transistor. A horizontal matrix composed of an active matrix substrate having a common electrode formed facing the liquid crystal driving electrode, a counter substrate facing the active matrix substrate, and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate. In the electric field type liquid crystal display device, the scanning signal line, the video signal line, the liquid crystal driving electrode, and the common electrode are formed and separated in different layers via an insulating film, respectively, and the common electrode is an active matrix. It is formed on the passivation layer of the substrate, is in direct contact with the alignment film, and has a scanning signal. A common electrode is arranged on both sides of the wiring so as to overlap with the scanning signal wiring, a common electrode is arranged on both sides of the video signal wiring so as to overlap with the video signal wiring, and the common electrode of each pixel is a video signal. A lateral electrolysis type liquid crystal display device characterized by being connected to each other in an upper layer of wiring
【請求項3】請求項1、2において、液晶駆動電極を絶
縁層を介して上層と下層から共通電極と走査信号配線に
より挟みこみ、その重畳部により付加容量を液晶駆動電
極の上層と下層に形成したことを特徴とする横電界方式
液晶表示装置
3. The liquid crystal driving electrode according to claim 1, wherein the liquid crystal driving electrode is sandwiched by the common electrode and the scanning signal wiring from the upper layer and the lower layer via the insulating layer, and the additional capacitance is provided between the upper layer and the lower layer of the liquid crystal driving electrode by the overlapping portion. In-plane switching mode liquid crystal display device characterized by being formed
【請求項4】請求項1、2において、共通電極の一部ま
たは液晶駆動電極の一部によって薄膜トランジスタの半
導体活性層を完全に被覆し、かつアクティブマトリック
ス基板に対向する対向基板側のBM(ブラックマスク)
が存在しないことを特徴とする横電界方式液晶表示装置
4. The BM (black) on the counter substrate side, which completely covers the semiconductor active layer of the thin film transistor with a part of the common electrode or a part of the liquid crystal driving electrode and faces the active matrix substrate. mask)
In-plane switching liquid crystal display device characterized by the absence of
【請求項5】請求項1、2において、共通電極と液晶駆
動電極の両方またはどちらか一方の電極表面に可視光の
反射防止膜層を形成したことを特徴とする横電界方式液
晶表示装置
5. A lateral electric field type liquid crystal display device according to claim 1, wherein a visible light antireflection film layer is formed on the surface of either or both of the common electrode and the liquid crystal driving electrode.
JP21489696A 1996-06-14 1996-06-14 Liquid crystal display Expired - Lifetime JP3486859B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21489696A JP3486859B2 (en) 1996-06-14 1996-06-14 Liquid crystal display
TW86108024A TW494265B (en) 1996-06-14 1997-06-11 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21489696A JP3486859B2 (en) 1996-06-14 1996-06-14 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH103092A JPH103092A (en) 1998-01-06
JP3486859B2 true JP3486859B2 (en) 2004-01-13

Family

ID=16663362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21489696A Expired - Lifetime JP3486859B2 (en) 1996-06-14 1996-06-14 Liquid crystal display

Country Status (2)

