JPH103092A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH103092A
JPH103092A JP21489696A JP21489696A JPH103092A JP H103092 A JPH103092 A JP H103092A JP 21489696 A JP21489696 A JP 21489696A JP 21489696 A JP21489696 A JP 21489696A JP H103092 A JPH103092 A JP H103092A
Authority
JP
Japan
Prior art keywords
liquid crystal
signal wiring
electrode
scanning signal
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21489696A
Other languages
Japanese (ja)
Other versions
JP3486859B2 (en
Inventor
Naoto Hirota
直人 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOBAYASHI SEIKO KK
Original Assignee
OOBAYASHI SEIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16663362&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH103092(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by OOBAYASHI SEIKO KK filed Critical OOBAYASHI SEIKO KK
Priority to JP21489696A priority Critical patent/JP3486859B2/en
Priority to TW86108024A priority patent/TW494265B/en
Publication of JPH103092A publication Critical patent/JPH103092A/en
Application granted granted Critical
Publication of JP3486859B2 publication Critical patent/JP3486859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a liquid crystal display device whose manufacturing yeild is satisfactory, in which an after-image is little, and which has a wide visual field angle and a high display quality, in the active matrix type liquid crystal display device of a traverse electric field system. SOLUTION: This device is constituted of scanning signal lines 1, video signal wirings 2. pixel electrodes, pixel electrodes, common electrodes 3 and active elements formed on a glass substrate 10 and is made to be a traverse electric field driving system performing a picture display by driving liquid crystal moleculars by the electric field of a direction roughly parallel with the surface of the glass substrate 10. The scanning signal lines 1, video signal wirings 2, the pixel electrodes and the common electrodes 3 are respectively separated by insulating films to be made different layers. Moreover, additional capacitances are formed by overlapping the scanning signal lines 1 with one parts of the pixel electrodes while interposing insulating films. Similarly, additional capacitances are formed by overlapping the common electrodes 3 with one parts of the pixel electrodes while interposing insulating films.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、広視野角・高画質の大
画面アクティブマトリックス型液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large screen active matrix type liquid crystal display device having a wide viewing angle and high image quality.

【0002】[0002]

【従来の技術】従来のアクティブマトリックス型液晶表
示装置の一方の基板上に形成した櫛歯状電極対を用いて
液晶組成物層に電界を印加する方式が、例えば、特開平
7−36058号や特開平7−159786号公報によ
り提案されている。以下液晶組成物層に印加する主たる
電界方向が、基板界面にほぼ平行な方向である表示方式
を横電界方式と称する。図1と図2が従来の横電界方式
の例である。共通電極と走査信号配線は、同じ層に
形成されている。さらに映像信号配線と液晶駆動電極
も同じ層に形成されている。共通電極と液晶駆動電
極とは、異なる層に分離形成されているが、直線状で
平行櫛歯状に配置されている。走査信号配線と映像信
号配線も同様に直線状平行配置で形成されている。共
通電極と映像信号配線とは、重ならないように配置
されている。付加容量は、共通電極と、液晶駆動電極
とを、絶縁膜を介して互いに重畳させることで形成し
ている。画素面積の半分ちかくをしめる共通電極と液
晶駆動電極の表面に関しては、使用している金属材料
そのままか、ショートをふせぐための自己酸化膜か、自
己窒化膜で被覆している。
2. Description of the Related Art A method of applying an electric field to a liquid crystal composition layer using a comb-like electrode pair formed on one substrate of a conventional active matrix type liquid crystal display device is disclosed in, for example, JP-A-7-36058 and This is proposed by Japanese Patent Application Laid-Open No. Hei 7-159786. Hereinafter, a display method in which the main electric field direction applied to the liquid crystal composition layer is a direction substantially parallel to the substrate interface is referred to as a horizontal electric field method. 1 and 2 show examples of the conventional in-plane switching method. The common electrode and the scanning signal wiring are formed in the same layer. Further, the video signal wiring and the liquid crystal drive electrode are also formed in the same layer. The common electrode and the liquid crystal drive electrode are separately formed in different layers, but are arranged in a linear and parallel comb shape. Similarly, the scanning signal wiring and the video signal wiring are formed in a linear parallel arrangement. The common electrode and the video signal wiring are arranged so as not to overlap. The additional capacitance is formed by overlapping the common electrode and the liquid crystal drive electrode with an insulating film interposed therebetween. The surfaces of the common electrode and the liquid crystal drive electrode, which make up half of the pixel area, are covered with the used metal material as it is, or with a self-oxide film or a self-nitride film to prevent short-circuit.

【0003】[0003]

【発明が解決しようとする課題】上記の従来技術で横電
界方式の液晶表示装置を作る場合、走査信号配線と共
通電極が同じ層に形成されているために、ショートす
る確率が高い。同様に映像信号配線と液晶駆動電極
も同じ層に形成されているのでショートする確率が高
い。前者の場合には水平ライン欠陥となり、後者は点欠
陥となって画像品位をいちじるしく低下させる。このた
めに従来の構造では歩留りが低く生産コストが高くなる
問題があった。
When a liquid crystal display device of the in-plane switching mode is manufactured by the above-mentioned prior art, there is a high probability of a short circuit because the scanning signal wiring and the common electrode are formed in the same layer. Similarly, since the video signal wiring and the liquid crystal drive electrode are also formed in the same layer, there is a high probability of a short circuit. In the former case, a horizontal line defect is generated, and in the latter case, a point defect is generated, which significantly lowers the image quality. For this reason, the conventional structure has a problem that the yield is low and the production cost is high.

【0004】横電界方式では、付加容量を形成しない
と、液晶駆動電極の容量が非常に小さくなるためにTF
Tのリーク電流の画面全体の不均一性がムラとなって見
えやすい。そのために従来技術では共通電極と液晶駆
動電極とを異なる層に絶縁膜を介して分離形成し、互
いに重畳させることで形成しているが、大きな付加容量
を形成しようとした場合有効画面を縮少して重畳部分の
面積を拡大する方法しかなく、光の透過率が悪い原因と
なっていた。
In the lateral electric field method, the capacitance of the liquid crystal driving electrode becomes very small unless an additional capacitance is formed.
The non-uniformity of the leakage current of T over the entire screen is likely to be uneven and easy to see. For this reason, in the prior art, the common electrode and the liquid crystal drive electrode are formed separately in different layers via an insulating film, and are formed so as to overlap each other. However, when a large additional capacitance is to be formed, the effective screen is reduced. Thus, there is no other way than to enlarge the area of the superimposed portion, which is a cause of poor light transmittance.

【0005】図2にあるように共通電極と液晶駆動電
極が直線状で平行櫛歯状に配置されている従来型の横
電界方式では、図24にあるように配向膜と液晶の
プレチルト角が視野角に大きな影響を与えることが知ら
れている。このため従来のTN液晶を用いたTFTで使
用されていたプレチルト角3°〜8°の液晶と配向膜は
使用することができず、ひとつの製造ラインでTN方式
と横電界方式を生産する場合、配向膜と液晶を交換しな
ければならず、生産効率がいちじるしく低下する問題が
あった。
In a conventional lateral electric field system in which a common electrode and a liquid crystal driving electrode are arranged in a linear and parallel comb shape as shown in FIG. 2, the pretilt angle between the alignment film and the liquid crystal is increased as shown in FIG. It is known that it has a great effect on the viewing angle. For this reason, the liquid crystal having a pretilt angle of 3 ° to 8 ° and the alignment film used in the TFT using the conventional TN liquid crystal cannot be used, and when the TN method and the horizontal electric field method are produced by one production line. In addition, the liquid crystal has to be exchanged for the alignment film, and there is a problem that the production efficiency is significantly reduced.

【0006】横電界方式では、開口率が低くく、うまく
設計しても高々50%程度である。有効画面の半分ちか
くが共通電極と液晶駆動電極とでしめられており、
従来の技術では、これらの電極の表面に反射防止の膜を
形成していないため、外部からカラーフィルターを通過
して液晶層に浸入してきた光は、共通電極と液晶駆動
電極で反射され再度カラーフィルターを通過して外部
に出ていく。このため黒レベルが灰色側にうきあがるた
めに、画面全体の黒レベルが従来のTN液晶方式よりも
悪るいという問題があった。
In the lateral electric field method, the aperture ratio is low, and even if it is designed well, it is at most about 50%. Half of the effective screen is covered by the common electrode and the liquid crystal drive electrode,
In the conventional technology, since an anti-reflection film is not formed on the surface of these electrodes, light that has entered the liquid crystal layer through the color filter from the outside is reflected by the common electrode and the liquid crystal driving electrode, and is then recolored. Go outside through the filter. For this reason, there is a problem that the black level of the entire screen is worse than that of the conventional TN liquid crystal system because the black level is increased to the gray side.

【0007】本発明は、上記の問題を解決するものであ
り、その目的は、より製造歩留りが高く、かつ開口率を
大きくでき、コントラストの高い大画面高精細アクティ
ブマトリックス型液晶表示装置をコスト安く提供するこ
とにある。
The present invention has been made to solve the above-mentioned problems, and has as its object to provide a large-screen high-definition active-matrix liquid crystal display device having a high manufacturing yield, a large aperture ratio and a high contrast at a low cost. To provide.

【0008】[0008]

【課題を解決するための手段】本発明では、上記の課題
を解決するために以下のような手段を採用します。
The present invention adopts the following means to solve the above-mentioned problems.

【0009】基板上に走査信号配線と映像信号配線と前
記走査信号配線と映像信号配線との各交差部に形成され
た薄膜トランジスターと、前記薄膜トランジスタに接続
された液晶駆動電極と、少なくとも一部が、前記液晶駆
動電極と対向して形成された共通電極とを有するアクテ
ィブマトリックス基板と前記対向期板に挟持された液晶
層とからなる液晶表示装置において、 〔手段1〕前記走査信号配線と前記映像信号配線と、前
記共通電極と、前記液晶駆動電極とが、それぞれ絶縁膜
を介して互いに異なった層に形成分離した。
At least a part of a thin film transistor formed on a substrate at each intersection of the scanning signal wiring, the video signal wiring, the scanning signal wiring and the video signal wiring, and a liquid crystal driving electrode connected to the thin film transistor. A liquid crystal display device comprising: an active matrix substrate having a common electrode formed to face the liquid crystal drive electrode; and a liquid crystal layer sandwiched by the facing period plate. [Means 1] The scanning signal wiring and the image The signal wiring, the common electrode, and the liquid crystal drive electrode were formed and separated from each other through an insulating film.

【0010】〔手段2〕手段1において、前記映像信号
配線と前記共通電極の少なくとも一部、または、前記走
査信号配線と前記共通電極の少なくとも一部を絶縁膜を
介して互いに重畳させた。
[Means 2] In the means 1, the video signal wiring and at least a part of the common electrode, or the scanning signal wiring and at least a part of the common electrode are overlapped with each other via an insulating film.

