JP3400630B2 - 粉末状光触媒による水の浄化方法 - Google Patents
粉末状光触媒による水の浄化方法Info
- Publication number
- JP3400630B2 JP3400630B2 JP33706295A JP33706295A JP3400630B2 JP 3400630 B2 JP3400630 B2 JP 3400630B2 JP 33706295 A JP33706295 A JP 33706295A JP 33706295 A JP33706295 A JP 33706295A JP 3400630 B2 JP3400630 B2 JP 3400630B2
- Authority
- JP
- Japan
- Prior art keywords
- photocatalyst
- fine particles
- water
- aluminum hydroxide
- iron hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011941 photocatalyst Substances 0.000 title claims description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 31
- 238000000034 method Methods 0.000 title description 19
- 238000000746 purification Methods 0.000 title description 2
- 239000010419 fine particle Substances 0.000 claims description 21
- 235000014413 iron hydroxide Nutrition 0.000 claims description 18
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 claims description 18
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 17
- 229920000642 polymer Polymers 0.000 claims description 16
- 239000010802 sludge Substances 0.000 claims description 6
- 238000000926 separation method Methods 0.000 description 12
- 239000012528 membrane Substances 0.000 description 9
- 238000004062 sedimentation Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 239000000701 coagulant Substances 0.000 description 5
- 239000011246 composite particle Substances 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- -1 iron ions Chemical class 0.000 description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000010800 human waste Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 238000013032 photocatalytic reaction Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000004045 organic chlorine compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 238000007539 photo-oxidation reaction Methods 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Catalysts (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、粉末状光触媒を用
いて水を浄化する方法に関するものであり、特に粉末状
光触媒を使用した後容易に分離できて再循環使用でき
る、水の浄化を効率よく行える水を浄化する方法に関す
るものである。 【0002】 【従来の技術】従来より粉末状光触媒を用いて光照射を
行うことによる水の処理方法が数多く実験室レベルで検