Country Link
JP (1) JP3486859B2 (en)
TW (1) TW494265B (en)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040109103A1 (en) 1998-06-30 2004-06-10 Hitachi, Ltd. Liquid crystal display device
KR100643444B1 (en) * 1998-03-06 2006-11-10 가부시키가이샤 히타치세이사쿠쇼 Liquid display device
KR100543027B1 (en) * 1998-04-03 2006-04-12 삼성전자주식회사 Flat Drive Liquid Crystal Display
KR100306799B1 (en) * 1998-05-29 2001-11-30 박종섭 Liquid crystal display
KR100306798B1 (en) * 1998-05-29 2001-11-30 박종섭 Lcd having high opening rate and high transmissivity and preventing color shift
KR100293811B1 (en) * 1998-05-29 2001-10-26 박종섭 Ips mode liquid crystal display device
KR100293810B1 (en) * 1998-05-29 2001-10-26 박종섭 Ips mode liquid crystal display device having no color shift
JP3129293B2 (en) 1998-08-13 2001-01-29 日本電気株式会社 Liquid crystal display
US6287899B1 (en) * 1998-12-31 2001-09-11 Samsung Electronics Co., Ltd. Thin film transistor array panels for a liquid crystal display and a method for manufacturing the same
JP4197574B2 (en) * 1999-05-20 2008-12-17 株式会社半導体エネルギー研究所 Liquid crystal display
US6630977B1 (en) 1999-05-20 2003-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with capacitor formed around contact hole
JP4724339B2 (en) * 1999-09-07 2011-07-13 株式会社日立製作所 Liquid crystal display
JP2001092379A (en) * 1999-09-27 2001-04-06 Nec Corp Active matrix substrate and its manufacturing method
WO2001071417A1 (en) * 2000-03-21 2001-09-27 Hitachi, Ltd. Liquid crystal display
KR20020002052A (en) * 2000-06-29 2002-01-09 주식회사 현대 디스플레이 테크놀로지 Method for manufacturing fringe field switching mode lcd
JP3427981B2 (en) 2000-07-05 2003-07-22 日本電気株式会社 Liquid crystal display device and manufacturing method thereof
TWI284240B (en) 2000-09-27 2007-07-21 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP2003015146A (en) * 2001-07-04 2003-01-15 Hitachi Ltd Liquid crystal display device
KR100823053B1 (en) * 2001-12-28 2008-04-18 엘지.필립스 엘시디 주식회사 An array substrate for In-Plane switching mode LCD and the method for fabricating the same
JP4082493B2 (en) * 2002-06-06 2008-04-30 株式会社 日立ディスプレイズ Liquid crystal display
KR100923673B1 (en) * 2002-08-07 2009-10-28 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
KR100899625B1 (en) * 2002-08-07 2009-05-27 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
KR100919185B1 (en) * 2002-08-21 2009-09-29 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
KR100853780B1 (en) * 2002-08-24 2008-08-25 엘지디스플레이 주식회사 Liquid crystal display device of in-plane switching
KR100870668B1 (en) * 2002-10-01 2008-11-26 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
KR100899627B1 (en) * 2002-11-18 2009-05-27 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
KR100920344B1 (en) * 2002-12-03 2009-10-07 삼성전자주식회사 thin film transistor array panel for liquid crystal display
KR100963029B1 (en) * 2003-03-24 2010-06-09 엘지디스플레이 주식회사 A method of forming IPS mode LCD
KR100961695B1 (en) 2003-06-12 2010-06-10 엘지디스플레이 주식회사 An array substrate for In-Plane switching mode LCD and method of the same
KR100978254B1 (en) 2003-06-30 2010-08-26 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device having 4-pixel structure
JP4154598B2 (en) 2003-08-26 2008-09-24 セイコーエプソン株式会社 Liquid crystal display device driving method, liquid crystal display device, and portable electronic device
KR101050945B1 (en) * 2003-09-19 2011-07-20 엘지디스플레이 주식회사 Transverse electric field mode liquid crystal display device
KR101001520B1 (en) * 2003-10-09 2010-12-14 엘지디스플레이 주식회사 In Plane Switching mode liquid crystal display device and the fabrication method thereof
KR101041613B1 (en) * 2003-11-25 2011-06-15 엘지디스플레이 주식회사 In-Plane switching mode LCD
KR101186863B1 (en) * 2003-12-29 2012-10-05 엘지디스플레이 주식회사 Multi-domain in plane switching mode liquid crystal display device
JP2005257883A (en) 2004-03-10 2005-09-22 Nec Lcd Technologies Ltd Liquid crystal display device
KR101050348B1 (en) * 2004-05-31 2011-07-19 엘지디스플레이 주식회사 Transverse electric field liquid crystal display device
KR101157226B1 (en) * 2004-05-31 2012-06-15 엘지디스플레이 주식회사 Liquid crystal display and method for manufacturing lcd
KR101088384B1 (en) 2004-09-16 2011-12-01 엘지디스플레이 주식회사 An array substrate for liquid crystal display device and fabricating method thereof
KR101354598B1 (en) * 2005-03-10 2014-01-22 엘지디스플레이 주식회사 An array substrate for In-Plane switching mode LCD and method of fabricating of the same
US8218120B2 (en) 2005-03-31 2012-07-10 Lg Display Co., Ltd. Array substrate for in-plane switching liquid crystal display device and method of fabricating the same
KR101146470B1 (en) * 2005-05-27 2012-05-21 엘지디스플레이 주식회사 An array substrate for Liquid Crystal Display device and the method for fabricating the same
KR100789089B1 (en) 2005-06-09 2007-12-26 엘지.필립스 엘시디 주식회사 Liquid crystal display device
KR101182557B1 (en) * 2005-06-24 2012-10-02 엘지디스플레이 주식회사 Liquid crystal display device and method for manufacturing thereof
KR101148400B1 (en) * 2005-06-29 2012-05-23 엘지디스플레이 주식회사 In-plain switching mode liquid crystal display device
EP2270583B1 (en) 2005-12-05 2017-05-10 Semiconductor Energy Laboratory Co., Ltd. Transflective Liquid Crystal Display with a Horizontal Electric Field Configuration
KR101296621B1 (en) * 2005-12-29 2013-08-14 엘지디스플레이 주식회사 Liquid Crystal Display Device And Method For Fabricating The Same
JP5477523B2 (en) * 2006-06-15 2014-04-23 三国電子有限会社 Low cost large screen wide viewing angle fast response liquid crystal display
JP5216204B2 (en) 2006-10-31 2013-06-19 株式会社半導体エネルギー研究所 Liquid crystal display device and manufacturing method thereof
JP2009294633A (en) 2007-09-26 2009-12-17 Nec Lcd Technologies Ltd Liquid crystal display device
JP5875014B2 (en) * 2007-09-26 2016-03-02 Nltテクノロジー株式会社 Liquid crystal display
JP2009180981A (en) * 2008-01-31 2009-08-13 Mitsubishi Electric Corp Active matrix substrate, and manufacturing method therefor
US8760479B2 (en) 2008-06-16 2014-06-24 Samsung Display Co., Ltd. Liquid crystal display
JP5380416B2 (en) * 2010-10-20 2014-01-08 株式会社ジャパンディスプレイ Liquid crystal display
JP5572562B2 (en) * 2011-01-19 2014-08-13 株式会社ジャパンディスプレイ Liquid crystal display
KR101635668B1 (en) * 2011-04-08 2016-07-01 가부시키가이샤 재팬 디스프레이 Liquid crystal display device
JP5647955B2 (en) * 2011-08-24 2015-01-07 株式会社ジャパンディスプレイ Liquid crystal display
JP2012234212A (en) * 2012-09-03 2012-11-29 Nlt Technologies Ltd Active matrix substrate and liquid crystal panel