【0011】〔手段3〕手段1において、前記液晶駆動
電極と前記走査信号配線ならびに前記共通電極の少なく
とも一部を絶縁膜を介して互いに重畳させ、その重畳部
をもって付加容量を形成した。
[Means 3] In the means 1, at least a part of the liquid crystal drive electrode, the scan signal wiring, and the common electrode is overlapped with each other via an insulating film, and an additional capacitance is formed by the overlapped portion.

【0012】〔手段4〕手段1において、正の誘導率異
方性液晶(P型LC)を用いる場合、前記映像信号配線
と画素電極(液晶駆動電極と液晶駆動電極に対向してい
る共通電極の一部)とが液晶配向方向に対し、±1度〜
±45度の範囲で屈曲している構造配置にした。
[Means 4] In the means 1, when a positive induction anisotropic liquid crystal (P-type LC) is used, the video signal wiring and the pixel electrode (the liquid crystal drive electrode and the common electrode facing the liquid crystal drive electrode) Is ± 1 degree to the liquid crystal alignment direction.
The structure was bent in a range of ± 45 degrees.

【0013】〔手段5〕手段1において、正の誘導率異
方性液晶(P型LC)を用いる場合、前記走査信号配線
と画素電極とが、液晶配向方向に対して、±1度〜±4
5度の範囲で屈曲している構造配置にした。
[Means 5] In the means 1, when a positive induction anisotropic liquid crystal (P-type LC) is used, the scanning signal wiring and the pixel electrode are arranged at ± 1 degree to ± 1 degree with respect to the liquid crystal alignment direction. 4
The structure was bent in a range of 5 degrees.

【0014】〔手段6〕手段1において、負の誘導率異
方性液晶(N型LC)を用いる場合、前記映像信号配線
と、画素電極とが液晶配向方向に対して、90度をのぞ
く45度〜135度の範囲で屈曲している構造配置にし
た。
[Means 6] In the means 1, in the case of using a liquid crystal having a negative induction rate anisotropic liquid crystal (N-type LC), the video signal wiring and the pixel electrode are at an angle of 45 degrees with respect to the liquid crystal alignment direction. The structure was bent in a range of degrees to 135 degrees.

【0015】〔手段7〕手段1において、負の誘導率異
方性液晶(N型LC)を用いる場合、前記走査信号配線
と画素電極とが、液晶配向方向に対して、90度をのぞ
く45度〜135度の範囲で屈曲している構造配置にし
た。
[Means 7] In the means 1, in the case of using a liquid crystal of negative conductivity anisotropy (N-type LC), the scanning signal wiring and the pixel electrode are positioned at an angle of 45 degrees with respect to the liquid crystal alignment direction. The structure was bent in a range of degrees to 135 degrees.

【0016】〔手段8〕前記液晶駆動電極と、共通電極
の両方、または、すくなくとも一方の電極表面に光の反
射防止膜層を形成した。
[Means 8] An antireflection film layer for light is formed on both the liquid crystal drive electrode and the common electrode, or at least one of the electrode surfaces.

【0017】[0017]

【作用】上記手段1の如く、走査信号配線と映像信号配
線と、共通電極と、液晶駆動電極とが、それぞれ絶縁膜
を介して互いに異なった層に存在するために、走査信号
配線と共通電極の短絡発生確率が小さくなり水平ライン
欠陥を低減可能となる。映像信号配線と液晶駆動電極の
短絡も発生確率が小さくなり点欠陥が低減する。
Since the scanning signal wiring, the video signal wiring, the common electrode, and the liquid crystal driving electrode are present on different layers via the insulating film, respectively, as in the above means 1, the scanning signal wiring and the common electrode are provided. , The probability of occurrence of short circuits is reduced, and horizontal line defects can be reduced. The probability of occurrence of a short circuit between the video signal wiring and the liquid crystal drive electrode is reduced, and the point defect is reduced.

【0018】上記手段2と上記手段3により、共通電極
の一部と映像信号配線、ならびに走査信号配線とが絶縁
膜を介して互いに重畳させることができるので、画素開
口率を大きく出来る。また液晶駆動電極と走査信号配線
ならびに共通電極の少なくとも一部を絶縁膜を介して互
いに重畳させて形成した付加量を大きくできるので、T
FTのオフ抵抗の低下による画質の低下を防止できる。
またこの大きな付加量が走査信号線による液晶駆動電圧
の変動を低減する効果があるので、残像の発生を防止で
きる。
By means 2 and 3, a part of the common electrode and the video signal wiring and the scanning signal wiring can be overlapped with each other via the insulating film, so that the pixel aperture ratio can be increased. Further, since the liquid crystal driving electrode, the scanning signal wiring, and at least a part of the common electrode are overlapped with each other via an insulating film, the added amount can be increased.
It is possible to prevent a decrease in image quality due to a decrease in the FT off-resistance.
Further, since the large amount of addition has an effect of reducing the fluctuation of the liquid crystal driving voltage due to the scanning signal line, the occurrence of an afterimage can be prevented.

【0019】上記手段4〜上記手段7により図17,図
18にあるように、画素電極(液晶駆動電極と共通電
極)内で、横電界が印加された場合、液晶分子は、画素
電極内部で、左回転と右回転の2通りの回転運動が発生
する。図23にあるように一方向の回転運動だけでは、
プレチルト角が大きい場合図24のように、視野角の特
性に片よりが発生する。ひとつの画素電極内部で左回転
と右回転の2通りの液晶分子の回転運動が発生する場合
には、プレチルト角が大きくても視野角の特性の片より
が発生しない。このことから、本発明の構造を用いた液
晶表示装置では、プレチルト角の制限をうけずに、配向
膜と、液晶の選択の自由度が大きくなる。残像や応答速
度の改善がやりやすくなり、従来の配向膜や液晶を使用
することも可能となるので、生産効率を上げることが可
能となる。偏光板の有効利用率もあがるので、コストd
ownができる。
As shown in FIGS. 17 and 18 by means 4 to 7 above, when a horizontal electric field is applied within the pixel electrode (liquid crystal drive electrode and common electrode), the liquid crystal molecules are dispersed inside the pixel electrode. , Two kinds of rotational motions, that is, left rotation and right rotation, occur. As shown in FIG. 23, with only one-way rotational movement,
In the case where the pretilt angle is large, the characteristics of the viewing angle are partially different as shown in FIG. In the case where two kinds of rotational movements of liquid crystal molecules, ie, left rotation and right rotation, occur within one pixel electrode, even if the pretilt angle is large, the characteristics of the viewing angle do not occur. For this reason, in the liquid crystal display device using the structure of the present invention, the degree of freedom in selecting the alignment film and the liquid crystal is increased without being restricted by the pretilt angle. The afterimage and the response speed can be easily improved, and a conventional alignment film or liquid crystal can be used, so that the production efficiency can be increased. Since the effective utilization rate of the polarizing plate is increased, the cost d
own.

【0020】上記手段8により、外部からカラーフィル
ターを通過して液晶層に侵入してきた光は、図22にあ
るように、共通電極や液晶駆動電極の上層に形成さ
れた反射防止膜によって反射されなくなるので黒レベル
が改善されコントラストが高くなる。見やすい高品質の
画像が得られる。
By means 8 described above, light that has entered the liquid crystal layer through the color filter from the outside is reflected by the antireflection film formed on the common electrode and the liquid crystal drive electrode, as shown in FIG. Since it disappears, the black level is improved and the contrast is increased. An easy-to-view high-quality image is obtained.

【0021】上記手段1,2,3より、有効画素以外か
らのバックライト光の光もれがすくなくなるので、カラ
ーフィルターのBM(ブラックマスク)領域を小さくす
ることが可能となる。さらに図37,38,39,4
0,41,42、にあるように、共通電極の1部、また
は液晶駆動電極の1部によってTFTの部分を完全にお
おうことで、TFTの半導体活性層に直接外部からの光
があたらなくなる。これによりTFTのオフ時のホトリ
ーク電流が激減する。従来どうしても必要とされたカラ
ーフィルターのBM(ブラックマスク)が必要なくな
り、カラーフィルターの製造プロセスを短縮化でき、歩
留りをあげられるのでコストをさげることができる。
According to the above-mentioned means 1, 2 and 3, since there is little leakage of backlight light from areas other than effective pixels, the BM (black mask) area of the color filter can be reduced. 37, 38, 39, 4
By completely covering the TFT portion with a part of the common electrode or a part of the liquid crystal drive electrode as shown in 0, 41 and 42, light from the outside is not directly emitted to the semiconductor active layer of the TFT. This drastically reduces the photo leak current when the TFT is off. The BM (black mask) of the color filter, which has always been required, is no longer required, the manufacturing process of the color filter can be shortened, and the yield can be increased, so that the cost can be reduced.

【0022】[0022]

【実施例】【Example】

〔実施例1〕図3,図4,図5,図31,図35,図3
6,図37,図38は、本発明の第1部類の実施例の、
単位画素の断面及び平面図である。ガラス基板▲10▼
上に、共通電極(コモン電極)を形成し、これを覆う
ように窒化シリコン(SiN)膜や酸化シリコン(Si
)膜などからなる下地絶縁膜▲14▼を形成した。
次に走査信号配線(ゲート電極)を形成した。走査信
号配線は、Alなどの陽極酸化処理可能な金属が良い
が、Cr,Mo,Ti,W,Taなどの純金属や合金で
も良い。電気抵抗値の低い金属を用い、二層、三層にか
さね合せた複合金属でも良い。走査信号配線の上にゲ
ート絶縁膜を形成してから非晶質シリコン(a−S
i)膜▲T▼を形成し、トランジスタの能動層とする。
非晶質シリコンの一部に重畳するように映像信号配線
とドレイン電極▲D▼を形成する。これらすべてを被覆
するようにSiN膜よりなる保護絶縁膜を形成する。
次にドレイン電極▲D▼の上のSiNにスルーホール▲
15▼を形成する。液晶駆動電極を形成し、スルーホ
ール▲15▼を介して、ドレイン電極▲D▼と電気的に
連結される。以上よりなる単位画素をマトリックス状に
配置したアクティブマトリックス基板の表面にポリイミ
ドよりなる配向膜を形成し、表面にラビング処理を施
した。同じく表面にラビング処理を施した配向膜を表
面に形成した対向基板▲11▼と前記アクティブマトリ
ックス基板の間に棒状の液晶分子を含む液晶組成物を
封入し、二枚の基板の外表面に偏光板▲12▼,▲13
▼を配置した。
[Embodiment 1] FIGS. 3, 4, 5, 31, 31, 35, and 3
FIGS. 6, 37 and 38 show an embodiment of the first class of the present invention.
It is a cross section and a plan view of a unit pixel. Glass substrate ▲ 10 ▼
A common electrode (common electrode) is formed thereon, and a silicon nitride (SiN) film or a silicon oxide (Si)
An underlying insulating film (14) made of an O 2 ) film or the like was formed.
Next, a scanning signal wiring (gate electrode) was formed. The scanning signal wiring is preferably made of an anodizable metal such as Al, but may be made of a pure metal or an alloy such as Cr, Mo, Ti, W or Ta. A composite metal in which a metal having a low electric resistance value is used and two or three layers are overlapped may be used. After forming a gate insulating film on the scanning signal wiring, the amorphous silicon (a-S
i) A film (T) is formed to be an active layer of a transistor.
A video signal wiring and a drain electrode (D) are formed so as to overlap a part of the amorphous silicon. A protective insulating film made of a SiN film is formed so as to cover all of them.
Next, a through-hole is formed in the SiN on the drain electrode D.
15 is formed. A liquid crystal drive electrode is formed, and is electrically connected to the drain electrode (D) through the through hole (15). An alignment film made of polyimide was formed on the surface of an active matrix substrate in which the unit pixels constituted as described above were arranged in a matrix, and rubbing was performed on the surface. Similarly, a liquid crystal composition containing rod-shaped liquid crystal molecules is sealed between the active matrix substrate and the opposing substrate (11) having an alignment film on the surface of which the rubbing treatment has been performed, and polarized light is applied to the outer surfaces of the two substrates. Boards [12], [13]
▼ was arranged.

【0023】配向膜,は、ラビング処理の必要な
い、光重合型耐熱性高分子を直線偏光光線を用いて光重
合反応をおこさせて液晶配向性をもたせた膜でもよい。
光重合型耐熱性高分子配向膜による配向では、プレチル
ト角が発生しにくいが、横電界方式の液晶表示モードで
はプレチルト角が小さい方が視角特性が良いので、横電
界方式表示モードでは光重合耐熱性高分子配向膜も使用
できる。液晶分子は、無電界時には図23にあるよう
に、ストライプ状の液晶駆動電極および共通電極の
長手方向に対して若干の角度(1度〜45度)を持つよ
うに配向されている。尚、上下基板との界面での液晶分
子の配向は、互いに平行とした。また液晶分子の誘電率
異方性は、正である。負の誘電率異方性の液晶分子を用
いる場合には液晶の配向方向の軸▲P▼と画素電極,
の交差角を45度〜89度の範囲で設定すれば良い。
The alignment film may be a film which does not require a rubbing treatment and has a liquid crystal alignment by photopolymerization reaction of a photopolymerizable heat-resistant polymer using linearly polarized light.
A pretilt angle is unlikely to occur in the orientation using a photopolymerizable heat-resistant polymer alignment film, but in a horizontal electric field type liquid crystal display mode, a smaller pretilt angle has better viewing angle characteristics. An oriented polymer oriented film can also be used. As shown in FIG. 23, the liquid crystal molecules are oriented so as to have a slight angle (1 degree to 45 degrees) with respect to the longitudinal direction of the striped liquid crystal driving electrode and the common electrode when there is no electric field. The orientation of the liquid crystal molecules at the interface with the upper and lower substrates was parallel to each other. The dielectric anisotropy of the liquid crystal molecules is positive. When a liquid crystal molecule having a negative dielectric anisotropy is used, the axis of the alignment direction of the liquid crystal (P) and the pixel electrode,
May be set in the range of 45 degrees to 89 degrees.

【0024】さらに本実施例では、図3にあるように共
通電極と液晶駆動電極を絶縁膜▲14▼,,を
介して絶縁分離してあるので、図4のように重畳させる
ことが可能であり、この重畳部は付加容量として作用さ
せることができる。さらに図5にあるように、液晶駆動
電極を共通電極だけでなく走査信号配線に重畳させる
ことが可能である。これにより、付加容量を開口率を低
下させることなく大きくすることができる。さらに図3
7,図38にあるように、TFTの非晶質能動層▲T▼
を全面おおうように液晶駆動電極を形成することもでき
る。図31,図35,図36にあるように、共通電極
の一部を走査信号配線や映像信号配線と重畳させる
ことで有効画素以外からの光のもれを激減させることが
できる。
Further, in this embodiment, as shown in FIG. 3, the common electrode and the liquid crystal drive electrode are insulated and separated via the insulating films (14), so that they can be overlapped as shown in FIG. In this case, the overlapping portion can function as an additional capacitor. Further, as shown in FIG. 5, it is possible to superimpose the liquid crystal drive electrode not only on the common electrode but also on the scanning signal wiring. Thus, the additional capacitance can be increased without lowering the aperture ratio. Further FIG.
7. As shown in FIG. 38, the amorphous active layer (T) of the TFT
The liquid crystal drive electrode can be formed so as to cover the entire surface. As shown in FIG. 31, FIG. 35, and FIG. 36, by partially overlapping the common electrode with the scanning signal wiring and the video signal wiring, it is possible to drastically reduce light leakage from other than the effective pixels.

【0025】〔実施例2〕図6,図7,図8,図9,図
10は、本発明の第2部類の実施例の単位画素の断面及
び平面図である。ガラス基板▲10▼の上に、走査信号
配線(ゲート電極)を形成し、陽極酸化処理をする。
陽極酸化可能な金属はAl,Ta,Nbなどである。こ
れらの金属の合金でもよいし、積層構造のゲート電極も
よい。次に共通電極(コモン電極)を形成し、これを
覆うゲート絶縁膜を形成する。これ以後は実施例1と
同じである。本発明では、走査信号配線(ゲート電極)
の陽極酸化膜が走査信号配線と共通電極との完全絶
縁分離作用を持つ。これにより走査信号配線と共通電
極のシートが完全に防止できる。実施例1にあるよう
に共通電極の一部と映像信号配線を重畳させることも
可能である。さらに、液晶駆動電極の一部を用いて、T
FTの能動層を完全におおうことも可能である。
Embodiment 2 FIGS. 6, 7, 8, 9 and 10 are a sectional view and a plan view of a unit pixel according to a second embodiment of the present invention. A scanning signal wiring (gate electrode) is formed on a glass substrate (10), and anodizing is performed.
Anodizable metals are Al, Ta, Nb, and the like. An alloy of these metals may be used, or a gate electrode having a laminated structure may be used. Next, a common electrode (common electrode) is formed, and a gate insulating film covering the common electrode is formed. Subsequent steps are the same as in the first embodiment. In the present invention, the scanning signal wiring (gate electrode)
Has an effect of completely insulating and separating the scanning signal wiring and the common electrode. Thereby, the sheet of the scanning signal wiring and the common electrode can be completely prevented. As in the first embodiment, a part of the common electrode and the video signal wiring can be overlapped. Further, by using a part of the liquid crystal driving electrode, T
It is also possible to completely cover the active layer of the FT.

【0026】〔実施例3〕図11,図12,図13は、
本発明の第3部類の実施例の単位画素の断面及び平面図
である。ガラス基板▲10▼の上に走査信号配線と共
通電極中央線▲18▼を同時に、同一層に形成する。次
に共通電極中央線▲18▼と画素電極▲20▼とがコン
タクトスルーホール部分▲19▼で電気的に結合できる
ように、処理した後、走査信号配線と共通電極中央線
▲18▼を陽極酸化処理する。陽極酸化可能な金属は、
Al,Ta,Nbなどである。これらの金属の合金でも
よいし、積層構造のゲート電極でもよい。次に画素電極
20を形成し、これらを覆うゲート絶縁膜を形成す
る。これ以後は実施例1と同じである。本発明では、走
査信号配線(ゲート電極)の陽極酸化膜が、走査信号配
線と、共通電極の一部である画素電極▲20▼との完
全絶縁分離作用を持つ。走査信号配線と共通電極中央
線▲18▼との距離は、一般的に非常に大きく、同じ層
に形成してもほとんどショートすることはない。実施例
1にあるように、共通電極画素電極▲20▼の一部と、
映像信号配線を重畳させることも、可能である。さらに
液晶駆動電極の一部を用いて、TFTの能動層を完全
におおうことも可能である。
[Embodiment 3] FIGS. 11, 12 and 13 show
FIG. 9 is a cross-sectional view and a plan view of a unit pixel according to a third class example of the present invention. The scanning signal wiring and the common electrode center line (18) are simultaneously formed on the same layer on the glass substrate (10). Next, after processing so that the common electrode center line (18) and the pixel electrode (20) can be electrically coupled at the contact through hole portion (19), the scanning signal wiring and the common electrode center line (18) are connected to the anode. Perform oxidation treatment. Anodizable metals are
Al, Ta, Nb and the like. An alloy of these metals may be used, or a gate electrode having a laminated structure may be used. Next, the pixel electrodes 20 are formed, and a gate insulating film covering them is formed. Subsequent steps are the same as in the first embodiment. In the present invention, the anodic oxide film of the scanning signal wiring (gate electrode) has a function of completely insulating and separating the scanning signal wiring from the pixel electrode (20) which is a part of the common electrode. The distance between the scanning signal wiring and the common electrode center line (18) is generally very large, and even if they are formed in the same layer, there is almost no short circuit. As in the first embodiment, a part of the common electrode pixel electrode (20) and
It is also possible to superimpose the video signal wiring. Further, it is possible to completely cover the active layer of the TFT by using a part of the liquid crystal drive electrode.

【0027】〔実施例4〕図14,図15,図16,図
32,図33,図34,図39,図40,図41,図4
2,図43,図44は、本発明の第4部類の実施例の単
位画素の断面及び平面図である。ガラス基板▲10▼上
に、走査信号配線(ゲート電極)を形成し、これを覆
うようにゲート絶縁膜を形成してから、非晶質シリコ
ン(a−Si)膜▲T▼を形成し、トランジスタの能動
層とする。次に、映像信号配線とドレイン電極▲D▼
を形成する。これらすべてを被覆するようにSiN膜や
SiO膜よりなる保護絶縁膜を形成する。次にドレ
イン電極▲D▼の上にスルーホール▲15▼を形成す
る。液晶駆動電極を形成し、スルーホール▲15▼を
介してドレイン電極▲D▼と電気的に連結される。次に
上層絶縁膜を形成してからその上に共通電極を形成す
る。以上よりなる単位画素をマトリックス状に配置した
アクティブマトリックス基板の表面に配向膜を形成
し、表面にラビング処理を施した。本実施例では、図1
4にあるように、共通電極と液晶駆動電極を絶縁膜
▲21▼を介して絶縁分離してあるので、図15のよう
に重畳させることが可能であり、この重畳部は、付加容
量として作用させることができる。さらに図16にある
ように液晶駆動電極を共通電極だけでなく、走査信号配
線に重畳させることが可能である。これにより付加容
量を開口率を低下させることなく大きくすることができ
る。次に、図39,図40,図41,図42にあるよう
にTFTの非晶質能動層▲T▼を全面おおうように、液
晶駆動電極や、共通電極を形成することもできる。図3
2,図33,図34,にあるように、共通電極の一部
を走査信号配線や映像信号配線と重畳させること
で、有効画素以外からの光のもれを激減させることがで
きる。これによりブラックマスク(BM)の必要ないカ
ラーフィルターを用いることができる。
[Embodiment 4] FIGS. 14, 15, 16, 32, 33, 34, 39, 40, 41, 4
2, FIG. 43 and FIG. 44 are a sectional view and a plan view of a unit pixel according to a fourth class example of the present invention. A scanning signal wiring (gate electrode) is formed on a glass substrate (10), a gate insulating film is formed to cover the scanning signal wiring (gate electrode), and then an amorphous silicon (a-Si) film (T) is formed. The active layer of the transistor. Next, the video signal wiring and the drain electrode (D)
To form A protective insulating film made of a SiN film or a SiO 2 film is formed so as to cover all of them. Next, a through hole (15) is formed on the drain electrode (D). A liquid crystal drive electrode is formed, and is electrically connected to the drain electrode (D) through the through hole (15). Next, after forming an upper insulating film, a common electrode is formed thereon. An alignment film was formed on the surface of an active matrix substrate in which the unit pixels constituted as described above were arranged in a matrix, and rubbing was performed on the surface. In this embodiment, FIG.
As shown in FIG. 4, since the common electrode and the liquid crystal drive electrode are insulated and separated via the insulating film (21), they can be overlapped as shown in FIG. 15, and this overlapped portion acts as an additional capacitor. Can be done. Further, as shown in FIG. 16, it is possible to overlap the liquid crystal drive electrode not only on the common electrode but also on the scanning signal wiring. Thus, the additional capacitance can be increased without lowering the aperture ratio. Next, as shown in FIGS. 39, 40, 41, and 42, a liquid crystal drive electrode and a common electrode can be formed so as to cover the entire surface of the amorphous active layer (T) of the TFT. FIG.
2. As shown in FIGS. 33 and 34, by partially overlapping the common electrode with the scanning signal wiring and the video signal wiring, it is possible to drastically reduce the leakage of light from other than the effective pixels. This makes it possible to use a color filter that does not require a black mask (BM).

【0028】さらに本実施例では、図43,図44にあ
るように有効画素内の液晶駆動電極の上に形成された
上層絶縁膜をとりのぞいて、オープンウィンドウ▲W▼
を形成することができる。これにより、液晶駆動電極
と、共通電極の表面に直接配向膜を形成できる。液晶
は交流駆動が基本であり、直流成分のバイアス電圧が印
加された場合、配向膜が分極したり、配向膜と絶縁膜の
界面にチャージがトラップされたりして残像現象が発生
する。本実施例のように、両方の電極が、配向膜と直接
接している場合、チャージのトラップが少なく、残像は
発生しにくくなる。実施例1,2,3においても、図4
3,図44において形成されたオープンウィンドウ▲W
▼を形成することは可能である。
Further, in this embodiment, as shown in FIG. 43 and FIG. 44, except for the upper insulating film formed on the liquid crystal drive electrode in the effective pixel, the open window (W)
Can be formed. Thereby, an alignment film can be formed directly on the surfaces of the liquid crystal drive electrode and the common electrode. The liquid crystal is basically driven by an alternating current, and when a bias voltage of a direct current component is applied, the alignment film is polarized or charge is trapped at an interface between the alignment film and the insulating film, so that an afterimage phenomenon occurs. When both electrodes are in direct contact with the alignment film as in the present embodiment, charge traps are small and afterimages are less likely to occur. In the first, second, and third embodiments, FIG.
3, the open window formed in FIG.
It is possible to form ▼.

【0029】〔実施例5〕図17,図19,図20,図
21,図25,図26,図27,図28,図29,図3
0は、第5部類の動作原理と、実施例の平面図である。
液晶分子の誘電率異方性は、正である。画素内部の共通
電極と液晶駆動電極は、液晶分子の配向軸(光学
軸)▲P▼に対して±1度〜±45度の範囲で屈曲して
いる。このような構造になっている場合、図17にある
ように共通電極と液晶駆動電極に電圧が印加され電
極間に電界が発生した時に、液晶分子は、屈曲部を境に
して左回転と右回転の2通りの回転運動をする。単位画
素内部で2通りの回転運動が可能になる点が視角特性の
改善に非常な効果をもたらすのである。図19,図2
0,図21は、単位画素の平面図である。画素電極の屈
曲にあわせて、映像信号配線や走査信号配線が屈曲
しているのが特徴である。図25,図26,図27図2
8は、カラーフィルターの色の混色を良くするためにデ
ルタ配置に画素を配列した場合の共通電極と液晶駆動
電極と走査信号配線と映像信号配線の配列位置に
関する平面図である。このデルタ配列はおもにAV用に
使用されるものである。図29,図30は、ストライプ
配列に画素を配置した場合の共通電極と液晶駆動電極
と、走査信号配線と映像信号配線の配列関係の平
面図である。このストライプ配列は、おもに、OA用に
使用されるものである。
[Embodiment 5] FIGS. 17, 19, 20, 21, 25, 26, 27, 28, 29 and 3
0 is a plan view of the operation principle of the fifth class and the embodiment.
The dielectric anisotropy of the liquid crystal molecules is positive. The common electrode and the liquid crystal drive electrode inside the pixel are bent within a range of ± 1 degree to ± 45 degrees with respect to the alignment axis (optical axis) (P) of the liquid crystal molecules. In such a structure, when a voltage is applied to the common electrode and the liquid crystal driving electrode and an electric field is generated between the electrodes as shown in FIG. 17, the liquid crystal molecules rotate left and right with respect to the bent portion. It makes two kinds of rotational movements of rotation. The point that two kinds of rotational movements are possible inside the unit pixel has a great effect on the improvement of the viewing angle characteristics. FIG. 19, FIG.
0 and FIG. 21 are plan views of the unit pixel. The feature is that the video signal wiring and the scanning signal wiring are bent in accordance with the bending of the pixel electrode. FIG. 25, FIG. 26, FIG.
FIG. 8 is a plan view of arrangement positions of a common electrode, a liquid crystal drive electrode, a scanning signal wiring, and a video signal wiring when pixels are arranged in a delta arrangement in order to improve the color mixture of the color filters. This delta arrangement is mainly used for AV. FIGS. 29 and 30 are plan views showing the arrangement relationship between the common electrode, the liquid crystal drive electrode, the scanning signal wiring, and the video signal wiring when the pixels are arranged in a stripe arrangement. This stripe arrangement is mainly used for OA.

【0030】〔実施例6〕図18,図19,図20,図
21,図25,図26,図27,図28,図29,図3
0は、第6部類の動作原理と実施例の平面図である。液
晶分子の誘電率異方性は負である。画素内部の共通電極
と液晶駆動電極は、液晶分子の配向軸(光学軸)▲
P▼に対して90度をのぞく45度〜135度の範囲で
屈曲している。図18にあるように、共通電極と液晶
駆動電極に電圧が印加され電極間に電界が発生した時
に、液晶分子は、屈曲部を境にして左回転と右回転の2
通りの回転運動をする。単位画素内部で2通りの回転運
動が可能になる点が視角特性の改善に効果があるという
点では、実施例5とまったく同じである。単位画素の平
面図構造や画素配列に関する平面図構造は実施例5と、
まったく同じである。画素電極の屈曲にあわせて映像信
号配線や走査信号配線が屈曲しているのが特徴であ
る。実施例5,実施例6ともに上下基板との界面での液
晶分子の配向は互いに平行になるようにラビング処理し
てある。偏光板の偏光軸(光学軸)は上下ともに直交配
置にしてあり、無電界時には、画素から光が通過しない
ノーマリーブラックモードである。
Embodiment 6 FIGS. 18, 19, 20, 21, 25, 26, 27, 28, 29 and 3
0 is a plan view of the operation principle of the sixth category and the embodiment. The dielectric anisotropy of the liquid crystal molecules is negative. The common electrode and the liquid crystal drive electrode inside the pixel are aligned with the alignment axis (optical axis) of the liquid crystal molecules.
It is bent in the range of 45 to 135 degrees except for 90 degrees with respect to P ▼. As shown in FIG. 18, when a voltage is applied to the common electrode and the liquid crystal driving electrode and an electric field is generated between the electrodes, the liquid crystal molecules are rotated leftward and rightward at the bent portion.
Make a street rotation. This is exactly the same as the fifth embodiment in that the point that two kinds of rotational movements are possible inside the unit pixel is effective in improving the viewing angle characteristics. The plan view structure of the unit pixel and the plan view structure related to the pixel arrangement are the same as those of the fifth embodiment.
Exactly the same. The feature is that the video signal wiring and the scanning signal wiring are bent in accordance with the bending of the pixel electrode. In each of the fifth and sixth embodiments, the rubbing treatment is performed so that the alignment of the liquid crystal molecules at the interface with the upper and lower substrates is parallel to each other. The polarization axis (optical axis) of the polarizing plate is arranged vertically at right and left, and is a normally black mode in which light does not pass from the pixel when no electric field is applied.

【0031】〔実施例7〕図22は、第7部類の実施例
の断面図である。画素電極(共通電極と液晶駆動電極)
の表面に外部からの光が液晶層に侵入してきた時に、こ
の光が画素電極により反射され再度外部に出ていくのを
防止する反射防止層が形成されている。代表的例として
は、Cr金属の場合にはCr\CrN\CrOやCr\
CrOなどの窒化膜と酸化膜の二層構造か、酸化膜だけ
の一層構造がある。Mo金属の場合にも同様にMo\M
oN\MoOやMo\MoOの構造が用いられる。その
ほかに画素電極の表面にa−Si層をコートしたり、カ
ーボンをコートしたり、することでかなりの反射防止効
果が得られる。Cr\CrSixやMo\MoSix,
Ti\TiSix,W\WSix Ta\TaSix,
Nb\NbSixなどのメタルシリサイドも光反射防止
効果があるので用いることができる。
[Embodiment 7] FIG. 22 is a sectional view of a seventh embodiment of the present invention. Pixel electrode (common electrode and liquid crystal drive electrode)
An anti-reflection layer is formed on the surface of the liquid crystal display to prevent the light from being reflected by the pixel electrode and coming out again when light from the outside enters the liquid crystal layer. As a typical example, in the case of Cr metal, Cr\CrN\CrO or Cr\
It has a two-layer structure of a nitride film such as CrO and an oxide film or a single-layer structure of only an oxide film. Similarly, in the case of Mo metal, Mo\M
The structure of oN @ MoO or Mo @ MoO is used. In addition, a considerable antireflection effect can be obtained by coating the surface of the pixel electrode with an a-Si layer or by coating carbon. Cr @ CrSix, Mo @ MoSix,
Ti\TiSix, W\WSix Ta\TaSix,
Metal silicide such as Nb\NbSix can also be used because it has an antireflection effect.

【0032】さらに図45にあるように画素電極の上の
絶縁膜上に反射防止膜層を形成しても同様に効果があ
る。この場合には絶縁膜の反射防止膜が適している。a
−Si層や、カラーフィルターで用いられているブルー
の顔料系レジストやブラックの顔料系レジストなどが使
用できる。
Further, as shown in FIG. 45, the same effect can be obtained by forming an antireflection film layer on the insulating film on the pixel electrode. In this case, an antireflection film of an insulating film is suitable. a
-Si layer, a blue pigment-based resist used for a color filter, a black pigment-based resist, or the like can be used.

【0033】対向基板▲11▼の方にブラックマスクが
ないようなカラーフィルターの場合には、走査信号電極
や映像信号電極の表面に図22のように、反射防止膜層
を形成することで、コントラストの非常に良い横電界方
式の液晶表示装置を作ることができる。
In the case of a color filter having no black mask on the counter substrate (11), an antireflection film layer is formed on the surface of the scanning signal electrode or the video signal electrode as shown in FIG. An in-plane switching mode liquid crystal display device with very good contrast can be manufactured.

【0034】[0034]

【発明の効果】以上のように本発明によれば、走査信号
配線と映像信号配線と共通電極と液晶駆動電極とを絶縁
膜によってそれぞれ別々に異層化したことにより、ショ
ートの発生がなく、開口率が高く、コントラストの高い
残像の少ない液晶パネルを作れる。さらに画素電極を液
晶配向方向に対して屈曲させることで単位画素内で2つ
の液晶分子の回転方向を作り出すことができ、視野角を
拡大することが可能となる。従来使用していた配向材料
を使用できるのでコストも低くできる。
As described above, according to the present invention, the scanning signal wiring, the video signal wiring, the common electrode, and the liquid crystal drive electrode are separately formed by insulating films, respectively, so that no short circuit occurs. A liquid crystal panel with a high aperture ratio and high contrast with little afterimage can be made. Furthermore, by bending the pixel electrode with respect to the liquid crystal alignment direction, a rotation direction of two liquid crystal molecules can be created in a unit pixel, and the viewing angle can be increased. The cost can be reduced because the alignment material conventionally used can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の横電界方式の単位画素の断面図FIG. 1 is a sectional view of a conventional lateral electric field type unit pixel.

【図2】 従来の横電界方式の単位画素の平面図FIG. 2 is a plan view of a conventional lateral electric field type unit pixel.

【図3】 本発明の横電界方式単位画素の断面図(実施
例1)
FIG. 3 is a cross-sectional view of a lateral electric field type unit pixel of the present invention (Example 1).

【図4】 本発明の横電界方式単位画素の平面図(実施
例1)
FIG. 4 is a plan view of a lateral electric field type unit pixel of the present invention (Example 1).

【図5】 本発明の横電界方式単位画素の断面図(実施
例1)
FIG. 5 is a sectional view of a lateral electric field type unit pixel according to the present invention (Example 1).

【図6】 本発明の横電界方式単位画素の平面図(実施
例2)
FIG. 6 is a plan view of a lateral electric field type unit pixel according to the present invention (Example 2).

【図7】 本発明の横電界方式単位画素の平面図(実施
例2)
FIG. 7 is a plan view of a lateral electric field type unit pixel of the present invention (Example 2).

【図8】 本発明の横電界方式単位画素の平面図(実施
例2)
FIG. 8 is a plan view of a lateral electric field type unit pixel according to the present invention (Example 2).

【図9】 本発明の横電界方式単位画素の平面図(実施
例2)
FIG. 9 is a plan view of a lateral electric field type unit pixel of the present invention (Example 2).

【図10】 本発明の横電界方式単位画素の平面図(実
施例2)
FIG. 10 is a plan view of a lateral electric field type unit pixel of the present invention (Example 2).

【図11】 本発明の横電界方式単位画素の断面図(実
施例3)
FIG. 11 is a cross-sectional view of a lateral electric field type unit pixel of the present invention (Example 3).

【図12】 本発明の横電界方式単位画素の平面図(実
施例3)
FIG. 12 is a plan view of a lateral electric field type unit pixel of the present invention (Example 3).

【図13】 本発明の横電界方式単位画素の平面図(実
施例3)
FIG. 13 is a plan view of a lateral electric field type unit pixel of the present invention (Example 3).

【図14】 本発明の横電界方式単位画素の断面図(実
施例4)
FIG. 14 is a cross-sectional view of a lateral electric field type unit pixel according to the present invention (Example 4).

【図15】 本発明の横電界方式単位画素の平面図(実
施例4)
FIG. 15 is a plan view of a lateral electric field type unit pixel according to the present invention (Example 4).

【図16】 本発明の横電界方式単位画素の平面図(実
施例4)
FIG. 16 is a plan view of a lateral electric field type unit pixel according to the present invention (Example 4).

【図17】 本発明の横電界方式屈曲画素電極内の正の
誘電率異方性液晶の配向方向図(実施例5)
FIG. 17 is a view showing an orientation direction of a positive dielectric anisotropy liquid crystal in a lateral electric field bending pixel electrode of the present invention (Example 5).

【図18】 本発明の横電界方式屈曲画素電極内の負の
誘電率異方性液晶の配向方向図(実施例6)
FIG. 18 is a view showing the orientation direction of a negative dielectric anisotropy liquid crystal in a lateral electric field type bent pixel electrode of the present invention (Example 6).

【図19】 本発明の横電界方式単位画素の平面図(実
施例5,実施例6)
FIG. 19 is a plan view of a lateral electric field type unit pixel according to the present invention (Examples 5 and 6).

【図20】 本発明の横電界方式単位画素の平面図(実
施例5,実施例6)
FIG. 20 is a plan view of a lateral electric field type unit pixel according to the present invention (Examples 5 and 6).

【図21】 本発明の横電界方式単位画素の平面図(実
施例5,実施例6)
FIG. 21 is a plan view of a lateral electric field type unit pixel according to the present invention (Examples 5 and 6).

【図22】 本発明の横電界方式反射防止膜付画素電極
の断面図(実施例7)
FIG. 22 is a cross-sectional view of a pixel electrode with an anti-reflection film according to the present invention (Example 7).

【図23】 横電界方式画素電極内の正の液晶率異方性
液晶の配向方向図(実施例1,実施例2,実施例3,実
施例4)
FIG. 23 is a view showing an alignment direction of a positive liquid crystal ratio anisotropic liquid crystal in a lateral electric field type pixel electrode (Example 1, Example 2, Example 3, Example 4).

【図24】 横電界方式液晶表示装置の液晶分子のプレ
チルト角と視角特性
FIG. 24 shows a pretilt angle and a viewing angle characteristic of liquid crystal molecules of an in-plane switching mode liquid crystal display device.

【図25】 本発明の横電界方式画素配列の平面図(実
施例5,実施例6)
FIG. 25 is a plan view of a lateral electric field type pixel array of the present invention (Embodiments 5 and 6).

【図26】 本発明の横電界方式画素配列の平面図(実
施例5,実施例6)
FIG. 26 is a plan view of a lateral electric field type pixel array according to the present invention (Examples 5 and 6).

【図27】 本発明の横電界方式画素配列の平面図(実
施例5,実施例6)
FIG. 27 is a plan view of a lateral electric field type pixel array of the present invention (Embodiments 5 and 6).

【図28】 本発明の横電界方式画素配列の平面図(実
施例5,実施例6)
FIG. 28 is a plan view of a lateral electric field type pixel array according to the present invention (Examples 5 and 6).

【図29】 本発明の横電界方式画素配列の平面図(実
施例5,実施例6)
FIG. 29 is a plan view of a lateral electric field type pixel array according to the present invention (Examples 5 and 6).

【図30】 本発明の横電界方式画素配列の平面図(実
施例5,実施例6)
FIG. 30 is a plan view of a lateral electric field type pixel array of the present invention (Embodiments 5 and 6).

【図31】 本発明の共通電極と映像信号配線の重畳部
断面図(実施例1)
FIG. 31 is a sectional view of an overlapping portion of a common electrode and a video signal wiring according to the present invention (Example 1).

【図32】 本発明の共通電極と映像信号配線の重畳部
断面図(実施例4)
FIG. 32 is a sectional view of a superposed portion of a common electrode and a video signal wiring according to the present invention (Example 4).

【図33】 本発明の共通電極と液晶駆動電極と走査信
号配線の重畳部の断面図(実施例4)
FIG. 33 is a sectional view of a superposed portion of a common electrode, a liquid crystal drive electrode, and a scanning signal line according to the present invention (Example 4).

【図34】 本発明の共通電極と液晶駆動電極と走査信
号配線の重畳部の断面図(実施例4)
FIG. 34 is a sectional view of a superposed portion of a common electrode, a liquid crystal drive electrode, and a scanning signal line according to the present invention (Example 4).

【図35】 本発明の共通電極と液晶駆動電極と走査信
号配線の重畳部の断面図(実施例1)
FIG. 35 is a sectional view of a superposed portion of a common electrode, a liquid crystal drive electrode, and a scanning signal line according to the present invention (Example 1).

【図36】 本発明の共通電極と液晶駆動電極と走査信
号配線の重畳部の断面図(実施例1)
FIG. 36 is a sectional view of a superposed portion of a common electrode, a liquid crystal driving electrode, and a scanning signal line according to the present invention (Example 1).

【図37】 本発明の走査信号配線と液晶駆動電極によ
るトランジスタ部の能動層を、はさみこんだ断面図(実
施例1)
FIG. 37 is a cross-sectional view in which an active layer of a transistor portion is interposed between a scanning signal wiring and a liquid crystal driving electrode of the present invention (Example 1).

【図38】 本発明の横電界方式単位画素の平面図(実
施例1)
FIG. 38 is a plan view of a lateral electric field type unit pixel of the present invention (Example 1).

【図39】 本発明の走査信号配線と液晶駆動電極によ
るトランジスタ部の能動層を、はさみこんだ断面図(実
施例4)
FIG. 39 is a cross-sectional view in which an active layer of a transistor portion is interposed between a scanning signal wiring and a liquid crystal drive electrode according to the present invention (Example 4).

【図40】 本発明の横電界方式単位画素の平面図(実
施例4)
FIG. 40 is a plan view of a lateral electric field type unit pixel according to the present invention (Example 4).

【図41】 本発明の走査信号配線と液晶駆動電極によ
るトランジスタ部の能動層を、はさみこんだ断面図(実
施例4)
FIG. 41 is a cross-sectional view in which an active layer of a transistor portion is interposed between a scanning signal wiring and a liquid crystal driving electrode of the present invention (Example 4).

【図42】 本発明の横電界方式単位画素の平面図(実
施例4)
FIG. 42 is a plan view of a lateral electric field type unit pixel according to the present invention (Example 4).

【図43】 本発明の横電界方式単位画素の断面図(実
施例4)
FIG. 43 is a cross-sectional view of a lateral electric field type unit pixel of the present invention (Example 4).

【図44】 本発明の横電界方式単位画素の平面図(実
施例4)
FIG. 44 is a plan view of a lateral electric field type unit pixel of the present invention (Example 4).

【図45】 本発明の横電界方式反射防止膜付画素電極
の断面図(実施例7)
FIG. 45 is a sectional view of a pixel electrode with an in-plane switching type antireflection film according to the present invention (Example 7).

【符号の説明】[Explanation of symbols]

1――走査信号配線 2――映像信号配線 3――共通電極 4――液晶駆動電極 5――ゲート絶縁膜 6――保護絶縁膜 7――TFT基板側配向膜 8――対向基板側配向膜 9――液晶分子(正の誘電率異方性液晶) 10――TFT側ガラス基板 11――対向ガラス基板 12――TFT側偏光板 13――対向基板側偏光板 14――下地絶縁膜 15――ドレインスルーホール 16――保持容量形成領域 17――陽極酸化膜 18――走査信号配線と同じ材料で同時に形成された共
通電極(中央線) 19――共通電極スルーホール 20――共通電極スルーホールで共通電極(中央線)と
コンタクトしている画素電極 21――上層絶縁膜 22――可視光反射防止膜 23――液晶分子(負の誘電率異方性液晶) 3−F―共通電極と同じ材料で同時に形成された光シー
ルド膜 A――P型液晶分子の配向方向と画素電極(共通電極と
液晶駆動電極)の交差する角度 B――N型液晶分子の配向方向と画素電極(共通電極と
液晶駆動電極)の交差する角度 P――液晶分子の配向方向と偏光板の偏光軸方向(光学
軸) Q――偏光板の偏光軸方向(光学軸) D――映像信号配線と同時に形成されたトランジスタド
レイン電極 T――半導体層 W――液晶駆動電極オープンウィンドウ
1—Scan signal wiring 2—Video signal wiring 3—Common electrode 4—Liquid crystal drive electrode 5—Gate insulating film 6—Protective insulating film 7—TFT substrate-side alignment film 8—Counter substrate-side alignment Film 9—Liquid crystal molecules (positive dielectric anisotropic liquid crystal) 10—TFT side glass substrate 11—Opposite glass substrate 12—TFT side polarizing plate 13—Optical substrate side polarizing plate 14—Base insulating film 15—Drain through hole 16—Storage capacitance forming area 17—Anodic oxide film 18—Common electrode (center line) formed simultaneously with the same material as scanning signal wiring 19—Common electrode through hole 20—Common Pixel electrode in contact with common electrode (center line) through electrode through hole 21-Upper insulating film 22-Visible light antireflection film 23-Liquid crystal molecules (negative dielectric anisotropy liquid crystal) 3-F- Same material as common electrode A—The angle at which the alignment direction of the P-type liquid crystal molecules intersects with the pixel electrode (common electrode and liquid crystal drive electrode) B—The alignment direction of the N-type liquid crystal molecules and the pixel electrode (common electrode and liquid crystal) Angle at which drive electrode intersects P-orientation direction of liquid crystal molecules and polarization axis direction of optical plate (optical axis) Q-polarization axis direction of optical plate (optical axis) D-formed simultaneously with video signal wiring Transistor drain electrode T-semiconductor layer W-LCD drive electrode open window

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基板上に走査信号配線と映像信号配線
と、前記走査信号配線と映像信号配線との各交差部に形
成された薄膜トランジスタと、前記薄膜トランジスタに
接続された液晶駆動電極と、少なくとも一部が前記液晶
駆動電極と対向して形成された共通電極とを有するアク
ティブマトリックス基板と、前記アクティブマトリック
ス基板に対向する対向基板と、前記アクティブマトリッ
クス基板と前記対向基板に挟持された液晶層とからなる
液晶表示装置において、前記走査信号配線と、前記映像
信号配線と、前記共通電極と前記液晶駆動電極とがそれ
ぞれ絶縁膜を介して互いに異なった層に形成分離されて
いることを特徴とする液晶表示装置。
At least one of a scanning signal wiring and a video signal wiring on a substrate, a thin film transistor formed at each intersection of the scanning signal wiring and the video signal wiring, and a liquid crystal drive electrode connected to the thin film transistor. A liquid crystal layer sandwiched between the active matrix substrate, a counter substrate facing the active matrix substrate, and a liquid crystal layer sandwiched by the counter substrate. In the liquid crystal display device, the scanning signal wiring, the video signal wiring, the common electrode and the liquid crystal driving electrode are formed and separated in different layers via an insulating film, respectively. Display device.
【請求項2】 特許請求の範囲第1項において、前記映
像信号配線と前記共通電極の少なくとも一部または、前
記走査信号配線と前記共通電極の少なくとも一部を絶縁
膜を介して互いに重畳させたことを特徴とする液晶表示
装置。
2. The image signal wiring according to claim 1, wherein at least a part of the video signal wiring and the common electrode or at least a part of the scanning signal wiring and the common electrode are overlapped with each other via an insulating film. A liquid crystal display device characterized by the above-mentioned.
【請求項3】 特許請求の範囲第1項において、前記液
晶駆動電極と前記走査信号配線ならびに前記共通電極の
少なくとも一部を絶縁膜を介して互いに重畳させ、その
重畳部をもって付加容量を形成することを特徴とする液
晶表示装置。
3. The liquid crystal driving electrode according to claim 1, wherein at least a part of the liquid crystal driving electrode and the scanning signal wiring and the common electrode are overlapped with each other via an insulating film, and an additional capacitance is formed by the overlapping portion. A liquid crystal display device characterized by the above-mentioned.
【請求項4】 特許請求の範囲第1項において、前記映
像信号配線と画素電極(液晶駆動電極と液晶駆動電極に
対向している共通電極の一部)が、液晶配向方向に対
し、±1度〜±45度の角度の範囲で、屈曲している構
造配置を特徴とする液晶表示装置。
4. The liquid crystal display device according to claim 1, wherein the video signal wiring and the pixel electrode (the liquid crystal driving electrode and a part of the common electrode facing the liquid crystal driving electrode) are ± 1 with respect to the liquid crystal alignment direction. A liquid crystal display device characterized by a structure arrangement that is bent in an angle range of degrees to ± 45 degrees.
【請求項5】 特許請求の範囲第1項において、前記走
査信号配線と画素電極が液晶配向方向に対し、±1度〜
±45度の角度の範囲で、屈曲している構造配置を特徴
とする液晶表示装置。
5. The liquid crystal display according to claim 1, wherein the scanning signal wiring and the pixel electrode are arranged at an angle of ± 1 degree with respect to a liquid crystal alignment direction.
A liquid crystal display device characterized by a bent structural arrangement in an angle range of ± 45 degrees.
【請求項6】 特許請求の範囲第1項において、前記映
像信号配線と画素電極が、液晶配向方向に対し、90度
をのぞく45度〜135度の範囲で屈曲している構造配
置を特徴とする液晶表示装置。
6. A structure according to claim 1, wherein the video signal wiring and the pixel electrode are bent in a range of 45 ° to 135 ° except 90 ° with respect to a liquid crystal alignment direction. Liquid crystal display device.
【請求項7】 特許請求の範囲第1項において、前記走
査信号配線と画素電極が、液晶配向方向に対し、90度
をのぞく45度〜135度の範囲で屈曲している構造配
置を特徴とする液晶表示装置。
7. A structure according to claim 1, wherein the scanning signal wiring and the pixel electrode are bent in a range of 45 ° to 135 ° except 90 ° with respect to a liquid crystal alignment direction. Liquid crystal display device.
【請求項8】 基板上に走査信号配線と、映像信号配線
と、前記走査信号配線と、映像信号配線との各交差部に
形成された薄膜トランジスタと、前記薄膜トランジスタ
に接続された液晶駆動電極と、少なくとも一部が前記液
晶駆動電極と対向して形成された共通電極とを有するア
クティブマトリックス基板と、前記アクティブマトリッ
クス基板に対向する対向基板と、前記アクティブマトリ
ックス基板と前記対向基板に挟持された液晶層とからな
る液晶表示装置において、前記共通電極と液晶駆動電極
の両方、またはすくなくとも一方の電極表面に光の反射
防止膜層を形成してあることを特徴とする液晶表示装
置。
8. A scanning signal wiring, a video signal wiring, a thin film transistor formed at each intersection of the scanning signal wiring and the video signal wiring on a substrate, a liquid crystal driving electrode connected to the thin film transistor, An active matrix substrate having a common electrode at least partially opposed to the liquid crystal drive electrode, a counter substrate facing the active matrix substrate, and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate A liquid crystal display device comprising: a liquid crystal display device comprising: a light reflection preventing film layer formed on both the common electrode and the liquid crystal driving electrode or at least one electrode surface.
JP21489696A 1996-06-14 1996-06-14 Liquid crystal display Expired - Lifetime JP3486859B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21489696A JP3486859B2 (en) 1996-06-14 1996-06-14 Liquid crystal display
TW86108024A TW494265B (en) 1996-06-14 1997-06-11 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21489696A JP3486859B2 (en) 1996-06-14 1996-06-14 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH103092A true JPH103092A (en) 1998-01-06
JP3486859B2 JP3486859B2 (en) 2004-01-13

Family

ID=16663362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21489696A Expired - Lifetime JP3486859B2 (en) 1996-06-14 1996-06-14 Liquid crystal display

Country Status (2)

Country Link
JP (1) JP3486859B2 (en)
TW (1) TW494265B (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045430A1 (en) * 1998-03-06 1999-09-10 Hitachi, Ltd. Liquid crystal display
JP2000206571A (en) * 1998-12-31 2000-07-28 Samsung Electronics Co Ltd Thin film transistor substrate for liquid crystal display device and its production
JP2001033824A (en) * 1999-05-20 2001-02-09 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
WO2001018597A1 (en) * 1999-09-07 2001-03-15 Hitachi, Ltd Liquid crystal display device
JP2001092379A (en) * 1999-09-27 2001-04-06 Nec Corp Active matrix substrate and its manufacturing method
WO2001071417A1 (en) * 2000-03-21 2001-09-27 Hitachi, Ltd. Liquid crystal display
KR100293811B1 (en) * 1998-05-29 2001-10-26 박종섭 Ips mode liquid crystal display device
KR100293810B1 (en) * 1998-05-29 2001-10-26 박종섭 Ips mode liquid crystal display device having no color shift
KR100306798B1 (en) * 1998-05-29 2001-11-30 박종섭 Lcd having high opening rate and high transmissivity and preventing color shift
KR100306799B1 (en) * 1998-05-29 2001-11-30 박종섭 Liquid crystal display
KR20020002052A (en) * 2000-06-29 2002-01-09 주식회사 현대 디스플레이 테크놀로지 Method for manufacturing fringe field switching mode lcd
WO2002027392A1 (en) * 2000-09-27 2002-04-04 Matsushita Electric Industrial Co., Ltd. Liquid crystal display
US6396556B1 (en) 1998-08-13 2002-05-28 Nec Corporation Liquid crystal display
JP2003015146A (en) * 2001-07-04 2003-01-15 Hitachi Ltd Liquid crystal display device
JP2004012730A (en) * 2002-06-06 2004-01-15 Hitachi Displays Ltd Liquid crystal display device
JP2004185011A (en) * 2002-12-03 2004-07-02 Samsung Electronics Co Ltd Thin film transistor display plate for liquid crystal display
US6859248B2 (en) 2000-07-05 2005-02-22 Nec Lcd Technologies, Ltd. Liquid crystal display device and method of fabricating the same with non-parallel chevron shaped electrodes
JP2005257883A (en) * 2004-03-10 2005-09-22 Nec Lcd Technologies Ltd Liquid crystal display device
JP2005346064A (en) * 2004-05-31 2005-12-15 Lg Phillips Lcd Co Ltd In-plane switching liquid crystal display and driving method therefor
KR100543027B1 (en) * 1998-04-03 2006-04-12 삼성전자주식회사 Flat Drive Liquid Crystal Display
KR100789089B1 (en) 2005-06-09 2007-12-26 엘지.필립스 엘시디 주식회사 Liquid crystal display device
KR100823053B1 (en) * 2001-12-28 2008-04-18 엘지.필립스 엘시디 주식회사 An array substrate for In-Plane switching mode LCD and the method for fabricating the same
KR100853780B1 (en) * 2002-08-24 2008-08-25 엘지디스플레이 주식회사 Liquid crystal display device of in-plane switching
KR100870668B1 (en) * 2002-10-01 2008-11-26 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
KR100899627B1 (en) * 2002-11-18 2009-05-27 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
KR100899625B1 (en) * 2002-08-07 2009-05-27 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
JP2009180981A (en) * 2008-01-31 2009-08-13 Mitsubishi Electric Corp Active matrix substrate, and manufacturing method therefor
KR100919185B1 (en) * 2002-08-21 2009-09-29 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
US7599031B2 (en) 1998-03-06 2009-10-06 Hitachi, Ltd. Liquid crystal display device
KR100923673B1 (en) * 2002-08-07 2009-10-28 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
JP2009294633A (en) * 2007-09-26 2009-12-17 Nec Lcd Technologies Ltd Liquid crystal display device
US7701541B2 (en) 1999-05-20 2010-04-20 Semiconductor Energy Laboratory Co., Ltd. In-plane switching display device having electrode and pixel electrode in contact with an upper surface of an organic resin film
KR100963029B1 (en) * 2003-03-24 2010-06-09 엘지디스플레이 주식회사 A method of forming IPS mode LCD
KR100961695B1 (en) * 2003-06-12 2010-06-10 엘지디스플레이 주식회사 An array substrate for In-Plane switching mode LCD and method of the same
KR100978254B1 (en) 2003-06-30 2010-08-26 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device having 4-pixel structure
KR101001520B1 (en) * 2003-10-09 2010-12-14 엘지디스플레이 주식회사 In Plane Switching mode liquid crystal display device and the fabrication method thereof
KR101041613B1 (en) * 2003-11-25 2011-06-15 엘지디스플레이 주식회사 In-Plane switching mode LCD
KR101050945B1 (en) * 2003-09-19 2011-07-20 엘지디스플레이 주식회사 Transverse electric field mode liquid crystal display device
KR101088384B1 (en) 2004-09-16 2011-12-01 엘지디스플레이 주식회사 An array substrate for liquid crystal display device and fabricating method thereof
US20120099070A1 (en) * 2010-10-20 2012-04-26 Toshiba Mobile Display Co., Ltd. Liquid crystal display device
KR101146470B1 (en) * 2005-05-27 2012-05-21 엘지디스플레이 주식회사 An array substrate for Liquid Crystal Display device and the method for fabricating the same
KR101148400B1 (en) * 2005-06-29 2012-05-23 엘지디스플레이 주식회사 In-plain switching mode liquid crystal display device
KR101157226B1 (en) * 2004-05-31 2012-06-15 엘지디스플레이 주식회사 Liquid crystal display and method for manufacturing lcd
US8218120B2 (en) 2005-03-31 2012-07-10 Lg Display Co., Ltd. Array substrate for in-plane switching liquid crystal display device and method of fabricating the same
CN102608813A (en) * 2011-01-19 2012-07-25 东芝移动显示器有限公司 Liquid crystal display device
KR101182557B1 (en) * 2005-06-24 2012-10-02 엘지디스플레이 주식회사 Liquid crystal display device and method for manufacturing thereof
KR101186863B1 (en) * 2003-12-29 2012-10-05 엘지디스플레이 주식회사 Multi-domain in plane switching mode liquid crystal display device
JP2012234212A (en) * 2012-09-03 2012-11-29 Nlt Technologies Ltd Active matrix substrate and liquid crystal panel
JP2013044955A (en) * 2011-08-24 2013-03-04 Japan Display Central Co Ltd Liquid crystal device
KR101254241B1 (en) * 2006-06-15 2013-04-12 미쿠니 일렉트론 컴퍼니 리미티드 Low-Cost Large-Screen Wide-Angle Fast-Response Active Matrix Liquid Crystal Display Apparatus and Method of Fabricating Active Matrix Substrate
KR101296621B1 (en) * 2005-12-29 2013-08-14 엘지디스플레이 주식회사 Liquid Crystal Display Device And Method For Fabricating The Same
KR20130131463A (en) * 2011-04-08 2013-12-03 가부시키가이샤 재팬 디스프레이 Liquid crystal display device
KR101354598B1 (en) * 2005-03-10 2014-01-22 엘지디스플레이 주식회사 An array substrate for In-Plane switching mode LCD and method of fabricating of the same
JP2014123139A (en) * 2007-09-26 2014-07-03 Nlt Technologies Ltd Liquid crystal display device
US8780307B2 (en) 2006-10-31 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US9348188B2 (en) 2008-06-16 2016-05-24 Samsung Display Co., Ltd. Liquid crystal display
KR20180103790A (en) * 2005-12-05 2018-09-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4154598B2 (en) 2003-08-26 2008-09-24 セイコーエプソン株式会社 Liquid crystal display device driving method, liquid crystal display device, and portable electronic device

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063564A4 (en) * 1998-03-06 2005-09-14 Hitachi Ltd Liquid crystal display
EP1063564A1 (en) * 1998-03-06 2000-12-27 Hitachi, Ltd. Liquid crystal display
KR100643444B1 (en) * 1998-03-06 2006-11-10 가부시키가이샤 히타치세이사쿠쇼 Liquid display device
WO1999045430A1 (en) * 1998-03-06 1999-09-10 Hitachi, Ltd. Liquid crystal display
US7599031B2 (en) 1998-03-06 2009-10-06 Hitachi, Ltd. Liquid crystal display device
KR100543027B1 (en) * 1998-04-03 2006-04-12 삼성전자주식회사 Flat Drive Liquid Crystal Display
KR100293810B1 (en) * 1998-05-29 2001-10-26 박종섭 Ips mode liquid crystal display device having no color shift
KR100293811B1 (en) * 1998-05-29 2001-10-26 박종섭 Ips mode liquid crystal display device
KR100306798B1 (en) * 1998-05-29 2001-11-30 박종섭 Lcd having high opening rate and high transmissivity and preventing color shift
KR100306799B1 (en) * 1998-05-29 2001-11-30 박종섭 Liquid crystal display
US6396556B1 (en) 1998-08-13 2002-05-28 Nec Corporation Liquid crystal display
JP2010087527A (en) * 1998-12-31 2010-04-15 Samsung Electronics Co Ltd Thin film transistor substrate for liquid crystal display device, and method of manufacturing the same
US7978292B2 (en) 1998-12-31 2011-07-12 Samsung Electronics Co., Ltd. Thin film transistor array panels for a liquid crystal display and a method for manufacturing the same
JP2000206571A (en) * 1998-12-31 2000-07-28 Samsung Electronics Co Ltd Thin film transistor substrate for liquid crystal display device and its production
US7701541B2 (en) 1999-05-20 2010-04-20 Semiconductor Energy Laboratory Co., Ltd. In-plane switching display device having electrode and pixel electrode in contact with an upper surface of an organic resin film
JP2001033824A (en) * 1999-05-20 2001-02-09 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
JP2012247808A (en) * 1999-09-07 2012-12-13 Japan Display East Co Ltd Liquid crystal display device
KR100881357B1 (en) * 1999-09-07 2009-02-02 가부시키가이샤 히타치세이사쿠쇼 Liquid crystal display
WO2001018597A1 (en) * 1999-09-07 2001-03-15 Hitachi, Ltd Liquid crystal display device
US10139687B2 (en) 1999-09-07 2018-11-27 Japan Display Inc. Liquid crystal display device
US9857643B2 (en) 1999-09-07 2018-01-02 Japan Display Inc. Liquid crystal display device
US9632370B2 (en) 1999-09-07 2017-04-25 Japan Display Inc. Liquid crystal display device
US10634961B2 (en) 1999-09-07 2020-04-28 Japan Display Inc. Liquid crystal display device
JP4724339B2 (en) * 1999-09-07 2011-07-13 株式会社日立製作所 Liquid crystal display
US8035786B2 (en) 1999-09-07 2011-10-11 Hitachi, Ltd. Liquid crystal display device
US7248324B2 (en) 1999-09-07 2007-07-24 Hitachi, Ltd. Liquid crystal display device
US7251005B2 (en) 1999-09-07 2007-07-31 Hitachi, Ltd. Liquid crystal display device comprising two counter voltage signal lines having two branches in each pixel region
US7251006B2 (en) 1999-09-07 2007-07-31 Hitachi, Ltd. Liquid crystal display device
US7253863B2 (en) 1999-09-07 2007-08-07 Hitachi, Ltd. Liquid crystal display device
US7256854B2 (en) 1999-09-07 2007-08-14 Hitachi, Ltd. Liquid crystal display device
US9488883B2 (en) 1999-09-07 2016-11-08 Japan Display Inc. Liquid crystal display device
US7733455B2 (en) 1999-09-07 2010-06-08 Hitachi, Ltd. Liquid crystal display device
US8964155B2 (en) 1999-09-07 2015-02-24 Japan Display Inc. Liquid crystal display device
US7456924B2 (en) 1999-09-07 2008-11-25 Hitachi, Ltd. Liquid crystal display device
JP2014160279A (en) * 1999-09-07 2014-09-04 Japan Display Inc Liquid crystal display device
US7705949B2 (en) 1999-09-07 2010-04-27 Hitachi, Ltd. Liquid crystal display device
US8564752B2 (en) 1999-09-07 2013-10-22 Hitachi Displays, Ltd. Liquid crystal display device
US8493537B2 (en) 1999-09-07 2013-07-23 Hitachi Displays, Ltd. Liquid crystal display device
US8345205B2 (en) 1999-09-07 2013-01-01 Hitachi Displays, Ltd. Liquid Crystal display device
US7936429B2 (en) 1999-09-07 2011-05-03 Hitachi, Ltd. Liquid crystal display device
US8218119B2 (en) 1999-09-07 2012-07-10 Hitachi Displays, Ltd. Liquid crystal display device
US7697100B2 (en) * 1999-09-07 2010-04-13 Hitachi, Ltd. Liquid crystal display device
KR100923707B1 (en) * 1999-09-07 2009-10-27 가부시키가이샤 히타치세이사쿠쇼 Liquid crystal display
US8218118B2 (en) 1999-09-07 2012-07-10 Hitachi Displays, Ltd. Liquid crystal display device
US8045116B2 (en) 1999-09-07 2011-10-25 Hitachi, Ltd. Liquid crystal display device
US7683996B2 (en) 1999-09-07 2010-03-23 Hitachi, Ltd. Liquid crystal display device
JP2001092379A (en) * 1999-09-27 2001-04-06 Nec Corp Active matrix substrate and its manufacturing method
WO2001071417A1 (en) * 2000-03-21 2001-09-27 Hitachi, Ltd. Liquid crystal display
KR20020002052A (en) * 2000-06-29 2002-01-09 주식회사 현대 디스플레이 테크놀로지 Method for manufacturing fringe field switching mode lcd
US7227608B2 (en) 2000-07-05 2007-06-05 Nec Lcd Technologies, Ltd. Liquid crystal display device and method of fabricating the same
US6859248B2 (en) 2000-07-05 2005-02-22 Nec Lcd Technologies, Ltd. Liquid crystal display device and method of fabricating the same with non-parallel chevron shaped electrodes
US6850303B2 (en) 2000-09-27 2005-02-01 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device having additional storage capacitance
WO2002027392A1 (en) * 2000-09-27 2002-04-04 Matsushita Electric Industrial Co., Ltd. Liquid crystal display
JP2003015146A (en) * 2001-07-04 2003-01-15 Hitachi Ltd Liquid crystal display device
KR100823053B1 (en) * 2001-12-28 2008-04-18 엘지.필립스 엘시디 주식회사 An array substrate for In-Plane switching mode LCD and the method for fabricating the same
JP2004012730A (en) * 2002-06-06 2004-01-15 Hitachi Displays Ltd Liquid crystal display device
KR100899625B1 (en) * 2002-08-07 2009-05-27 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
KR100923673B1 (en) * 2002-08-07 2009-10-28 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
KR100919185B1 (en) * 2002-08-21 2009-09-29 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
KR100853780B1 (en) * 2002-08-24 2008-08-25 엘지디스플레이 주식회사 Liquid crystal display device of in-plane switching
KR100870668B1 (en) * 2002-10-01 2008-11-26 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
KR100899627B1 (en) * 2002-11-18 2009-05-27 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
US7944537B2 (en) 2002-12-03 2011-05-17 Samsung Electronics Co., Ltd. Thin film transistor array panel for liquid crystal display
US8467025B2 (en) 2002-12-03 2013-06-18 Samsung Display Co., Ltd. Thin film transistor array panel for liquid crystal display
JP2004185011A (en) * 2002-12-03 2004-07-02 Samsung Electronics Co Ltd Thin film transistor display plate for liquid crystal display
JP2011203763A (en) * 2002-12-03 2011-10-13 Samsung Electronics Co Ltd Thin film transistor display panel for liquid crystal display device
KR100963029B1 (en) * 2003-03-24 2010-06-09 엘지디스플레이 주식회사 A method of forming IPS mode LCD
KR100961695B1 (en) * 2003-06-12 2010-06-10 엘지디스플레이 주식회사 An array substrate for In-Plane switching mode LCD and method of the same
US7751009B2 (en) 2003-06-12 2010-07-06 Lg Display Co., Ltd. Array substrate for in-plane switching mode liquid crystal display
KR100978254B1 (en) 2003-06-30 2010-08-26 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device having 4-pixel structure
KR101050945B1 (en) * 2003-09-19 2011-07-20 엘지디스플레이 주식회사 Transverse electric field mode liquid crystal display device
US8199302B2 (en) 2003-10-09 2012-06-12 Lg Display Co., Ltd. In plane switching mode liquid crystal display device and fabrication method thereof
KR101001520B1 (en) * 2003-10-09 2010-12-14 엘지디스플레이 주식회사 In Plane Switching mode liquid crystal display device and the fabrication method thereof
KR101041613B1 (en) * 2003-11-25 2011-06-15 엘지디스플레이 주식회사 In-Plane switching mode LCD
KR101186863B1 (en) * 2003-12-29 2012-10-05 엘지디스플레이 주식회사 Multi-domain in plane switching mode liquid crystal display device
JP2005257883A (en) * 2004-03-10 2005-09-22 Nec Lcd Technologies Ltd Liquid crystal display device
US7561234B2 (en) 2004-03-10 2009-07-14 Nec Lcd Technologies, Ltd. Liquid crystal display device
KR101157226B1 (en) * 2004-05-31 2012-06-15 엘지디스플레이 주식회사 Liquid crystal display and method for manufacturing lcd
KR101050348B1 (en) * 2004-05-31 2011-07-19 엘지디스플레이 주식회사 Transverse electric field liquid crystal display device
JP2005346064A (en) * 2004-05-31 2005-12-15 Lg Phillips Lcd Co Ltd In-plane switching liquid crystal display and driving method therefor
KR101088384B1 (en) 2004-09-16 2011-12-01 엘지디스플레이 주식회사 An array substrate for liquid crystal display device and fabricating method thereof
KR101354598B1 (en) * 2005-03-10 2014-01-22 엘지디스플레이 주식회사 An array substrate for In-Plane switching mode LCD and method of fabricating of the same
US8218120B2 (en) 2005-03-31 2012-07-10 Lg Display Co., Ltd. Array substrate for in-plane switching liquid crystal display device and method of fabricating the same
KR101146470B1 (en) * 2005-05-27 2012-05-21 엘지디스플레이 주식회사 An array substrate for Liquid Crystal Display device and the method for fabricating the same
KR100789089B1 (en) 2005-06-09 2007-12-26 엘지.필립스 엘시디 주식회사 Liquid crystal display device
KR101182557B1 (en) * 2005-06-24 2012-10-02 엘지디스플레이 주식회사 Liquid crystal display device and method for manufacturing thereof
KR101148400B1 (en) * 2005-06-29 2012-05-23 엘지디스플레이 주식회사 In-plain switching mode liquid crystal display device
KR20190025878A (en) * 2005-12-05 2019-03-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
US11899329B2 (en) 2005-12-05 2024-02-13 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US11592719B2 (en) 2005-12-05 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US11126053B2 (en) 2005-12-05 2021-09-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US11048135B2 (en) 2005-12-05 2021-06-29 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10539847B2 (en) 2005-12-05 2020-01-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10324347B1 (en) 2005-12-05 2019-06-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
KR20180103790A (en) * 2005-12-05 2018-09-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
KR101296621B1 (en) * 2005-12-29 2013-08-14 엘지디스플레이 주식회사 Liquid Crystal Display Device And Method For Fabricating The Same
KR101254241B1 (en) * 2006-06-15 2013-04-12 미쿠니 일렉트론 컴퍼니 리미티드 Low-Cost Large-Screen Wide-Angle Fast-Response Active Matrix Liquid Crystal Display Apparatus and Method of Fabricating Active Matrix Substrate
US10698277B2 (en) 2006-10-31 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US11372298B2 (en) 2006-10-31 2022-06-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US11860495B2 (en) 2006-10-31 2024-01-02 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US8964156B2 (en) 2006-10-31 2015-02-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US8780307B2 (en) 2006-10-31 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US11016354B2 (en) 2006-10-31 2021-05-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US11592717B2 (en) 2006-10-31 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US9829761B2 (en) 2006-10-31 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US8988637B2 (en) 2007-09-26 2015-03-24 Nlt Technologies, Ltd. Liquid crystal display device
JP2014123139A (en) * 2007-09-26 2014-07-03 Nlt Technologies Ltd Liquid crystal display device
JP2009294633A (en) * 2007-09-26 2009-12-17 Nec Lcd Technologies Ltd Liquid crystal display device
US8488087B2 (en) 2007-09-26 2013-07-16 Nlt Technologies, Ltd. Liquid crystal display device
JP2009180981A (en) * 2008-01-31 2009-08-13 Mitsubishi Electric Corp Active matrix substrate, and manufacturing method therefor
US9348188B2 (en) 2008-06-16 2016-05-24 Samsung Display Co., Ltd. Liquid crystal display
US9395586B2 (en) * 2010-10-20 2016-07-19 Japan Display Inc. Liquid crystal display device
US20120099070A1 (en) * 2010-10-20 2012-04-26 Toshiba Mobile Display Co., Ltd. Liquid crystal display device
JP2012150268A (en) * 2011-01-19 2012-08-09 Japan Display Central Co Ltd Liquid crystal display apparatus
CN102608813A (en) * 2011-01-19 2012-07-25 东芝移动显示器有限公司 Liquid crystal display device
US9134577B2 (en) 2011-01-19 2015-09-15 Japan Display Inc. Liquid crystal display device
US9025097B2 (en) 2011-04-08 2015-05-05 Japan Display Inc. Liquid crystal display device
JP5707487B2 (en) * 2011-04-08 2015-04-30 株式会社ジャパンディスプレイ Liquid crystal display
KR20130131463A (en) * 2011-04-08 2013-12-03 가부시키가이샤 재팬 디스프레이 Liquid crystal display device
JP2013044955A (en) * 2011-08-24 2013-03-04 Japan Display Central Co Ltd Liquid crystal device
JP2012234212A (en) * 2012-09-03 2012-11-29 Nlt Technologies Ltd Active matrix substrate and liquid crystal panel

Also Published As

Publication number Publication date
JP3486859B2 (en) 2004-01-13
TW494265B (en) 2002-07-11

Similar Documents

Publication Publication Date Title
JP3486859B2 (en) Liquid crystal display
US7428034B2 (en) Liquid crystal display device
JP2701698B2 (en) Liquid crystal display
US8976328B2 (en) Liquid crystal display device and method for fabricating the same
US8040481B2 (en) In-plane switching mode liquid crystal display device having first and second common electrode connection lines and first and second pixel electrode connection linesbeing formed on the same layer
US20060001814A1 (en) In-plane switching mode liquid crystal display device and fabricating method thereof
US7916258B2 (en) In-plane switching LCD panel
TWI426324B (en) Liquid crystal display
JPH11125835A (en) Liquid crystal display device
JP2000137227A (en) Multi domain liquid crystal display element
JPH11149076A (en) Liquid crystal display device
JP3135689B2 (en) Active matrix type liquid crystal display
US6657694B2 (en) In-plane switching LCD device having slanted corner portions
EP2746846A1 (en) Thin film transistor array substrate and method for manufacturing the same, and liquid crystal display device
JPH11149079A (en) Liquid crystal display device
KR20090027474A (en) Liquid crystal display
JP2003322869A (en) Liquid crystal display of ultra-high aperture ratio and wide visual field angle
US20010013916A1 (en) In-plane switching LCD panel
JPH06250210A (en) Liquid crystal display device and its production
JP4099324B2 (en) Liquid crystal display
JP2003107508A (en) Multi-domain vertical alignment type liquid crystal display
JP3175972B2 (en) Liquid crystal display
JP2002268076A (en) Liquid crystal display device
US7623210B2 (en) LCD apparatus having insulating layer with increased thickness over and in the same direction as data line with pixel electrodes overlapping top surface thereof to prevent light leakage
JP4166554B2 (en) Liquid crystal display device and manufacturing method thereof

Legal Events

Date Code Title Description
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term