討されているが、次のような固液分離上の問題点が解決
されていないため、実用規模で実施されている例はな
い。 1.光触媒反応は触媒粒子表面における光化学反応であ
るため、表面積の大きい粉末状の光触媒を用いる方法の
方が光触媒を担体に固定化したものを用いる方法よりも
反応速度が著しく大きく有利である。しかしながら、表
面積を大きくする関係から選択した、粒径がミクロンオ
ーダーの光触媒微粒子は沈降分離がきわめて困難である
ため、粉末状の光触媒を低コストで効果的に固液分離す
る方法がなく、したがって粉末状の光触媒を用いる方法
は実用化できなかった。 2.粉末状の光触媒は、UF膜やMF膜により固液分離
することはできるが、膜分離のポンプ動力コストが高
く、処理水量が多い場合は実用的でない。また、膜の単
位面積当たりの透過水量が少ないため、大容量の原水を
処理する場合、所要膜面積が膨大になり、それに伴って
膜のコストも膨大になる。 【0003】すなわち、粉末状光触媒による水の浄化方
法は、処理水量が少なく膜分離が使用できる場合以外は
実用的でなかった。また、例えば、最近の文献である
「ゾル・ゲル法による二酸化チタン薄膜を用いた水中の
トリクロロエチレンの光触媒分解」〔水環境学会誌、第
17巻第5号第324〜329頁(1994年)〕の報
文には、粉末状の光触媒を汚染水中に懸濁させると、汚
染物質を光酸化処理後、光触媒を回収できず連続処理が
困難であることが報告されており、技術的にもまたコス
ト的にも成り立つ段階に至っていない。 【0004】 【発明が解決しようとする課題】したがって、本発明
は、光照射処理の後の粉末状の光触媒を膜分離を用いず
に低コストで確実に沈降分離でき、分離された光触媒を
永続的に再利用できる技術を開発することをその課題と
するものである。 【0005】 【課題を解決するための手段】本発明者は、鋭意検討の
結果、処理対象原水に粉末状光触媒と水酸化鉄微粒子及
び/又は水酸化アルミニウム微粒子とを共存せしめ、光
を照射したのち、高分子凝集剤を添加して沈降分離し、
分離スラッジを光照射工程に返送することを特徴とする
水の浄化方法により、上記の課題を解決することができ
ることを見出し、本発明を完成するに至った。なお、本
発明においてその処理の対象とする水は、し尿処理施設
の凝集沈殿処理水、下水、生物学的処理工程からの処理
水など各種の水を指すが、これらの水を「処理対象原
水」といい、あるいは単に「原水」ということがある。 【0006】 【発明の実施の形態】以下、本発明の実施の形態を作用
とともに具体的に説明する。図1に示すように、反応器
1内に導入された処理対象原水3中で、酸化チタン、酸
化亜鉛、硫化カドミウムなどの光触媒微粒子と水酸化鉄
微粒子及び/又は水酸化アルミニウム微粒子とを十分に
攪拌する。攪拌は、機械攪拌よりも図示の空気吹き込み
による攪拌の方が簡単である。反応器1内には紫外線を
照射する光源ランプ2が設置されているが、光源ランプ
2の代わりに太陽光を利用してもよい。光触媒微粒子の
懸濁濃度は1000〜10000mg/リットル程度が
よく、好ましくは2000〜6000mg/リットルで
ある。また、水酸化鉄及び/又は水酸化アルミニウムの
懸濁濃度は、光触媒微粒子の懸濁濃度と同程度がよい。
なお、水酸化鉄は弱い光触媒作用を示すので、光触媒反
応を高くするためには水酸化アルミニウムを使用するよ
りも好ましい。 【0007】水酸化鉄微粒子及び/又は水酸化アルミニ
ウム微粒子を反応器1内に共存させる方法としては、運
転開始当初に原水3中又は反応器1内に、塩化第二鉄、
ポリ硫酸鉄、硫酸アルミニウム、ポリ塩化アルミニウム
などの無機凝集剤を添加し、鉄イオン又はアルミニウム
イオンと水酸イオン(OH- )との反応によって水酸化
鉄フロック及び/又は水酸化アルミニウムフロックを生
成させる方法が簡単であるので好ましい。ただし、所定
量の水酸化鉄フロック及び/又は水酸化アルミニウムフ
ロックが生成した後は、無機凝集剤の添加を中止する。 【0008】このように水酸化鉄微粒子及び/又は水酸
化アルミニウム微粒子を反応器1内に共存させた結果、
光触媒微粒子は単独では存在することができず、水酸化
鉄フロック及び/又は水酸化アルミニウムフロックに吸
着した複合粒子として反応器1内を懸濁流動する。な
お、光触媒を水酸化鉄や水酸化アルミニウムと共存させ
ても光触媒効果が何ら失われないことを確認した。ま
た、原水3に含まれる種々の有機物(COD、TOC、
色度、農薬、有機塩素化合物など)は反応器1内に所要
時間滞留する間に光触媒により助長された光反応によっ
て強力に酸化分解される。 【0009】次に、反応器1から流出するスラリーに高
分子凝集剤5を添加し、管路などで攪拌すると、スラリ
ー中の微粒子は速やかに大粒径のフロックに成長し、沈
降分離槽6において急速に沈降し、光触媒粒子を含まな
い清澄な処理水7が得られることが認められた。前記高