Also Published As

Publication number Publication date
TW494265B (en) 2002-07-11
JPH103092A (en) 1998-01-06

Similar Documents

Publication Publication Date Title
JP3486859B2 (en) Liquid crystal display
US8040481B2 (en) In-plane switching mode liquid crystal display device having first and second common electrode connection lines and first and second pixel electrode connection linesbeing formed on the same layer
JP2701698B2 (en) Liquid crystal display
US7428034B2 (en) Liquid crystal display device
JP3831863B2 (en) Liquid crystal display
JP3567183B2 (en) Liquid crystal display
US7349051B2 (en) In plane switching mode liquid crystal display device having particular common lines
US6642985B2 (en) Fringe field mode LCD shielded from electrostatic disturbances
JP2701832B2 (en) Liquid crystal display
JP3234357B2 (en) Liquid crystal display
US20060001814A1 (en) In-plane switching mode liquid crystal display device and fabricating method thereof
JP2000137227A (en) Multi domain liquid crystal display element
JP5513859B2 (en) LCD panel
JP2000292801A (en) Liquid crystal display device
JP4373052B2 (en) Ultra high aperture ratio wide viewing angle LCD
US6657694B2 (en) In-plane switching LCD device having slanted corner portions
US20010013916A1 (en) In-plane switching LCD panel
JPH09281497A (en) Liquid crystal display device
JP3175972B2 (en) Liquid crystal display
JP4166554B2 (en) Liquid crystal display device and manufacturing method thereof
JP2528967B2 (en) Active matrix display
JP3346354B2 (en) LCD panel
KR20020054909A (en) Apparatus for fringe field switching liquid crystal display device and method for manufacturing the same
JP2004046123A (en) Liquid crystal display device
JP2002040484A (en) Active matrix type liquid crystal display device

Legal Events

Date Code Title Description
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term