JPH11125835A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH11125835A
JPH11125835A JP33928197A JP33928197A JPH11125835A JP H11125835 A JPH11125835 A JP H11125835A JP 33928197 A JP33928197 A JP 33928197A JP 33928197 A JP33928197 A JP 33928197A JP H11125835 A JPH11125835 A JP H11125835A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
signal wiring
common electrode
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33928197A
Other languages
Japanese (ja)
Other versions
JP3831863B2 (en
Inventor
Naoto Hirota
直人 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OBAYASHI SEIKO KK
Original Assignee
OBAYASHI SEIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18325973&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11125835(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by OBAYASHI SEIKO KK filed Critical OBAYASHI SEIKO KK
Priority to JP33928197A priority Critical patent/JP3831863B2/en
Priority to TW87117228A priority patent/TW544538B/en
Publication of JPH11125835A publication Critical patent/JPH11125835A/en
Application granted granted Critical
Publication of JP3831863B2 publication Critical patent/JP3831863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device with an excellent visual angular characteristic and excellent contrast and without gradation inversion and a color shift by making an electric field distribution formed by a liquid crystal drive electrode and a common electrode opposite to the liquid crystal drive electrode so as to become the distribution making a center of a pixel a line symmetry axis. SOLUTION: This device is constituted so that the liquid crystal drive electrode 4 and the common electrode 3 opposite to the liquid crystal drive electrode 4 are bent to an alignment direction of a liquid crystal molecule, and respective electrodes are projected in the projection part direction of a bend in a bend part of a pixel central part, and respective electrodes are bent in the recessed part direction of the bend. Then, the electric field distribution formed with the liquid crystal drive electrode 4 and the common electrode 3 opposite to the liquid crystal electrode 4 is made so as to become the distribution making the center of the pixel the line symmetry axis. In such a manner, when a horizontal electric field is applied in a pixel electrode, the liquid crystal molecule is rotation moved in two ways of left rotation and right rotation in the pixel electrode inside. Thus, the color shift and the gradation inversion hardly occur.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 本発明は、広視野角・高画質の
大画面アクティブマトリックス型液晶表示装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-screen active-matrix liquid crystal display device having a wide viewing angle and high image quality.

【0002】[0002]

【従来の技術】従来のアクティブマトリックス型液晶表
示装置の一方の基板上に形成した櫛歯状電極対を用い
て、液晶組成物層に電界を印加する方式が、例えば特開
平7−36058号や特開平7−159786号、特開
平6−160878号、特開平7−191336号公報
により提案されている。以下液晶組成物層に印加する主
たる電界方向が、基板界面にほぼ平行な方向である表示
方式を、横電界方式と称する。図1,図3が従来の横電
界方式の例である。櫛歯状の画素電極である液晶駆動電
極と共通電極とは、直線状で平行に配置されてい
る。画素の中央や画素の周辺では画素電極内の電界分布
が、画素の中心を回転対称とした形状になるように液晶
駆動電極と共通電極の形状が作られている。液晶分子の
回転運動方向も図2や図4にあるように、1画素内部で
は1方向のみとなっていた。
2. Description of the Related Art A method of applying an electric field to a liquid crystal composition layer using a pair of comb-like electrodes formed on one substrate of a conventional active matrix type liquid crystal display device is disclosed in, for example, JP-A-7-36058 or It is proposed in JP-A-7-159786, JP-A-6-160878 and JP-A-7-191336. Hereinafter, a display method in which the main electric field direction applied to the liquid crystal composition layer is substantially parallel to the substrate interface is referred to as a horizontal electric field method. 1 and 3 show examples of the conventional in-plane switching method. The liquid crystal drive electrode and the common electrode, which are comb-shaped pixel electrodes, are linearly arranged in parallel. The shape of the liquid crystal driving electrode and the common electrode is formed such that the electric field distribution in the pixel electrode at the center of the pixel and at the periphery of the pixel is rotationally symmetric with respect to the center of the pixel. As shown in FIG. 2 and FIG. 4, the rotational movement direction of the liquid crystal molecules is only one direction inside one pixel.

【0003】[0003]

【発明が解決しようとする課題】画素電極が直線状で液
晶分子の回転運動方向が1方向のみの横電界方式の液晶
パネルでは、横方向から見た時に左右での色けが異なっ
て見えるカラーシフトの問題がある。さらに液晶のプレ
チルト角が3度以上大きくなると視野角特性が悪化し中
間調領域の階調反転現象が生じきわめて不自然な画像表
示となってしまう。
In a horizontal electric field type liquid crystal panel in which the pixel electrodes are linear and the rotational movement direction of liquid crystal molecules is only one direction, a color shift in which the left and right colors look different when viewed from the lateral direction. There is a problem. Further, when the pretilt angle of the liquid crystal increases by 3 degrees or more, the viewing angle characteristic deteriorates, and a grayscale inversion phenomenon in a halftone region occurs, resulting in an extremely unnatural image display.

【0004】画素電極を屈曲させた横電界方式の液晶パ
ネルも提案されているが屈曲部と、画素周辺の電界のみ
だれによりディスクリネーション欠陥が多発し黒レベル
がいちじるしく悪化し、コントラストの低下と、画面の
ムラが生じる。
A liquid crystal panel of a horizontal electric field type in which a pixel electrode is bent has been proposed, but disclination defects occur frequently due to dripping of the bent portion and the electric field around the pixel, so that the black level is remarkably deteriorated. As a result, the screen becomes uneven.

【0005】横電界方式のアクティブマトリクス基板側
では、共通電極と液晶駆動電極の交差部分の面積が大き
く絶縁膜にピンホールなどの欠陥があればショートして
しまい画素欠陥となりやすい。またプロセスコストを低
減するために、走査信号配線と共通電極とを同時に形成
する方式が用いられている。このプロセスの場合には、
走査信号配線と共通電極が近接した領域が非常に多いた
めにパターン不良が生じた時には、走査信号配線と共通
電極とのショートをさけることができず歩留りは非常に
悪るい。
On the side of the lateral electric field type active matrix substrate, the area of the intersection between the common electrode and the liquid crystal drive electrode is large, and if there is a defect such as a pinhole in the insulating film, it is likely to cause a short circuit and a pixel defect. In order to reduce the process cost, a method of simultaneously forming the scanning signal wiring and the common electrode has been used. In this process,
When there is a pattern failure due to a large number of regions where the scanning signal wiring and the common electrode are close to each other, a short circuit between the scanning signal wiring and the common electrode cannot be avoided, and the yield is very poor.

【0006】横電界方式の液晶表示装置では、液晶駆動
電圧が従来の縦電界方式のTN液晶表示装置よりも高く
なる傾向があり、駆動するドライバーICも高電圧出力
のものが要求され、コスト高になる問題があった。
In a horizontal electric field type liquid crystal display device, the liquid crystal driving voltage tends to be higher than that in a conventional vertical electric field type TN liquid crystal display device. There was a problem.

【0007】横電界方式の液晶表示装置では、カラーフ
ィルター側のガラス基板やカラーフィルター層まで、液
晶駆動電極と共通電極の電界がはいりこむのでガラス基
板とカラーフィルター層に含有されている可動イオン性
物質がオーバーコート層を通過して配向膜や液晶中に溶
出してくる。これらの可動イオン性物質により残像やプ
レチルト角の異常が生じムラとなっていちじるしく画質
を悪化させる。
In a horizontal electric field type liquid crystal display device, the electric field of the liquid crystal driving electrode and the common electrode enters the glass substrate and the color filter layer on the color filter side, so that the mobile ionic liquid contained in the glass substrate and the color filter layer is contained. The substance passes through the overcoat layer and elutes in the alignment film or the liquid crystal. These mobile ionic substances cause afterimages and abnormal pretilt angles, resulting in unevenness and markedly degrading image quality.

【0008】また横電界方式のカラーフィルター基板に
は、従来の縦電界方式のTN液晶表示装置のように、表
面全体に透明導電性膜がないために、静電気の影響を受
けやすく、チャージアップした場合配向不良をおこす問
題がある。
Further, unlike a conventional TN liquid crystal display device of the vertical electric field type, the color filter substrate of the horizontal electric field type is susceptible to static electricity because there is no transparent conductive film on the entire surface, and thus has been charged up. In such a case, there is a problem that poor alignment is caused.

【0009】本発明は、これらの課題を解決するもので
あり、その目的とするところは、階調反転のない、視角
特性が良好でカラーシフトが生じないコントラストが良
好な液晶表示装置を提供することにある。さらに低電圧
駆動ICが利用でき、液晶プロセスの歩留りを向上し、
コストを安くすることである。
The present invention has been made to solve these problems, and an object of the present invention is to provide a liquid crystal display device which is free from gradation inversion, has good viewing angle characteristics, and has good contrast without color shift. It is in. Furthermore, low-voltage driving ICs can be used, improving the yield of the liquid crystal process,
It is to lower the cost.

【0010】[0010]

【課題を解決するための手段】前記課題を解決し、上記
目的を達成するために本発明では、以下の手段を用い
る。基板上に走査信号配線と映像信号配線と、前記走査
信号配線と映像信号配線との各交差部に形成された薄膜
トランジスタと、前記薄膜トランジスタに接続された液
晶駆動電極と、少なくとも一部が、前記液晶駆動電極と
対向して形成された共通電極とを有するアクティブマト
リックス基板と、前記アクティブマトリックス基板に対
向する対向基板と、前記アクティブマトリックス基板と
前記対向基板に挟持された液晶層とからなる液晶表示装
置において、 〔手段1〕前記液晶駆動電極と、液晶駆動電極に対向し
ている共通電極が液晶分子の配向方向に対して屈曲して
おり、画素中央部の屈曲部では、屈曲の凸部方向にそれ
ぞれの電極がつき出ており、画素周辺部では、それぞれ
の電極が屈曲の凹部方向におれ曲がり、液晶駆動電極と
液晶駆動電極に対向している共通電極とで形成される電
界分布が、画素の中央を線対称軸とした分布になるよう
にした。
Means for Solving the Problems In order to solve the above problems and achieve the above object, the present invention uses the following means. A scanning signal wiring and a video signal wiring on a substrate; a thin film transistor formed at each intersection of the scanning signal wiring and the video signal wiring; a liquid crystal driving electrode connected to the thin film transistor; A liquid crystal display device comprising: an active matrix substrate having a common electrode formed to face a drive electrode; a counter substrate facing the active matrix substrate; and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate. In [Means 1], the liquid crystal driving electrode and the common electrode facing the liquid crystal driving electrode are bent in the alignment direction of the liquid crystal molecules, and the bent portion at the center of the pixel is bent in the bent direction. Each electrode sticks out, and in the periphery of the pixel, each electrode bends in the direction of the bent concave part, and the liquid crystal drive electrode and the liquid crystal drive The distribution of the electric field formed between the common electrode facing the electrode and the common electrode is set to be a distribution having the center of the pixel as a line-symmetric axis.

【0011】〔手段2〕前記液晶駆動電極と液晶駆動電
極に対向している共通電極が、液晶分子の配向方向に対
して画素周期で屈曲しており、屈曲の凸方向にそれぞれ
の画素内の周辺部電極がおれ曲がり、液晶駆動電極と液
晶駆動電極に対向している共通電極とで形成される電界
分布が、走査信号配線を線対称軸とした分布、または、
映像信号配線を線対称軸とした分布になるようにした。
[Means 2] The liquid crystal driving electrode and the common electrode facing the liquid crystal driving electrode are bent at a pixel period with respect to the alignment direction of the liquid crystal molecules, and each of the pixels in each pixel is bent in the convex direction. The peripheral electrode is bent, and the electric field distribution formed by the liquid crystal driving electrode and the common electrode facing the liquid crystal driving electrode is a distribution with the scanning signal wiring as a line symmetric axis, or
The distribution was such that the video signal wiring was a line symmetric axis.

【0012】〔手段3〕液晶分子が左回転、右回転両方
ともに同じ回転力で回転できるように、液晶にはカイラ
ルドーパント材をふくまないようにした。
[Means 3] The liquid crystal does not contain a chiral dopant material so that the liquid crystal molecules can be rotated by the same rotational force in both the left rotation and the right rotation.

【0013】〔手段4〕手段1,手段2において、走査
信号配線と共通電極で絶縁膜をかいして液晶駆動電極の
一部を、はさみこんだ構造とした。
[Means 4] In the means 1 and 2, a part of the liquid crystal drive electrode is sandwiched by interposing an insulating film between the scanning signal wiring and the common electrode.

【0014】〔手段5〕横電界方式の液晶表示装置にお
いて共通電極と液晶駆動電極を2層以上の絶縁膜で層分
離させた構造とした。
[Means 5] In a horizontal electric field type liquid crystal display device, a structure is adopted in which a common electrode and a liquid crystal drive electrode are separated by two or more insulating films.

【0015】〔手段6〕横電界方式の液晶表示装置にお
いて共通電極が走査信号配線と交差して2行にわたり屈
曲して配置されている構造とした。
[Means 6] In a horizontal electric field type liquid crystal display device, a structure is adopted in which a common electrode is arranged to bend over two rows so as to intersect with the scanning signal wiring.

【0016】〔手段7〕手段6において、走査信号配線
と交差して2行にわたり屈曲して配置されている共通電
極を、奇数群と偶数群に分離し、それぞれを奇数番共通
電極駆動用連結電極と偶数番共通電極駆動用連結電極に
接続させた構造とした。
[Means 7] In the means 6, the common electrodes intersecting the scanning signal wiring and being bent over two rows are separated into an odd group and an even group, and each of them is connected for driving an odd number common electrode. The electrodes were connected to the even-numbered common electrode driving connection electrodes.

【0017】〔手段8〕手段7において、共通電極を奇
数群と偶数群に分離しそれぞれを奇数番共通電極駆動用
連結電極と偶数番共通電極駆動用連結電極に接続し、そ
れぞれ2つの電極群に逆位相の信号電圧を走査線信号駆
動周期で印加し、かつ奇数群、偶数群の共通電極に対向
している液晶駆動電極に、共通電極とは逆相の映像信号
電圧波形を、それぞれ印加する駆動方式とした。
[Means 8] In the means 7, the common electrodes are separated into an odd-numbered group and an even-numbered group, and each is connected to an odd-numbered common electrode driving connection electrode and an even-numbered common electrode driving connection electrode, respectively. To the liquid crystal drive electrodes facing the odd and even groups of common electrodes, respectively, and apply a video signal voltage waveform of the opposite phase to the common electrodes. Drive method.

【0018】〔手段9〕手段6において、走査信号配線
と交差して2行にわたり屈曲して配置されている共通電
極を、それぞれ別々に分離した構造とした。
[Means 9] In the means 6, the common electrodes arranged to bend over two rows intersecting with the scanning signal wiring are separately separated from each other.

【0019】〔手段10〕手段9において、走査信号配
線と交差して2行にわたり屈曲して配置されている共通
電極をそれぞれ別々に分離し、それぞれ分離独立した共
通電極にフィールド周波数の1/2の整数倍の周波数で
信号電圧を印加し、フィールド周期ごとに印加電圧極性
を変化させ、かつ屈曲した共通電極に対向している液晶
駆動電極に、共通電極とは、逆相の映像信号電圧波形を
それぞれ印加する駆動方式とした。
[Means 10] In the means 9, common electrodes which are arranged to bend over two rows intersecting with the scanning signal wiring are separately separated from each other. A signal voltage is applied at an integral multiple of the frequency, the applied voltage polarity is changed for each field cycle, and the liquid crystal drive electrode facing the bent common electrode has a video signal voltage waveform in the opposite phase to the common electrode. Are applied to the driving method.

【0020】〔手段11〕横電界方式の液晶表示装置に
おいて、一本の走査信号配線をはさんだ前後2行にわた
り、薄膜トランジスタが交互に液晶駆動電極と接続され
ており、液晶駆動電極に対向している共通電極は、それ
ぞれ各行ごとに分離独立している構造配置とした。
[Means 11] In a horizontal electric field type liquid crystal display device, thin film transistors are alternately connected to a liquid crystal drive electrode over two rows before and after one scanning signal line, and are opposed to the liquid crystal drive electrode. Some common electrodes have a structure arrangement that is separated and independent for each row.

【0021】〔手段12〕手段11において、それぞれ
各行ごとに分離独立している共通電極に、フィールド周
波数の1/2の整数倍の周波数で信号電圧を印加し、フ
ィールド周期ごとに印加電圧極性を変化させ、かつ共通
電極に対向している液晶駆動電極に、共通電極とは、逆
相の映像信号電圧波形をそれぞれ印加する駆動方式とし
た。
[Means 12] In the means 11, a signal voltage is applied to a common electrode separated and independent for each row at a frequency which is an integral multiple of 1/2 of the field frequency, and the applied voltage polarity is changed for each field cycle. The driving method is such that a video signal voltage waveform having a phase opposite to that of the common electrode is applied to the liquid crystal driving electrode which is changed and opposed to the common electrode.

【0022】〔手段13〕手段9,または手段11にお
いて、走査信号配線と映像信号配線と、共通電極の3種
類の電極が静電気対策用非線形素子により外周部の静電
気対策用連結電極に接続されている構造とした。
[Means 13] In the means 9 or 11, the three kinds of electrodes of the scanning signal wiring, the video signal wiring, and the common electrode are connected to the connecting electrodes for static electricity countermeasure on the outer periphery by the non-linear element for static electricity countermeasures. Structure.

【0023】〔手段14〕アクティブマトリックス基板
液晶表示装置において、走査信号配線がアルミニウムと
高融点金属の2層から形成されており、アルミニウムの
上に高融点金属が、かぶさり、高融点金属がひふくして
いない側壁や側壁近くのアルミニウムが露出している部
分にアルミニウムの酸化物を形成した。
[Means 14] In an active matrix substrate liquid crystal display device, the scanning signal wiring is formed of two layers of aluminum and a high melting point metal, and the high melting point metal is overlaid on the aluminum and the high melting point metal is covered. Aluminum oxide was formed on the unexposed side wall and on the portion where the aluminum near the side wall was exposed.

【0024】〔手段15〕横電界方式の液晶表示装置に
おいて、前記カラーフィルター層の上にシリコン窒化膜
や、シリコン酸化膜、酸化アルミニウム膜などのパッシ
ベーション膜を形成した後、平担化のためのオーバーコ
ート層をパッシベーション膜の上に形成した構造を有す
る対向基板を用いた。
[Means 15] In a horizontal electric field type liquid crystal display device, after a passivation film such as a silicon nitride film, a silicon oxide film, or an aluminum oxide film is formed on the color filter layer, a flattening film is formed. A counter substrate having a structure in which an overcoat layer was formed on a passivation film was used.

【0025】〔手段16〕手段15において、パッシベ
ーション膜の上に形成されたオーバーコート層の上に導
電性の電極をメッシュ状またはストライプ状に形成し、
この電位をTFT基板側の映像信号電圧の中間値付近に
設定可能とした。
[Means 16] In the means 15, a conductive electrode is formed in a mesh shape or a stripe shape on the overcoat layer formed on the passivation film,
This potential can be set near the intermediate value of the video signal voltage on the TFT substrate side.

【0026】〔手段17〕手段15において、オーバー
コート層の上にメッシュ状またはストライプ状に形成さ
れた導電性電極のパターン幅を下地のBM(ブラックマ
スク)の幅よりも小さくした。
[Means 17] In the means 15, the pattern width of the conductive electrodes formed in a mesh or stripe on the overcoat layer is made smaller than the width of the underlying BM (black mask).

【0027】〔手段18〕手段1または手段2において
前記液晶駆動電極と前記共通電極との電極間距離を、1
画素内ですべて均一でなく、2種類以上の電極間距離の
組み合せで構成するようにした。
[Means 18] In the means 1 or 2, the distance between the liquid crystal drive electrode and the common electrode is set to 1
Each pixel is not uniform, and is constituted by a combination of two or more kinds of distances between electrodes.

【0028】[0028]

【作用】 上記手段1,3により、図31,図32にあ
るように画素電極(液晶駆動電極と共通電極の一部)内
で横電界が印加された場合、液晶分子は、画素電極内部
で左回転と右回転の2通りの回転運動をする。図2,図
4のように従来の横電界方式では、一方向の回転運動だ
けなので見る方向により色けが変化するカラーシフトが
生じてしまう。さらに液晶のプレチルト角が大きい場合
視野角特性に片寄りが発生し、中間調領域の階調反転も
生じやすい。1画素内部で左回転と右回転の2通りの回
転運動が可能になると、上記の問題はすべて解決してし
まう。しかし左回転と右回転の回転力を均等になるよう
にしないと、画素電極の中央部の屈曲部分で液晶の運動
にみだれが生じ大きなディスクリネーション欠陥を生じ
てしまう。さらに画素の周辺の部分の電界のみだれた部
分でも液晶の回転に異常が生じディスクリネーション欠
陥が発生する。これらの液晶の配向欠陥は応答速度がお
そく一度発生してしまうと発生部分に残ってしまう。こ
れが残像となって見えることもある。ディスクリネーシ
ョン欠陥部は、黒表示の時でも光がもれてしまい、いち
じるしくコントラストを低下させる。手段1,3を用い
ることで画素中央と画素周辺の電界のみだれを液晶の回
転方向にそろえることができるので、ディスクリネーシ
ョン欠陥の発生を完全におさえることができ、コントラ
ストの低下を防止できる。ディスクリネーション欠陥に
よる残像も完全に発生しなくなる。
When a horizontal electric field is applied within the pixel electrode (part of the liquid crystal driving electrode and the common electrode) as shown in FIGS. 31 and 32 by the above means 1 and 3, the liquid crystal molecules are removed inside the pixel electrode. It makes two kinds of rotational movements, left rotation and right rotation. As shown in FIGS. 2 and 4, in the conventional in-plane switching method, since only one rotation is performed, a color shift occurs in which the color changes depending on the viewing direction. Further, when the pretilt angle of the liquid crystal is large, the viewing angle characteristic is deviated, and the gray scale inversion in the halftone region is apt to occur. If two kinds of rotational movements, that is, left rotation and right rotation, become possible within one pixel, all of the above problems will be solved. However, if the rotational forces of the left rotation and the right rotation are not made equal, the movement of the liquid crystal is distorted at the central bent portion of the pixel electrode, causing a large disclination defect. Further, even in a portion where only the electric field in the peripheral portion of the pixel is deviated, the rotation of the liquid crystal becomes abnormal, and a disclination defect occurs. These alignment defects of the liquid crystal remain at the portion where the response speed is generated once at a minimum. This may be seen as an afterimage. The disclination defect portion leaks light even during black display, and significantly lowers the contrast. The use of the means 1 and 3 makes it possible to align the electric field around the pixel center and the periphery of the pixel in the direction of rotation of the liquid crystal, so that the occurrence of disclination defects can be completely suppressed and the decrease in contrast can be prevented. The afterimage due to the disclination defect does not completely occur.

【0029】上記手段2,3を用いることで、一画素内
部での液晶分子の回転運動方向が一方向でも画面全体で
は液晶分子の回転運動方向は左回転と右回転の2通りの
回転運動を生じさせることが可能となる。この効果によ
りカラーシフトの問題、中間調領域の階調反転の問題、
視野角特性の片寄り問題は、すべて解決できる。画素周
辺の電界のみだれを液晶の回転方向にそろえることでデ
ィスクリネーション欠陥の発生も防止できるので、コン
トラストの低下と残像の発生も完全に防止できる。
By using the above means 2 and 3, even if the rotation direction of the liquid crystal molecules in one pixel is one direction, the rotation direction of the liquid crystal molecules in the entire screen is two kinds of rotations, left rotation and right rotation. Can be created. Due to this effect, the problem of color shift, the problem of grayscale inversion in the halftone area,
The problem of deviation of the viewing angle characteristics can all be solved. By aligning the electric field around the pixel in the rotation direction of the liquid crystal, it is possible to prevent the occurrence of a disclination defect. Therefore, it is possible to completely prevent the decrease in contrast and the occurrence of an afterimage.

【0030】上記手段1,2,4を用いることで、液晶
駆動電極の保持容量を大きくすることができ、共通電極
と液晶駆動電極の画素周辺でのかさなり面積を縮少して
も保持容量が小さくなるという問題が解消できる。これ
により画素の開口率をupでき、光の利用効率が向上す
る。
By using the above-mentioned means 1, 2, 4, the storage capacity of the liquid crystal drive electrode can be increased, and the storage capacity is reduced even if the area of the common electrode and the liquid crystal drive electrode around the pixel is reduced. Problem can be solved. As a result, the aperture ratio of the pixel can be increased, and the light use efficiency can be improved.

【0031】上記手段5を用いることで共通電極と液晶
駆動電極のかさなり部分でのショートが激減し歩留がい
ちじるしく向上する。一層のみの絶縁膜で層間分離した
のではゴミなどによる欠陥をゼロにすることができな
い。2層の絶縁膜による層間分離では欠陥と欠陥が重な
ることは、ほとんどなくなる。さらに絶縁膜が厚くなる
ので電極の段差部の絶縁破壊電圧も高くなるので、静電
気によるショートが激減する。共通電極と液晶駆動電極
のかさなり部分に関して自由に設計できるので、電界分
布の形状も、液晶のディスクリネーションが発生しない
ように作ることができる。このために黒レベルでの光ぬ
けが防止できコントラストの高い画像が得られる。
By using the means 5, the short circuit at the overlapping portion of the common electrode and the liquid crystal drive electrode is drastically reduced, and the yield is remarkably improved. Defects due to dust and the like cannot be reduced to zero if only one insulating film is used for interlayer separation. Defects rarely overlap with each other in interlayer separation using two insulating films. Further, since the insulating film becomes thicker, the dielectric breakdown voltage at the step portion of the electrode becomes higher, so that a short circuit due to static electricity is drastically reduced. Since the overlapping portion between the common electrode and the liquid crystal driving electrode can be freely designed, the shape of the electric field distribution can be made so that the disclination of the liquid crystal does not occur. Therefore, light loss at the black level can be prevented, and an image with high contrast can be obtained.

【0032】上記手段6,7,8を用いることで、横電
界方式の液晶表示装置でも、ドット反転駆動方式の映像
信号電圧を半分以下に低減することが可能となる。5V
駆動の映像信号駆動ICを使用することができるので、
ICのコストを安くすることができる。映像信号駆動電
圧を従来の半分以下に低減することで大幅なICの消費
電力を低減できる。さらに映像信号電圧の振幅が従来の
半分以下になるために薄膜トランジスタの駆動能力が偶
数フィールドと奇数フィールドで差が生じにくくなる。
これにより液晶に、DCバイアスがかかりにくくなり残
像が生じなくなる。ドット反転駆動なので、水平クロス
トーク、垂直クロストーク、フリッカーも発生しない。
By using the means 6, 7, and 8, it is possible to reduce the video signal voltage of the dot inversion driving method to less than half even in the liquid crystal display device of the horizontal electric field method. 5V
Since a driving video signal driving IC can be used,
The cost of the IC can be reduced. By reducing the video signal drive voltage to less than half the conventional voltage, the power consumption of the IC can be significantly reduced. Further, since the amplitude of the video signal voltage is less than half that of the related art, the driving capability of the thin film transistor hardly causes a difference between the even field and the odd field.
This makes it difficult for a DC bias to be applied to the liquid crystal, so that an afterimage does not occur. Because of the dot inversion drive, horizontal crosstalk, vertical crosstalk, and flicker do not occur.

【0033】上記手段6,9,10を用いることで、上
記手段6,7,8を用いたときと同じ効果が得られる.
共通電極をそれぞれ別々に分離し、別々の駆動電圧波形
を印加することで、走査信号電圧波形に対する電圧波形
変化のタイミングの自由度が大幅に拡大される.これに
より共通電極の抵抗値を10倍以上に高くしても駆動タ
イミングの問題が発生しなくなる.共通電極の材料の自
由度が広がり、電極の膜厚も非常に薄くすることが可能
となる.共通電極の段差も小さくなるので段差部をひふ
くする絶縁膜の欠陥も発生しなくなりショートの発生が
減少する。
By using the means 6, 9 and 10, the same effect as when the means 6, 7 and 8 are used can be obtained.
By separately separating the common electrodes and applying different drive voltage waveforms, the degree of freedom of the timing of changing the voltage waveform with respect to the scan signal voltage waveform is greatly expanded. Thus, even if the resistance value of the common electrode is increased by a factor of 10 or more, the problem of the drive timing does not occur. The degree of freedom of the material of the common electrode is increased, and the thickness of the electrode can be made very thin. Since the step of the common electrode is also reduced, a defect of the insulating film that covers the step is not generated, and the occurrence of short-circuit is reduced.