分子凝集剤5としては、アニオン系又はノニオン系の高
分子凝集剤が適している。光触媒微粒子のみに高分子凝
集剤5を添加しても、このような効果的なフロック形成
は起きず、分散したままの光触媒微粒子が大量に残留す
る。すなわち、光触媒微粒子を効果的にフロック形成さ
せるためには、水酸化鉄フロック及び/又は水酸化アル
ミニウムフロックの共存が不可欠なのである。このよう
な現象が起きる原因は必ずしも明らかではないが、水酸
化鉄フロック及び/又は水酸化アルミニウムフロックの
界面に高分子凝集剤との架橋反応を生じさせる表面水酸
基が多量に存在するのに対し、光触媒微粒子は結晶性で
あるため表面水酸基が少なく、高分子凝集剤との架橋反
応が生じにくいためではないかと考えられる。 【0010】次に、沈降分離槽6で沈降した光触媒粒子
(水酸化鉄や水酸化アルミニウムとの複合粒子)は返送
光触媒8として反応器1に返送され、光触媒として再利
用される。複合粒子に吸着した高分子凝集剤5は、反応
器1において光触媒による強力な酸化作用により高分子
の鎖が切断され低分子化し、さらに高度に酸化分解し消
失する。そのため、光触媒複合粒子の界面が更新される
ためと考えられるが、再び流出スラリー4に高分子凝集
剤5が添加されると、効果的にフロッキュレーション
(フロック形成)が進むことになると推定される。仮に
高分子凝集剤が酸化分解されないとすると、高分子凝集
剤分子が光触媒複合粒子に吸着する部位が失われ、高分
子凝集剤を添加してもフロックが形成されなくなるはず
であるが、実験ではこのような現象は認められないの
で、前記の推定は妥当であるといえる。 【0011】なお、高分子凝集剤5を添加せず、その代
わりに塩化第二鉄、ポリ硫酸鉄、硫酸アルミニウム、ポ
リ塩化アルミニウムなどの無機凝集剤を反応器1の運転
中に連続的に添加する方法でも光触媒微粒子を凝集沈降
することは可能であるが、無機凝集剤の添加に伴って水
酸化鉄フロック及び/又は水酸化アルミニウムフロック
が大量に生成するため、沈降分離槽6から汚泥を系外に
引き抜かなければならず、その際に光触媒粒子が一緒に
系外に引き抜かれてしまうという重大な欠点があるほ
か、汚泥処理が必要になるという欠点もある。 【0012】 【実施例】 実施例1 し尿処理施設(無希釈で生物学的に窒素を除去した後、
凝集沈殿する方式)の凝集沈殿処理水(SS:11mg
/リットル、COD:92mg/リットル、色度:15
0度)を対象に、図1の工程に準じて本発明の効果を試
験した。試験条件は次のとおりであった。 【0013】 【表1】 【0014】以上の条件で3か月連続運転を行ったとこ
ろ、光触媒は効果的に沈降分離でき、処理水の水質は安
定してSS:3mg/リットル以下、COD:2mg/
リットル以下、色度ゼロであった。試験期間中、光触媒
の補給は不要であった。水酸化鉄の補給も不要であっ
た。 【0015】実施例2 水酸化鉄の代わりに水酸化アルミニウムを2000mg
/リットルを共存させて、実施例1と同様の試験を行っ
た結果、処理水として水質がSS:3mg/リットル、
COD:2.8mg/リットル、色度ゼロのものが得ら
れた。 また、光触媒である酸化チタンは容易に凝集分
離することができた。 実施例3 光触媒として酸化チタンに代えて酸化亜鉛を4000m
g/リットル懸濁させて実施例1と同様の試験を行った
結果、光触媒は容易に凝集分離することができたが、処
理水の水質はCOD:27mg/リットルに低下した。 比較例1 実施例1において水酸化鉄又は水酸化アルミニウムを共
存させずに高分子凝集剤のみを添加して凝集分離を試み
たところ、処理水の水質はSS:550〜700mg/
リットルに悪化した。 【0016】 【発明の効果】以上説明したように、本発明によれば次
のような効果がもたらされる。 1.固液分離コストが高い膜分離法を用いることなく、
粉末状光触媒を沈降法により簡単かつ確実に固液分離す
ることができる。 2.固液分離した光触媒を永続的に再利用することがで
きる。 3.光触媒を無機凝集剤で凝集沈殿する方法とは異な
り、汚泥が発生しないので汚泥処理が不要であり、かつ
光触媒が系外に流出しない。
いて水を浄化する方法に関するものであり、特に粉末状
光触媒を使用した後容易に分離できて再循環使用でき
る、水の浄化を効率よく行える水を浄化する方法に関す
るものである。 【0002】 【従来の技術】従来より粉末状光触媒を用いて光照射を
行うことによる水の処理方法が数多く実験室レベルで検
討されているが、次のような固液分離上の問題点が解決
されていないため、実用規模で実施されている例はな
い。 1.光触媒反応は触媒粒子表面における光化学反応であ
るため、表面積の大きい粉末状の光触媒を用いる方法の
方が光触媒を担体に固定化したものを用いる方法よりも
反応速度が著しく大きく有利である。しかしながら、表
面積を大きくする関係から選択した、粒径がミクロンオ
ーダーの光触媒微粒子は沈降分離がきわめて困難である
ため、粉末状の光触媒を低コストで効果的に固液分離す
る方法がなく、したがって粉末状の光触媒を用いる方法
は実用化できなかった。 2.粉末状の光触媒は、UF膜やMF膜により固液分離
することはできるが、膜分離のポンプ動力コストが高
く、処理水量が多い場合は実用的でない。また、膜の単
位面積当たりの透過水量が少ないため、大容量の原水を
処理する場合、所要膜面積が膨大になり、それに伴って
膜のコストも膨大になる。 【0003】すなわち、粉末状光触媒による水の浄化方
法は、処理水量が少なく膜分離が使用できる場合以外は
実用的でなかった。また、例えば、最近の文献である
「ゾル・ゲル法による二酸化チタン薄膜を用いた水中の
トリクロロエチレンの光触媒分解」〔水環境学会誌、第
17巻第5号第324〜329頁(1994年)〕の報
文には、粉末状の光触媒を汚染水中に懸濁させると、汚
染物質を光酸化処理後、光触媒を回収できず連続処理が
困難であることが報告されており、技術的にもまたコス
ト的にも成り立つ段階に至っていない。 【0004】 【発明が解決しようとする課題】したがって、本発明
は、光照射処理の後の粉末状の光触媒を膜分離を用いず
に低コストで確実に沈降分離でき、分離された光触媒を
永続的に再利用できる技術を開発することをその課題と
するものである。 【0005】 【課題を解決するための手段】本発明者は、鋭意検討の
結果、処理対象原水に粉末状光触媒と水酸化鉄微粒子及
び/又は水酸化アルミニウム微粒子とを共存せしめ、光
を照射したのち、高分子凝集剤を添加して沈降分離し、
分離スラッジを光照射工程に返送することを特徴とする
水の浄化方法により、上記の課題を解決することができ
ることを見出し、本発明を完成するに至った。なお、本
発明においてその処理の対象とする水は、し尿処理施設
の凝集沈殿処理水、下水、生物学的処理工程からの処理
水など各種の水を指すが、これらの水を「処理対象原
水」といい、あるいは単に「原水」ということがある。 【0006】 【発明の実施の形態】以下、本発明の実施の形態を作用
とともに具体的に説明する。図1に示すように、反応器
1内に導入された処理対象原水3中で、酸化チタン、酸
化亜鉛、硫化カドミウムなどの光触媒微粒子と水酸化鉄
微粒子及び/又は水酸化アルミニウム微粒子とを十分に
攪拌する。攪拌は、機械攪拌よりも図示の空気吹き込み
による攪拌の方が簡単である。反応器1内には紫外線を
照射する光源ランプ2が設置されているが、光源ランプ
2の代わりに太陽光を利用してもよい。光触媒微粒子の
懸濁濃度は1000〜10000mg/リットル程度が
よく、好ましくは2000〜6000mg/リットルで
ある。また、水酸化鉄及び/又は水酸化アルミニウムの
懸濁濃度は、光触媒微粒子の懸濁濃度と同程度がよい。
なお、水酸化鉄は弱い光触媒作用を示すので、光触媒反
応を高くするためには水酸化アルミニウムを使用するよ
りも好ましい。 【0007】水酸化鉄微粒子及び/又は水酸化アルミニ
ウム微粒子を反応器1内に共存させる方法としては、運
転開始当初に原水3中又は反応器1内に、塩化第二鉄、
ポリ硫酸鉄、硫酸アルミニウム、ポリ塩化アルミニウム
などの無機凝集剤を添加し、鉄イオン又はアルミニウム
イオンと水酸イオン(OH- )との反応によって水酸化
鉄フロック及び/又は水酸化アルミニウムフロックを生
成させる方法が簡単であるので好ましい。ただし、所定
量の水酸化鉄フロック及び/又は水酸化アルミニウムフ
ロックが生成した後は、無機凝集剤の添加を中止する。 【0008】このように水酸化鉄微粒子及び/又は水酸
化アルミニウム微粒子を反応器1内に共存させた結果、
光触媒微粒子は単独では存在することができず、水酸化
鉄フロック及び/又は水酸化アルミニウムフロックに吸
着した複合粒子として反応器1内を懸濁流動する。な
お、光触媒を水酸化鉄や水酸化アルミニウムと共存させ
ても光触媒効果が何ら失われないことを確認した。ま
た、原水3に含まれる種々の有機物(COD、TOC、
色度、農薬、有機塩素化合物など)は反応器1内に所要
時間滞留する間に光触媒により助長された光反応によっ
て強力に酸化分解される。 【0009】次に、反応器1から流出するスラリーに高
分子凝集剤5を添加し、管路などで攪拌すると、スラリ
ー中の微粒子は速やかに大粒径のフロックに成長し、沈
降分離槽6において急速に沈降し、光触媒粒子を含まな
い清澄な処理水7が得られることが認められた。前記高
分子凝集剤5としては、アニオン系又はノニオン系の高
分子凝集剤が適している。光触媒微粒子のみに高分子凝
集剤5を添加しても、このような効果的なフロック形成
は起きず、分散したままの光触媒微粒子が大量に残留す
る。すなわち、光触媒微粒子を効果的にフロック形成さ
せるためには、水酸化鉄フロック及び/又は水酸化アル
ミニウムフロックの共存が不可欠なのである。このよう
な現象が起きる原因は必ずしも明らかではないが、水酸
化鉄フロック及び/又は水酸化アルミニウムフロックの
界面に高分子凝集剤との架橋反応を生じさせる表面水酸
基が多量に存在するのに対し、光触媒微粒子は結晶性で
あるため表面水酸基が少なく、高分子凝集剤との架橋反
応が生じにくいためではないかと考えられる。 【0010】次に、沈降分離槽6で沈降した光触媒粒子
(水酸化鉄や水酸化アルミニウムとの複合粒子)は返送
光触媒8として反応器1に返送され、光触媒として再利
用される。複合粒子に吸着した高分子凝集剤5は、反応
器1において光触媒による強力な酸化作用により高分子
の鎖が切断され低分子化し、さらに高度に酸化分解し消
失する。そのため、光触媒複合粒子の界面が更新される
ためと考えられるが、再び流出スラリー4に高分子凝集
剤5が添加されると、効果的にフロッキュレーション
(フロック形成)が進むことになると推定される。仮に
高分子凝集剤が酸化分解されないとすると、高分子凝集
剤分子が光触媒複合粒子に吸着する部位が失われ、高分
子凝集剤を添加してもフロックが形成されなくなるはず
であるが、実験ではこのような現象は認められないの
で、前記の推定は妥当であるといえる。 【0011】なお、高分子凝集剤5を添加せず、その代
わりに塩化第二鉄、ポリ硫酸鉄、硫酸アルミニウム、ポ
リ塩化アルミニウムなどの無機凝集剤を反応器1の運転
中に連続的に添加する方法でも光触媒微粒子を凝集沈降
することは可能であるが、無機凝集剤の添加に伴って水
酸化鉄フロック及び/又は水酸化アルミニウムフロック
が大量に生成するため、沈降分離槽6から汚泥を系外に
引き抜かなければならず、その際に光触媒粒子が一緒に
系外に引き抜かれてしまうという重大な欠点があるほ
か、汚泥処理が必要になるという欠点もある。 【0012】 【実施例】 実施例1 し尿処理施設(無希釈で生物学的に窒素を除去した後、
凝集沈殿する方式)の凝集沈殿処理水(SS:11mg
/リットル、COD:92mg/リットル、色度:15
0度)を対象に、図1の工程に準じて本発明の効果を試
験した。試験条件は次のとおりであった。 【0013】 【表1】 【0014】以上の条件で3か月連続運転を行ったとこ
ろ、光触媒は効果的に沈降分離でき、処理水の水質は安
定してSS:3mg/リットル以下、COD:2mg/
リットル以下、色度ゼロであった。試験期間中、光触媒
の補給は不要であった。水酸化鉄の補給も不要であっ
た。 【0015】実施例2 水酸化鉄の代わりに水酸化アルミニウムを2000mg
/リットルを共存させて、実施例1と同様の試験を行っ
た結果、処理水として水質がSS:3mg/リットル、
COD:2.8mg/リットル、色度ゼロのものが得ら
れた。 また、光触媒である酸化チタンは容易に凝集分
離することができた。 実施例3 光触媒として酸化チタンに代えて酸化亜鉛を4000m
g/リットル懸濁させて実施例1と同様の試験を行った
結果、光触媒は容易に凝集分離することができたが、処
理水の水質はCOD:27mg/リットルに低下した。 比較例1 実施例1において水酸化鉄又は水酸化アルミニウムを共
存させずに高分子凝集剤のみを添加して凝集分離を試み
たところ、処理水の水質はSS:550〜700mg/
リットルに悪化した。 【0016】 【発明の効果】以上説明したように、本発明によれば次
のような効果がもたらされる。 1.固液分離コストが高い膜分離法を用いることなく、
粉末状光触媒を沈降法により簡単かつ確実に固液分離す
ることができる。 2.固液分離した光触媒を永続的に再利用することがで
きる。 3.光触媒を無機凝集剤で凝集沈殿する方法とは異な
り、汚泥が発生しないので汚泥処理が不要であり、かつ
光触媒が系外に流出しない。
【図面の簡単な説明】
【図1】本発明の工程を示す説明図である。
【符号の説明】
1 反応器
2 光源ランプ
3 原水
4 空気
5 高分子凝集剤
6 沈降分離槽
7 処理水
8 返送光触媒
─────────────────────────────────────────────────────
フロントページの続き
(51)Int.Cl.7 識別記号 FI
C02F 1/56 C02F 1/56 Z
(58)調査した分野(Int.Cl.7,DB名)
C02F 1/70 - 1/78
C02F 1/30 - 1/32
C02F 1/52 - 1/56
Claims (1)
- (57)【特許請求の範囲】 【請求項1】 処理対象原水に粉末状光触媒と水酸化鉄
微粒子及び/又は水酸化アルミニウム微粒子とを共存せ
しめ、光を照射したのち、高分子凝集剤を添加して沈降
分離し、分離スラッジを光照射工程に返送することを特
徴とする水の浄化方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33706295A JP3400630B2 (ja) | 1995-12-25 | 1995-12-25 | 粉末状光触媒による水の浄化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33706295A JP3400630B2 (ja) | 1995-12-25 | 1995-12-25 | 粉末状光触媒による水の浄化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09174067A JPH09174067A (ja) | 1997-07-08 |
JP3400630B2 true JP3400630B2 (ja) | 2003-04-28 |
Family
ID=18305077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33706295A Expired - Fee Related JP3400630B2 (ja) | 1995-12-25 | 1995-12-25 | 粉末状光触媒による水の浄化方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3400630B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100390652B1 (ko) * | 1999-07-16 | 2003-07-07 | 주식회사 에콜로넷 | 광촉매 반응을 이용한 폐수의 처리방법 |
CN1298641C (zh) * | 2005-06-28 | 2007-02-07 | 天津大学 | 集光催化氧化反应-膜分离处理抗生素制药工业废水的方法 |
CN103232102A (zh) * | 2013-05-09 | 2013-08-07 | 同济大学 | 一种加速纳米颗粒悬浮液固液分离的方法 |
-
1995
- 1995-12-25 JP JP33706295A patent/JP3400630B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09174067A (ja) | 1997-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1261369C (zh) | 用于水和废水的处理方法和装置 | |
JP3883445B2 (ja) | 汚水処理装置 | |
US5575919A (en) | Method for removing toxic substances in water | |
US2204703A (en) | Treatment of wastes | |
KR100446042B1 (ko) | 포말분리법, 중공사막필터 여과법과 고급산화공법을연계한 산업폐수 중수처리시스템 | |
JP3676654B2 (ja) | Cod含有水の浄化処理方法および装置 | |
JP3400630B2 (ja) | 粉末状光触媒による水の浄化方法 | |
JP2004267855A (ja) | 光触媒を利用する水処理装置 | |
Mennell et al. | Treatment of primary effluent by lime precipitation and dissolved air flotation | |
JPS63258690A (ja) | 有機性汚水の処理方法 | |
JP3790950B2 (ja) | 沈降性の良い光触媒の製造方法及び水の浄化方法 | |
JP3392298B2 (ja) | 汚水の処理方法 | |
JP4531823B2 (ja) | 汚水処理用薬品を再利用する汚水処理装置及び汚水処理方法 | |
JPH11290894A (ja) | 高分子有機物を含む廃液の処理方法 | |
KR101768989B1 (ko) | 이산화티탄이 함유된 하수 또는 폐수를 처리하는 방법 | |
JP2000237759A (ja) | 凝集及び光触媒化学酸化による水の浄化方法 | |
JPH09117773A (ja) | 有機物溶存廃液の処理方法 | |
JP2000140510A (ja) | 凝集分離装置 | |
JPH06269799A (ja) | 汚泥の処理方法 | |
JPH1076275A (ja) | 廃水処理剤 | |
JP2000301161A (ja) | 水の凝集処理及び凝集汚泥の利用方法 | |
JP2000185289A (ja) | 廃水処理方法及び装置 | |
JPS63258692A (ja) | 有機性汚水の処理方法 | |
JP2715616B2 (ja) | 塗料汚水の浄化処理方法 | |
JPH0445237B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |