JP2005010721A - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
JP2005010721A
JP2005010721A JP2003205102A JP2003205102A JP2005010721A JP 2005010721 A JP2005010721 A JP 2005010721A JP 2003205102 A JP2003205102 A JP 2003205102A JP 2003205102 A JP2003205102 A JP 2003205102A JP 2005010721 A JP2005010721 A JP 2005010721A
Authority
JP
Japan
Prior art keywords
color filter
liquid crystal
electric field
substrate
signal wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003205102A
Other languages
Japanese (ja)
Inventor
Naoto Hirota
直人 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OBAYASHI SEIKO KK
Original Assignee
OBAYASHI SEIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OBAYASHI SEIKO KK filed Critical OBAYASHI SEIKO KK
Priority to JP2003205102A priority Critical patent/JP2005010721A/en
Publication of JP2005010721A publication Critical patent/JP2005010721A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a color filter substrate used for a transverse electric field system active matrix type liquid crystal display device having satisfactory viewing angle characteristics and free from an afterimage and gradation inversion, wherein crosstalk is hardly generated and an image of high display quality can be realized. <P>SOLUTION: In the color filter for the transverse electric field system liquid crystal display device having a black mask 21 formed in a matrix shape and color filter layers of three colors of R, G and B on a transparent substrate and an overcoat layer for flattening formed on the color filter layers, the black mask 21 and the color filter layers of three colors of R, G and B are bent in a range of ±1° to ±45° in the extended direction of a video signal wiring of an active matrix substrate opposed to the color filter substrate in one pixel in the shape nearly identical with the shape of the video signal wiring. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、広視野角・高画質の大画面アクティブマトリックス型液晶表示装置に関する。
【0002】
【従来の技術】
従来のアクティブマトリックス型液晶表示装置の一方の基板上に形成した櫛歯状電極対を用いて液晶組成物層に電界を印加する方式が、例えば特開平7−36058号や特開平7−159786号、特開平6−160878号公報により提案されている。以下液晶組成物層に印加する主たる電界方向が、基板界面にほぼ平行な方向である表示方式を、横電界方式と称する。
図1、図2が従来の横電界方式の例である。櫛歯状の画素電極である液晶駆動電極▲4▼と共通電極▲3▼とは、直線状で平行に配置されており、▲3▼と▲4▼の電極間距離aは、すべて同じである。
【0003】
【発明が解決しようとする課題】
横電界方式の液晶セルの駆動電圧に対する透過率特性は、図3にあるようにある電圧以上の電圧を印加すると輝度が低下してしまう。映像信号電圧が、すこし高すぎるような場合には、画像の階調が反転してしまうことになる。階調表示特性において、この階調反転は、非常に大きな問題であり、きわめて不自然な画像表示となってしまう。
【0004】
横電界方式の液晶表示装置では、液晶駆動電圧が従来の縦電界方式のTN液晶表示装置よりも高くなる傾向があり、駆動するドライバーICも高電圧出力のものが要求され、コスト高になる問題があった。
【0005】
さらに横電界方式の液晶表示装置で用いられる配向膜と液晶にはプレチルト角が1度以下の組み合せが要求され、従来のTN液晶表示装置で用いられていた4度〜7度付近の配向膜が使用できない。そのために、横電界方式の液晶表示装置を従来のTN液晶表示装置の製造ラインで作る場合、配向膜の材料や液晶材料の変更が必要となり、生産効率が低下するという問題が発生する。
【0006】
またカラーフィルター基板には、従来のTN液晶表示装置のように表面全体に透明導電性膜がないために静電気の影響をうけやすく、チャージアップした場合、配向不良をおこす問題がある。
【0007】
横電界方式の液晶表示装置で用いられる画素電極の加工は、ウェットエッチング加工によるものが多く、電極間距離を非常に小さくすることができない。そのために液晶の応答速度は従来のTN液晶よりもおそく、動画対応が困難であった。
【0008】
本発明は、これらの課題を解決するものであり、その目的とするところは、階調反転のない、視角特性が良好で、低電圧駆動ICが利用でき、応答速度の速い横電界液晶表示装置を提供することにある。
さらに、使用可能な液晶組成物及び配向膜材料の選択の自由度を上げ、液晶プロセスの歩留りを向上し、コストを安くすることである。
【0009】
【課題を解決するための手段】
前記課題を解決し、上記目的を達成するために本発明では、以下の手段を用いる。
基板上に走査信号配線と映像信号配線と前記走査信号配線と映像信号配線との各交差部に形成された薄膜トランジスターと、前記薄膜トランジスタに接続された液晶駆動電極と、少なくとも一部が前記液晶駆動電極と対向して形成された共通電極とを有するアクティブマトリックス基板と、前記アクティブマトリックス基板に対向する対向基板と、前記アクティブマトリックス基板と前記対向基板に挟持された液晶層とからなる液晶表示装置において、
〔手段1〕前記液晶駆動電極と前記共通電極との電極間距離が、1画素内で、すべて均一でなく、2種類以上の電極間距離の組み合せとした。
【0010】
〔手段2〕手段1において、液晶駆動電極と共通電極との電極間距離が、1画素内で、2種類以上存在し、画素の中央を境にして異なる電極間距離を、左右対称または、上下対称に配置した。
【0011】
〔手段3〕共通電極を映像信号配線の伸びている方向に連結し、有効表示画面内部では、共通電極が映像信号配線を横ぎって互いに連結しない構造とした。
【0012】
〔手段4〕手段3において、映像信号配線の伸びている方向に連結された共通電極を、奇数群と偶数群に分離し、走査信号の周期にあわせて奇数群と偶数群の共通電極にそれぞれ逆相の電圧波形を印加させ、かつ奇数群と偶数群の共通電極に対向している液晶駆動電極に、共通電極とは逆相の映像信号波形をそれぞれ印加する駆動方式を特徴とする液晶表示装置。
【0013】
〔手段5〕横電界方式の液晶駆動電極において、液晶駆動電極と共通電極とが絶縁膜を介して重畳されることで形成された付加容量よりも、液晶駆動電極と走査信号配線とが、絶縁膜を介して重畳されることで形成された付加容量の方が大きくなるような構造とした。
【0014】
〔手段6〕手段5において、共通電極の電位は固定しておき、液晶駆動電極には、走査信号の周期にあわせて、共通電極電位に対して正負の映像信号電圧を交互に書きこみ、かつ前記液晶組成物層に印加される電圧がより高まるように、絶縁膜を介して液晶駆動電極と重畳されている走査信号配線にも電圧信号波形を印加する容量結合駆動方式を用いた液晶表示装置。
【0015】
〔手段7〕横電界方式の液晶表示装置において、薄膜半導体層に不純物をドーピングし、活性化して低抵抗化して液晶駆動電極とした。
【0016】
〔手段8〕手段7において、前記映像信号配線と画素電極が、液晶配向方向に対して±1度から±45度の角度の範囲で、屈曲している構造配置にした。
【0017】
〔手段9〕手段7において、前記走査信号配線と画素電極が、液晶配向方向に対し、±1度から±45度の角度の範囲で、屈曲している構造配置にした。
【0018】
〔手段10〕手段7において、前記映像信号配線と、画素電極が、液晶配向方向に対し、90度をのぞく45度から135度の範囲で屈曲している構造配置にした。
【0019】
〔手段11〕手段7において、前記走査信号配線と画素電極が、液晶配向方向に対し、90度をのぞく45度から135度の範囲で屈曲している構造配置にした。
【0020】
〔手段12〕横電界方式の液晶表示装置において、対向基板に形成されたカラーフィルター層の上をおおうオーバーコート層に、高抵抗材(10Ω・cm〜1011Ω・cm)を用いた。
【0021】
〔手段13〕手段12において、カラーフィルター層とオーバーコート層と、液晶層の厚みを合計したものが、液晶駆動電極と共通電極との電極間距離の2倍以上あることを特徴とする液晶表示装置。
【0022】
〔手段14〕横電界方式の液晶表示装置において、対向基板に形成されたカラーフィルター層の上をおおうオーバーコート層に絶縁膜を用い、R,G,Bカラーフィルターの境界のオーバーコート絶縁膜上に導電性、または半導体の電極をブラックマスクとして形成した。
【0023】
〔手段15〕横電界方式の液晶表示装置の製造工程において、液晶を配向させるための配向膜を塗布し、焼成後、配向膜にUV照射処理または、He,Ne,Ar,N,Oなどのイオンインプランテーション処理やプラズマ処理をした後、ラビング処理することで、液晶プレチルト角を1度以下に低下させた。
【0024】
〔手段16〕手段3において、映像信号配線の伸びている方向に連結された共通電極を、奇数群と偶数群に分離し、かつ映像信号配線を画面の中央で上下に2分割した。
【0025】
〔手段17〕手段16において、画面の中央で上下の群に2分割された走査信号配線を同時に上群と下群とで駆動し、上下の映像信号配線には、奇数群と偶数群とで逆相の映像信号電圧波形を印加し、共通電極の奇数群と偶数群には、それぞれの映像信号配線の電圧波形と逆相の共通電極駆動波形を印加することで、同時に画面の上下の2本の水平ラインに異なる映像信号を書きこむ駆動方式を特徴とする液晶表示装置。
【0026】
【作用】
上記手段1,2の如く、前記液晶駆動電極と、前記共通電極との電極間距離が、1画素内ですべて均一でなく、2種類以上の電極間距離の組み合せて構成されている場合、図3にあるように、一番短かい電極間距離の所が階調反転しても、電極間距離の広い所では、反転が生じていないので、画素全体では、階調反転がくいとめられる。図5,図6,図8,図10,にあるように画素の中央を境にして、異なる電極間距離が、左右対称または、上下対称に配置されている場合には、走査信号配線や映像信号配線に一番近接している電極の電極間距離を大きくすることで、クロストークの少ない均一な画像を得ることができる。
【0027】
上記手段3,4により、横電界方式の液晶表示装置でも、ドット反転駆動方式の映像信号駆動電圧を半分以下に低減することが可能となる。5V駆動の映像信号駆動ICを使用することができるので、コストを安くすることができる。図16,図17にあるようにドット反転駆動では、水平クロストークと水直クロストークが発生しにくいので、良好な画質を得ることができる。
さらに図13にあるように、共通電極の連結部でTFT部分を完全におおうことで、TFTに光が進入することを防止できるので、カラーフィルター側のブラックマスクを省略することができ、カラーフィルターのコストをさげることが可能となる。CF側ブラックマスクがなくなることで、開口率が上昇し輝度の明るい液晶パネルを作ることができる。
【0028】
上記手段5,6により、横電界方式の液晶表示装置でも、水平ライン反転駆動方式の映像信号駆動電圧を半分以下に低減することが可能となる。
図24,図27,図29にあるように、絶縁膜を介して液晶駆動電極と走査信号配線に大きな容量を形成し、この容量を用いて液晶駆動電極の電位をコントロールするために、共通電極に特別な駆動信号波形を印加する必要はない。つまり共通電極電位は、映像信号電圧の中央値に近い電位に固定しておけばよい。従来の水平ライン反転駆動方式では、共通電極全体を、走査信号配線の周期にあわせて映像信号波形と逆相の電圧波形で駆動するため、共通電極の抵抗値を小さくしなければならず材料の自由度がなかった。共通電極全体では、映像信号配線と重畳する面積が大きく全体の容量が大きくなるために、駆動する場合、消費電力が大きくなるという問題があった。これをさけるために図60,図61のような駆動方式もあるが、共通電極を個別に駆動するための引き出し端子が増加するという問題があった。引き出し端子の増加は、駆動ICの数の増加、ICコストの増加、接続不良の増加の原因になる。本発明のように共通電極電位を固定して、容量結合水平ライン反転駆動により横電界方式液晶を駆動することで、超大型液晶表示装置を、コスト安く、しかも消費電力の増加を最小におさえて実現することができる。横電界方式の場合には、従来の縦電界方式と異なり、走査信号配線と液晶駆動電極とが形成する容量にくらべて大きく形成できる。
このために図41、にあるように、走査信号配線の駆動電圧振幅Vを小さくできるので、TFTにかかるバイアス電圧も小さくなりTFTの特性シフトを小さくおさえることができる。このことで、薄膜トランジスタ(TFT)のゲート絶縁膜の形成温度をさげることが可能となり、大型基板製造時のタクトタイムの短縮と基板の熱歪曲や、熱収縮の低減につながり製造コストの低減が可能となる。
【0029】
上記手段7により、液晶駆動電極を、薄膜トランジスタ(TFT)のドレイン電極形成時に同時に形成することができるようになる。薄膜シリコン層の加工には、ドライエッチングの方法が用いられるので、従来のウェットエッチングを用いた加工方法よりも、微細化と加工精度をはるかに向上することができる。図42,図43,図44,図57にあるように、液晶駆動電極をドレイン電極と同時に形成することで、ドレイン電極と液晶駆動電極とのコンタクト不良問題が発生しなくなり、液晶駆動電極と共通電極との電極間距離の加工精度もあがるので、画面全体で輝度ムラの発生が減少する。液晶駆動電極と共通電極の両方をドライエッチングで加工することにより電極間距離を小さくすることができるので、液晶駆動電圧をさげることができ、液晶の応答速度をあげることも同時に可能となる。
【0030】
上記手段7,8,9,10,11を用いることで、図52,図53にあるように、画素電極(液晶駆動電極と、共通電極の一部)内で、横電界が印加された場合、液晶分子は、画素電極内部で左回転と右回転の2通りの回転運動が、発生する。図51の従来の横電界方式では、一方向の回転運動だけなので、プレチルト角が大きい場合、図50のように、視野角の特性に片よりが発生する。
ひとつの画素内部で、左回転と右回転の2通りの液晶分子の回転運動が発生する場合には、プレチルト角が大きくても、視野角の特性の片よりが発生しない。このことより、本発明の構造を用いた横電界方式の液晶表示装置では、プレチルト角の制限をうけないので、配向膜と液晶の選択の自由度が大きくなる。液晶プロセスで使用するシール材と配向膜、注入口封止材など従来の縦界方式の液晶セルプロセスで使用していたものを使用することができるので、生産効率、投資効率を上げることができる。偏光板の有効利用率もあがるのでコストdownができる。階調反転も防止できる。
【0031】
上記手段12,13,14を用いることで、カラーフィルター全面に透明導電体膜(ITO)がなくても液晶セルプロセスでの静電気のチャージアップがなくなりパーティクルの付着が減少する。配向膜にも本発明と同程度(10Ω・cm〜1011Ω・cm)の抵抗性を持たせることで、その効果は増大する。図45,図46,図47,図48,図49にあるように、▲35▼,▲36▼,▲42▼,▲40▼は、ITOや金属または金属酸化物と金属の積層物か、金属シリサイド、不純物ドーピング活性した半導体層を用いることで液晶セル完成後に、外部からの静電気ダメージを完全に防止することができる。高抵抗層のオーバーコート層を用いることで安価な電着カラーフィルターを横電界方式液晶に用いることができるので平面度の良い、セルギャップのムラのない、コントラストの良好な液晶パネルをコスト安く作ることが可能となる。
【0032】
上記手段15により、従来縦電界方式の液晶表示装置に用いていたプレチルト角3〜6度程度の配向膜の特性を変化させプレチルト角1度以下にすることができる。図50にあるように、プレチルト角を1度以下にさげることで、横電界方式の液晶セルの視角特性を大幅に改善できる。本発明の製造方法を用いれば、従来縦電界方式の液晶セルプロセスで使用していた配向膜を変更せずに使用できるので、UV照射装置、イオンインプランテーション装置、プラズマ表面処理装置のどれか一台を従来の液晶セル製造ラインに導入するだけで横電界方式の液晶表示装置を作ることが可能となる。生産効率、投資効率を上げることができる。また図54,図55にあるように、マスキング処理を用いることで、1画素内で、プレチルト角を2種類以上設定できるようになるので視角特性のコントロールが自由になる。階調反転も防止できる。
【0033】
上記手段16,17にある、フレーム周波数と走査信号配線が増加する超高精細表示(SXGAやUXGA)の場合でも走査信号配線アドレス時間を2倍に長くできるので電子移動の遅いアモルファス薄膜トランジスタでも十分に対応が可能となる。さらに大画化した場合でも映像信号配線の長さが1/2になるのと、走査信号配線と映像信号配線の交差する数も1/2になるので映像信号配線の抵抗の問題が解消する。つまり従来用いていた金属材料を用いることができるので、プロセス変更の必要がなくなる。従来のVGA,SVGA表示装置と同じプロセスで作ることができるので生産効率、投資効率があがる。本発明によれば、超高精細表示に、ドット反転駆動を導入でき、低電圧駆動ICを利用できるので、コストの安い、表示ムラのない高品位画像をアモルファスシリコン薄膜トランジスタを用いて実現できる
【0034】
【実施例】
〔実施例1〕図4,図5は本発明の単位画素の断面図及び平面図である。ガラス基板▲10▼上に、走査信号配線(ゲート電極)▲1▼を形成した。走査信号配線は、A1などの陽性酸化処理可能な金属が良いが、G,Mo,Ti,W,Ta Nbなどの純金属や合金でもよい。電気抵抗値の低いCuと前記高融点金属との二層構造、三層構造などが、超大型液晶表示装置では用いられる。走査信号配線▲1▼の上に、ゲート絶縁膜▲5▼を形成してから、非晶質シリコン(a−Si)膜▲T▼を形成しトランジスタの活性能動層とする。非晶質シリコンの一部に重畳するように映像信号配線▲2▼とドレイン電極▲D▼を形成する。図4の場合には、ドレイン電極▲D▼と液晶駆動電極▲4▼は同じ金属材料で同時に形成される。これらすべてを被覆するようにS:N膜やS:O膜よりなる保護絶縁膜▲6▼を形成する。次に共通電極▲3▼を形成する。以上の単位画素をマトリックス状に配置したアクティブマトリックス基板の表面にポリイミドよりなる配向膜▲7▼を形成し、表面にラビング処理を施した。同じく表面にラビング処理を施した配向膜▲8▼を表面に形成した対向基板▲11▼と、前記アクティブマトリックス基板の間に棒状の液晶分子▲9▼を含む、液晶組成物を封入し、二枚の基板の外表面に、偏光板▲12▼,▲13▼を配置した。
図5にあるように、共通電極▲3▼と液晶駆動電極▲4▼との電極間距離は、a,b2種類あり、図5では電極間距離aとbは、左右対称に配置されている。図6,図8,図10では、電極の数が増加しており、電極間距離もaとbの組み合せと、aとbとcの組み合せとがあり、図7,図9,図11に整理した。図5と同様に左右対称配置になるように、組み合せを考えてあるが、対称性が必ず必要というわけではない。
図58にあるように、共通電極▲3▼と液晶駆動電極▲4▼との電極間距離の種類も、a,b,cの3種類だけではなく、それ以上の種類を導入することも可能である。
【0035】
図5,図6,図8,図10の場合には、映像信号配線▲2▼からの電界の影響を液晶分子が受けやすいので、共通電極▲3▼で▲2▼をはさみこむように配置することで映像信号配線▲2▼にそった方向のクロストークを低減できることは、従来から知られている。その効果をさらに向上するためには、映像信号配線▲2▼に一番近い電極間距離aを一番大きな値に設定すると良い。つまりa>b≧cかa>c≧bの条件で電極間距離を配置するとクロストークはさらに低減できる。
【0036】
階調反転の問題は、映像信号電圧が大きすぎる時に発生するが、特に液晶プレチルト角が大きい場合には、正面方向よりも液晶の配向方向の傾めからみた時により階調反転しやすくなる。これを改善するには、配向方向に対するプレチルト角を2種類以上もたせたり正と負のプレチルト角をもたせたりする方法もあるが、一番簡単なのはプレチルト角を0(ゼロ)度にすることである。しかし量産で用いられているラビング処理による配向方法では、完全にプレチルト角はゼロ度にすることができずどうしても0.5度前後のプレチルト角は発生してしまう。正面と傾めから見た時の階調反転を防止する方法としては、横電界方式の液晶表示装置においては、本発明のように一画素内での電極間距離の値を2種類以上設定することが、特に有効である。通常の5V駆動で液晶を駆動する場合、5V以下で透過率が最大になる電極間距離と、5V以上で透過率が最大になる電極間距離の組み合せで電極を配置すると良い。図3の特性では、5V駆動では、電極間距離を5μmと7.5μmの2種類で設定すると良い。
【0037】
〔実施例2〕図13,図64は、共通電極が映像信号配線にそう方向で連結され、有効表示画面内部では、共通電極が、映像信号配線を横ぎって互いに連結されていない場合の単位画素の平面図である。図13では、共通電極の連結部が薄膜トランジスタの上部をおおっており、この場合には、対向基板のカラーフィルターにはブラックマスク(BM)がなくても薄膜トランジスタの半導体層▲T▼には、光が侵入しないので、薄膜トランジスタのOFF時のリーク電流の増大はない。図18,図19,図20,図21,図22,図23は、これらの単位画素をストライプ配列や、デルタ配列に配置した平面図である。図20,図22,図23は、画素電極が走査信号配線と平行になっているが、共通電極の連結方向は映像信号配線にそう方向に、なっている。
このような平面配列を実現するためには、図1にあるような従来の断面構造では、走査信号配線▲1▼と共通電極▲3▼とがショートしてしまうため、図4,図12,図42,図44,図57にあるような断面構造が必要となる。これらの断面構造では、共通電極が基板の上部に形成されており、共通電極の下の保護絶縁膜▲6▼や上層絶縁膜▲14▼に誘電率の小さな酸化物系の絶縁膜や有機絶縁膜が使用できる。そのために走査信号配線の駆動時の負荷の増大を最小におさえることができる。
【0038】
〔実施例3〕図14,図15は、実施例2でのべた映像信号配線にそう方向で連結された共通電極を、有効表示画面外で奇数群と偶数群とに連結分離した平面図である。図15は、共通電極2本を1組としている。3本を1組として考えて奇数群と偶数群に連結分離することも可能である。図59は、奇数群連結電極▲44▼と偶数群連結電極▲45▼とで有効表示画面全体を囲んだ構造配置の平面図である。それぞれの共通連結電極と、走査信号配線、映像信号配線とは静電気対策用の非線形抵抗素子で連結されている。この構造により、液晶セルプロセスでの静電気不良問題をいちじるしく低減することが可能である。図40は、奇数群と偶数群に分離した共通電極に、走査信号の周期にあわせて、それぞれ逆相の電圧信号波形を印加し、かつ奇数群、偶数群の共通電極に対向している液晶駆動電極に、共通電極とは逆相の映像信号波形をそれぞれ印加する駆動電圧波形図である。
図16,図17は、本発明の図14,図15の構造配列の画素に映像信号電圧がどのように書きこまれたかを示す極性図である。共通電極電位を基準にしてプラスと、マイナスとに分けています。このような書きこみ駆動方式は、ドット反転駆動方式と呼ばれています。この駆動方式では、水平クロストークが発生しなくなり良好な画像が得られます。映像信号波形と逆相の電圧を共通電極に印加することで、液晶相に大きな電圧を印加できるので、共通電極電位を固定していた従来のドット反転駆動の場合の映像信号駆動振幅よりも1/2以下に低減が可能となります。これにより、安価な5V駆動のICを使用することができるのでコストdownが可能となる。
【0039】
〔実施例4〕図24,図27,図29は、液晶駆動電極▲4▼と共通電極▲3▼とが絶縁膜を介して重畳されることで形成された付加容量よりも、液晶駆動電極▲4▼と走査信号配線▲1▼とが絶縁膜を介して重畳されることで形成された付加容量▲16▼の方が大きい場合の、単位画素の平面図である。
図30,図31,図32,図33,図34,図35は、これらの単位画素をストライプ配列やデルタ配列に配置した平面図である。これらの平面構造を歩留りよく実現するためには、図12,図26,図28,図42,図44,図57,図65のような断面構造が望ましい。液晶駆動電極と走査信号配線とで形成される付加容量をさらに大きくする場合には、図66にあるような断面構造を用いると良い。液晶駆動電極と共通電極との重畳面積は可能なかぎり小さくすると良い。
【0040】
〔実施例5〕図41は実施例4の横電界方式液晶表示パネルを駆動する走査信号電圧波形と映像信号電圧波形のタイミング図である。走査信号は4値波形となっている。共通電極電位は映像信号波形の中央値に近い電位に固定してある。液晶駆動電極と走査信号配線とが、絶縁膜を介して重畳されることで形成された付加容量を通して走査信号電圧のVr(−)やVr(+)を液晶組成物に印加する容量結合駆動方式を用いている。横電界方式の液晶表示装置では、液晶駆動電極と共通電極とで液晶組成物を介して形成される画素電極間容量は、従来の縦電極方式とくらべて非常に小さくなるので、走査信号配線上の付加容量の効果が大きくなり、Vr(−)やVr(+)の電圧振幅が小さくてすむ。このため薄膜トランジスタの走査信号配線(ゲート電極)とドレイン電極に印加されるバイアス電圧も小さくなるので薄膜トランジスタの特性シフトも小さくなる。横電界方式では、液晶駆動電極と共通電極との交差面積を小さくできるので、本発明のような水平ライン反転駆動方式でも、水平方向のストロークを低減できる利点がある。映像信号配線駆動ICも信号振幅を小さくできるので安価な5V電源のICが使用できる。コストdownに効果がある。
【0041】
〔実施例6〕図42,図43,図44,図57,図64,図65,図24は薄膜半導体層に不純物をドーピングし、活性化して低抵抗化し、液晶駆動電極として用いる実施例の単位画素の断面図及び平面図である。ガラス基板▲10▼上に、走査信号正線(ゲート電極)▲1▼を形成しこれを覆うようにゲート絶縁膜▲5▼を形成してから、非晶質シリコン膜を形成し真空をやぶらずにバックチャネル側保護絶縁膜▲BP▼を連続形成する。この時の非晶質シリコン膜は300Å〜700Å程度の膜厚が良い。バックチャネル保護縁縁膜は2000Å程度で十分である。バックチャネル保護絶縁膜▲BP▼を残してそれ以外はフッ酸系のエッチング液でエッチングした非晶質シリコン膜の表面を出す。ポジレジストをはくりせずにPHガスをもとにしたイオンシャワードーピングで1015個/cm程度非晶質シリコンにリンをドーピングする。そのあとエキシマレーザーにより活性化処理をおこなう。イオンシャワードーピングのかわりに、PHガスを用いたプラズマ放電処理により非晶質シリコン層の表面にリンを吸着させ、その後エキシマレーザーによりシリコン層を溶融させる時にリンを溶融拡散活性化することでも良い。これらの処理によりレーザー照射を受けた領域は、抵抗の低いポリシリコン層になる。ポジレジストをはくりした後、次は薄膜トランジスタのソース電極とドレイン電極▲32▼と液晶駆動電極▲S▼を同時にドライエッチングによって形成します。液晶駆動電極を抵抵抗のシリコン膜で形成する利点は、このドライエッチングによる微細パターン加工が可能な点にあります。横電界方式の液晶表示装置は、応答速度が遅いという指摘がなされているが、液晶駆動電極と、共通電極との電極間距離を3μ程度にまで微細化してくると応答速度も速くなり、動画にも十分対応可能である。3μ程度までならば従来のウェットエッチングで加工可能であるがウェットエッチングでは線幅のコントロール精度が十分ではない。その点ドライエッチングでは、加工精度の再現性は、すでにICで証明済みである。不純物をドープしたポリシリコンは、ドライエッチング加工しやすい材質なので、大画面液晶表示装置には最も適した電極材料である。
次に映像信号配線▲2▼を形成した後、保護絶縁膜▲6▼で完全におおう。共通電極▲3▼を最後に形成するが、この共通電極もドライエッチングで加工可能な材料(Mo,Ti,Nb,Taなどの高融点金属とこれらの合金または、これらのシリサイド化合物など)を用いることで高速応答可能な横電界方式液晶表示を作ることができる。
【0042】
図44では、不純物をドーピングしてレーザー活性化したドレイン電極の上に、さらに抵抗をさげるために、Moをスパッタリングやイオンブレーティング法を用いて、うすく形成し、表面反応により、MoSix(モリブデンシリサイド)を作った場合の断面図である。図57では、非晶質シリコン膜の上に、プラズマCVD法を用いて不純物をドープしたアモルファスシリコン膜を形成した後、エキシマレーザーにより、不純物アモルファスシリコン層を抵抗の低い不純物ポリシリコン層にかえた場合の断面図である。モリブデンシリサイドもドライエッチングしやすい材料のひとつである。Moだけでなく他の高融点金属をスパッタリングしても同様のシリサイドは形成される。
【0043】
〔実施例7〕図52,図19,図21,図31,図33,は、映像信号配線と画素電極(液晶駆動電極と液晶駆動電極に対向している共通電極の一部)が液晶配向方向に対し、±1度から±45度の角度の範囲で屈曲している構造の場合の平面図である。液晶分子の誘電率異方性は、正である。図52にあるように共通電極▲3▼と液晶駆動電極▲S▼に電圧が印加され電極間に電界が発生した時に、液晶分子▲9▼は、屈曲部を境にして左回転と右回転の2通りの回転運動をする。単位画素内部で2通りの回転運動が可能になることでプレチルト角の大きさによらず視野角特性のかたよりが発生しなくなる。
【0044】
〔実施例8〕図52,図20,図22,図23,図32,図34,図35は、走査信号配線と画素電極とが、液晶配向方向に対して、±1度から±45度の角度の範囲で屈曲している構造の場合の平面図である。液晶分子の誘電率異方性は正である。実施例7と同様に単位画素内部で左回転と右回転の2通りの液晶分子回転運動が発生する。プレチルト角の大きさによらず視野角特性のかたよりが発生しなくなる。
【0045】
〔実施例9〕図53,図19,図21,図31,図33は、映像信号配線と画素電極が、液晶配向方向に対し、90度をのぞく45度から135度の範囲で屈曲している構造の場合の平面図である。液晶分子の誘電率異方性は負である。図53にあるように、共通電極▲3▼と液晶駆動電極▲S▼に電圧が印加され電極間に電界が発生すると、液晶分子▲22▼は、屈曲部を境にして左回転と、右回転の2通りの回転運動をする。単位画素内部で2通りの回転運動が可能になることで、プレチルト角の大きさによらず視野角特性のかたよりが発生しなくなる。
【0046】
〔実施例10〕図53,図20,図22,図23,図32,図34図35は、走査信号配線と画素電極とが、液晶配向方向に対して、90度をのぞく45度から135度の範囲で屈曲している構造の場合の平面図である。液晶分子の誘電率異方性は負である。実施例9と同様に単位画素内部で、左回転と右回転の2通りの液晶分子回転運動が、発生する。プレチルト角の大きさによらず、視野角特性のかたよりが発生しなくなる。
【0047】
実施例7,実施例8,実施例9,実施例10ともに、上下基板との界面での液晶分子の配向は、互いに、ほぼ平行になるようにラビング処理してある。偏光板の偏光軸(光学軸)は、上下ともに、ほぼ直交配置になるようにしてあり、無電界時には、画素から光が通過しないノーマリーブラックモードを用いている。これらのカラーフィルターに用いるブラックマスクは、図36図37,図38,図39にあるように映像信号配線や、走査信号配線が屈曲している角度と同じ角度で、BMの一部が屈曲しているところに特徴がある。
【0048】
〔実施例11〕図45,図46,図47は横電界方式の液晶表示装置のカラーフィルター基板の断面図である。ガラス基板▲11▼の上にR,G,Bのカラーフィルターを形成する。次に平坦化と液晶プロセス中での静電気帯電防止のために有機や無機の高抵抗材(10Ω・cm〜1011Ω・cm)を形成する。図56にあるように、横電界方式では、液晶比抵抗が10Ω・cm程度まで低下しても電圧保持率がほとんど低下しないという実験結果がある。図45,図46では、透明ITOを全面形成してから電着法によりR,G,Bのカラーフィルター層を形成している。この場合には、上記高抵抗材の膜厚とカラーフィルター層の膜厚と液晶層の厚みを合計したものが、液晶駆動電極と共通電極との電極間距離の2倍以上必要となる。電極間距離の2倍以上これらの総合計厚みがあれば液晶駆動電極と共通電極の間に発生する電界はカラーフィルター側に全面形成された透明導電膜(ITO)▲36▼の影響をあまりうけず、基板と平行な方向に横電界を発生させることができる。
【0049】
〔実施例12〕図48,図49は、横電界方式の液晶表示装置のカラーフィルター基板の断面図である。ガラス基板▲11▼の上にR,G,Bのカラーフィルターを形成する。このままでは液晶プロセスで発生する静電気のためにいろいろな問題が発生するので、絶縁膜▲41▼の上にさらに静電気をにがすためのブラックマスク▲42▼を形成する。図49にあるようにすでに樹脂ブラックマスクが形成されてある場合には、ブラックマスクと同じパターンで透明導電電極▲40▼を形成してもよい。
【0050】
実施例11,実施例12にあるようにカラーフィルター基板側になんらかの導電性電極が形成されていないと横電界方式の液晶表示装置では外部からの静電気による電界の影響を受けるので実用化することができないという大問題が発生する。図67のように、カラーフィルター側ガラス基板の外界側に透明導電膜▲36▼を形成する方法もあるがこの場合には、絶縁性の高いカラーフィルター層や平坦化膜に液晶プロセス中で発生した静電気がトラップされたまま除却できない場合があり、配向不良の原因となるので、よくない。
【0051】
〔実施例13〕図50,図51にあるように液晶駆動電極と共通電極がただたんに平行に配置されているだけでは、液晶のプレチルト角が大きい場合に視角特性に片よりが生じてしまう。従来の縦電界方式の液晶表示装置に用いられていた配向膜のプレチルト角は3°〜7°とプレチルト角が大きいので視角特性にどうしても片よりが発生してしまう。同じ配向膜を使用してプレチルト角を1度以下に低下させる方法としてポリイミド配向膜焼成後、UV照射処理や、He,Ne,Ar,N,Oなどのガスをイオン化してイオンプランテーション処理する方法が開発されている。リアクティブイオンエッチング装置を用いたOガスを用いたプラズマ処理でも同じ効果がある。これらの処理をした後ラビング配向処理することで、プレチルト角を1度以下にして、液晶分子を一軸方向に配向させることが可能である。図54,図55にあるように上記のUV処理やイオンプランテーション処理、プラズマ処理を、ホトマスクやホトレジストを用いたマスクにより1画素内の半分に限定することも可能である。
本実施例を用いることで、従来用いていた配向膜を横電界方式の液晶表示装置に使用しても視角特性の片よりは発生しなくなる。
【0052】
〔実施例14〕図62は、実施例2にあるように、共通電極が映像信号配線に、そう方向で連結されており、有効表示画面内部では、共通電極が映像信号配線を横ぎって互いに連結されていない。共通電極は、奇数群と偶数群にわかれており奇数群どうし、偶数群どうしは、有効表示画面外で互いに連結されている。実施例2と異なるのは、映像信号配線が中央で上下に2分割されている点である。映像信号配線を駆動するためのICと接合される端子もそれぞれ上下2ケ所にわかれており、端子の数も2倍に増加している。OA用のSXGAやUXGAのように、走査信号線の数が大幅に増加する場合、本実施例の構造では、映像信号配線の抵抗が小さくなることと、走査信号線と交差する数が半分に低下するために、結合容量が低減するので映像信号配線の駆動負荷が大幅に低減する。
【0053】
〔実施例15〕図63は、実施例14にある構造の横電界方式の液晶表示装置を駆動するための駆動電圧波形である。走査信号配線は、同時に2本、上半分領域と下半分領域で動作するようになっている。共通電極は、上半分領域と下半分領域で連結されているので、走査信号配線の駆動周期にあわせて極性を反転させる方式で駆動される。共通電極は奇数群と偶数群に分離されそれぞれ共通連結電極▲44▼と▲45▼に連結されている。奇数群と偶数群には極性の異なる逆相の電圧が走査信号配線の周期にあわせて反転印加される。映像信号配線は奇数群と偶数群にわかれており、それぞれが対応している奇数群と偶数群の共通電極と極性の異なる逆相の信号電圧が印加される。奇数群と偶数群の映像信号配線は上半分と下半分に2分割され、それぞれ同相の異なる映像信号が印加される。2走査線同時アクセスドット反転駆動方式である。コンピューターなどのOA用表示装置の場合、フレームメモリーが用意されているのでこのフレームメモリーから同時に2本の走査信号配線分の画像データをとり出せるようにすればよい。SXGAやUXGAのように走査信号配線の数やフレーム周波数が大幅に増加する場合、走査信号配線の選択時間が従来の1走査信号配線アクセス方式のままでは10μsec以下になってしまう。10μsec以下になってしまうとアモルファスシリコン薄膜トランジスタの駆動能力の限界にちかくなり、映像信号電圧を正確に液晶駆動電極に伝達できなくなる。本発明の2走査線同時アクセスドット反転駆動方式ならば選択時間が従来の2倍にのびるので、アモルファスシリコン薄膜トランジスタでも十分な映像信号書き込み時間がかくほできる。映像信号配線の材料の自由度も大幅に広くなる。
【0054】
【発明の効果】
本発明によれば第1に、画像の階調反転のない視角特性の良好な画像を、得ることができる。第2に映像信号駆動ICに安価な5VICを利用でき、従来の液晶部材を使用できるのでコストの安い信頼性の高い画像表示装置を提供できる。第3に、外部からの静電気の影響を受けない動画対応の高速動作可能な横電界液晶表示装置を作れる。第4に、超高精細・大画面液晶表示装置をアモルファスシリコン薄膜トランジスタを用いて実現できる。
【図面の簡単な説明】
【図1】従来の横電界方式液晶表示装置の単位画素の断面図
【図2】従来の横電界方式液晶表示装置の単位画素の平面図
【図3】横電界液晶表示装置の電極間距離による透過率と駆動電圧特性図
【図4】本発明の横電界方式液晶表示装置の単位画素の断面図
【図5】本発明の横電界方式液晶表示装置の単位画素の平面図
【図6】本発明の横電界方式液晶表示装置の単位画素の平面図
【図7】本発明の横電界方式電極間距離の配置組み合せ図
【図8】本発明の横電界方式液晶表示装置の単位画素の平面図
【図9】本発明の横電界方式電極間距離の配置組み合せ図
【図10】本発明の横電界方式液晶表示装置の単位画素の平面図
【図11】本発明の横電界方式電極間距離の配置組み合せ図
【図12】本発明の横電界方式液晶表示装置の単位画素の断面図
【図13】本発明の横電界方式液晶表示装置の単位画素の平面図
【図14】本発明の横電界方式液晶表示装置の画素配列の平面図
【図15】本発明の横電界方式液晶表示装置の画素配列の平面図
【図16】本発明横電界方式表示装置の画素の映像信号データ極性配列平面図
【図17】本発明横電界方式表示装置の画素の映像信号データ極性配列平面図
【図18】本発明の横電界方式画素配列の平面図
【図19】本発明の横電界方式画素配列の平面図
【図20】本発明の横電界方式画素配列の平面図
【図21】本発明の横電界方式画素配列の平面図
【図22】本発明の横電界方式画素配列の平面図
【図23】本発明の横電界方式画素配列の平面図
【図24】本発明の横電界方式液晶表示装置の単位画素の平面図
【図25】本発明横電界方式表示装置の画素の映像信号データ極性配列平面図
【図26】本発明の横電界方式液晶表示装置の単位画素の断面図
【図27】本発明の横電界方式液晶表示装置の単位画素の平面図
【図28】本発明の横電界方式液晶表示装置の単位画素の断面図
【図29】本発明の横電界方式液晶表示装置の単位画素の平面図
【図30】本発明の横電界方式画素配列の平面図
【図31】本発明の横電界方式画素配列の平面図
【図32】本発明の横電界方式画素配列の平面図
【図33】本発明の横電界方式画素配列の平面図
【図34】本発明の横電界方式画素配列の平面図
【図35】本発明の横電界方式画素配列の平面図
【図36】本発明の横電界方式液晶表示装置のカラーフィルターブラックマスク(BM)の配列平面図
【図37】本発明の横電界方式液晶表示装置のカラーフィルターブラックマスク(BM)の配列平面図
【図38】本発明の横電界方式液晶表示装置のカラーフィルターブラックマスク(BM)の配列平面図
【図39】本発明の横電界方式液晶表示装置のカラーフィルターブラックマスク(BM)の配列平面図
【図40】本発明の横電界方式液晶表示装置の駆動電圧波形
【図41】本発明の横電界方式液晶表示装置の駆動電圧波形
【図42】本発明の横電界方式液晶表示装置の単位画素の断面図
【図43】本発明の横電界方式液晶表示装置の単位画素の平面図
【図44】本発明の横電界方式液晶表示装置の単位画素の断面図
【図45】本発明の横電界方式液晶表示装置用カラーフィルターの断面図
【図46】本発明の横電界方式液晶表示装置用カラーフィルターの断面図
【図47】本発明の横電界方式液晶表示装置用カラーフィルターの断面図
【図48】本発明の横電界方式液晶表示装置用カラーフィルターの断面図
【図49】本発明の横電界方式液晶表示装置用カラーフィルターの断面図
【図50】横電界方式液晶表示装置の液晶分子のプレチルト角と視角特性分布図
【図51】横電界方式画素電極内の正の誘電率異方性液晶の配向方向図
【図52】本発明の横電界方式屈曲画素電極内の正の誘電率異方性液晶の配向方向図
【図53】本発明の横電界方式屈曲画素電極内の負の誘電率異方性液晶の配向方向図
【図54】本発明横電界方式表示装置のポリイミド配向膜に局部的UV照射処理をほどこした画素配列の平面図
【図55】本発明横電界方式表示装置のポリイミド配向膜に局部的UV照射処理をほどこした画素配列の平面図
【図56】横電界方式液晶表示装置の液晶比抵抗値と電圧保持率の特性図
【図57】本発明の横電界方式液晶表示装置の単位画素の断面図
【図58】本発明の横電界方式液晶表示装置の単位画素の平面図
【図59】本発明の横電界方式液晶表示装置の画素配列と共通電極駆動用連結電極の配置平面図
【図60】横電界方式液晶表示装置の画素配列と共通電極駆動用端子部の配置平面図
【図61】横電界方式液晶表示装置の駆動電圧波形
【図62】本発明の横電界方式液晶表示装置の画素配列と共通電極駆動用連結電極の配置平面図
【図63】本発明の横電界方式液晶表示装置の駆動電圧波形
【図64】本発明の横電界方式液晶表示装置の単位画素の平面図
【図65】本発明の横電界方式液晶表示装置の単位画素の断面図
【図66】本発明の横電界方式液晶表示装置の単位画素保持容量形成部の断面図
【図67】従来の横電界方式液晶表示装置用カラーフィルターの断面図
【符号の説明】
1−走査信号配線
2−映像信号配線
3−共通電極
4−液晶駆動電極
5−ゲート絶縁膜
6−保護絶縁膜
7−液晶配向膜(TFT基板側)
8−液晶配向膜(対向基板側…カラーフィルター基板側)
9−液晶分子(正の誘電率異方性液晶)
10−TFT側ガラス基板
11−対向ガラス基板
12−TFT基板側偏光板
13−対向基板側偏光板
14−上層絶縁膜
15−ドレインスルーホール
16−保持容量形成領域
17−陽極酸化膜
18−走査信号配線と同じ材料で同時に形成された共通電極(中央線)
19−共通電極スルーホール
20−共通電極スルーホールで共通電極(中央線)と、コンタクトしている画素電極
21−カラーフィルターのブラックマスク
22−液晶分子(負の誘電率異方性液晶)
23−走査信号配線駆動波形
24−奇数番映像信号波形
25−偶数番映像信号波形
26−奇数番共通電極駆動波形
27−偶数番共通電極駆動波形
28−(n−1)番走査信号配線駆動波形
29−n番走査信号配線駆動波形
30−映像信号波形
31−共通電極電位
32−不純物イオン打ち込み後活性化させ低抵抗化したpolysiドレイン電極
33−不純物イオン打ち込み後活性化させたpolysi半導体層の上にメタルシリサイドを形成したドレイン電極
34−ノンドープアモルファスシリコン層の上に不純物ドープした半導体ドレイン電極
35−反射防止膜をつけたブラックマスク
36−透明導電膜層
37−カラーフィルター層
38−高抵抗平坦化膜
39−樹脂ブラックマスク
40−帯電防止用反射防止膜付ブラックマスク電極
41−平坦化絶縁膜
42−帯電防止用ブラックマスク電極
43−静電気対策用素子
44−奇数番共通電極駆動用連結電極
45−偶数番共通電極駆動用連結電極
46−静電気対策用連結電極
47−n番共通電極駆動波形
48−上半分領域n番走査信号配線駆動波形
49−下半分領域n番走査信号配線駆動波形
50−上半分領域M番映像信号波形
51−下半分領域M番映像信号波形
52−M番共通電極駆動波形
53−上半分領域映像信号配線
54−下半分領域映像信号配線
55−上半分領域走査信号配線
56−下半分領域走査信号配線
57−付加容量コンタクトスルーホール
A−P型液晶分子の配向方向と画素電極(共通電極と液晶駆動電極)の交差する角度
B−N型液晶分子の配向方向と画素電極(共通電極と液晶駆動電極)の交差する角度
BP−バックチャネル側保護絶縁膜
P−液晶分子の配向方向と偏光板の偏光軸方向(光学軸)
Q−偏光板の偏光軸方向(光学軸)
D−映像信号配線と同時に形成されたトランジスタ・ドレイン電極
S−不純物をイオン打ち込み後レーザーアニールによって活性化させ低抵抗になったpoly−si液晶駆動電極
T−半導体層
U−配向膜にUV照射してラビング処理した低プレチルト化領域
J−不純物をイオン打ち込み後レーザーアニール処理にてpoly−si化した不純物半導体層の上にメタルシリサイドを形成した液晶駆動電極
K−ノンドープアモルファスシリコン層の上に不純物ドープした半導体液晶駆動電極
a−共通電極と液晶駆動電極の電極間距離
b−共通電極と液晶駆動電極の電極間距離
c−共通電極と液晶駆動電極の電極間距離
sc−映像信号配線と同時に形成された液晶駆動用付加容量電極
[0001]
[Industrial application fields]
The present invention relates to a large-screen active matrix liquid crystal display device with a wide viewing angle and high image quality.
[0002]
[Prior art]
For example, JP-A-7-36058 and JP-A-7-159786 are methods in which an electric field is applied to a liquid crystal composition layer using a comb-like electrode pair formed on one substrate of a conventional active matrix type liquid crystal display device. Japanese Laid-Open Patent Publication No. 6-160878. Hereinafter, a display method in which a main electric field direction applied to the liquid crystal composition layer is a direction substantially parallel to the substrate interface is referred to as a horizontal electric field method.
1 and 2 show examples of a conventional lateral electric field method. The liquid crystal driving electrode (4) and the common electrode (3), which are comb-like pixel electrodes, are linearly arranged in parallel, and the inter-electrode distances (3) and (4) are all the same. is there.
[0003]
[Problems to be solved by the invention]
As shown in FIG. 3, the transmittance characteristics with respect to the driving voltage of the horizontal electric field type liquid crystal cell decrease in luminance when a voltage higher than a certain voltage is applied. When the video signal voltage is a little too high, the gradation of the image is inverted. In the gradation display characteristics, this gradation inversion is a very big problem and results in a very unnatural image display.
[0004]
In the liquid crystal display device of the horizontal electric field type, the liquid crystal driving voltage tends to be higher than that of the conventional vertical electric field type TN liquid crystal display device, and the driver IC for driving is required to have a high voltage output, resulting in a high cost. was there.
[0005]
Furthermore, the alignment film used in the horizontal electric field type liquid crystal display device and the liquid crystal are required to be combined with a pretilt angle of 1 degree or less, and the alignment film near 4 degrees to 7 degrees used in the conventional TN liquid crystal display device is used. I can not use it. Therefore, when a horizontal electric field type liquid crystal display device is manufactured on a production line of a conventional TN liquid crystal display device, it is necessary to change the material of the alignment film and the liquid crystal material, which causes a problem that the production efficiency is lowered.
[0006]
In addition, the color filter substrate is not easily affected by static electricity because there is no transparent conductive film on the entire surface as in a conventional TN liquid crystal display device, and there is a problem that alignment failure occurs when charged up.
[0007]
The processing of pixel electrodes used in a horizontal electric field type liquid crystal display device is often performed by wet etching, and the distance between the electrodes cannot be made very small. Therefore, the response speed of the liquid crystal is slower than that of the conventional TN liquid crystal, and it is difficult to cope with moving images.
[0008]
The present invention solves these problems, and an object of the present invention is to provide a horizontal electric field liquid crystal display device that has no gradation inversion, good viewing angle characteristics, can use a low-voltage driving IC, and has a fast response speed. Is to provide.
Furthermore, the degree of freedom in selecting a usable liquid crystal composition and alignment film material is increased, the yield of the liquid crystal process is improved, and the cost is reduced.
[0009]
[Means for Solving the Problems]
In order to solve the above problems and achieve the above object, the present invention uses the following means.
A scanning signal line, a video signal line, a thin film transistor formed at each intersection of the scanning signal line and the video signal line on the substrate, a liquid crystal drive electrode connected to the thin film transistor, and at least a part of the liquid crystal drive In a liquid crystal display device comprising an active matrix substrate having a common electrode formed to face an electrode, a counter substrate facing the active matrix substrate, and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate ,
[Means 1] The inter-electrode distance between the liquid crystal driving electrode and the common electrode is not uniform within one pixel, and is a combination of two or more inter-electrode distances.
[0010]
[Means 2] In the means 1, there are two or more inter-electrode distances between the liquid crystal driving electrode and the common electrode in one pixel, and the inter-electrode distances that are different from each other at the center of the pixel are set symmetrically or vertically Arranged symmetrically.
[0011]
[Means 3] The common electrodes are connected in the extending direction of the video signal wiring, and the common electrodes are not connected to each other across the video signal wiring inside the effective display screen.
[0012]
[Means 4] In the means 3, the common electrodes connected in the extending direction of the video signal wiring are separated into the odd group and the even group, and the odd group and even group common electrodes are respectively arranged in accordance with the period of the scanning signal. A liquid crystal display characterized by applying a negative-phase voltage waveform and applying a video signal waveform opposite in phase to the common electrode to the liquid crystal drive electrode facing the common electrode of the odd-numbered group and even-numbered group apparatus.
[0013]
[Means 5] In the liquid crystal drive electrode of the horizontal electric field type, the liquid crystal drive electrode and the scanning signal wiring are insulated from the additional capacitance formed by superimposing the liquid crystal drive electrode and the common electrode through the insulating film. The structure is such that the additional capacitance formed by overlapping through the film is larger.
[0014]
[Means 6] In the means 5, the potential of the common electrode is fixed, and positive and negative video signal voltages are alternately written in the liquid crystal drive electrodes with respect to the common electrode potential in accordance with the period of the scanning signal. A liquid crystal display device using a capacitively coupled drive method in which a voltage signal waveform is applied to a scanning signal wiring superimposed on a liquid crystal drive electrode through an insulating film so that a voltage applied to the liquid crystal composition layer is further increased .
[0015]
[Means 7] In a horizontal electric field type liquid crystal display device, a thin film semiconductor layer is doped with an impurity and activated to reduce resistance to obtain a liquid crystal drive electrode.
[0016]
[Means 8] In the means 7, the video signal wiring and the pixel electrode are bent in an angle range of ± 1 degree to ± 45 degrees with respect to the liquid crystal alignment direction.
[0017]
[Means 9] In the means 7, the scanning signal wiring and the pixel electrode are bent in an angle range of ± 1 degree to ± 45 degrees with respect to the liquid crystal alignment direction.
[0018]
[Means 10] In the means 7, the video signal wiring and the pixel electrode are bent in a range of 45 to 135 degrees excluding 90 degrees with respect to the liquid crystal alignment direction.
[0019]
[Means 11] In the means 7, the scanning signal wiring and the pixel electrode are bent in a range of 45 to 135 degrees excluding 90 degrees with respect to the liquid crystal alignment direction.
[0020]
[Means 12] In a horizontal electric field type liquid crystal display device, an overcoat layer covering the color filter layer formed on the counter substrate is coated with a high resistance material (10 9 Ω · cm to 10 11 Ω · cm) was used.
[0021]
[Means 13] A liquid crystal display characterized in that the total thickness of the color filter layer, the overcoat layer, and the liquid crystal layer in the means 12 is at least twice the distance between the liquid crystal driving electrode and the common electrode. apparatus.
[0022]
[Means 14] In a horizontal electric field type liquid crystal display device, an insulating film is used as an overcoat layer covering the color filter layer formed on the counter substrate, and the overcoat insulating film at the boundary of the R, G, B color filter is used. A conductive or semiconductor electrode was formed as a black mask.
[0023]
[Means 15] In a manufacturing process of a horizontal electric field type liquid crystal display device, an alignment film for aligning liquid crystals is applied, and after baking, the alignment film is subjected to UV irradiation treatment or He, Ne, Ar, N 2 , O 2 The liquid crystal pretilt angle was reduced to 1 degree or less by performing rubbing after ion implantation or plasma treatment.
[0024]
[Means 16] In the means 3, the common electrode connected in the extending direction of the video signal wiring is divided into an odd group and an even group, and the video signal wiring is divided into two vertically in the center of the screen.
[0025]
[Means 17] In the means 16, the scanning signal wiring divided into the upper and lower groups at the center of the screen is simultaneously driven by the upper group and the lower group, and the upper and lower video signal wirings are divided by the odd group and the even group. By applying a video signal voltage waveform of opposite phase and applying a common electrode drive waveform of opposite phase to the voltage waveform of each video signal wiring to the odd and even groups of common electrodes, A liquid crystal display device characterized by a driving method in which different video signals are written on horizontal lines of a book.
[0026]
[Action]
When the distance between the liquid crystal drive electrode and the common electrode is not uniform within one pixel as in the above means 1 and 2, and is configured by combining two or more types of inter-electrode distances, As shown in FIG. 3, even if the grayscale inversion is performed at the shortest distance between the electrodes, the inversion does not occur in the area where the distance between the electrodes is large. As shown in FIGS. 5, 6, 8, and 10, when different inter-electrode distances are arranged symmetrically with respect to the center of the pixel, the scanning signal wiring and the video are arranged. By increasing the distance between the electrodes closest to the signal wiring, a uniform image with little crosstalk can be obtained.
[0027]
The above means 3 and 4 make it possible to reduce the video signal driving voltage of the dot inversion driving method to half or less even in a horizontal electric field type liquid crystal display device. Since a video signal drive IC of 5V drive can be used, the cost can be reduced. As shown in FIGS. 16 and 17, since horizontal crosstalk and horizontal crosstalk hardly occur in the dot inversion driving, a good image quality can be obtained.
Further, as shown in FIG. 13, by completely covering the TFT portion with the connecting portion of the common electrode, light can be prevented from entering the TFT, so that the black mask on the color filter side can be omitted, and the color filter The cost can be reduced. By eliminating the CF-side black mask, the aperture ratio is increased, and a liquid crystal panel with high brightness can be manufactured.
[0028]
By means 5 and 6 described above, even in a horizontal electric field type liquid crystal display device, it is possible to reduce the video signal driving voltage of the horizontal line inversion driving method to half or less.
As shown in FIGS. 24, 27, and 29, a large capacitance is formed in the liquid crystal drive electrode and the scanning signal wiring through the insulating film, and the common electrode is used to control the potential of the liquid crystal drive electrode using this capacitance. It is not necessary to apply a special drive signal waveform to the above. That is, the common electrode potential may be fixed to a potential close to the median value of the video signal voltage. In the conventional horizontal line inversion driving method, the entire common electrode is driven with a voltage waveform having a phase opposite to that of the video signal waveform in accordance with the period of the scanning signal wiring. Therefore, the resistance value of the common electrode must be reduced. There was no freedom. Since the entire common electrode has a large area overlapping with the video signal wiring and the entire capacity increases, there is a problem that power consumption increases when driven. In order to avoid this, there is a drive system as shown in FIGS. 60 and 61, but there is a problem that the number of lead terminals for individually driving the common electrodes increases. An increase in the number of lead terminals causes an increase in the number of driving ICs, an increase in IC cost, and an increase in connection failures. By fixing the common electrode potential and driving the horizontal electric field type liquid crystal by capacitively coupled horizontal line inversion driving as in the present invention, an ultra-large liquid crystal display device can be manufactured at low cost and with minimal increase in power consumption. Can be realized. In the case of the horizontal electric field method, unlike the conventional vertical electric field method, it can be formed larger than the capacitance formed by the scanning signal wiring and the liquid crystal drive electrode.
Therefore, as shown in FIG. 41, the drive voltage amplitude V of the scanning signal wiring * Therefore, the bias voltage applied to the TFT can be reduced, and the characteristic shift of the TFT can be reduced. This makes it possible to reduce the temperature at which the gate insulating film of a thin film transistor (TFT) is formed, shortening the tact time when manufacturing a large substrate, reducing thermal distortion of the substrate, and reducing thermal contraction, thereby reducing manufacturing costs. It becomes.
[0029]
With the means 7, the liquid crystal drive electrode can be formed simultaneously with the formation of the drain electrode of the thin film transistor (TFT). Since the dry etching method is used for processing the thin film silicon layer, the miniaturization and processing accuracy can be greatly improved as compared with the conventional processing method using wet etching. As shown in FIGS. 42, 43, 44, and 57, the liquid crystal driving electrode is formed at the same time as the drain electrode, so that the problem of contact failure between the drain electrode and the liquid crystal driving electrode does not occur and is common to the liquid crystal driving electrode. Since the processing accuracy of the distance between the electrodes is increased, the occurrence of uneven brightness is reduced over the entire screen. Since the distance between the electrodes can be reduced by processing both the liquid crystal drive electrode and the common electrode by dry etching, the liquid crystal drive voltage can be reduced and the response speed of the liquid crystal can be increased at the same time.
[0030]
When the above means 7, 8, 9, 10, and 11 are used, as shown in FIGS. 52 and 53, a horizontal electric field is applied in the pixel electrode (liquid crystal drive electrode and part of the common electrode). The liquid crystal molecules generate two types of rotational movement, left rotation and right rotation, inside the pixel electrode. In the conventional lateral electric field method of FIG. 51, since there is only one direction of rotational motion, when the pretilt angle is large, the viewing angle characteristics are different from each other as shown in FIG.
When two types of rotational movements of liquid crystal molecules, left rotation and right rotation, occur in one pixel, even if the pretilt angle is large, the viewing angle characteristics do not occur. Thus, in the horizontal electric field type liquid crystal display device using the structure of the present invention, the pretilt angle is not limited, so that the degree of freedom in selecting the alignment film and the liquid crystal is increased. Since the materials used in the conventional vertical field liquid crystal cell process such as the sealing material, alignment film, and inlet sealing material used in the liquid crystal process can be used, production efficiency and investment efficiency can be increased. . Since the effective utilization rate of the polarizing plate is increased, the cost can be reduced. Inversion of gradation can also be prevented.
[0031]
By using the above means 12, 13, and 14, even if there is no transparent conductor film (ITO) on the entire surface of the color filter, static charge up in the liquid crystal cell process is eliminated and particle adhesion is reduced. The alignment film is also comparable to the present invention (10 9 Ω · cm to 10 11 The effect is increased by providing a resistance of (Ω · cm). As shown in FIGS. 45, 46, 47, 48, and 49, (35), (36), (42), and (40) are ITO, metal, or a metal oxide and metal laminate, By using a semiconductor layer activated by metal silicide and impurity doping, electrostatic damage from the outside can be completely prevented after the liquid crystal cell is completed. By using an overcoat layer of a high resistance layer, an inexpensive electrodeposition color filter can be used for the transverse electric field type liquid crystal, so that a liquid crystal panel with good flatness, no cell gap unevenness, and good contrast is made at low cost. It becomes possible.
[0032]
The means 15 can change the characteristics of the alignment film having a pretilt angle of about 3 to 6 degrees used in the conventional vertical electric field type liquid crystal display device to make the pretilt angle 1 degree or less. As shown in FIG. 50, by reducing the pretilt angle to 1 degree or less, the viewing angle characteristics of the horizontal electric field type liquid crystal cell can be greatly improved. By using the manufacturing method of the present invention, the alignment film used in the conventional vertical electric field type liquid crystal cell process can be used without being changed. A horizontal electric field type liquid crystal display device can be produced simply by introducing a base into a conventional liquid crystal cell production line. Production efficiency and investment efficiency can be increased. As shown in FIGS. 54 and 55, by using the masking process, two or more types of pretilt angles can be set within one pixel, so that the viewing angle characteristics can be freely controlled. Inversion of gradation can also be prevented.
[0033]
Even in the case of ultra-high-definition display (SXGA or UXGA) in which the frame frequency and the scanning signal wiring increase in the means 16, 17, the scanning signal wiring address time can be doubled. Correspondence becomes possible. Even when the image size is further increased, the length of the video signal wiring is halved, and the number of crossings of the scanning signal wiring and the video signal wiring is also halved, so that the problem of the resistance of the video signal wiring is solved. . That is, since a conventionally used metal material can be used, there is no need to change the process. Since it can be manufactured by the same process as conventional VGA and SVGA display devices, production efficiency and investment efficiency are improved. According to the present invention, dot inversion driving can be introduced into ultra-high-definition display, and a low-voltage driving IC can be used, so that high-quality images with low cost and no display unevenness can be realized using amorphous silicon thin film transistors.
[0034]
【Example】
[Embodiment 1] FIGS. 4 and 5 are a sectional view and a plan view of a unit pixel of the present invention. A scanning signal wiring (gate electrode) (1) was formed on the glass substrate (10). The scanning signal wiring is preferably a metal that can be positively oxidized such as A1, but may be a pure metal such as G, Mo, Ti, W, or Ta Nb or an alloy. A two-layer structure, a three-layer structure, or the like of Cu having a low electric resistance value and the refractory metal is used in an ultra large liquid crystal display device. A gate insulating film (5) is formed on the scanning signal wiring (1), and then an amorphous silicon (a-Si) film (T) is formed as an active active layer of the transistor. The video signal wiring (2) and the drain electrode (D) are formed so as to overlap with part of the amorphous silicon. In the case of FIG. 4, the drain electrode (D) and the liquid crystal drive electrode (4) are simultaneously formed of the same metal material. S: N film or S: O to cover all of these 2 A protective insulating film (6) made of a film is formed. Next, the common electrode (3) is formed. An alignment film (7) made of polyimide was formed on the surface of the active matrix substrate in which the above unit pixels were arranged in a matrix, and the surface was rubbed. Similarly, a liquid crystal composition containing rod-like liquid crystal molecules (9) is sealed between a counter substrate (11) having an alignment film (8) with a rubbing treatment formed on the surface and an active matrix substrate. Polarizing plates (12) and (13) were arranged on the outer surface of the single substrate.
As shown in FIG. 5, there are two types of distances a and b between the common electrode (3) and the liquid crystal drive electrode (4). In FIG. 5, the distances between electrodes a and b are arranged symmetrically. . 6, 8, and 10, the number of electrodes is increased, and the distance between the electrodes includes a combination of a and b, and a combination of a, b, and c. Tidy. The combination is considered so as to be symmetrically arranged as in FIG. 5, but symmetry is not necessarily required.
As shown in FIG. 58, the interelectrode distance between the common electrode (3) and the liquid crystal drive electrode (4) is not limited to the three types a, b and c, and more types can be introduced. It is.
[0035]
In the case of FIG. 5, FIG. 6, FIG. 8, and FIG. 10, since the liquid crystal molecules are easily affected by the electric field from the video signal wiring (2), the common electrode (3) is placed so as to sandwich (2). Thus, it has been known that crosstalk in the direction along the video signal wiring (2) can be reduced. In order to further improve the effect, it is preferable to set the inter-electrode distance a closest to the video signal wiring (2) to the largest value. That is, the crosstalk can be further reduced if the interelectrode distance is arranged under the condition of a> b ≧ c or a> c ≧ b.
[0036]
The problem of gradation inversion occurs when the video signal voltage is too high. However, particularly when the liquid crystal pretilt angle is large, the gradation inversion is more likely when viewed from the tilt of the liquid crystal alignment direction than the front direction. In order to improve this, there are methods of giving two or more kinds of pretilt angles with respect to the alignment direction or giving positive and negative pretilt angles, but the simplest is to set the pretilt angle to 0 (zero) degrees. . However, in the orientation method by rubbing used in mass production, the pretilt angle cannot be completely set to zero degrees, and a pretilt angle of about 0.5 degrees is inevitably generated. As a method for preventing gradation reversal when viewed from the front and tilt, in a horizontal electric field type liquid crystal display device, as in the present invention, two or more types of inter-electrode distance values are set. Is particularly effective. When the liquid crystal is driven by normal 5V driving, the electrodes may be arranged in combination of the inter-electrode distance that maximizes the transmittance at 5V or less and the inter-electrode distance that maximizes the transmittance at 5V or more. In the characteristics shown in FIG. 3, the distance between the electrodes may be set to two types of 5 μm and 7.5 μm in 5V driving.
[0037]
[Embodiment 2] FIGS. 13 and 64 show a unit in which the common electrode is connected to the video signal wiring in the direction so that the common electrode is not connected to each other across the video signal wiring inside the effective display screen. It is a top view of a pixel. In FIG. 13, the connecting portion of the common electrode covers the upper part of the thin film transistor. In this case, even if the color filter of the counter substrate does not have a black mask (BM), the semiconductor layer ▲ T of the thin film transistor has no light. Does not intrude, so there is no increase in leakage current when the thin film transistor is OFF. 18, FIG. 19, FIG. 20, FIG. 21, FIG. 22, and FIG. 23 are plan views in which these unit pixels are arranged in a stripe arrangement or a delta arrangement. In FIG. 20, FIG. 22, and FIG. 23, the pixel electrode is parallel to the scanning signal wiring, but the connection direction of the common electrode is in the same direction as the video signal wiring.
In order to realize such a planar arrangement, in the conventional sectional structure as shown in FIG. 1, the scanning signal wiring (1) and the common electrode (3) are short-circuited. A cross-sectional structure as shown in FIGS. 42, 44, and 57 is required. In these cross-sectional structures, the common electrode is formed on the upper part of the substrate, and an oxide insulating film or an organic insulating film having a low dielectric constant is formed on the protective insulating film (6) or the upper insulating film (14) below the common electrode. A membrane can be used. Therefore, an increase in load when driving the scanning signal wiring can be minimized.
[0038]
[Embodiment 3] FIGS. 14 and 15 are plan views in which common electrodes connected in the same direction to the solid image signal wiring in Embodiment 2 are connected and separated into an odd group and an even group outside the effective display screen. is there. FIG. 15 shows a set of two common electrodes. It is also possible to connect and separate an odd group and an even group by considering three as one set. FIG. 59 is a plan view of a structural arrangement in which the entire effective display screen is surrounded by the odd group connecting electrodes {circle around (44)} and the even number group connecting electrodes {circle around (45)}. Each common connection electrode, the scanning signal wiring, and the video signal wiring are connected by a non-linear resistance element for countermeasures against static electricity. With this structure, the problem of static electricity defects in the liquid crystal cell process can be remarkably reduced. FIG. 40 shows a liquid crystal in which a voltage signal waveform having an opposite phase is applied to the common electrode separated into the odd group and the even group in accordance with the period of the scanning signal, and facing the common electrode of the odd group and the even group. FIG. 4 is a drive voltage waveform diagram in which video signal waveforms having phases opposite to those of a common electrode are applied to the drive electrodes, respectively.
FIGS. 16 and 17 are polar diagrams showing how the video signal voltage is written in the pixels of the structure array of FIGS. 14 and 15 of the present invention. Based on the common electrode potential, it is divided into positive and negative. Such a writing drive method is called a dot inversion drive method. With this drive method, horizontal crosstalk does not occur and a good image can be obtained. Since a large voltage can be applied to the liquid crystal phase by applying a voltage having a phase opposite to that of the video signal waveform to the common electrode, the amplitude is 1 than the video signal driving amplitude in the case of the conventional dot inversion driving in which the common electrode potential is fixed. / 2 or less can be reduced. As a result, an inexpensive 5V drive IC can be used, so that the cost can be reduced.
[0039]
[Embodiment 4] FIG. 24, FIG. 27, and FIG. 29 show the liquid crystal drive electrode rather than the additional capacitance formed by superposing the liquid crystal drive electrode (4) and the common electrode (3) through an insulating film. FIG. 6 is a plan view of a unit pixel when an additional capacitor (16) formed by overlapping (4) and a scanning signal wiring (1) through an insulating film is larger.
30, FIG. 31, FIG. 32, FIG. 33, FIG. 34, and FIG. 35 are plan views in which these unit pixels are arranged in a stripe arrangement or a delta arrangement. In order to realize these planar structures with high yield, the cross-sectional structures as shown in FIGS. 12, 26, 28, 42, 44, 57, and 65 are desirable. In order to further increase the additional capacitance formed by the liquid crystal driving electrode and the scanning signal wiring, a cross-sectional structure as shown in FIG. 66 is preferably used. The overlapping area between the liquid crystal drive electrode and the common electrode is preferably as small as possible.
[0040]
[Embodiment 5] FIG. 41 is a timing chart of a scanning signal voltage waveform and a video signal voltage waveform for driving a horizontal electric field type liquid crystal display panel of Embodiment 4. The scanning signal has a quaternary waveform. The common electrode potential is fixed at a potential close to the median value of the video signal waveform. Capacitive coupling drive system in which the scanning signal voltages Vr (−) and Vr (+) are applied to the liquid crystal composition through an additional capacitor formed by superimposing the liquid crystal driving electrode and the scanning signal wiring through the insulating film. Is used. In the horizontal electric field type liquid crystal display device, the capacitance between the pixel electrodes formed by the liquid crystal driving electrode and the common electrode through the liquid crystal composition is much smaller than that in the conventional vertical electrode method. The effect of the additional capacitance is increased, and the voltage amplitude of Vr (−) and Vr (+) can be reduced. For this reason, since the bias voltage applied to the scanning signal wiring (gate electrode) and drain electrode of the thin film transistor is also reduced, the characteristic shift of the thin film transistor is also reduced. In the horizontal electric field method, since the intersection area between the liquid crystal drive electrode and the common electrode can be reduced, the horizontal line inversion drive method as in the present invention has an advantage that the horizontal stroke can be reduced. Since the video signal wiring drive IC can also reduce the signal amplitude, an inexpensive 5V power supply IC can be used. Effective for cost down.
[0041]
[Embodiment 6] FIGS. 42, 43, 44, 57, 64, 65, and 24 show an embodiment in which a thin film semiconductor layer is doped with an impurity and activated to reduce resistance, and used as a liquid crystal drive electrode. It is sectional drawing and a top view of a unit pixel. On the glass substrate (10), a scanning signal positive line (gate electrode) (1) is formed and a gate insulating film (5) is formed so as to cover it, and then an amorphous silicon film is formed and the vacuum is loosened. The back channel side protective insulating film BP is continuously formed. At this time, the amorphous silicon film is preferably about 300 to 700 mm thick. A back channel protective marginal film of about 2000 mm is sufficient. The surface of the amorphous silicon film etched with a hydrofluoric acid-based etchant is exposed except for the back channel protective insulating film BP. PH without removing positive resist 3 10 by ion shower doping based on gas 15 Piece / cm 2 About amorphous silicon is doped with phosphorus. After that, activation processing is performed with an excimer laser. PH instead of ion shower doping 3 Alternatively, phosphorus may be adsorbed on the surface of the amorphous silicon layer by plasma discharge treatment using a gas, and then the phosphorus may be melt diffusion activated when the silicon layer is melted by an excimer laser. A region irradiated with laser by these processes becomes a polysilicon layer with low resistance. After stripping the positive resist, the source and drain electrodes (32) and the liquid crystal drive electrode (S) of the thin film transistor are formed simultaneously by dry etching. The advantage of forming the liquid crystal drive electrode with a resistive silicon film is that fine pattern processing by dry etching is possible. It has been pointed out that the horizontal electric field type liquid crystal display device has a slow response speed. However, if the distance between the liquid crystal drive electrode and the common electrode is reduced to about 3 μm, the response speed also increases. It is also possible to cope with. If it is up to about 3 μm, it can be processed by conventional wet etching, but the wet etching does not have sufficient control accuracy of the line width. In that respect, in dry etching, the reproducibility of processing accuracy has already been proven by IC. Polysilicon doped with impurities is the most suitable electrode material for a large-screen liquid crystal display device because it is a material that can be easily dry-etched.
Next, after forming the video signal wiring (2), completely cover it with the protective insulating film (6). The common electrode {circle over (3)} is formed last, and this common electrode is also made of a material that can be processed by dry etching (a refractory metal such as Mo, Ti, Nb, and Ta, an alloy thereof, or a silicide compound thereof). Thus, a horizontal electric field type liquid crystal display capable of high-speed response can be manufactured.
[0042]
In FIG. 44, Mo is thinly formed on the drain electrode doped with impurities and laser activated to further reduce the resistance by sputtering or ion plating, and MoSix (molybdenum silicide) is formed by surface reaction. It is sectional drawing at the time of making. In FIG. 57, after an amorphous silicon film doped with impurities is formed on the amorphous silicon film by using plasma CVD, the impurity amorphous silicon layer is replaced with an impurity polysilicon layer having low resistance by an excimer laser. It is sectional drawing in the case. Molybdenum silicide is also a material that is easy to dry etch. A similar silicide is formed by sputtering not only Mo but also other refractory metals.
[0043]
[Embodiment 7] FIG. 52, FIG. 19, FIG. 21, FIG. 31 and FIG. 33 show the video signal wiring and the pixel electrode (liquid crystal drive electrode and a part of the common electrode facing the liquid crystal drive electrode) in the liquid crystal alignment It is a top view in the case of the structure bent in the range of the angle of ± 1 degree to ± 45 degree with respect to the direction. The dielectric anisotropy of the liquid crystal molecules is positive. As shown in FIG. 52, when a voltage is applied to the common electrode (3) and the liquid crystal drive electrode (S) and an electric field is generated between the electrodes, the liquid crystal molecules (9) rotate left and right at the bend. The two types of rotational movements. Since two kinds of rotational movements are possible inside the unit pixel, the viewing angle characteristic is not generated regardless of the size of the pretilt angle.
[0044]
[Embodiment 8] In FIGS. 52, 20, 22, 23, 32, 34, and 35, the scanning signal wiring and the pixel electrode are ± 1 to ± 45 degrees with respect to the liquid crystal alignment direction. It is a top view in the case of the structure bent in the range of this angle. The dielectric anisotropy of the liquid crystal molecules is positive. As in the seventh embodiment, two types of liquid crystal molecule rotation motions, left rotation and right rotation, occur inside the unit pixel. Regardless of the size of the pretilt angle, the viewing angle characteristics do not occur.
[0045]
[Embodiment 9] FIG. 53, FIG. 19, FIG. 21, FIG. 31 and FIG. 33 show that the video signal wiring and the pixel electrode are bent in the range of 45 to 135 degrees excluding 90 degrees with respect to the liquid crystal alignment direction. It is a top view in the case of a structure. The dielectric anisotropy of the liquid crystal molecules is negative. As shown in FIG. 53, when a voltage is applied to the common electrode (3) and the liquid crystal drive electrode (S) and an electric field is generated between the electrodes, the liquid crystal molecules (22) are rotated counterclockwise on the bend. Performs two types of rotational movement. Since two kinds of rotational movements are possible inside the unit pixel, the viewing angle characteristics do not occur regardless of the size of the pretilt angle.
[0046]
[Embodiment 10] In FIGS. 53, 20, 22, 23, 32, and 34, the scanning signal wiring and the pixel electrode are 45 to 135 except 90 degrees with respect to the liquid crystal alignment direction. It is a top view in the case of the structure bent in the range of a degree. The dielectric anisotropy of the liquid crystal molecules is negative. As in the ninth embodiment, two types of liquid crystal molecule rotation motions, left rotation and right rotation, occur inside the unit pixel. Regardless of the size of the pretilt angle, the viewing angle characteristics do not occur.
[0047]
In all of Examples 7, 8, 8, and 10, the alignment of liquid crystal molecules at the interface with the upper and lower substrates is rubbed so as to be substantially parallel to each other. The polarizing axis (optical axis) of the polarizing plate is arranged so as to be substantially orthogonal both in the upper and lower directions, and a normally black mode in which light does not pass from the pixel is used when there is no electric field. As shown in FIGS. 36, 37, 38, and 39, the black mask used for these color filters has the same angle as the angle at which the video signal wiring and the scanning signal wiring are bent, and a part of the BM is bent. There is a feature.
[0048]
[Embodiment 11] FIGS. 45, 46 and 47 are sectional views of a color filter substrate of a horizontal electric field type liquid crystal display device. R, G and B color filters are formed on the glass substrate (11). Next, organic and inorganic high resistance materials (10 9 Ω · cm to 10 11 Ω · cm). As shown in FIG. 56, the liquid crystal specific resistance is 10 in the horizontal electric field method. 9 There is an experimental result that the voltage holding ratio hardly decreases even when it is reduced to about Ω · cm. In FIGS. 45 and 46, transparent ITO is formed on the entire surface, and then R, G, and B color filter layers are formed by electrodeposition. In this case, the total of the thickness of the high resistance material, the thickness of the color filter layer, and the thickness of the liquid crystal layer is required to be at least twice the distance between the liquid crystal driving electrode and the common electrode. If these total thicknesses are more than twice the distance between the electrodes, the electric field generated between the liquid crystal drive electrode and the common electrode is less affected by the transparent conductive film (ITO) (36) formed on the entire color filter side. In other words, a transverse electric field can be generated in a direction parallel to the substrate.
[0049]
[Embodiment 12] FIGS. 48 and 49 are sectional views of a color filter substrate of a horizontal electric field type liquid crystal display device. R, G and B color filters are formed on the glass substrate (11). In this state, various problems occur due to static electricity generated in the liquid crystal process. Therefore, a black mask 42 for further removing static electricity is formed on the insulating film 41. If the resin black mask has already been formed as shown in FIG. 49, the transparent conductive electrode (40) may be formed in the same pattern as the black mask.
[0050]
As in the eleventh and twelfth embodiments, if any conductive electrode is not formed on the color filter substrate side, the horizontal electric field type liquid crystal display device is affected by the electric field due to external static electricity, so that it can be put to practical use. The big problem that it is not possible occurs. As shown in FIG. 67, there is a method of forming a transparent conductive film 36 on the outside of the color filter side glass substrate, but in this case, it occurs in the liquid crystal process in the color filter layer or the flattening film having high insulating properties. In some cases, the static electricity that has been trapped cannot be removed, which may cause orientation failure.
[0051]
[Embodiment 13] As shown in FIGS. 50 and 51, if the liquid crystal driving electrode and the common electrode are simply arranged in parallel, the viewing angle characteristics may be different from each other when the pretilt angle of the liquid crystal is large. . Since the pretilt angle of the alignment film used in the conventional vertical electric field type liquid crystal display device is as large as 3 ° to 7 °, the viewing angle characteristic is inevitably generated. As a method of reducing the pretilt angle to 1 degree or less using the same alignment film, after baking the polyimide alignment film, UV irradiation treatment, He, Ne, Ar, N 2 , O 2 A method of ionizing gas such as ion plantation treatment has been developed. O using reactive ion etching equipment 2 The same effect can be obtained by plasma treatment using gas. By performing a rubbing alignment process after these processes, it is possible to align the liquid crystal molecules in a uniaxial direction with a pretilt angle of 1 degree or less. As shown in FIGS. 54 and 55, the above UV treatment, ion plantation treatment, and plasma treatment can be limited to half of one pixel by a mask using a photomask or a photoresist.
By using this embodiment, even if the conventionally used alignment film is used in a horizontal electric field type liquid crystal display device, it is less likely to occur than a piece having viewing angle characteristics.
[0052]
[Embodiment 14] In FIG. 62, as in Embodiment 2, the common electrode is connected to the video signal wiring in such a direction, and within the effective display screen, the common electrode crosses the video signal wiring to each other. Not connected. The common electrode is divided into an odd group and an even group, and the odd groups and the even groups are connected to each other outside the effective display screen. The difference from the second embodiment is that the video signal wiring is vertically divided into two at the center. Terminals to be joined to the IC for driving the video signal wiring are also divided into two upper and lower parts, respectively, and the number of terminals is doubled. When the number of scanning signal lines increases significantly as in SXGA or UXGA for OA, the structure of this embodiment reduces the resistance of the video signal wiring and halves the number of intersections with the scanning signal lines. Since the coupling capacity is reduced, the driving load of the video signal wiring is greatly reduced.
[0053]
[Embodiment 15] FIG. 63 shows drive voltage waveforms for driving a horizontal electric field liquid crystal display device having the structure of embodiment 14. FIG. Two scanning signal lines operate simultaneously in the upper half region and the lower half region. Since the common electrode is connected in the upper half region and the lower half region, it is driven by a method of inverting the polarity in accordance with the drive cycle of the scanning signal wiring. The common electrodes are separated into an odd group and an even group, and are connected to common connection electrodes (44) and (45), respectively. The odd-numbered group and the even-numbered group are inverted and applied with voltages of opposite phases having different polarities in accordance with the period of the scanning signal wiring. The video signal wiring is divided into an odd group and an even group, and opposite-phase signal voltages having different polarities are applied to the common electrodes of the odd group and the even group which correspond to each other. The odd-numbered and even-numbered video signal wirings are divided into two parts, an upper half and a lower half, to which different in-phase video signals are applied. This is a two-scan line simultaneous access dot inversion driving method. In the case of an OA display device such as a computer, since a frame memory is prepared, it is sufficient that image data for two scanning signal wirings can be simultaneously extracted from this frame memory. When the number of scanning signal wirings and the frame frequency are significantly increased as in SXGA and UXGA, the scanning signal wiring selection time is 10 μsec or less with the conventional one scanning signal wiring access method. When the time is 10 μsec or less, the drive capability of the amorphous silicon thin film transistor is limited, and the video signal voltage cannot be accurately transmitted to the liquid crystal drive electrode. With the two-scan line simultaneous access dot inversion driving method of the present invention, the selection time is twice as long as that of the conventional method. Therefore, a sufficient video signal writing time can be obtained even with an amorphous silicon thin film transistor. The degree of freedom of the video signal wiring material is also greatly increased.
[0054]
【The invention's effect】
According to the present invention, first, it is possible to obtain an image with good viewing angle characteristics without gradation reversal of the image. Second, an inexpensive 5VIC can be used for the video signal driving IC, and a conventional liquid crystal member can be used, so that a low-cost and highly reliable image display apparatus can be provided. Third, a horizontal electric field liquid crystal display device capable of high-speed operation corresponding to a moving image without being affected by external static electricity can be manufactured. Fourth, an ultra-high definition / large screen liquid crystal display device can be realized using amorphous silicon thin film transistors.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a unit pixel of a conventional horizontal electric field mode liquid crystal display device.
FIG. 2 is a plan view of a unit pixel of a conventional horizontal electric field mode liquid crystal display device.
FIG. 3 is a graph showing transmittance and driving voltage characteristics depending on the distance between electrodes of a horizontal electric field liquid crystal display device.
FIG. 4 is a cross-sectional view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 5 is a plan view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 6 is a plan view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 7 is an arrangement combination diagram of inter-electrode distances according to the present invention.
FIG. 8 is a plan view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 9 is an arrangement combination diagram of distances between electrodes of the lateral electric field system of the present invention.
FIG. 10 is a plan view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 11 is an arrangement combination diagram of the distance between the electrodes of the horizontal electric field system of the present invention.
FIG. 12 is a cross-sectional view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 13 is a plan view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 14 is a plan view of a pixel arrangement of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 15 is a plan view of a pixel arrangement of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 16 is a plan view of polarity arrangement of video signal data of pixels of a horizontal electric field mode display device according to the present invention;
FIG. 17 is a plan view of polarity arrangement of video signal data of pixels of a horizontal electric field mode display device according to the present invention;
FIG. 18 is a plan view of a horizontal electric field pixel array according to the present invention.
FIG. 19 is a plan view of a horizontal electric field pixel array according to the present invention.
FIG. 20 is a plan view of a horizontal electric field pixel array according to the present invention.
FIG. 21 is a plan view of a horizontal electric field pixel array according to the present invention.
FIG. 22 is a plan view of a horizontal electric field pixel array according to the present invention.
FIG. 23 is a plan view of a horizontal electric field pixel array according to the present invention.
FIG. 24 is a plan view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 25 is a plan view of polarity arrangement of video signal data of pixels of a horizontal electric field mode display device according to the present invention;
FIG. 26 is a cross-sectional view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 27 is a plan view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 28 is a cross-sectional view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 29 is a plan view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 30 is a plan view of a horizontal electric field pixel array according to the present invention.
FIG. 31 is a plan view of a horizontal electric field pixel array according to the present invention.
FIG. 32 is a plan view of a horizontal electric field pixel array according to the present invention.
FIG. 33 is a plan view of a horizontal electric field pixel array according to the present invention.
FIG. 34 is a plan view of a horizontal electric field pixel array according to the present invention.
FIG. 35 is a plan view of a horizontal electric field pixel array according to the present invention.
FIG. 36 is an arrangement plan view of a color filter black mask (BM) of the horizontal electric field mode liquid crystal display device of the present invention.
FIG. 37 is an arrangement plan view of a color filter black mask (BM) of the horizontal electric field mode liquid crystal display device of the present invention.
FIG. 38 is an arrangement plan view of a color filter black mask (BM) of the horizontal electric field mode liquid crystal display device of the present invention.
FIG. 39 is an arrangement plan view of a color filter black mask (BM) of the horizontal electric field mode liquid crystal display device of the present invention.
FIG. 40 is a driving voltage waveform of the horizontal electric field mode liquid crystal display device of the present invention;
FIG. 41 shows driving voltage waveforms of the horizontal electric field mode liquid crystal display device of the present invention.
FIG. 42 is a cross-sectional view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 43 is a plan view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
44 is a cross-sectional view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention. FIG.
FIG. 45 is a cross-sectional view of a color filter for a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 46 is a cross-sectional view of a color filter for a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 47 is a cross-sectional view of a color filter for a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 48 is a cross-sectional view of a color filter for a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 49 is a cross-sectional view of a color filter for a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 50 is a distribution diagram of pretilt angle and viewing angle characteristics of liquid crystal molecules in a horizontal electric field type liquid crystal display device.
FIG. 51 is an orientation direction diagram of a positive dielectric anisotropy liquid crystal in a lateral electric field type pixel electrode.
52 is an orientation direction diagram of a positive dielectric anisotropy liquid crystal in a horizontal electric field type bent pixel electrode of the present invention; FIG.
FIG. 53 is an orientation direction diagram of negative dielectric anisotropy liquid crystal in a horizontal electric field type bent pixel electrode of the present invention.
FIG. 54 is a plan view of a pixel arrangement in which a local UV irradiation treatment is applied to a polyimide alignment film of a horizontal electric field mode display device of the present invention.
FIG. 55 is a plan view of a pixel array in which a localized UV irradiation treatment is applied to a polyimide alignment film of a horizontal electric field mode display device of the present invention.
FIG. 56 is a characteristic diagram of liquid crystal resistivity and voltage holding ratio of a horizontal electric field mode liquid crystal display device.
FIG. 57 is a cross-sectional view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 58 is a plan view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 59 is a layout plan view of a pixel array and common electrode driving connection electrodes of a horizontal electric field mode liquid crystal display device of the present invention.
FIG. 60 is a plan view of an arrangement of a pixel arrangement and a common electrode driving terminal portion of a horizontal electric field type liquid crystal display device.
FIG. 61 shows driving voltage waveforms of a horizontal electric field mode liquid crystal display device.
FIG. 62 is an arrangement plan view of a pixel array and a common electrode driving connection electrode of the horizontal electric field mode liquid crystal display device of the present invention.
FIG. 63 shows driving voltage waveforms of the horizontal electric field mode liquid crystal display device of the present invention.
FIG. 64 is a plan view of a unit pixel of the horizontal electric field mode liquid crystal display device of the present invention.
FIG. 65 is a cross-sectional view of a unit pixel of a horizontal electric field mode liquid crystal display device of the present invention.
66 is a cross-sectional view of a unit pixel holding capacitor forming portion of a horizontal electric field mode liquid crystal display device of the present invention. FIG.
FIG. 67 is a cross-sectional view of a conventional color filter for a horizontal electric field mode liquid crystal display device.
[Explanation of symbols]
1-Scanning signal wiring
2-Video signal wiring
3- Common electrode
4-liquid crystal drive electrode
5-gate insulating film
6-Protective insulating film
7-Liquid crystal alignment film (TFT substrate side)
8-Liquid crystal alignment film (opposite substrate side ... color filter substrate side)
9-liquid crystal molecules (positive dielectric anisotropy liquid crystal)
10-TFT side glass substrate
11-Opposite glass substrate
12-TFT substrate side polarizing plate
13-Opposite substrate side polarizing plate
14-Upper insulating film
15-Drain through hole
16-holding capacity forming region
17-Anodized film
18-Common electrode (center line) formed simultaneously with the same material as the scanning signal wiring
19-Common electrode through hole
20-common electrode through-hole common electrode (center line) and pixel electrode in contact
21-Color filter black mask
22-Liquid crystal molecules (negative dielectric constant anisotropic liquid crystal)
23-Scanning signal wiring drive waveform
24-Odd number video signal waveform
25-even video signal waveform
26-Odd number common electrode drive waveform
27-Even number common electrode drive waveform
28- (n-1) th scanning signal wiring drive waveform
29-n scan signal wiring drive waveform
30-Video signal waveform
31-Common electrode potential
32-Polysi drain electrode activated and reduced in resistance after ion implantation
33-Drain electrode in which metal silicide is formed on a polysi semiconductor layer activated after impurity ion implantation
34. Semiconductor drain electrode doped with impurities on non-doped amorphous silicon layer
35-Black mask with anti-reflection coating
36-transparent conductive film layer
37-Color filter layer
38-High resistance planarization film
39-resin black mask
40-Black mask electrode with anti-reflection coating for antistatic
41-flattened insulating film
42-Black mask electrode for antistatic
43-Electrostatic countermeasure elements
44-Odd number common electrode drive connection electrode
45-Connecting electrode for driving even-numbered common electrode
46-Electrostatic connection electrode
47-n common electrode drive waveform
48-Upper half region nth scanning signal wiring drive waveform
49-Lower half region nth scanning signal wiring drive waveform
50-Upper half area Mth video signal waveform
51-Lower half area Mth video signal waveform
52-M common electrode drive waveform
53-Upper half area video signal wiring
54-Lower half area video signal wiring
55-Upper half area scanning signal wiring
56-Lower half area scanning signal wiring
57-Additional capacity contact through hole
The angle at which the orientation direction of the AP type liquid crystal molecules intersects with the pixel electrode (common electrode and liquid crystal drive electrode)
The angle at which the alignment direction of the BN type liquid crystal molecules intersects with the pixel electrode (common electrode and liquid crystal drive electrode)
BP-back channel side protective insulating film
Orientation direction of P-liquid crystal molecules and polarization axis direction of polarizing plate (optical axis)
Polarization axis direction of Q-polarizer (optical axis)
D-transistor drain electrode formed simultaneously with video signal wiring
Poly-si liquid crystal drive electrode with low resistance activated by laser annealing after ion implantation of S-impurities
T-semiconductor layer
Low pretilt region obtained by rubbing U-alignment film by UV irradiation
A liquid crystal driving electrode in which metal silicide is formed on an impurity semiconductor layer poly-si formed by laser annealing after ion implantation of J-impurity
Semiconductor liquid crystal drive electrode doped with impurities on K-non-doped amorphous silicon layer
a-Distance between common electrode and liquid crystal drive electrode
b—Distance between common electrode and liquid crystal drive electrode
c—Distance between common electrode and liquid crystal drive electrode
SC—additional capacitance electrode for driving liquid crystal formed simultaneously with video signal wiring

Claims (9)

透明な基板上に、マトリックス状に形成されたブラックマスクとR,G,B 3色のカラーフィルター層を持ち、カラーフィルター層の上に平担化のためのオーバーコート層が形成されている横電界方式液晶表示用カラーフィルターに関して、このカラーフィルター基板に対向するアクティブマトリックス基板の映像信号配線とほぼ同じ形状に、ブラックマスクとR,G,Bの3色のカラーフィルター層が1画素内で、映像信号配線の、のびている方向に対して、±1度から±45度の角度の範囲で屈曲していることを特徴とする横電界方式液晶表示用カラーフィルター基板。A horizontal mask has a black mask formed in a matrix and a color filter layer of three colors R, G, B on a transparent substrate, and an overcoat layer for flattening is formed on the color filter layer. Regarding the color filter for electric field type liquid crystal display, a black mask and three color filter layers of R, G, B are formed in one pixel in almost the same shape as the video signal wiring of the active matrix substrate facing the color filter substrate. A color filter substrate for a horizontal electric field mode liquid crystal display, characterized in that it is bent in an angle range of ± 1 ° to ± 45 ° with respect to the extending direction of the video signal wiring. 透明な基板上に、マトリックス状に形成されたブラックマスクとR,G,B 3色のカラーフィルター層を持ち、カラーフィルター層の上に平担化のためのオーバーコート層が形成されている横電界方式液晶表示用カラーフィルターに関して、このカラーフィルター基板に対向するアクティブマトリックス基板の走査信号配線とほぼ同じ形状に、ブラックマスクとR,G,Bの3色のカラーフィルター層が、1画素内で、走査信号配線の、のびている方向に対して、±1度から±45度の角度の範囲で屈曲していることを特徴とする横電界方式液晶表示用カラーフィルター基板。A horizontal mask has a black mask formed in a matrix and a color filter layer of three colors R, G, B on a transparent substrate, and an overcoat layer for flattening is formed on the color filter layer. Regarding the color filter for electric field type liquid crystal display, a black mask and three color filter layers of R, G, B are formed in one pixel in almost the same shape as the scanning signal wiring of the active matrix substrate facing this color filter substrate. A horizontal electric field type liquid crystal display color filter substrate, wherein the scanning signal wiring is bent in an angle range of ± 1 degree to ± 45 degrees with respect to the extending direction. 透明な基板上に、マトリックス状に形成された導電性ブラクマスクとR,G,B3色のカラーフィルター層を持ち、カラーフィルター層の上に平担化と帯電防止のための高抵抗オーバーコート層(10〜1011Ω・cm)が形成されている横電界方式液晶表示用カラーフィルターに関して、このカラーフィルター基板に対向するアクティブマトリックス基板の映像信号配線とほぼ同じ形状に、ブラックマスクとR,G,Bのカラーフィルター層が1画素内で映像信号配線ののびている方向に対して±1度から±45度の角度の範囲で、屈曲していることを特徴とする横電界方式液晶表示用カラーフィルター基板。A conductive black mask formed in a matrix and a color filter layer of R, G, B colors on a transparent substrate, and a high resistance overcoat layer for flattening and antistatic (on the color filter layer) 10 9 to 10 11 Ω · cm), the black mask and the R, G, and the black masks are formed in substantially the same shape as the video signal wiring of the active matrix substrate facing the color filter substrate. , B color filter layer is bent in an angle range of ± 1 ° to ± 45 ° with respect to the direction in which the video signal wiring extends in one pixel. Filter substrate. 透明な基板上に、マトリックス状に形成された導電性ブラックマスクとR,G,B 3色のカラーフィルター層を持ち、カラーフィルター層の上に平担化と帯電防止のための高抵抗オーバーコート層(10〜1011Ω・cm)が形成されている横電界方式液晶表示用カラーフィルターに関して、このカラーフィルター基板に対向するアクティブマトリックス基板の走査信号配線とほぼ同じ形状に、ブラックマスクとR,G,Bのカラーフィルター層が1画素内で走査信号配線ののびている方向に対して±1度から±45度の角度の範囲で屈曲していることを特徴とする横電界方式液晶表示用カラーフィルター基板。On a transparent substrate, it has a conductive black mask formed in a matrix and a color filter layer of R, G, B color, and a high resistance overcoat for flattening and antistatic on the color filter layer With respect to the color filter for the horizontal electric field mode liquid crystal display in which the layer (10 9 to 10 11 Ω · cm) is formed, the black mask and the R are formed in substantially the same shape as the scanning signal wiring of the active matrix substrate facing the color filter substrate. , G, and B color filter layers are bent in an angle range of ± 1 ° to ± 45 ° with respect to the direction in which the scanning signal wiring extends in one pixel. Color filter substrate. 透明な基板上に、マトリックス状に形成された導電性ブラックマスクと、前記ブラックマスクの上をおおうように全面に形成された透明導電膜と、前記透明導電膜の上に形成されたR,G,B 3色のカラーフィルター層を持ち、さらに前記カラーフィルター層の上に平担化のためのオーバーコート層が形成されている横電界方式液晶表示用カラーフィルターに関して、このカラーフィルター基板に対向するアクティブマトリックス基板の映像信号配線とほぼ同じ形状に、ブラックマスクとR,G,Bの3色のカラーフィルター層が、1画素内で、映像信号配線の、のびている方向に対して±1度から±45度の角度の範囲で屈曲していることを特徴とする横電界方式液晶表示用カラーフィルター基板。A conductive black mask formed in a matrix on a transparent substrate, a transparent conductive film formed over the entire surface so as to cover the black mask, and R and G formed on the transparent conductive film , B A color filter for a horizontal electric field mode liquid crystal display having a color filter layer of three colors and further having an overcoat layer for flattening formed on the color filter layer, facing the color filter substrate. The black mask and three color filter layers of R, G, and B in approximately the same shape as the video signal wiring of the active matrix substrate are within ± 1 degree with respect to the extending direction of the video signal wiring within one pixel. A color filter substrate for a liquid crystal display for a horizontal electric field mode, which is bent within an angle range of ± 45 degrees. 透明な基板上に、マトリックス状に形成された導電性ブラックマスクと、前記ブラックマスクの上をおおうように全面に形成された透明導電膜と、前記透明導電膜の上に形成されたR,G,B 3色のカラーフィルター層を持ち、さらに前記カラーフィルター層の上に平担化のためのオーバーコート層が形成されている横電界方式液晶表示用カラーフィルターに関して、このカラーフィルター基板に対向するアクティブマトリックス基板の走査信号配線とほぼ同じ形状にブラックマスクとR,G,B,の3色のカラーフィルター層が、1画素内で、走査信号配線の、のびている方向に対して、±1度から±45度の角度の範囲で屈曲していることを特徴とする横電界方式液晶表示用カラーフィルター基板。A conductive black mask formed in a matrix on a transparent substrate, a transparent conductive film formed over the entire surface so as to cover the black mask, and R and G formed on the transparent conductive film , B A color filter for a horizontal electric field mode liquid crystal display having a color filter layer of three colors and further having an overcoat layer for flattening formed on the color filter layer, facing the color filter substrate. The black mask and three color filter layers of R, G, B in the same shape as the scanning signal wiring of the active matrix substrate are ± 1 degree with respect to the extending direction of the scanning signal wiring within one pixel. A color filter substrate for a horizontal electric field mode liquid crystal display, characterized in that it is bent within an angle range of ± 45 degrees from the angle. 透明な基板上に、R,G,B 3色のカラーフィルター層を形成し、前記カラーフィルター層の上に平担化のためのオーバーコート層を形成した後、前記オーバーコート層の上に、マトリックス状に導電性ブラックマスクが形成されている横電界方式液晶表示用カラーフィルターに関して、このカラーフィルター基板に対向するアクティブマトリックス基板の映像信号配線とほぼ同じ形状に、ブラックマスクとR,G,Bの3色のカラーフィルター層が、1画素内で、映像信号配線ののびている方向に対して±1度から±45度の角度の範囲で屈曲していることを特徴とする横電界方式液晶表示用カラーフィルター基板。After forming a color filter layer of three colors of R, G, B on a transparent substrate and forming an overcoat layer for flattening on the color filter layer, on the overcoat layer, With respect to a color filter for a horizontal electric field mode liquid crystal display in which a conductive black mask is formed in a matrix, the black mask and R, G, B are formed in substantially the same shape as the video signal wiring of the active matrix substrate facing the color filter substrate. A horizontal electric field type liquid crystal display in which the three color filter layers are bent in an angle range of ± 1 ° to ± 45 ° with respect to the direction in which the video signal wiring extends in one pixel. Color filter substrate. 透明な基板上に、R,G,B 3色のカラーフィルター層を形成し、前記カラーフィルター層の上に平担化のためのオーバーコート層を形成した後、前記オーバーコート層の上に、マトリックス状に導電性ブラックマスクが形成されている横電界方式液晶表示用カラーフィルターに関して、このカラーフィルター基板に対向するアクティブマトリックス基板の走査信号配線とほぼ同じ形状に、ブラックマスクとR,G,Bの3色のカラーフィルター層が、1画素内で、走査信号配線ののびている方向に対して±1度から±45度の角度の範囲で屈曲していることを特徴とする横電界方式液晶表示用カラーフィルター基板。After forming a color filter layer of three colors of R, G, B on a transparent substrate and forming an overcoat layer for flattening on the color filter layer, on the overcoat layer, With respect to a color filter for a horizontal electric field mode liquid crystal display in which a conductive black mask is formed in a matrix, the black mask and R, G, B are formed in substantially the same shape as the scanning signal wiring of the active matrix substrate facing the color filter substrate. A horizontal electric field type liquid crystal display in which the three color filter layers are bent in an angle range of ± 1 degree to ± 45 degrees with respect to the direction in which the scanning signal wiring extends in one pixel Color filter substrate. 請求項5と請求項6において、記載されているカラーフィルター基板と、前記カラーフィルター基板に対向しているアクティブマトリックス基板にはさまれている液晶層の厚みと、前記カラーフィルター基板のカラーフィルター層と、オーバーコート層の3層の厚みを合計した厚さが、前記アクティブマトリックス基板上の液晶駆動電極と共通電極との電極間距離の2倍以上であることを特徴とする液晶表示装置7. The color filter substrate according to claim 5, the thickness of the liquid crystal layer sandwiched between the active matrix substrate facing the color filter substrate, and the color filter layer of the color filter substrate And the total thickness of the three overcoat layers is at least twice the distance between the liquid crystal driving electrode and the common electrode on the active matrix substrate.
JP2003205102A 2003-06-16 2003-06-16 Liquid crystal display device Pending JP2005010721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003205102A JP2005010721A (en) 2003-06-16 2003-06-16 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003205102A JP2005010721A (en) 2003-06-16 2003-06-16 Liquid crystal display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27279296A Division JP3567183B2 (en) 1996-08-19 1996-08-19 Liquid crystal display

Publications (1)

Publication Number Publication Date
JP2005010721A true JP2005010721A (en) 2005-01-13

Family

ID=34100695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003205102A Pending JP2005010721A (en) 2003-06-16 2003-06-16 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2005010721A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069803A (en) * 2007-09-10 2009-04-02 Hannstar Display Corp Liquid crystal display
JP2009116027A (en) * 2007-11-06 2009-05-28 Lg Display Co Ltd Liquid crystal display device
US7671951B2 (en) 2005-12-07 2010-03-02 Samsung Electronics Co., Ltd. Liquid crystal display
JP2011095712A (en) * 2009-10-30 2011-05-12 Samsung Electronics Co Ltd Data driver and display apparatus using the same
JP2013003290A (en) * 2011-06-15 2013-01-07 Dainippon Printing Co Ltd Color filter formation substrate for lateral electric field lcd display panel, and lateral electric field lcd display panel
JP2013003291A (en) * 2011-06-15 2013-01-07 Dainippon Printing Co Ltd Color filter formation substrate for lateral electric field lcd display panel, and lateral electric field lcd display panel
JP2013011742A (en) * 2011-06-29 2013-01-17 Toppan Printing Co Ltd Facing substrate for liquid crystal display, and liquid crystal display device
WO2013157342A1 (en) * 2012-04-18 2013-10-24 凸版印刷株式会社 Liquid crystal display device
JP2015049454A (en) * 2013-09-03 2015-03-16 三菱電機株式会社 Liquid crystal display unit and array substrate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671951B2 (en) 2005-12-07 2010-03-02 Samsung Electronics Co., Ltd. Liquid crystal display
JP2009069803A (en) * 2007-09-10 2009-04-02 Hannstar Display Corp Liquid crystal display
JP2009116027A (en) * 2007-11-06 2009-05-28 Lg Display Co Ltd Liquid crystal display device
JP2011095712A (en) * 2009-10-30 2011-05-12 Samsung Electronics Co Ltd Data driver and display apparatus using the same
US8963822B2 (en) 2009-10-30 2015-02-24 Samsung Display Co., Ltd. Display apparatus
JP2013003290A (en) * 2011-06-15 2013-01-07 Dainippon Printing Co Ltd Color filter formation substrate for lateral electric field lcd display panel, and lateral electric field lcd display panel
JP2013003291A (en) * 2011-06-15 2013-01-07 Dainippon Printing Co Ltd Color filter formation substrate for lateral electric field lcd display panel, and lateral electric field lcd display panel
JP2013011742A (en) * 2011-06-29 2013-01-17 Toppan Printing Co Ltd Facing substrate for liquid crystal display, and liquid crystal display device
US9041883B2 (en) 2011-06-29 2015-05-26 Toppan Printing Co., Ltd. Counter substrate for liquid crystal display and liquid crystal display device
WO2013157342A1 (en) * 2012-04-18 2013-10-24 凸版印刷株式会社 Liquid crystal display device
US9472157B2 (en) 2012-04-18 2016-10-18 Toppan Printing Co., Ltd. Liquid crystal display device
JP2015049454A (en) * 2013-09-03 2015-03-16 三菱電機株式会社 Liquid crystal display unit and array substrate

Similar Documents

Publication Publication Date Title
JP3567183B2 (en) Liquid crystal display
JP3831863B2 (en) Liquid crystal display
JP3723914B2 (en) FFS mode liquid crystal display device and manufacturing method thereof
US8305538B2 (en) Low-cost large-screen wide-angle fast-response liquid crystal display apparatus
JP3234357B2 (en) Liquid crystal display
JP2590693B2 (en) Liquid crystal display
JP3194873B2 (en) Active matrix type liquid crystal display device and driving method thereof
JP3774855B2 (en) Liquid crystal display device and manufacturing method.
JP2005010721A (en) Liquid crystal display device
KR20010105256A (en) Liquid crystal display
JP2002268076A (en) Liquid crystal display device
JP4187027B2 (en) Display device
JP2002122876A (en) Liquid crystal display device
KR20020054909A (en) Apparatus for fringe field switching liquid crystal display device and method for manufacturing the same
JP2000250065A (en) Liquid crystal image display device and production of semiconductor device for image display device
JP3337011B2 (en) Active matrix type liquid crystal display device and manufacturing method thereof
JP2004094221A (en) Liquid crystal display
JP2862739B2 (en) Liquid crystal display
JP3592704B2 (en) Active matrix type liquid crystal display
JP2000111953A (en) Active matrix type liquid crystal display device
JP2002169183A (en) Liquid crystal display element and information processor provided therewith
JP3490361B2 (en) Active matrix type liquid crystal display
JP2001356747A (en) Active matrix type liquid crystal display device and its driving method
KR100488941B1 (en) Apparatus for fringe field switching mode liquid crystal display device
JP3480722B2 (en) Active matrix type liquid crystal display device and driving method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A59 Written plea

Free format text: JAPANESE INTERMEDIATE CODE: A59

Effective date: 20050430

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20050628