【0034】上記手段11,12を用いることで、上記
手段6,9,10を用いたときと同じ効果が得られる。
この場合には、共通電極は、走査信号線と交差すること
がないので走査信号線の容量が小さくなり、走査信号線
の抵抗値をすこし高くすることができる。交差がないた
めに共通電極と走査信号線のショートも発生しなくな
る.歩留りを向上することが可能である.
By using the above means 11, 12, the same effect as when using the above means 6, 9, 10 can be obtained.
In this case, since the common electrode does not cross the scanning signal line, the capacitance of the scanning signal line is reduced, and the resistance value of the scanning signal line can be slightly increased. Since there is no intersection, short-circuit between the common electrode and the scanning signal line does not occur. It is possible to improve the yield.

【0035】上記手段9,11,13を用いることで、
共通電極をそれぞれ別々に分離しても静電気による帯電
時間を短かくすることができるので絶縁破壊が生じにく
くなりプロセス作業中でのゴミの付着も減少し大幅に歩
留りを向上することができる.
By using the above means 9, 11, and 13,
Even if the common electrodes are separated from each other, the charging time due to static electricity can be shortened, so that dielectric breakdown is less likely to occur, adhesion of dust during process work is reduced, and the yield can be greatly improved.

【0036】上記手段14を用いることで、安価で抵抗
値の低いアルミニウムを走査信号配線に利用してもサイ
ドロックが発生しなくなり歩留りを向上できる.
By using the means 14, even if inexpensive and low-resistance aluminum is used for the scanning signal wiring, side lock does not occur and the yield can be improved.

【0037】上記手段15,16,17をいることでガ
ラス基板にふくまれているナトリウムなどの可動性イオ
ン物質がオーバーコート層をつきぬけて液晶中に溶出す
ることを防止することができ、残像問題の発生をおさえ
ることができる。液晶の比抵抗値の低下も防止できるの
で電荷保持率の高い信頼性の良い液晶パネルを作ること
ができる。ムラやコントラストの低下を防止できるので
均一な良好な中間調表示が可能なる.静電気の帯電も防
止できゴミの付着も少なくなる。
The provision of the above means 15, 16, 17 can prevent a mobile ionic substance such as sodium contained in the glass substrate from being eluted into the liquid crystal through the overcoat layer, and the afterimage problem can be prevented. Can be suppressed. Since a decrease in the specific resistance of the liquid crystal can be prevented, a highly reliable liquid crystal panel having a high charge retention rate can be manufactured. Since uniformity and lowering of contrast can be prevented, uniform and good halftone display is possible. Static electricity can also be prevented, and adhesion of dust is reduced.

【0038】上記手段1,2,18を用いることで、ホ
トマスクのアライメントが多少ずれても階調反転を防止
することができ、視角特性の片よりがなく、カラーシフ
トの生じにくい良好な画像を得ることができる.
By using the above means 1, 2, and 18, even if the alignment of the photomask is slightly deviated, it is possible to prevent the grayscale inversion, and to obtain a good image which has no viewing angle characteristic and is less likely to cause color shift. Obtainable.

【0039】[0039]

【実施例】【Example】

〔実施例1〕図5,図6,図7,図8,図9,図10,
図11,図12は、本発明の単位画素の平面図及び断面
図である。図5,図6,図9の断面図は、図11であ
り、図7,図8,図10の断面図は図12である.走査
信号配線は、Alなどの陽極酸化処理可能な金属が良い
が、Cr,Mo,Ti,W,Ta,Nbなどの純金属や
合金でもよい。電気抵抗値の低いCuやAlを主材料と
し前記高融点金属や高融点金属の合金との二層構造、三
層構造などが、超大型表示装置では用いられる.図5,
図6,図9の場合には、走査信号配線と共通電極と
を同じ層に同時に形成することもできるが、パターン不
良による走査信号配線と共通電極とのショートが多
発するので図11,図12にあるように走査信号配線
と共通電極とを別の層に分離した。これによりパター
ン不良が発生してもショートすることがなくなるので歩
留りを大幅に向上することが可能となる。図7,図8,
図10の場合も同様に映像信号配線と共通電極とを
別の層に分離することでパターン不良が発生してもショ
ートすることがないので歩留りが向上する。走査信号配
線の上に、ゲート絶縁膜▲45▼を形成してから非晶
質シリコン膜層▲12▼を形成し、トランジスタの活性
能動層とする。非晶質シリコン膜でなくポリシリコン膜
層でも良い.ポリシリコン膜と非晶質膜の複合積層膜で
も同じように良い。活性能動層の上にリンなどの不純物
をドーピングしたnアモルファスシリコン層を形成す
る。次に活性能動層の一部に重畳するように映像信号配
線とドレイン電極を形成する.図5,図6,図7,図8
図9,図10の場合には、ドレイン電極と液晶駆動電極
は、同じ金属材料で、同時に形成される。図34にあ
るようにドレイン電極形成後パッシベーション膜を形成
してからドレインスルーホールをあけ、ドレイン電極と
液晶駆動電極とを電気的に結びつけることも可能であ
る。パッシベーション膜を形成した後図11では、ポリ
イミドからなる配向膜▲14▼を形成し、表面にラビン
グ処理を施す。同じく表面にラビング処理を施した配向
膜▲43▼を形成した対向基板▲47▼と、前記アクテ
ィブマトリックス基板の間に棒状の液晶分子や▲10
▼を含む、液晶組成物を封入し、二枚の基板の外表面に
偏光板を配置して、横電界方向の液晶セルが完了する.
[Embodiment 1] FIGS. 5, 6, 7, 8, 9, 10,
11 and 12 are a plan view and a sectional view of a unit pixel according to the present invention. The sectional views of FIGS. 5, 6, and 9 are shown in FIG. 11, and the sectional views of FIGS. 7, 8, and 10 are shown in FIG. The scan signal wiring is preferably made of an anodizable metal such as Al, but may be a pure metal or alloy such as Cr, Mo, Ti, W, Ta and Nb. A super-large display device has a two-layer structure or a three-layer structure using Cu or Al having a low electric resistance as a main material and the refractory metal or an alloy of the refractory metal. FIG.
In the case of FIGS. 6 and 9, the scanning signal wiring and the common electrode can be formed simultaneously in the same layer. However, since the scanning signal wiring and the common electrode are frequently short-circuited due to a pattern defect, FIGS. The scanning signal wiring and the common electrode were separated into different layers as shown in FIG. As a result, even if a pattern defect occurs, a short circuit does not occur, and the yield can be greatly improved. 7, 8,
In the case of FIG. 10, similarly, the video signal wiring and the common electrode are separated into different layers, so that even if a pattern defect occurs, a short circuit does not occur, so that the yield is improved. An amorphous silicon film layer (12) is formed on the scanning signal wiring after a gate insulating film (45) is formed, which is used as an active active layer of a transistor. A polysilicon film layer may be used instead of the amorphous silicon film. The same applies to a composite laminated film of a polysilicon film and an amorphous film. An n + amorphous silicon layer doped with an impurity such as phosphorus is formed on the active active layer. Next, a video signal wiring and a drain electrode are formed so as to overlap a part of the active active layer. FIG. 5, FIG. 6, FIG. 7, FIG.
In the case of FIGS. 9 and 10, the drain electrode and the liquid crystal drive electrode are formed simultaneously with the same metal material. As shown in FIG. 34, it is also possible to form a passivation film after the formation of the drain electrode and then form a drain through hole to electrically connect the drain electrode and the liquid crystal drive electrode. After forming the passivation film, in FIG. 11, an alignment film (14) made of polyimide is formed, and the surface is subjected to a rubbing treatment. Similarly, a rod-like liquid crystal molecule or a liquid crystal molecule (10) is provided between the opposing substrate (47) having an alignment film (43) having a rubbed surface formed on the surface thereof and the active matrix substrate.
The liquid crystal composition including ▼ is sealed, and a polarizing plate is arranged on the outer surfaces of the two substrates to complete the liquid crystal cell in the horizontal electric field direction.

【0040】本発明の基本概念図は図31,図32であ
る.図31は正の誘電率異方性液晶を使用する場合
の、液晶駆動電極と共通電極の配置図と、それらの
電極に対するラビング配向軸方向の関係を示すもので
ある.図32は、負の誘電率異方性液晶▲10▼を使用
する場合の液晶駆動電極と共通電極の配置図と、そ
れらの電極に対するラビング配向軸方向の関係を示す
ものである.従来の電極形状配置は図1,図3にあるよ
うに画素の中心を回転対称とする電極形状となっている
が、本発明の場合には、画素の中心軸を線対称軸とした
電極形状となっている.画素中央部の屈曲部では屈曲の
凸部方向にそれぞれの電極がつき出ており、画素周辺部
ではそれぞれの電極が屈曲の凹部方向におれ曲がってい
る。屈曲回数は一画素内で図31,図32のように一回
の屈曲でもよいし二回以上屈曲していてもよい。配向の
方法もラビング法でなくても良い。UV配向膜を用いた
配向方法を使用しても良い。本発明の場合一画素内で液
晶分子の回転方向が左右2方向存在するために原理的に
カラーシフトが生じない。このために従来の一方向回転
の横電界方式の液晶パネルでは屈折率異方性Δnの小さ
な液晶を用いなければカラーシフトを低減できなかった
が、本発明の電極を用いることでΔnの値を自由に設定
することが可能となった。Δnを大きくできるので駆動
電圧も小さくできる。配向膜もプレチルト角に支配され
ないで選択できる。
FIG. 31 and FIG. 32 are basic conceptual diagrams of the present invention. FIG. 31 shows the layout of the liquid crystal drive electrodes and the common electrode when a positive dielectric anisotropic liquid crystal is used, and the relationship between the rubbing alignment axis direction and the electrodes. FIG. 32 shows the layout of the liquid crystal drive electrodes and the common electrode when a negative dielectric anisotropy liquid crystal (10) is used, and the relationship of the rubbing alignment axis direction to these electrodes. The conventional electrode shape arrangement has an electrode shape in which the center of the pixel is rotationally symmetric as shown in FIGS. 1 and 3, but in the case of the present invention, the electrode shape in which the central axis of the pixel is a line-symmetric axis. It becomes. In the bent portion at the center of the pixel, each electrode sticks out in the direction of the convex portion of the bend, and in the peripheral portion of the pixel, each electrode is bent in the direction of the concave portion of the bend. The number of bends may be one bend or two or more bends in one pixel as shown in FIGS. The orientation method may not be the rubbing method. An alignment method using a UV alignment film may be used. In the case of the present invention, color rotation does not occur in principle because the rotation direction of liquid crystal molecules exists in two directions in one pixel in the left and right directions. For this reason, in the conventional unidirectional rotating horizontal electric field type liquid crystal panel, the color shift could not be reduced without using a liquid crystal having a small refractive index anisotropy Δn. However, by using the electrode of the present invention, the value of Δn can be reduced. It can be set freely. Since Δn can be increased, the drive voltage can be reduced. The alignment film can also be selected without being influenced by the pretilt angle.

【0041】〔実施例2〕図33,図34は、液晶駆動
電極と共通電極が液晶分子の配向方向に対して画素周期
で屈曲しており、屈曲の凸方向にそれぞれの画素内の周
辺部電極がおれ曲がり、液晶駆動電極と液晶駆動電極に
対向している共通電極とで形成される電界分布が走査信
号配線を線対象軸とした分布、または映像信号配線を線
対称軸とした分布になっている場合の単位画素の平面図
である。隣接する2画素一組で実施例1の単位画素と同
じ機能を発現している。コンピューター用ディスプレイ
としては実施例1の電極構造が必要であるが、テレビな
どの動画を表示する場合には、図33や図34の電極構
造が十分である.図33,図34は、共通電極が走査信
号配線と交わらずに平行に配置された構造をしている.
実施例1での図5,図6,図9と同じ配置である.図
7,図8,図10のように映像信号配線に交わらずに平
行に配置された構造も可能である.図33の一画素内の
液晶駆動電極と共通電極は図5,図6と異なり一画素内
では屈曲していないので、光の透過率を高めることがで
きる。
[Embodiment 2] FIGS. 33 and 34 show that the liquid crystal driving electrode and the common electrode are bent at the pixel period with respect to the alignment direction of the liquid crystal molecules, and the peripheral portion in each pixel is bent in the convex direction. The electrode is bent, and the electric field distribution formed by the liquid crystal driving electrode and the common electrode facing the liquid crystal driving electrode becomes a distribution with the scanning signal wiring as a line symmetric axis or a distribution with a video signal wiring as a line symmetric axis. FIG. 5 is a plan view of a unit pixel when the pixel is in the state. The same function as the unit pixel of the first embodiment is expressed by a set of two adjacent pixels. Although the electrode structure of Example 1 is necessary as a display for a computer, the electrode structures of FIGS. 33 and 34 are sufficient for displaying a moving image such as a television. FIGS. 33 and 34 show a structure in which the common electrode is arranged in parallel without intersecting with the scanning signal wiring.
This is the same arrangement as in FIGS. 5, 6, and 9 in the first embodiment. As shown in FIG. 7, FIG. 8, and FIG. 10, it is possible to have a structure arranged in parallel without intersecting the video signal wiring. Since the liquid crystal drive electrode and the common electrode in one pixel in FIG. 33 are not bent in one pixel, unlike FIGS. 5 and 6, the light transmittance can be increased.

【0042】〔実施例3〕実施例1,実施例2でのべた
ように、横電界方式の液晶表示パネルで液晶分子の回転
運動方向が左方向と右方向の2方向回転が同時に生じる
場合、液晶中には、カイラルドーパント材をふくまない
方が良い。左右の回転駆動力に差が生じた場合、図5や
図7のように電極の屈曲部でディスクリネーションの発
生する構造では、ディスクリネーションが回転力の弱い
方向の領域に成長していちじるしい画質の低下を生じる
ことになる。ディスクリネーションの領域が拡大するこ
とでコントラストの低下、残像現象が見られる。図6,
図8のように屈曲部の所で液晶駆動電極と共通電極をほ
んのわずかでも交差するように設計することでディスク
リネーションの発生を防止することができる。
[Embodiment 3] As described in Embodiments 1 and 2, when the rotational motion direction of the liquid crystal molecules in the horizontal electric field type liquid crystal display panel is simultaneously rotated in two directions, left and right, It is better not to include a chiral dopant material in the liquid crystal. When there is a difference between the left and right rotational driving forces, in a structure in which disclination occurs at the bent portion of the electrode as shown in FIGS. 5 and 7, the disclination grows in a region in the direction where the rotational force is weak. Image quality will be degraded. As the area of the disclination is enlarged, a decrease in contrast and an afterimage phenomenon are observed. Figure 6
As shown in FIG. 8, disclination can be prevented by designing the liquid crystal drive electrode and the common electrode so that they intersect even at a slight angle at the bent portion.

【0043】〔実施例4〕図7,図8,図10,図3
6,図12は、走査信号配線と共通電極で絶縁膜をかい
して液晶駆動電極の一部をはさみこんだ構造の平面図と
断面図である。この構造により液晶駆動電極の保持容量
を大きくすることができるので、共通電極と液晶駆動電
極の有効画素内でのかさなり面積を縮少できる。これに
より画素の開口率を拡大できる.図36の場合には、映
像信号配線と共通電極がパッシベーション膜▲46▼を
かいして交差するのでパッシベーション膜▲46▼を図
7,図8,図10の構造のものよりも1.5倍から2倍
程度厚くする必要がある.4000Å〜6000Å程度
のパッシベーション膜を2回にわけてプラズマCVD装
置を用いて形成することでピンホールによるショートを
激減できる。
[Embodiment 4] FIGS. 7, 8, 10, and 3
6, FIG. 12 is a plan view and a cross-sectional view of a structure in which a part of a liquid crystal drive electrode is sandwiched between a scanning signal wiring and a common electrode through an insulating film. With this structure, the storage capacity of the liquid crystal drive electrode can be increased, so that the area of the common electrode and the liquid crystal drive electrode in the effective pixel can be reduced. As a result, the aperture ratio of the pixel can be increased. In the case of FIG. 36, the video signal wiring and the common electrode intersect each other through the passivation film 46, so that the passivation film 46 is 1.5 times as large as those of the structures of FIGS. Needs to be about twice as thick. By forming a passivation film of about 4000 to 6000 degrees twice using a plasma CVD apparatus, a short circuit due to a pinhole can be drastically reduced.

【0044】〔実施例5〕図5,図6,図9,図11
は、共通電極と液晶駆動電極を2層以上の絶縁膜で層分
離させた構造の平面図と断面図である。ガラス基板▲1
1▼の上に一番はじめに共通電極を形成し次に下地絶
縁膜▲44▼をプラズマCVD装置を用いて堆積させ
る.次に走査信号配線を形成し、ゲート絶縁膜▲45
▼を堆積させてから半導体層▲12▼と不純物をドープ
したnアモルファスシリコン層を連続形成する。液晶
駆動電極と映像信号配線は同じ金属材料を用いて同
時に形成される.これらの上にパッシベーション膜▲4
6▼を堆積させた後液晶配向膜▲14▼をフレキソ印刷
法により形成する。図11の断面図を見るとわかるよう
に共通電極と液晶駆動電極とは、2層の絶縁膜によ
って層分離されている.この構造は従来の電極構造平面
図図1,図3にも適用することが可能である.従来の場
合走査信号配線と共通電極は同じ層に同時形成され
るために、ゴミや異物によるパターン不良が発生すると
走査信号配線と共通電極はショートしてしまう確率が非
常に高く歩留りを悪るくしていた。さらに共通電極と
液晶駆動電極は、ゲート絶縁膜▲45▼だけで絶縁分
離されているためにピンホールが存在した場合ショート
してしまいこの画素は点欠陥となってしまう.本発明に
よれば2層の絶縁膜によって層分離されるために共通電
極と液晶駆動電極のショートは激減し、走査信号配
線と共通電極とのショートも激減し、大幅な歩留り
の向上が実現できる。
Embodiment 5 FIGS. 5, 6, 9, and 11
3A and 3B are a plan view and a cross-sectional view of a structure in which a common electrode and a liquid crystal drive electrode are separated by two or more insulating films. Glass substrate ▲ 1
First, a common electrode is formed on 1), and then a base insulating film 44 is deposited using a plasma CVD apparatus. Next, a scanning signal wiring is formed, and a gate insulating film
After depositing, a semiconductor layer 1212 ’and an n + amorphous silicon layer doped with impurities are continuously formed. The liquid crystal drive electrode and the video signal wiring are formed simultaneously using the same metal material. Passivation film on these 4
After depositing 6), a liquid crystal alignment film 14) is formed by flexographic printing. As can be seen from the cross-sectional view of FIG. 11, the common electrode and the liquid crystal drive electrode are separated from each other by two insulating films. This structure can be applied to the conventional electrode structure plan views FIGS. In the conventional case, since the scanning signal wiring and the common electrode are simultaneously formed on the same layer, the probability that the scanning signal wiring and the common electrode are short-circuited when a pattern defect due to dust or foreign matter occurs is extremely high, thereby reducing the yield. I was Further, since the common electrode and the liquid crystal driving electrode are insulated and separated only by the gate insulating film (45), if a pinhole is present, a short circuit occurs and this pixel becomes a point defect. According to the present invention, since the layers are separated by the two insulating films, the short circuit between the common electrode and the liquid crystal driving electrode is drastically reduced, the short circuit between the scanning signal wiring and the common electrode is drastically reduced, and a large improvement in the yield can be realized. .

【0045】〔実施例6〕図13,図15は、共通電極
が走査信号配線と交差して2行にわたり屈曲して配置さ
れている構造の平面図である。一画素単位で交差してい
るが2画素以上の単位で交差していても良い。理想的な
ドット反転駆動方式を採用する場合には、図13,図1
5にあるような配置となる。図19,図20は、奇数群
と偶数群に分離した共通電極に走査信号の周期にあわせ
て、それぞれ逆相の電圧信号波形を印加し、かつ奇数
群、偶数群の共通電極に対向している液晶駆動電極に、
共通電極とは、逆相の映像信号波形をそれぞれ印加する
駆動電圧波形図である.この駆動方式では水平クロスト
ークが発生しなくなり良好な画像が得られる。映像信号
波形と逆相の電圧を共通電極に印加することで、液晶相
に大きな電圧を印加できるので、共通電極電位を固定し
ていた従来のドット反転駆動の場合の映像信号駆動振幅
よりも1/2以下に低減が可能となる。これにより安価
な5V駆動のICを使用することができるのでコストd
ownが可能となる。
[Embodiment 6] FIGS. 13 and 15 are plan views of a structure in which a common electrode is arranged to bend over two rows crossing a scanning signal wiring. Although they intersect in units of one pixel, they may intersect in units of two or more pixels. When the ideal dot inversion driving method is adopted, FIGS.
The arrangement is as shown in FIG. FIGS. 19 and 20 show opposite-phase voltage signal waveforms applied to the common electrodes separated into an odd-numbered group and an even-numbered group in accordance with the period of a scanning signal, and opposite to the odd-numbered and even-numbered common electrodes. Liquid crystal drive electrode
The common electrode is a drive voltage waveform diagram for applying video signal waveforms of opposite phases. In this driving method, horizontal crosstalk does not occur and a good image can be obtained. By applying a voltage having a phase opposite to that of the video signal waveform to the common electrode, a large voltage can be applied to the liquid crystal phase, so that the amplitude of the video signal drive is smaller than that of the conventional dot inversion drive in which the common electrode potential is fixed. / 2 or less. As a result, an inexpensive IC driven at 5 V can be used.
own is possible.

【0046】〔実施例7〕図14,図16は、走査信号
配線と交差して2行にわたり屈曲して配置されている共
通電極をそれぞれ別々に分離した構造の平面図である。
走査信号配線と映像信号配線と別々に分離された共通電
極の3種類の電極が静電気対策用非線形素子により外周
部の静電気対策用連結電極に接続されている。図21,
図22は、別々に分離独立した共通電極にフィールド周
期ごとに印加電圧極性を変化させ、かつ屈曲した共通電
極に対向している液晶駆動電極に、共通電極とは逆相の
映像信号電圧波形を、それぞれ印加する駆動電圧波形図
である。本発明のように共通電極を別々に分離し、それ
ぞれ固有の電圧波形を印加することで共通電極の極性変
化のタイミングに関する条件が非常にゆるやかなものに
なる。走査信号配線がONする前であれば数本前の走査
信号配線にあわせて極性を切り変えれば良い。切り変え
の電圧波形がゆっくり変化しても良いことになり、共通
電極の金属材料の選択の自由度が大幅に拡大する.共通
電極の配線抵抗の問題がなくなってしまうのである.図
21,図22は、一番基本的な共通電極の駆動波形であ
り、フィールド周期ごとに共通電極の電位の極性変化が
あれば駆動波形としては十分であり、フィールド極性変
化が生じてからの次のフィールド極性変化が生じるまで
の期間の電圧波形は、まったく自由であり周波数に制限
はない。
[Embodiment 7] FIGS. 14 and 16 are plan views of a structure in which the common electrodes intersecting the scanning signal wiring and being bent over two rows are separately separated.
Three types of electrodes, a common electrode separately separated from the scanning signal wiring and the video signal wiring, are connected to the static electricity countermeasure connection electrodes on the outer peripheral portion by static electricity non-linear elements. FIG.
FIG. 22 shows an image signal voltage waveform having a phase opposite to that of the common electrode applied to the liquid crystal drive electrode facing the bent common electrode by changing the applied voltage polarity to the separately separated common electrode for each field period. FIG. 7 is a diagram of driving voltage waveforms respectively applied. By separately separating the common electrodes and applying a unique voltage waveform as in the present invention, the condition regarding the timing of the polarity change of the common electrode becomes very gentle. Before the scanning signal wiring is turned on, the polarity may be changed in accordance with the scanning signal wiring several lines before. The switching voltage waveform may change slowly, and the degree of freedom in selecting the metal material for the common electrode is greatly expanded. This eliminates the problem of the wiring resistance of the common electrode. FIGS. 21 and 22 show the most basic driving waveforms of the common electrode. If the polarity of the potential of the common electrode changes every field period, the driving waveform is sufficient. The voltage waveform until the next field polarity change occurs is completely free and the frequency is not limited.

【0047】〔実施例8〕図17は、共通電極を奇数群
と偶数群に分離し、走査信号周期にあわせて、それぞれ
逆相の電圧信号波形を印加し、かつ奇数群、偶数群の共
通電極に対向している液晶駆動電極に共通電極とは逆相
の映像信号波形をそれぞれ印加するものである。実施例
6とは異なり走査信号配線は同時に2本ONする駆動方
式になっている.この構造でも映像信号配線の奇数番の
偶数番では極性の異なる映像信号電圧を印加するので、
クロストークの生じない画像を実現できる.カラーフィ
ルターの色の配置としてデルタ配列を実現できるので混
色の良い画像が得られる。
[Embodiment 8] FIG. 17 shows that the common electrode is divided into an odd group and an even group, and voltage signal waveforms having opposite phases are applied in accordance with the scanning signal period. A video signal waveform having a phase opposite to that of the common electrode is applied to the liquid crystal drive electrode facing the electrode. Unlike the sixth embodiment, the driving method is such that two scanning signal lines are simultaneously turned on. Even in this structure, odd-numbered and even-numbered video signal wirings apply video signal voltages having different polarities.
Images without crosstalk can be realized. Since a delta arrangement can be realized as the arrangement of the colors of the color filters, an image with good color mixture can be obtained.

【0048】〔実施例9〕図18は、共通電極をそれぞ
れ別々に分離した構造の平面図である。走査信号配線と
映像信号配線とそれぞれ別々に分離された共通電極の3
種類の電極が静電気対策用非線形素子により外周部の静
電気対策用連結電極に接続されている.図18の構造の
場合実施例7とは異なり走査信号配線は同時に2本ON
する駆動方式になっている。動作原理は実施例7とほと
んど同じものを適用できる。
Ninth Embodiment FIG. 18 is a plan view of a structure in which common electrodes are separately separated. 3 of common electrodes separately separated from the scanning signal wiring and the video signal wiring, respectively.
The kinds of electrodes are connected to the connection electrodes for static electricity countermeasures on the outer periphery by non-linear elements for static electricity countermeasures. In the case of the structure shown in FIG. 18, unlike the seventh embodiment, two scanning signal lines are simultaneously turned on.
Drive system. The operation principle can be almost the same as that of the seventh embodiment.

【0049】〔実施例10〕図28,図35は、一本の
走査信号配線をはさんだ前後2行にわたり、薄膜トラン
ジスタが交互に液晶駆動電極と接続されており、液晶駆
動電極に対向している共通電極は、それぞれ各行ごとに
分離独立している構造の平面図である。図29,30
は、それぞれ各行ごとに分離独立している共通電極にフ
ィールド周期の2倍の周期で信号電圧を印加し、フィー
ルド周期ごとに印加電圧極性を変化させ、かつ共通電極
に対向している液晶駆動電極に、共通電極とは逆相の映
像信号電圧波形をそれぞれ印加する駆動電圧波形図であ
る.動作原理は実施例7と同じである。
[Embodiment 10] FIGS. 28 and 35 show that thin film transistors are alternately connected to a liquid crystal drive electrode over two rows before and after one scanning signal line, and face the liquid crystal drive electrode. FIG. 4 is a plan view of a structure in which common electrodes are separated and independent for each row. 29 and 30
Applies a signal voltage to the common electrode separated and independent for each row at a period twice as long as the field period, changes the applied voltage polarity every field period, and faces the liquid crystal driving electrode facing the common electrode. FIG. 3 is a drive voltage waveform diagram for applying a video signal voltage waveform having a phase opposite to that of the common electrode. The operation principle is the same as in the seventh embodiment.

【0050】〔実施例11〕図23は従来アルミニウム
電極を走査信号配線として用いる時の断面図である。ア
ルミニウムのヒロック防止のために高融点金属▲29▼
をキャップメタルとして用いている。アルミニウムの側
壁の傾面の長さが1μm以上長くなると側壁からヒロッ
クが発生する。これを防止するためにネオジウムなどの
金属を1〜2アトミックパーセント程度混入させる方法
がある。しかしアルミニウムの合金ターゲットを大面積
で作ることは非常にむずかしく均一な組成を作ることは
不可能にちかい。純アルミニウムを走査信号配線として
使用することは、大画面の液晶表示パネルを作るうえで
非常に重要なことである。本発明では純アルミニウムの
サイドヒロックを防止するために、高温水蒸気酸化法を
用いてアルミニウムの側壁に酸化アルミニウムを形成し
ている。図24がそれの断面図である。他の方法として
は、イオンインプランテーション技術を用いて、酸素イ
オンや窒素イオン、リンイオンなどを高融点金属とアル
ミニウムの側壁にイオン注入することでサイドヒロック
を防止することも可能である。
[Embodiment 11] FIG. 23 is a sectional view when a conventional aluminum electrode is used as a scanning signal wiring. High melting point metal to prevent hillock of aluminum (29)
Is used as a cap metal. When the length of the inclined surface of the aluminum side wall is increased by 1 μm or more, hillocks are generated from the side wall. In order to prevent this, there is a method of mixing a metal such as neodymium in an amount of about 1 to 2 atomic percent. However, it is very difficult to make an aluminum alloy target over a large area and it is almost impossible to make a uniform composition. The use of pure aluminum as the scanning signal wiring is very important in producing a large-screen liquid crystal display panel. In the present invention, in order to prevent side hillocks of pure aluminum, aluminum oxide is formed on the side walls of aluminum by using a high-temperature steam oxidation method. FIG. 24 is a sectional view thereof. As another method, side hillocks can be prevented by ion-implanting oxygen ions, nitrogen ions, phosphorus ions, and the like into the side walls of the refractory metal and aluminum using ion implantation technology.

【0051】〔実施例12〕図25は、横電界方式の液
晶表示装置のカラーフィルター基板の断面図である.ガ
ラス基板の上にBM(ブラックマスク)を形成し次にカ
ラーフィルター層を形成する。ガラス基板には0.1〜
1.0%程度のアルカリ金属酸化物が混入されている.
さらにカラーフィルター層の顔料や染料などは、多くの
不純物を含有し、これらの可動イオン物質は、電界が存
在すれば電界の方向にしたがって移動する性質をもって
いる。平担化のためのオーバーコート層▲41▼は、有
機物のものがおもに用いられているが、この膜には、可
動イオンの電界移動を防止する能力はない.可動イオン
のパッシベーション膜としてよく用いられる膜として、
窒化シリコン膜や酸窒化シリコン膜、酸化アルミニウム
膜がある.本発明では、図25にあるようにこれらのパ
ッシベーション膜をプラズマCVD技術やスパッタリン
グ技術を用いてカラーフィルター層の上に形成すること
で、可動イオンが液晶層や配向膜表面まで移動すること
を防止している.この構造により横電界がカラーフィル
ター層やガラス基板にまで作用してもパッシベーション
膜▲40▼によって可動イオンの流出は防止できる.こ
れにより配向膜の配向不良や、残像問題が発生しなくな
る。
[Embodiment 12] FIG. 25 is a cross-sectional view of a color filter substrate of an in-plane switching mode liquid crystal display device. A BM (black mask) is formed on a glass substrate, and then a color filter layer is formed. 0.1 ~ for glass substrate
About 1.0% of alkali metal oxides are mixed.
Furthermore, pigments and dyes in the color filter layer contain many impurities, and these mobile ionic substances have a property of moving in the direction of an electric field when an electric field is present. As the overcoat layer (41) for flattening, an organic material is mainly used, but this film has no ability to prevent the electric field movement of mobile ions. As a film often used as a passivation film for mobile ions,
There are a silicon nitride film, a silicon oxynitride film, and an aluminum oxide film. In the present invention, as shown in FIG. 25, these passivation films are formed on a color filter layer using a plasma CVD technique or a sputtering technique to prevent mobile ions from moving to the liquid crystal layer or the alignment film surface. doing. With this structure, even if a horizontal electric field acts on the color filter layer or the glass substrate, the outflow of mobile ions can be prevented by the passivation film (40). This eliminates the problem of poor alignment of the alignment film and the problem of afterimage.

【0052】〔実施例13〕図26,図27は、横電界
方式の液晶表示装置のカラーフィルター基板の断面図と
平面図である。液晶セル工程でのラビング処理プロセス
で配向膜上に静電気が発生し、いろいろなトラブルの原
因となっている。本発明では、オーバーコート層▲41
▼の上に導電性の電極をメッシュ状または、ストライプ
状に形成しこの電位をTFT基板側の映像信号電圧の中
間値付近に設定することで、外部からの静電気の電界の
影響を遮断している.オーバーコート層の上の導電性の
電極の幅をBM幅よりも小さくすることでカラーフィル
ター基板と、TFT基板のアライメント精度が悪るい場
合でもTFT基板の液晶駆動電極に悪影響が出ないよう
にしている。
[Embodiment 13] FIGS. 26 and 27 are a sectional view and a plan view of a color filter substrate of a liquid crystal display device of an in-plane switching mode. During the rubbing process in the liquid crystal cell process, static electricity is generated on the alignment film, causing various troubles. In the invention, the overcoat layer # 41
▼ Conductive electrodes are formed in a mesh or stripe shape on the top and this potential is set near the middle value of the video signal voltage on the TFT substrate side, so that the influence of the external static electric field is cut off. Yes. By making the width of the conductive electrode on the overcoat layer smaller than the BM width, even if the alignment accuracy of the color filter substrate and the TFT substrate is poor, the liquid crystal drive electrode of the TFT substrate is not adversely affected. I have.

【0053】〔実施例14〕図5にあるように、液晶駆
動電極と共通電極の電極間距離が1画素内ですべて均一
でなく2種類以上の電極間距離の組み合せで形成されて
いる。映像信号配線に一番近い電極間距離を一番大きく
することで映像信号配線の影響を低減することが可能と
なり、垂直ストロークを低減することが可能となる.本
発明の屈曲電極構造と組み合せることカラーシフトがな
くクロストークのない最高の画像が得られる.
[Embodiment 14] As shown in FIG. 5, the distance between the liquid crystal drive electrode and the common electrode is not uniform in one pixel, but is formed by a combination of two or more types of electrode distance. By increasing the distance between the electrodes closest to the video signal wiring, the influence of the video signal wiring can be reduced, and the vertical stroke can be reduced. When combined with the bent electrode structure of the present invention, the best image with no color shift and no crosstalk can be obtained.

【0054】[0054]

【発明の効果】 本発明によれば、第1に、画像の階調
反転がなく、どこから見てもカラーシフトの生じない視
角特性の良好な画像が得られる.第2に、ディスクリネ
ーションの発生しないしかも残像の生じないコントラス
トの良い信頼性の高い画像表示装置を作れる.第3に、
映像信号駆動ICに安価な5VICを利用でき、従来の
液晶部材を使用できるので、コストの安い、生産性の高
い画像表示装置を提供できる。第5に、超大型大画面液
晶表示装置を従来の金属材料を用いて実現することが可
能となる。
According to the present invention, firstly, it is possible to obtain an image having good viewing angle characteristics, in which there is no grayscale inversion of the image and no color shift occurs when viewed from anywhere. Secondly, it is possible to produce a highly reliable and high-contrast image display device in which disclination does not occur and afterimages do not occur. Third,
Since an inexpensive 5 VIC can be used as the video signal driving IC and a conventional liquid crystal member can be used, an image display device with low cost and high productivity can be provided. Fifth, it is possible to realize a super large large screen liquid crystal display device using a conventional metal material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来のディスクリネーション発生防止対策電
極構造の平面図
FIG. 1 is a plan view of a conventional electrode structure for preventing occurrence of disclination.

【図2】 従来の直線状画素電極と正の誘電率異方性液
晶の配向図
FIG. 2 is an alignment diagram of a conventional linear pixel electrode and a positive dielectric anisotropic liquid crystal.

【図3】 従来のディスクリネーション発生防止対策電
極構造の平面図
FIG. 3 is a plan view of a conventional electrode structure for preventing occurrence of disclination.

【図4】 従来の直線状画素電極と負の誘電率異方性液
晶の配向図
FIG. 4 is an orientation diagram of a conventional linear pixel electrode and a negative dielectric anisotropic liquid crystal.

【図5】 本発明の横電界方式薄膜半導体基板の単位画
素の平面図
FIG. 5 is a plan view of a unit pixel of a lateral electric field type thin film semiconductor substrate of the present invention.

【図6】 本発明の横電界方式薄膜半導体基板の単位画
素の平面図
FIG. 6 is a plan view of a unit pixel of a lateral electric field type thin film semiconductor substrate of the present invention.

【図7】 本発明の横電界方式薄膜半導体基板の単位画
素の平面図
FIG. 7 is a plan view of a unit pixel of a lateral electric field type thin film semiconductor substrate of the present invention.

【図8】 本発明の横電界方式薄膜半導体基板の単位画
素の平面図
FIG. 8 is a plan view of a unit pixel of a thin film semiconductor substrate of an in-plane switching type according to the present invention.

【図9】 本発明の横電界方式薄膜半導体基板の単位画
素の平面図
FIG. 9 is a plan view of a unit pixel of a thin film semiconductor substrate of an in-plane switching method according to the present invention.

【図10】 本発明の横電界方式薄膜半導体基板の単位
画素の平面図
FIG. 10 is a plan view of a unit pixel of a thin film semiconductor substrate of an in-plane switching type according to the present invention;

【図11】 本発明の横電界方式薄膜半導体基板の単位
画素の断面図
FIG. 11 is a cross-sectional view of a unit pixel of a lateral electric field type thin film semiconductor substrate of the present invention.

【図12】 本発明の横電界方式薄膜半導体基板の単位
画素の断面図
FIG. 12 is a sectional view of a unit pixel of a thin film semiconductor substrate of an in-plane switching type according to the present invention;

【図13】 本発明の横電界方式薄膜半導体基板の画素
配列の平面図
FIG. 13 is a plan view of a pixel array of a lateral electric field type thin film semiconductor substrate of the present invention.

【図14】 本発明の横電界方式薄膜半導体基板の画素
配列の平面図
FIG. 14 is a plan view of a pixel array of a thin film semiconductor substrate of an in-plane switching type according to the present invention.

【図15】 本発明の横電界方式薄膜半導体基板の画素
配列の平面図
FIG. 15 is a plan view of a pixel array of a lateral electric field type thin film semiconductor substrate of the present invention.

【図16】 本発明の横電界方式薄膜半導体基板の画素
配列の平面図
FIG. 16 is a plan view of a pixel array of the in-plane switching semiconductor substrate of the present invention.

【図17】 本発明の横電界方式薄膜半導体基板の画素
配列の平面図
FIG. 17 is a plan view of a pixel array of a lateral electric field type thin film semiconductor substrate of the present invention.

【図18】 本発明の横電界方式薄膜半導体基板の画素
配列の平面図
FIG. 18 is a plan view of a pixel array of a thin film semiconductor substrate of an in-plane switching type according to the present invention.

【図19】 本発明の横電界方式液晶表示装置の駆動電
圧波形図
FIG. 19 is a drive voltage waveform diagram of the in-plane switching mode liquid crystal display device of the present invention.

【図20】 本発明の横電界方式液晶表示装置の駆動電
圧波形図
FIG. 20 is a driving voltage waveform diagram of the in-plane switching mode liquid crystal display device of the present invention.

【図21】 本発明の横電界方式液晶表示装置の駆動電
圧波形図
FIG. 21 is a driving voltage waveform diagram of the in-plane switching mode liquid crystal display device of the present invention.

【図22】 本発明の横電界方式液晶表示装置の駆動電
圧波形図
FIG. 22 is a driving voltage waveform diagram of the in-plane switching mode liquid crystal display device of the present invention.

【図23】 従来の走査信号配線の断面図FIG. 23 is a sectional view of a conventional scanning signal wiring.

【図24】 従来の走査信号配線の断面図FIG. 24 is a sectional view of a conventional scanning signal line.

【図25】 本発明の横電界方式液晶表示装置用カラー
フィルターの断面図
FIG. 25 is a sectional view of a color filter for an in-plane switching mode liquid crystal display device according to the present invention.

【図26】 本発明の横電界方式液晶表示装置用カラー
フィルターの断面図
FIG. 26 is a sectional view of a color filter for an in-plane switching mode liquid crystal display device according to the present invention.

【図27】 本発明の横電界方式液晶表示装置用カラー
フィルターの平面図
FIG. 27 is a plan view of a color filter for an in-plane switching mode liquid crystal display device according to the present invention.

【図28】 本発明の横電界方式薄膜半導体基板の画素
配列の平面図
FIG. 28 is a plan view of a pixel array of a lateral electric field type thin film semiconductor substrate of the present invention.

【図29】 本発明の横電界方式液晶表示装置の駆動電
圧波形図
FIG. 29 is a drive voltage waveform diagram of the in-plane switching mode liquid crystal display device of the present invention.

【図30】 本発明の横電界方式液晶表示装置の駆動電
圧波形図
FIG. 30 is a driving voltage waveform diagram of the in-plane switching mode liquid crystal display device of the present invention.

【図31】 本発明のディスクリネーション発生防止対
策電極の構造の平面図と正の誘電率異方性液晶の配向図
FIG. 31 is a plan view of the structure of the electrode for preventing the occurrence of disclination according to the present invention and the orientation diagram of the positive dielectric anisotropic liquid crystal.

【図32】 本発明のディスクリネーション発生防止対
策電極の構造の平面図と負の誘電率異方性液晶の配向図
FIG. 32 is a plan view of the structure of the electrode for preventing disclination occurrence according to the present invention and the orientation diagram of the negative dielectric anisotropic liquid crystal.

【図33】 本発明の横電界方式薄膜半導体基板の単位
画素の平面図
FIG. 33 is a plan view of a unit pixel of a lateral electric field type thin film semiconductor substrate of the present invention.

【図34】 本発明の横電界方式薄膜半導体基板の単位
画素の平面図
FIG. 34 is a plan view of a unit pixel of a thin film semiconductor substrate of an in-plane switching type according to the present invention;

【図35】 本発明の横電界方式薄膜半導体基板の画素
配列の平面図
FIG. 35 is a plan view of a pixel array of a lateral electric field type thin film semiconductor substrate of the present invention.

【図36】 本発明の横電界方式薄膜半導体基板の単位
画素の平面図
FIG. 36 is a plan view of a unit pixel of a thin film semiconductor substrate of an in-plane switching type according to the present invention;

【符号の説明】[Explanation of symbols]

1――走査信号配線 2――映像信号配線 3――共通電極 4――液晶駆動電極 5――薄膜トランジスタ(TFT)素子 6――TFT基板側液晶配向軸 7――正の誘電率異方性液晶分子(P型液晶分子)と画
素電極(共通電極と液晶駆動電極)の交差する角度 8――負の誘電率異方性液晶分子(N型液晶分子)と画
素電極(共通電極と液晶駆動電極)の交差する角度 9――正の誘電率異方性液晶分子(P型液晶分子) 10――負の誘電率異方性液晶分子(N型液晶分子) 11――TFT側ガラス基板 12――半導体層 13――不純物をドープしたnアモリファスシリコン
層 14――配向膜 15――奇数番共通電極駆動用連結電極 16――偶数番共通電極駆動用連結電極 17――静電気対策用素子 18――走査信号配線引き出し端子 19――映像信号配線引き出し端子 20――共通電極引き出し端子 21――静電気対策用連結電極 22――n番走査信号配線駆動波形 23――奇数番共通電極駆動波形 24――奇数番映像信号波形 25――(n+1)番走査信号配線駆動波形 26――偶数番映像信号波形 27――偶数番共通電極駆動波形 28――アルミニウム(orアルミニウム合金)走査信
号配線 29――高融点金属(or高融点金属のシリサイド化合
物、高融点金属化合物) 30――側壁酸化アルミニウム 31――(n−1)番走査信号配線駆動波形 32――m番共通電極駆動波形(直線接続型) 33――m番共通電極駆動波形 34――(m+1)番共通電極駆動波形(直線接続型) 35――静電気対策用連結電極引き出し端子 36――(m−1)番共通電極駆動波形 37――(m+1)番共通電極駆動波形 38――ブラックマスク 39――カラーフィルター層 40――カラーフィルターパッシベーション膜 41――平担化膜 42――静電気対策用導電性膜(or半導体膜) 43――カラーフィルター側液晶配向膜 44――下地絶縁膜 45――ゲート絶縁膜 46――TFTパッシベーション膜 47――カラーフィルター側ガラス基板 48――ドレインスルーホール
1—scanning signal wiring 2—video signal wiring 3—common electrode 4—liquid crystal drive electrode 5—thin film transistor (TFT) element 6—liquid crystal alignment axis on TFT substrate 7—positive dielectric anisotropy Angle at which liquid crystal molecules (P-type liquid crystal molecules) intersect with pixel electrodes (common electrode and liquid crystal drive electrode) 8- Negative dielectric anisotropy liquid crystal molecules (N-type liquid crystal molecules) and pixel electrodes (common electrode and liquid crystal drive electrode) Angle at which the electrodes intersect 9—Positive dielectric anisotropic liquid crystal molecules (P-type liquid crystal molecules) 10—Negative dielectric constant anisotropic liquid crystal molecules (N-type liquid crystal molecules) 11—TFT side glass substrate 12 --Semiconductor layer 13--N + -amorphous silicon layer doped with impurities 14--Alignment film 15--Odd-numbered common electrode driving connection electrode 16--Even-numbered common electrode driving connection electrode 17--Electrostatic countermeasure Element 18—scan signal wiring lead-out terminal 19—Video signal wiring lead terminal 20—Common electrode lead terminal 21—Electrostatic countermeasure connection electrode 22—Nth scan signal wiring drive waveform 23—Odd number common electrode drive waveform 24—Odd number video signal waveform 25- (n + 1) -th scan signal wiring drive waveform 26-even-number video signal waveform 27-even-number common electrode drive waveform 28-aluminum (or aluminum alloy) scan signal wiring 29-high melting point metal (or high) Melting point metal silicide compound, high melting point metal compound) 30—side wall aluminum oxide 31— (n−1) th scan signal wiring drive waveform 32—mth common electrode drive waveform (linear connection type) 33—mth Common electrode drive waveform 34-(m + 1) common electrode drive waveform (straight connection type) 35-Electrostatic discharge connection electrode lead terminal 36-(m-1) common electrode Driving waveform 37-(m + 1) th common electrode driving waveform 38-Black mask 39-Color filter layer 40-Color filter passivation film 41-Flattening film 42-Electrostatic measures conductive film (or semiconductor) Film—43—Color filter-side liquid crystal alignment film 44—Base insulating film 45—Gate insulating film 46—TFT passivation film 47—Color filter-side glass substrate 48—Drain through hole

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】基板上に走査信号配線と映像信号配線と、
前記走査信号配線と映像信号配線との各交差部に形成さ
れた薄膜トランジスタと、前記薄膜トランジスタに接続
された液晶駆動電極と、少なくとも一部が、前記液晶駆
動電極と対向して形成された共通電極とを有するアクテ
ィブマトリックス基板と、前記アクティブマトリックス
基板に対向する対向基板と、前記アクティブマトリック
ス基板と前記対向基板に挟持された液晶層とからなる液
晶表示装置において、前記液晶駆動電極と、液晶駆動電
極に対向している共通電極が、液晶分子の配向方向に対
して屈曲しており、画素中央部の屈曲部では屈曲の凸部
方向にそれぞれの電極がつき出ており、画素周辺部で
は、それぞれの電極が屈曲の凹部方向におれ曲がり、液
晶駆動電極と液晶駆動電極に対向している共通電極とで
形成される電界分布が、画素の中央を線対称軸とした分
布になっていることを特徴とする液晶表示装置。
A scanning signal line and a video signal line on a substrate;
A thin film transistor formed at each intersection of the scanning signal wiring and the video signal wiring; a liquid crystal drive electrode connected to the thin film transistor; and a common electrode formed at least partially facing the liquid crystal drive electrode. A liquid crystal display device comprising: an active matrix substrate having: a counter substrate facing the active matrix substrate; and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate. The opposing common electrode is bent with respect to the alignment direction of the liquid crystal molecules, each electrode sticks out in the bent convex direction at the central portion of the pixel, and each electrode protrudes in the pixel peripheral portion. The electric field distribution formed by the liquid crystal driving electrode and the common electrode facing the liquid crystal driving electrode, in which the electrode bends in the direction of the concave portion of the bend. A liquid crystal display device, characterized in that has a distribution in which the center pixel line-symmetric axis.
【請求項2】基板上に走査信号配線と映像信号配線と、
前記走査信号配線と映像信号配線との各交差部に形成さ
れた薄膜トランジスタと、前記薄膜トランジスタに接続
された液晶駆動電極と、少なくとも一部が、前記液晶駆
動電極と対向して形成された共通電極とを有するアクテ
ィブマトリックス基板と、前記アクティブマトリックス
基板に対向する対向基板と、前記アクティブマトリック
ス基板と前記対向基板に挟持された液晶層とからなる液
晶表示装置において、前記液晶駆動電極と液晶駆動電極
に対向している共通電極が液晶分子の配向方向に対し
て、画素周期で屈曲しており、屈曲の凸方向にそれぞれ
の画素内の周辺部電極がおれ曲り、液晶駆動電極と液晶
駆動電極に対向している共通電極とで形成される電界分
布が、走査信号配線を線対称軸とした分布、または映像
信号配線を線対称軸とした分布になっていることを特徴
とする液晶表示装置。
2. A scanning signal wiring and a video signal wiring on a substrate,
A thin film transistor formed at each intersection of the scanning signal wiring and the video signal wiring; a liquid crystal drive electrode connected to the thin film transistor; and a common electrode formed at least partially facing the liquid crystal drive electrode. A liquid crystal display device comprising: an active matrix substrate having: a counter substrate facing the active matrix substrate; and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate. The common electrode is bent at the pixel period with respect to the orientation direction of the liquid crystal molecules, and the peripheral electrodes in each pixel are bent in the convex direction of the bend, facing the liquid crystal drive electrode and the liquid crystal drive electrode. The distribution of the electric field formed by the common electrode is the distribution with the scanning signal wiring as the axis of symmetry, or the distribution of the video signal wiring with the axis of symmetry. The liquid crystal display device, characterized in that it has become the distribution.
【請求項3】特許請求範囲第1項、第2項において、ア
クティブマトリックス基板と対向基板に挟持された液晶
層には、カイラル・トーパント材がふくまれていないこ
とを特徴とする液晶表示装置。
3. The liquid crystal display device according to claim 1, wherein the liquid crystal layer sandwiched between the active matrix substrate and the opposing substrate does not contain a chiral topant material.
【請求項4】特許請求範囲第1項、第2項において、走
査信号配線と共通電極で、絶縁膜をかいして液晶駆動電
極の一部をはさみこんだ構造を特徴とする液晶表示装
置。
4. A liquid crystal display device according to claim 1, wherein a part of the liquid crystal driving electrode is sandwiched between the scanning signal wiring and the common electrode via an insulating film.
【請求項5】基板上に走査信号配線と映像信号配線と前
記走査信号配線と映像信号配線との各交差部に形成され
た薄膜トランジスタと、前記薄膜トランジスタに接続さ
れた液晶駆動電極と、少なくとも一部が前記液晶駆動電
極と対向して形成された共通電極とを有するアクティブ
マトリックス基板と、前記アクティブマトリックス基板
に対向する対向基板と、前記アクティブマトリックス基
板と前記対向基板に挟持された液晶層とからなる液晶表
示装置において、共通電極と液晶駆動電極を2層以上の
絶縁膜で層分離させた構造を特徴とする液晶表示装置。
5. A thin film transistor formed on a substrate at each intersection of a scanning signal wiring, a video signal wiring, the scanning signal wiring and the video signal wiring, a liquid crystal drive electrode connected to the thin film transistor, and at least a part thereof. Comprises an active matrix substrate having a common electrode formed so as to face the liquid crystal driving electrode, a counter substrate facing the active matrix substrate, and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate. A liquid crystal display device having a structure in which a common electrode and a liquid crystal drive electrode are separated by two or more insulating films.
【請求項6】基板上に走査信号配線と映像信号配線と前
記走査信号配線と映像信号配線との各交差部に形成され
た薄膜トランジスタと前記薄膜トランジスタに接続され
た液晶駆動電極と、少なくとも一部が前記液晶駆動電極
と対向して形成された共通電極とを有するアクティブマ
トリックス基板と、前記アクティブマトリックス基板に
対向する対向基板と、前記アクティブマトリックス基板
と前記対向基板に挟持された液晶層とからなる液晶表示
装置において、共通電極が走査信号配線と交差して2行
にわたり屈曲して配置されている構造を特徴とする液晶
表示装置。
6. A thin film transistor formed on a substrate at each intersection of a scanning signal wiring, a video signal wiring, the scanning signal wiring and the video signal wiring, and a liquid crystal drive electrode connected to the thin film transistor; A liquid crystal comprising: an active matrix substrate having a common electrode formed to face the liquid crystal drive electrode; a counter substrate facing the active matrix substrate; and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate. 2. A liquid crystal display device according to claim 1, wherein the common electrode intersects the scanning signal wiring and is bent over two rows.
【請求項7】特許請求の範囲第6項において、走査信号
配線と交差して2行にわたり屈曲して配置されている共
通電極を、奇数群と偶数群に分離し、それぞれを奇数番
共通電極駆動用連結電極と偶数番共通電極駆動用連結電
極に接続させた構造を特徴とする液晶表示装置。
7. A common electrode according to claim 6, wherein the common electrodes intersecting the scanning signal wiring and bent over two rows are separated into an odd group and an even group, and each is divided into an odd number common electrode. A liquid crystal display device characterized in that it is connected to a driving connection electrode and an even-numbered common electrode driving connection electrode.
【請求項8】特許請求の範囲第7項において、共通電極
を奇数群と偶数群に分離し、それぞれをそれぞれを奇数
番共通電極駆動用連結電極と偶数番共通電極駆動用連結
電極に接続し、それぞれ2つの電極群に逆位相の信号電
極を走査線信号駆動周期で印加し、かつ奇数群、偶数群
の共通電極に対向している液晶駆動電極に、共通電極と
は逆相の映像信号電圧波形をそれぞれ印加することを特
徴とする液晶表示装置。
8. The method according to claim 7, wherein the common electrodes are divided into an odd group and an even group, and each is connected to an odd-numbered common electrode driving connection electrode and an even-numbered common electrode driving connection electrode. A signal electrode of opposite phase is applied to each of the two electrode groups at a scanning line signal drive period, and a video signal of opposite phase to the common electrode is applied to the liquid crystal drive electrodes facing the common electrodes of the odd and even groups. A liquid crystal display device characterized by applying voltage waveforms.
【請求項9】特許請求の範囲第6項において、走査信号
配線と交差して2行にわたり屈曲して配置されている共
通電極を、それぞれ別々に分離した構造を特徴とする液
晶表示装置。
9. A liquid crystal display device according to claim 6, wherein the common electrodes intersecting the scanning signal wiring and being bent over two rows are separately separated from each other.
【請求項10】特許請求の範囲第9項において、走査信
号配線と交差して2行にわたり屈曲して配置されている
共通電極を、それぞれ別々に分離し、それぞれ分離独立
した共通電極に、フィールド周期の2倍の周期で、信号
電圧を印加しフィールド周期ごとに印加電圧極性を変化
させ、かつ屈曲した共通電極に対向している液晶駆動電
極に、共通電極とは、逆相の映像信号電圧波形をそれぞ
れ印加することを特徴とする液晶表示装置。
10. The common electrode according to claim 9, wherein common electrodes intersecting the scanning signal wiring and bent over two rows are separately separated from each other, and separated into independent common electrodes. The signal voltage is applied at twice the cycle, the applied voltage polarity is changed every field cycle, and the liquid crystal drive electrode facing the bent common electrode is connected to the video signal voltage of the opposite phase with the common electrode. A liquid crystal display device to which a waveform is applied.
【請求項11】基板上に走査信号配線と映像信号配線と
前記走査信号配線と映像信号配線との各交差部に形成さ
れた薄膜トランジスタと前記薄膜トランジスタに接続さ
れた液晶駆動電極と、少なくとも一部が前記液晶駆動電
極と対向して形成された共通電極とを有するアクティブ
マトリックス基板と、前記アクティブマトリックス基板
に対向する対向基板と、前記アクティブマトリックス基
板と前記対向基板に挟持された液晶層とからなる液晶表
示装置において、一本の走査信号配線をはさんだ前後2
行にわたり、薄膜トランジスタが交互に液晶駆動電極と
接続されており、液晶駆動電極に対向している共通電極
は、それぞれ各行ごとに分離独立している構造配置を特
徴とする液晶表示装置。
11. A thin film transistor formed on a substrate at each intersection of a scanning signal wiring, a video signal wiring, the scanning signal wiring and the video signal wiring, a liquid crystal driving electrode connected to the thin film transistor, and at least a part thereof. A liquid crystal comprising: an active matrix substrate having a common electrode formed to face the liquid crystal drive electrode; a counter substrate facing the active matrix substrate; and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate. In the display device, before and after the one scanning signal line
A liquid crystal display device characterized by a structure in which thin film transistors are alternately connected to liquid crystal drive electrodes over rows, and common electrodes facing the liquid crystal drive electrodes are separated and independent for each row.
【請求項12】特許請求の範囲第11項において、それ
ぞれ各行ごとに分離独立している共通電極に、フィール
ド周期の2倍の周期で、信号電圧を印加し、フィールド
周期ごとに印加電圧極性を変化させ、かつ共通電極に対
向している液晶駆動電極に、共通電極とは逆相の映像信
号電圧波形を、それぞれ印加することを特徴とする液晶
表示装置。
12. A method according to claim 11, wherein a signal voltage is applied to a common electrode separated and independent for each row at a period twice as long as a field period, and the applied voltage polarity is changed for each field period. A liquid crystal display device wherein a video signal voltage waveform having a phase opposite to that of a common electrode is applied to a liquid crystal drive electrode which is changed and opposed to the common electrode.
【請求項13】特許請求の範囲第9項または、第11項
において、走査信号配線と映像信号配線と共通電極の3
種類の電極が静電気対策用非線形素子により外周部の静
電気対策用連結電極に接続されている構造を特徴とする
液晶表示装置。
13. The method according to claim 9, wherein the scanning signal wiring, the video signal wiring, and the common electrode are connected to each other.
A liquid crystal display device comprising a structure in which different kinds of electrodes are connected to a connection electrode for static electricity countermeasures on an outer peripheral portion by a non-linear element for static electricity countermeasures.
【請求項14】薄膜トランジスタが形成されているアク
ティブマトリックス基板と前記アクティブマトリクス基
板に対向する対向基板と、前記アクティブマトリックス
基板と前記対向基板に挟持された液晶表示装置におい
て、走査信号配線がアルミニウムと高融点金属の2層か
ら形成されており、アルミニウムの上に高融点金属がか
ぶさり高融点金属がひふくしていない側壁や側壁の近く
のアルミニウムが露出している部分にアルミニウムの酸
化物を形成したことを特徴とする液晶表示装置。
14. An active matrix substrate on which a thin film transistor is formed, a counter substrate facing the active matrix substrate, and a liquid crystal display device sandwiched between the active matrix substrate and the counter substrate, wherein the scanning signal wiring is made of aluminum and high. Formed from two layers of melting point metal, aluminum oxide was formed on the side walls where aluminum is covered with high melting point metal and where high melting point metal is not covered or where aluminum near the side walls is exposed A liquid crystal display device characterized by the above-mentioned.
【請求項15】基板上に走査信号配線と映像信号配線
と、前記走査信号配線と映像信号配線との各交差部に形
成された薄膜トランジスタと前記薄膜トランジスタに接
続された液晶駆動電極と、少なくとも一部が前記液晶駆
動電極と対向して形成された共通電極とを有するアクテ
ィブマトリックス基板と、前記アクティブマトリックス
基板に対向する対向基板と、前記アクティブマトリック
ス基板と前記対向基板に挟持された液晶層とからなる液
晶表示装置において、前記対向基板に形成されたカラー
フィルター層の上にシリコン窒化膜やシリコン酸窒化
膜、酸化アルミニウム膜などのパッシベーション膜を形
成した後平坦化のためのオーバーコート層をパッシベー
ション膜の上に形成した構造を特徴とする液晶表示装
置。
15. A scanning signal wiring and a video signal wiring on a substrate; a thin film transistor formed at each intersection of the scanning signal wiring and the video signal wiring; and a liquid crystal drive electrode connected to the thin film transistor; Comprises an active matrix substrate having a common electrode formed so as to face the liquid crystal driving electrode, a counter substrate facing the active matrix substrate, and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate. In a liquid crystal display device, a passivation film such as a silicon nitride film, a silicon oxynitride film, or an aluminum oxide film is formed on a color filter layer formed on the counter substrate, and then an overcoat layer for planarization is formed on the passivation film. A liquid crystal display device characterized by the structure formed above.
【請求項16】特許請求の範囲第15項において、パッ
シベーション膜の上に形成されたオーバーコート層の上
に導電性の電極をメッシュ状、またはストライプ状に形
成し、この電位をTFT基板側の映像信号電圧の中間値
付近に設定したことを特徴とする液晶表示装置.
16. A method according to claim 15, wherein a conductive electrode is formed in a mesh shape or a stripe shape on the overcoat layer formed on the passivation film, and this potential is applied to the TFT substrate side. A liquid crystal display device characterized by being set near an intermediate value of a video signal voltage.
【請求項17】特許請求の範囲第15項において、オー
バーコート層の上にメッシュ状または、ストライプ状に
形成された導電性電極のパターン幅を下地のBM(ブラ
ックマスク)の幅よりも小さくしたことを特徴とする液
晶表示装置。
17. A pattern according to claim 15, wherein the pattern width of the conductive electrode formed in a mesh or stripe on the overcoat layer is smaller than the width of the underlying BM (black mask). A liquid crystal display device characterized by the above-mentioned.
【請求項18】特許請求の範囲第1項または第2項にお
いて、前記液晶駆動電極と前記共通電極との電極間距離
が、1画素内ですべて均一でなく、2種類以上の電極間
距離の組み合せで形成されていることを特徴とする液晶
表示装置。
18. The liquid crystal display according to claim 1, wherein the distance between the liquid crystal driving electrode and the common electrode is not uniform within one pixel, and the distance between two or more kinds of electrodes is not uniform within one pixel. A liquid crystal display device characterized by being formed in combination.
JP33928197A 1997-10-21 1997-10-21 Liquid crystal display Expired - Fee Related JP3831863B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33928197A JP3831863B2 (en) 1997-10-21 1997-10-21 Liquid crystal display
TW87117228A TW544538B (en) 1997-10-21 1998-10-19 Active matrix-type liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33928197A JP3831863B2 (en) 1997-10-21 1997-10-21 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH11125835A true JPH11125835A (en) 1999-05-11
JP3831863B2 JP3831863B2 (en) 2006-10-11

Family

ID=18325973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33928197A Expired - Fee Related JP3831863B2 (en) 1997-10-21 1997-10-21 Liquid crystal display

Country Status (2)

Country Link
JP (1) JP3831863B2 (en)
TW (1) TW544538B (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016646A1 (en) * 1999-09-01 2001-03-08 Matsushita Electric Industrial Co., Ltd. Liquid display panel and method for producing the same
JP2001194685A (en) * 2000-01-06 2001-07-19 Hitachi Ltd Liquid crystal display device
JP2002055325A (en) * 2000-07-27 2002-02-20 Samsung Electronics Co Ltd Liquid crystal display device using swing common electrode and its driving method
JP2002323706A (en) * 2001-02-23 2002-11-08 Nec Corp Active matrix liquid crystal display device of transverse electric field system and method for manufacturing the same
JP2003015146A (en) * 2001-07-04 2003-01-15 Hitachi Ltd Liquid crystal display device
US6618109B2 (en) 2000-07-28 2003-09-09 Nec Lcd Technologies, Ltd. Liquid crystal display apparatus
KR100446380B1 (en) * 2001-05-07 2004-09-01 비오이 하이디스 테크놀로지 주식회사 Apparatus for thin film transistor liquid crystal display
JP2004361949A (en) * 2003-05-30 2004-12-24 Samsung Electronics Co Ltd Thin film transistor display plate and liquid crystal display device including the same
KR100482470B1 (en) * 2000-12-29 2005-04-14 비오이 하이디스 테크놀로지 주식회사 Tft-lcd having good pixel structure
JP2005196162A (en) * 2003-12-26 2005-07-21 Lg Philips Lcd Co Ltd In-plane switching mode liquid crystal display device
JP2005346064A (en) * 2004-05-31 2005-12-15 Lg Phillips Lcd Co Ltd In-plane switching liquid crystal display and driving method therefor
KR100672215B1 (en) * 2003-12-15 2007-01-22 엘지.필립스 엘시디 주식회사 In-plane switching mode liquid crystal display device and manufacturing method of the same
KR100689312B1 (en) * 2003-11-11 2007-03-08 엘지.필립스 엘시디 주식회사 In plane switching mode liquid crystal display device and method for fabricating thereof
US7196760B2 (en) 2001-03-06 2007-03-27 Seiko Epson Corporation Liquid crystal device, projection type display and electronic equipment
JP2007128112A (en) * 2001-02-23 2007-05-24 Nec Lcd Technologies Ltd Active matrix liquid crystal display device of lateral electric field system, and electronic apparatus
KR100839835B1 (en) * 2001-12-31 2008-06-19 엘지디스플레이 주식회사 An array substrate for In-Plane switching mode LCD and the method for fabricating the same
KR100858763B1 (en) * 2005-06-24 2008-09-16 엔이씨 엘씨디 테크놀로지스, 엘티디. Liquid crystal driving electrode, liquid crystal display device, and manufacturing method thereof
US7456924B2 (en) 1999-09-07 2008-11-25 Hitachi, Ltd. Liquid crystal display device
KR100870668B1 (en) * 2002-10-01 2008-11-26 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
US7471367B2 (en) 2004-05-24 2008-12-30 Lg Display Co., Ltd. Array substrate for in-plane switching mode liquid crystal display device and method of fabricating the same
KR100884126B1 (en) * 2006-07-27 2009-02-17 엡슨 이미징 디바이스 가부시키가이샤 Liquid crystal display device
US7492428B2 (en) 2003-12-11 2009-02-17 Lg Display Co., Ltd. Thin film transistor array substrate and fabricating method thereof
US7502086B2 (en) 2004-03-16 2009-03-10 Lg Display Co., Ltd. In-plane switching mode liquid crystal display device and method for manufacturing the same
KR100911313B1 (en) * 2002-11-04 2009-08-12 엘지디스플레이 주식회사 Liquid Crystal Display Panel
KR100920344B1 (en) * 2002-12-03 2009-10-07 삼성전자주식회사 thin film transistor array panel for liquid crystal display
KR100923673B1 (en) * 2002-08-07 2009-10-28 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
KR100961695B1 (en) * 2003-06-12 2010-06-10 엘지디스플레이 주식회사 An array substrate for In-Plane switching mode LCD and method of the same
KR100978254B1 (en) * 2003-06-30 2010-08-26 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device having 4-pixel structure
US7859628B2 (en) 2003-12-29 2010-12-28 Lg Display Co., Ltd. IPS LCD having auxiliary common electrode lines
KR101041613B1 (en) * 2003-11-25 2011-06-15 엘지디스플레이 주식회사 In-Plane switching mode LCD
KR20110070568A (en) * 2009-12-18 2011-06-24 엘지디스플레이 주식회사 Liquid crystal display device and method for fabricating the same
KR101044529B1 (en) * 2003-09-15 2011-06-27 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device and method for fabricating the same
KR101086647B1 (en) * 2004-06-28 2011-11-24 엘지디스플레이 주식회사 An array substrate for In-Plane switching mode LCD and method of fabricating of the same
US8194218B2 (en) 2004-06-22 2012-06-05 Lg Display Co., Ltd. In-plane switching mode liquid crystal display device
KR101157226B1 (en) * 2004-05-31 2012-06-15 엘지디스플레이 주식회사 Liquid crystal display and method for manufacturing lcd
KR101156510B1 (en) * 2004-12-30 2012-06-18 엘지디스플레이 주식회사 In-plain switching liquid crystal display device
KR101165459B1 (en) * 2004-12-31 2012-07-12 엘지디스플레이 주식회사 In Plane Switching Mode LCD and the fabrication method
JP2012194480A (en) * 2011-03-17 2012-10-11 Japan Display Central Co Ltd Liquid crystal display device
KR101219142B1 (en) * 2005-02-07 2013-01-07 삼성디스플레이 주식회사 Display apparatus and method of the display substrate
KR101254241B1 (en) * 2006-06-15 2013-04-12 미쿠니 일렉트론 컴퍼니 리미티드 Low-Cost Large-Screen Wide-Angle Fast-Response Active Matrix Liquid Crystal Display Apparatus and Method of Fabricating Active Matrix Substrate
TWI399600B (en) * 2008-05-30 2013-06-21 Japan Display West Inc Display device
KR101309139B1 (en) * 2003-12-29 2013-09-17 엘지디스플레이 주식회사 array substrate and liquid crystal display device including the same
CN103365011A (en) * 2012-03-29 2013-10-23 乐金显示有限公司 Array substrate for fringe field switching mode liquid crystal display device
US8982307B2 (en) 2011-10-17 2015-03-17 Boe Technology Group Co., Ltd. Pixel unit, array substrate, liquid crystal panel and method for manufacturing the array substrate
KR20150040836A (en) * 2007-07-20 2015-04-15 엘지디스플레이 주식회사 Liquid crystal display device of in-plane switching mode and method for manufacturing the same
JP2019211542A (en) * 2018-05-31 2019-12-12 Jnc株式会社 Liquid crystal display element

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016646A1 (en) * 1999-09-01 2001-03-08 Matsushita Electric Industrial Co., Ltd. Liquid display panel and method for producing the same
US8035786B2 (en) 1999-09-07 2011-10-11 Hitachi, Ltd. Liquid crystal display device
US8493537B2 (en) 1999-09-07 2013-07-23 Hitachi Displays, Ltd. Liquid crystal display device
US9857643B2 (en) 1999-09-07 2018-01-02 Japan Display Inc. Liquid crystal display device
US7683996B2 (en) 1999-09-07 2010-03-23 Hitachi, Ltd. Liquid crystal display device
US10139687B2 (en) 1999-09-07 2018-11-27 Japan Display Inc. Liquid crystal display device
US7697100B2 (en) * 1999-09-07 2010-04-13 Hitachi, Ltd. Liquid crystal display device
US8218118B2 (en) 1999-09-07 2012-07-10 Hitachi Displays, Ltd. Liquid crystal display device
US7936429B2 (en) 1999-09-07 2011-05-03 Hitachi, Ltd. Liquid crystal display device
US9488883B2 (en) 1999-09-07 2016-11-08 Japan Display Inc. Liquid crystal display device
US10634961B2 (en) 1999-09-07 2020-04-28 Japan Display Inc. Liquid crystal display device
US7733455B2 (en) 1999-09-07 2010-06-08 Hitachi, Ltd. Liquid crystal display device
KR100923707B1 (en) * 1999-09-07 2009-10-27 가부시키가이샤 히타치세이사쿠쇼 Liquid crystal display
US8218119B2 (en) 1999-09-07 2012-07-10 Hitachi Displays, Ltd. Liquid crystal display device
US7705949B2 (en) 1999-09-07 2010-04-27 Hitachi, Ltd. Liquid crystal display device
US7456924B2 (en) 1999-09-07 2008-11-25 Hitachi, Ltd. Liquid crystal display device
US8045116B2 (en) 1999-09-07 2011-10-25 Hitachi, Ltd. Liquid crystal display device
US8345205B2 (en) 1999-09-07 2013-01-01 Hitachi Displays, Ltd. Liquid Crystal display device
JP2001194685A (en) * 2000-01-06 2001-07-19 Hitachi Ltd Liquid crystal display device
JP2002055325A (en) * 2000-07-27 2002-02-20 Samsung Electronics Co Ltd Liquid crystal display device using swing common electrode and its driving method
KR100458172B1 (en) * 2000-07-28 2004-11-26 엔이씨 엘씨디 테크놀로지스, 엘티디. Liquid crystal display apparatus
US6618109B2 (en) 2000-07-28 2003-09-09 Nec Lcd Technologies, Ltd. Liquid crystal display apparatus
KR100482470B1 (en) * 2000-12-29 2005-04-14 비오이 하이디스 테크놀로지 주식회사 Tft-lcd having good pixel structure
JP4603560B2 (en) * 2001-02-23 2010-12-22 Nec液晶テクノロジー株式会社 Horizontal electric field type active matrix liquid crystal display device and electronic device
US7446833B2 (en) 2001-02-23 2008-11-04 Nec Lcd Technologies, Ltd. In-plane switching mode active matrix type liquid crystal display device and method of fabricating the same
JP2007128112A (en) * 2001-02-23 2007-05-24 Nec Lcd Technologies Ltd Active matrix liquid crystal display device of lateral electric field system, and electronic apparatus
US7619710B2 (en) 2001-02-23 2009-11-17 Nec Lcd Technologies, Ltd. In-plane switching mode active matrix type liquid crystal display device and method of fabricating the same
JP2002323706A (en) * 2001-02-23 2002-11-08 Nec Corp Active matrix liquid crystal display device of transverse electric field system and method for manufacturing the same
US7251008B2 (en) 2001-03-06 2007-07-31 Seiko Epson Corporation Liquid crystal device, projection type display and electronic equipment
US7196760B2 (en) 2001-03-06 2007-03-27 Seiko Epson Corporation Liquid crystal device, projection type display and electronic equipment
US7609352B2 (en) 2001-03-06 2009-10-27 Seiko Epson Corporation Liquid crystal device, projection type display and electronic equipment
KR100446380B1 (en) * 2001-05-07 2004-09-01 비오이 하이디스 테크놀로지 주식회사 Apparatus for thin film transistor liquid crystal display
JP2003015146A (en) * 2001-07-04 2003-01-15 Hitachi Ltd Liquid crystal display device
KR100839835B1 (en) * 2001-12-31 2008-06-19 엘지디스플레이 주식회사 An array substrate for In-Plane switching mode LCD and the method for fabricating the same
KR100923673B1 (en) * 2002-08-07 2009-10-28 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
KR100870668B1 (en) * 2002-10-01 2008-11-26 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
KR100911313B1 (en) * 2002-11-04 2009-08-12 엘지디스플레이 주식회사 Liquid Crystal Display Panel
KR100920344B1 (en) * 2002-12-03 2009-10-07 삼성전자주식회사 thin film transistor array panel for liquid crystal display
JP2011138158A (en) * 2003-05-30 2011-07-14 Samsung Electronics Co Ltd Thin film transistor display panel and liquid crystal display device including the panel
JP2004361949A (en) * 2003-05-30 2004-12-24 Samsung Electronics Co Ltd Thin film transistor display plate and liquid crystal display device including the same
KR100961695B1 (en) * 2003-06-12 2010-06-10 엘지디스플레이 주식회사 An array substrate for In-Plane switching mode LCD and method of the same
US7751009B2 (en) 2003-06-12 2010-07-06 Lg Display Co., Ltd. Array substrate for in-plane switching mode liquid crystal display
KR100978254B1 (en) * 2003-06-30 2010-08-26 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device having 4-pixel structure
KR101044529B1 (en) * 2003-09-15 2011-06-27 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device and method for fabricating the same
US7251004B2 (en) 2003-11-11 2007-07-31 Lg.Philips Lcd Co., Ltd. In plane switching mode liquid crystal display device and fabrication method thereof
CN100362414C (en) * 2003-11-11 2008-01-16 Lg.菲利浦Lcd株式会社 Plane switching mode liquid crystal display device and fabrication method thereof
KR100689312B1 (en) * 2003-11-11 2007-03-08 엘지.필립스 엘시디 주식회사 In plane switching mode liquid crystal display device and method for fabricating thereof
US7349051B2 (en) 2003-11-11 2008-03-25 Lg.Philips Lcd Co., Ltd. In plane switching mode liquid crystal display device having particular common lines
KR101041613B1 (en) * 2003-11-25 2011-06-15 엘지디스플레이 주식회사 In-Plane switching mode LCD
US7492428B2 (en) 2003-12-11 2009-02-17 Lg Display Co., Ltd. Thin film transistor array substrate and fabricating method thereof
US7760308B2 (en) 2003-12-15 2010-07-20 Lg Display Co., Ltd. In-plane switching mode liquid crystal display and fabricating method thereof
KR100672215B1 (en) * 2003-12-15 2007-01-22 엘지.필립스 엘시디 주식회사 In-plane switching mode liquid crystal display device and manufacturing method of the same
JP2005196162A (en) * 2003-12-26 2005-07-21 Lg Philips Lcd Co Ltd In-plane switching mode liquid crystal display device
KR101071711B1 (en) * 2003-12-29 2011-10-12 엘지디스플레이 주식회사 In-Plane Switching mode Liquid crystal display device
KR101309139B1 (en) * 2003-12-29 2013-09-17 엘지디스플레이 주식회사 array substrate and liquid crystal display device including the same
US7859628B2 (en) 2003-12-29 2010-12-28 Lg Display Co., Ltd. IPS LCD having auxiliary common electrode lines
US7773183B2 (en) 2004-03-16 2010-08-10 Lg Display Co., Ltd. Method for manufacturing an in-plane switching mode liquid crystal display device
US7502086B2 (en) 2004-03-16 2009-03-10 Lg Display Co., Ltd. In-plane switching mode liquid crystal display device and method for manufacturing the same
US7471367B2 (en) 2004-05-24 2008-12-30 Lg Display Co., Ltd. Array substrate for in-plane switching mode liquid crystal display device and method of fabricating the same
KR101157226B1 (en) * 2004-05-31 2012-06-15 엘지디스플레이 주식회사 Liquid crystal display and method for manufacturing lcd
JP2005346064A (en) * 2004-05-31 2005-12-15 Lg Phillips Lcd Co Ltd In-plane switching liquid crystal display and driving method therefor
KR101050348B1 (en) * 2004-05-31 2011-07-19 엘지디스플레이 주식회사 Transverse electric field liquid crystal display device
KR101352099B1 (en) * 2004-06-22 2014-01-23 엘지디스플레이 주식회사 The in-plane switching mode liquid crystal display device
US8194218B2 (en) 2004-06-22 2012-06-05 Lg Display Co., Ltd. In-plane switching mode liquid crystal display device
KR101086647B1 (en) * 2004-06-28 2011-11-24 엘지디스플레이 주식회사 An array substrate for In-Plane switching mode LCD and method of fabricating of the same
KR101156510B1 (en) * 2004-12-30 2012-06-18 엘지디스플레이 주식회사 In-plain switching liquid crystal display device
KR101165459B1 (en) * 2004-12-31 2012-07-12 엘지디스플레이 주식회사 In Plane Switching Mode LCD and the fabrication method
KR101219142B1 (en) * 2005-02-07 2013-01-07 삼성디스플레이 주식회사 Display apparatus and method of the display substrate
KR100858763B1 (en) * 2005-06-24 2008-09-16 엔이씨 엘씨디 테크놀로지스, 엘티디. Liquid crystal driving electrode, liquid crystal display device, and manufacturing method thereof
KR101254241B1 (en) * 2006-06-15 2013-04-12 미쿠니 일렉트론 컴퍼니 리미티드 Low-Cost Large-Screen Wide-Angle Fast-Response Active Matrix Liquid Crystal Display Apparatus and Method of Fabricating Active Matrix Substrate
KR100884126B1 (en) * 2006-07-27 2009-02-17 엡슨 이미징 디바이스 가부시키가이샤 Liquid crystal display device
US11698555B2 (en) 2006-07-27 2023-07-11 Japan Display Inc. Display device
US11543708B2 (en) 2006-07-27 2023-01-03 Japan Display Inc. Display device including common line display device including common line
US11143923B2 (en) 2006-07-27 2021-10-12 Japan Display Inc. Display device
US10802353B2 (en) 2006-07-27 2020-10-13 Japan Display Inc. Liquid crystal display device
US9291863B2 (en) 2006-07-27 2016-03-22 Japan Display Inc. Liquid crystal display device
US10606133B2 (en) 2006-07-27 2020-03-31 Japan Display Inc. Liquid crystal display device
US9946125B2 (en) 2006-07-27 2018-04-17 Japan Display Inc. Liquid crystal display device
US10126608B2 (en) 2006-07-27 2018-11-13 Japan Display Inc. Liquid crystal display device
US10126609B2 (en) 2006-07-27 2018-11-13 Japan Display Inc. Liquid crystal display device
KR20150040836A (en) * 2007-07-20 2015-04-15 엘지디스플레이 주식회사 Liquid crystal display device of in-plane switching mode and method for manufacturing the same
TWI399600B (en) * 2008-05-30 2013-06-21 Japan Display West Inc Display device
KR20110070568A (en) * 2009-12-18 2011-06-24 엘지디스플레이 주식회사 Liquid crystal display device and method for fabricating the same
JP2012194480A (en) * 2011-03-17 2012-10-11 Japan Display Central Co Ltd Liquid crystal display device
US9235094B2 (en) 2011-03-17 2016-01-12 Japan Display Inc. Liquid crystal display device
US8885132B2 (en) 2011-03-17 2014-11-11 Japan Display Inc. Liquid crystal display device
US8982307B2 (en) 2011-10-17 2015-03-17 Boe Technology Group Co., Ltd. Pixel unit, array substrate, liquid crystal panel and method for manufacturing the array substrate
CN103365011A (en) * 2012-03-29 2013-10-23 乐金显示有限公司 Array substrate for fringe field switching mode liquid crystal display device
CN103365011B (en) * 2012-03-29 2016-01-27 乐金显示有限公司 The array base palte of fringe field switching mode LCD
JP2019211542A (en) * 2018-05-31 2019-12-12 Jnc株式会社 Liquid crystal display element

Also Published As

Publication number Publication date
TW544538B (en) 2003-08-01
JP3831863B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
JP3831863B2 (en) Liquid crystal display
JP3567183B2 (en) Liquid crystal display
JP3486859B2 (en) Liquid crystal display
US8107045B2 (en) Color active matrix type vertically aligned mode liquid crystal display and driving method thereof
US8174658B2 (en) Thin film transistor substrate including a horizontal part passing through a central region between the gate lines and dividing each of the pixel regions into an upper half and a lower half
US8964140B2 (en) Liquid crystal display
KR100498255B1 (en) Liquid crystal display and manufacturing method of same
JP4728045B2 (en) Liquid crystal display
US20050134784A1 (en) Liquid crystal display having a black matrix layer
JP2000267109A (en) Liquid crystal display device and its manufacture
US20080180355A1 (en) Array substrate and display apparatus having the same
KR101315381B1 (en) Liquid crystal display
US20100208157A1 (en) Liquid crystal display and manufacturing method thereof
JP3194873B2 (en) Active matrix type liquid crystal display device and driving method thereof
JPH08160455A (en) Liquid crystal display device
TWI406038B (en) Pixels having polarity extension regions for multi-domain vertical alignment liquid crystal displays
JP2005010721A (en) Liquid crystal display device
JPH0973064A (en) Liquid crystal display device
JPH11212107A (en) Active matrix type liquid crystal display device, its driving method and manufacture
JP2000162627A (en) Liquid crystal display device
JPH11142881A (en) Active matrix type liquid crystal display device, its manufacture and driving method
JP3480722B2 (en) Active matrix type liquid crystal display device and driving method thereof
JP2001356747A (en) Active matrix type liquid crystal display device and its driving method
JP4881480B2 (en) Liquid crystal display
JP2004094221A (en) Liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees