JP3211070B2 - 高純度窒素ガス製造方法及び装置 - Google Patents

高純度窒素ガス製造方法及び装置

Info

Publication number
JP3211070B2
JP3211070B2 JP02755594A JP2755594A JP3211070B2 JP 3211070 B2 JP3211070 B2 JP 3211070B2 JP 02755594 A JP02755594 A JP 02755594A JP 2755594 A JP2755594 A JP 2755594A JP 3211070 B2 JP3211070 B2 JP 3211070B2
Authority
JP
Japan
Prior art keywords
purity
liquid nitrogen
nitrogen gas
rectification
rectification column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02755594A
Other languages
English (en)
Other versions
JPH07218121A (ja
Inventor
雅敏 會田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Japan GK
Original Assignee
Air Liquide Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12224308&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3211070(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide Japan GK filed Critical Air Liquide Japan GK
Priority to JP02755594A priority Critical patent/JP3211070B2/ja
Publication of JPH07218121A publication Critical patent/JPH07218121A/ja
Application granted granted Critical
Publication of JP3211070B2 publication Critical patent/JP3211070B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04818Start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • F25J3/04909Structured packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は高純度窒素ガス製造方法
及び装置、特に原料空気より規則充填物式精留塔を用い
て高純度窒素ガスを製造するようにした方法及び装置に
関するものである。
【0002】
【従来の技術】従来、原料空気より精留塔を用いて高純
度窒素ガスを製造するようにした装置としては、例えば
特開昭62−158975号公報に示されたものがあ
る。
【0003】図4はこのような従来の装置であって、1
は高純度液体窒素貯槽、2は精留塔、3は高純度窒素ガ
ス凝縮器、4は主熱交換器、6は精留部、7は液化器、
9は空気圧縮機、10は冷却器、13はドレン分離器、
14は吸着塔、15は製品ガス取り出し管、16は真空
保冷函、17は蒸発器を示す。
【0004】このような従来の装置では精留塔2として
精留板式精留塔を用い、次のようにして製品高純度窒素
ガスを製造している。
【0005】すなわち、空気圧縮機9により原料空気を
圧縮し、ドレン分離器13により圧縮された空気中の水
分を除去し、冷却器10により冷却し、吸着塔14に送
り込み、空気中のH2 OおよびCO2 を吸着除去する。
このH2 O,CO2 が吸着除去された圧縮空気を、精留
板式精留塔2から窒素ガス取り出し管を経て送り込まれ
る製品高純度窒素ガス等によって冷却されている主熱交
換器4に送り込んで超低温に冷却し、その状態で精留板
式精留塔2の下部内に投入する。ついで、この投入圧縮
空気を、高純度液体窒素貯槽1から精留板式精留塔2内
に送り込まれた高純度液体窒素および液体窒素溜めから
の溢流液体窒素と接触させて冷却し、一部を液化して塔
内の底部に液体空気として溜める。この過程において、
窒素と酸素の沸点の差により、圧縮空気中の高沸点成分
である酸素が液化し、窒素が気体のまま残る。ついで、
この気体のまま残った窒素を上記窒素ガス取り出し管を
介して主熱交換器4に送り込み、常温近くまで昇温させ
製品ガス取り出し管15から製品高純度窒素ガスとして
送り出す。
【0006】他方、精留板式精留塔2の下部に溜まった
液体空気は、高純度窒素ガス凝縮器3内に送り込み液化
器7を冷却させる。この冷却により、精留板式精留塔2
の上部から第1の還流液用通路を通って液化器7に送入
された窒素ガスが液化して塔内の還流液となり、第2の
還流液用通路を経て精留板式精留塔2に戻る。
【0007】高純度液体窒素貯槽1から精留板式精留塔
2内に送り込まれた高純度液体窒素は、圧縮空気液化用
の寒冷源として作用し、それ自身は気化して高純度窒素
ガスと合体して製品化される。
【0008】また、精留板式精留塔2から製品ガス取り
出し管15に流れる製品高純度窒素ガスの不足分を補う
ため、高純度液体窒素貯槽1から常時一定量の高純度液
体窒素が蒸発器17に流入して気化し製品ガス取り出し
管15に供給される。
【0009】上記蒸発器17は高純度液体窒素貯槽1に
近接した位置で精留板式精留塔2ならびに高純度液体窒
素貯槽1を収容している真空保冷函16の壁面に取り付
け、蒸発器17における高純度液体窒素の気化潜熱によ
って真空保冷函16を冷却するようにしている
【0010】なお、上記従来の精留板式精留塔2の精留
部6では、図5に示すように精留板6aが水平に配設さ
れ、そこに一定量の還流液(液体窒素)を貯留し、その
還流液と気液接触させるために下方から窒素リッチ空気
を上昇させるものであり、しかも、高純度にするため上
記精留板6aを100段以上配置し、これら各精留板6
aに対する還流液の貯留を上から順に行なうことになる
ので高純度窒素ガス製造するまでに長い時間を必要とし
た。
【0011】また、真空保冷函16は外部から熱侵入の
多いものであるため、真空保冷函16に密着設置した蒸
発器17の冷熱で冷却しており、しかも蒸発器17に液
体窒素を送り込むための加圧蒸発器を含む加圧サイクル
が無いため、上記真空保冷函16に外部から侵入する熱
で高純度液体窒素貯槽1の高純度液体窒素を気化するこ
とにより上記高純度液体窒素貯槽1の内圧を高くしてい
る。
【0012】
【発明が解決しようとする課題】上記のような従来の精
留板式精留塔を用いたものでは、精留塔が冷却されてな
くとも7〜8時間の時間をかければ窒素ガスを製造でき
るので、例えば一日24時間、6ケ月間連続運転する等
の場合には適用できるが、例えば一日24時間のうち8
時間だけ窒素ガスを製造し、残りの16時間は停止する
ような場合、即ち毎日運転と停止を繰り返す必要がある
場合には、適用できない欠点があった。
【0013】また、月曜日から金曜日まで一週間で5日
間更にその5日間も、1日に8時間しか稼動させないよ
うな場合には、上記のように冷熱が断熱容器から失われ
る窒素ガス製造装置では、液体窒素貯槽の内圧が高くな
り窒素ガスを無駄に放出しなければならないので、より
完全な断熱容器を必要とする欠点があった。
【0014】本発明は上記の欠点を除くようにしたもの
である。
【0015】
【課題を解決するための手段】本発明は、液化空気から
高純度窒素ガスを製造する装置において、精留塔の精留
部にその精留面に多数の孔を有する規則充填物を用い、
上から流下する還流液(液体窒素)を直ちに下に流し得
るようにし、下から向流する窒素リッチ空気と速やかに
気液接触せしめ、精留が行なわれるようにしたものであ
る。
【0016】また、本発明の高純度窒素ガス製造装置に
おいては、高純度液体窒素貯槽、規則充填物式精留塔、
高純度窒素ガス凝縮器、主熱交換器及びそれらの連結導
管を二重殻式単一断熱容器に収納し、この断熱容器の内
殻と外殻の間に真空空間をつくり、その空間を10-2
ール(Torr)より低い真空圧力に減圧し、更にその
空間には断熱材を充填し、極力単一真空断熱容器の冷熱
が外部に漏れずに、また、外部より冷熱も侵入しないよ
うにする。また、このため高純度液体窒素貯槽からの液
体窒素の送出には加圧蒸発器を通る加圧サイクルが働く
ようにする。
【0017】本発明の高純度窒素ガス製造装置は、高純
度液体窒素貯槽と、高純度窒素凝縮器と、規則充填物式
精留塔と、主熱交換器と、これら及びこれら相互の連結
導管とを収納する単一断熱容器と、上記高純度液体窒素
貯槽から高純度液体窒素を上記規則充填物式精留塔上部
に導入する手段と、外部より取り入れた圧縮原料空気か
ら二酸化炭素及び水分を除去する手段と、この圧縮原料
空気を上記主熱交換器で液化点近くまで冷却し上記規則
充填物式精留塔下部に導入する手段とより成り、上記規
則充填物式精留塔がその精留面に多数の孔を形成した充
填物を用いており、上記圧縮原料空気より製品高純度窒
素ガスを精留分離することを特徴とする。
【0018】
【0019】また、本発明の高純度窒素ガス製造装置に
は、高純度液体窒素を気化する加圧サイクルとバックア
ップサイクルが付加されている。
【0020】
【0021】
【0022】また、本発明の高純度窒素ガス製造方法
は、高純度液体窒素貯槽から高純度液体窒素を規則充填
物式精留塔上部に導入する工程と、外部より取り入れた
圧縮原料空気から二酸化炭素及び水分を除去する工程
と、この圧縮原料空気を主熱交換器内で規則充填物式精
留塔からの製品高純度窒素ガス及び廃ガスと熱交換せし
めて液化点近くまで冷却する工程と、この冷却した圧縮
原料空気を上記規則充填物式精留塔下部に導入する工程
と、この圧縮原料空気を上記規則充填物式精留塔内で上
記高純度液体窒素貯槽からの高純度液体窒素及び高純度
窒素凝縮器で液化された高純度液体窒素とに気液接触さ
せる工程とより成り、上記圧縮原料空気より製品高純度
窒素ガスを精留分することを特徴とする。
【0023】また、本発明の高純度窒素ガス製造方法で
は、上記高純度液体窒素貯槽からの高純度液体窒素を冷
熱として上記規則充填物式精留塔内に断続的に導入する
ことにより断続運転せしめる。
【0024】上記のように、精留板が水平に配設されて
いる精留板式精留塔では高純度窒素ガスを製造するた
め、精留板が100段以上必要であり、その各精留板に
一定量の還流液(還流液は精留板の上部程窒素の純度が
高く、下部程窒素の純度が低く、酸素が混入してい
る。)を貯留しなければ精留塔下部から上昇する窒素リ
ッチ空気と有効に気液接触が行なわれない。このため、
高純度窒素ガス製造装置を一旦停止し、精留板式精留塔
の精留板から還流液がなくなると、たとえ精留塔内の底
部に液体があっても、再稼動させるためには2〜3時間
の時間を必要とする。
【0025】しかしながら、本発明の高純度窒素ガス製
造装置において用いる規則充填物式精留塔は、精留段が
100以上あっても水平に対して充填物の精留面が傾斜
して配設され、この充填物が精留塔内に一定の空隙をも
って整然と充填され、上から流下する還流液と下から昇
る窒素リッチ空気とが均一に気液接触するようになって
いるので、高純度窒素ガス製造装置が一旦停止しても精
留塔底部に液体があれば5〜10分で再稼動させること
ができ、たとえ精留塔底部に液体が無くても、高純度液
体窒素貯槽から冷熱として高純度液体窒素を規則充填式
精留塔に導入することにより同様に5〜10分で再稼動
させることができる。また本発明の高純度窒素ガス製造
装置では24時間又は6ケ月間でも連続運転できること
は勿論である。
【0026】また、本発明の高純度窒素ガス製造装置に
おいては、二重殻式単一断熱容器内に高純度液体窒素貯
槽、規則充填物式精留塔、高純度窒素ガス凝縮器、主熱
交換器及びそれらの連続導管を収納し、冷熱の損失を極
力押さえているので長時間停止しても無駄に液体窒素が
気化することがない。また、高純度液体窒素貯槽から高
純度液体窒素送出のため加圧用蒸発器を備えた加圧サイ
クルを設けているので高純度窒素ガス製造装置を断続的
に運転できる。
【0027】
【実施例】以下図面によって本発明の実施例を説明す
る。
【0028】本発明においては、図1に示すように高純
度液体窒素貯槽1と、規則充填物式精留塔2と高純度窒
素ガス凝縮器3と、主熱交換器4と、これらを連結する
連結導管とを単一真空断熱容器5に収納する。
【0029】上記高純度液体窒素貯槽1は、高純度窒素
ガス製造装置運転に必要な冷熱となる高純度液体窒素と
この高純度液体窒素ガス製造装置が停止時に気化して供
給される高純度窒素ガスとをまとめて貯蔵するためのも
のである。
【0030】上記規則充填物式精留塔2は、その精留部
6を図2に示すように水平に対し規則的角度で傾斜し、
規則的間隔で表裏波型に屈折し、更に規則的な多数の孔
のある面を持つ充填物6bを多数規則的に充填して構成
する。
【0031】上記高純度窒素ガス凝縮器3は、上記精留
部6で分離された窒素ガスを主成分とする低沸点成分を
導入し、この窒素ガスを液化器7で凝縮液化し、高純度
液体窒素として上記精留部6に戻して流下し、上記液化
器7で凝縮液化されない低沸点ガス(H2 ,He)等を
外部に排出するように構成する。
【0032】上記主熱交換器4では、規則充填物式精留
塔2からの製品高純度窒素ガスと凝縮器3で気化した廃
ガスとが持つ冷熱で外部より導入された常温の圧縮原料
空気を冷却し、圧縮原料空気を液化点近くまで降温し、
他方上記製品高純度窒素ガスと廃ガスとは常温の圧縮原
料空気で暖められ常温に近い温度に昇温されるようにす
る。
【0033】また、上記単一真空断熱容器5は二重殻と
し、内殻と外殻の間の空隙を10-2トール(Torr)
より低い真空圧力に減圧し、更にこの空隙には断熱材を
充填して単一真空断熱容器5内の冷熱が外部に漏れない
ように、また外部より熱(または冷熱)が浸入しないよ
うに構成する。
【0034】本発明の高純度窒素ガス製造装置の高純度
窒素ガス製造工程を以下説明する。
【0035】まず冷却工程として、図1に示すように単
一真空断熱容器5内に収納した高純度液体窒素貯槽1に
外部より高純度液体窒素を導入し、この高純度液体窒素
貯槽1より導管P1 ,弁V1 ,導管P2 を介して上記規
則充填物式精留塔2に例えば圧力8ATAで高純度液体
窒素を導入し、気化した高純度窒素ガスは導管P15より
導出し、主熱交換器4の冷熱として使用後、窒素ガスの
純度が低下されるので導管P16に挿入されている図示し
ていない弁により導管P16の流路を切り換えて排出す
る。
【0036】上記規則充填物式精留塔2の底部に貯留し
た残りの純度が低下した液体窒素は導管P3 により導出
し、膨張弁V2 で圧力約1.5ATAまで膨張させ、導
管P 4 を通して高純度窒素ガス凝縮器3に導入して、気
化させ、この高純度窒素ガス凝縮器3頂部より気化した
低純度窒素ガスを導管P5 で導出し、上記主熱交換器4
に導入する。
【0037】このようにして上記単一真空断熱容器5内
の各機器を冷却し、冷熱を失い低純度になった窒素ガス
は導管P6 により上記単一真空断熱容器5外に導出し、
切換式除炭乾燥器8a,8bを通して導管P7 により廃
ガスとして排出する。
【0038】本発明においては、上記精留部6は図5に
示すような精留板式精留部ではなく、上記図2に示すよ
うな規則充填物式精留部6を使用している。図5に示す
ように精留板式精留塔の精留部6は精留板6aが水平に
配設されており、窒素ガスを分離するため液体窒素で冷
却する場合でも100段以上の精留板6aに液体窒素を
上から順次貯留する必要があり、これには長い時間を必
要とする。しかし、図2に示すような規則充填物式精留
部6は精留面が水平に対して傾斜して配設されており、
精留板式と同じ段数であっても直ちに上記規則充填物式
精留塔2の塔底に液体窒素を流下させ単一真空断熱容器
5内の各機器を速やかに冷却することができる。
【0039】次に高純度窒素ガス製造工程として、上述
の冷却工程の後導管P2 により高純度液体窒素を上記規
則充填物式精留塔2に導入する一方、図1に示すよう
に、例えば1000Nm3 /hの原料空気を空気濾過器
(図示せず)により除塵した後、空気圧縮機9に導入し
て、空気分離に必要な圧力、例えば約8.5ATAまで
圧縮する。この圧縮した原料空気は導管P8 を介して冷
却器10で冷却し、導管P9 を介して切換式除炭乾燥器
8a,8bの一方に導入し、圧縮原料空気中の二酸化炭
素と水分を除去する。
【0040】この切換式除炭乾燥器8a,8bには流路
切り換えのため、開閉弁V3 〜V10が設けられており、
除炭乾燥剤としてアルミナゲル、モレキュラーシーブス
等が充填されている。
【0041】上記冷却器10で冷却した圧縮原料空気
は、導管P9 ,弁V3 を介して除炭乾燥器8aに導入
し、炭酸ガスと水分やアセチレン等を吸着した後弁
9 ,導管P10を介して上記単一真空断熱容器5内の上
記主熱交換器4に導入し、初めは導管P5 とP15により
上記主熱交換器4に導入された純度が低下した窒素ガス
により冷却する。
【0042】除々に通常運転に切り換わり、導管P5
ら後述する酸素リッチの廃ガスを上記熱交換器4に導入
し、また、同時に導管P15により導出された後述する製
品高純度窒素ガスを主熱交換器4に導入し、導管P10
より主熱交換器4に導入された圧縮原料空気と熱交換
し、圧縮原料空気を液化点近くまで冷却し、導管P11
より上記規則充填物式精留塔2の精留部6の下部に圧力
約8.0ATA、温度約−165℃で導入する。
【0043】上記の圧力温度条件下においては圧縮原料
空気の一部は液化され、上記規則充填物式精留塔2の底
部に酸素リッチ液体空気として貯留され残部は窒素リッ
チ空気として上記規則充填物式精留塔2内を上昇してい
く。
【0044】上記規則充填物式精留塔2内を上昇した窒
素リッチ空気は、規則充填物の傾斜精留面を流下する還
流液と気液接触し精留され窒素ガスとなって上昇するか
らこれを導管P12により高純度窒素ガス凝縮器3の液化
器7に導入し、窒素ガスを液化し導管P13により上記規
則充填物式精留塔2内に高純度液体窒素として戻し、一
部は気化して製品高純度窒素ガスとして導管P15を介し
て上記主熱交換器4に導入し、残部は還流液として流下
せしめる。上記液化器7で液化されない低沸点成分(H
2 ,He等)は導管P14,弁V11を介して排出する。
【0045】上記主熱交換器4に導入された圧力約7.
7ATA、約400Nm3 /hの製品高純度窒素ガスは
圧縮原料空気と熱交換され常温となるからこれを導管P
16を介して使用先に供給する。また、同時に上記主熱交
換器4に導入された約600Nm3 /hの廃ガスは同様
に圧縮原料空気と熱交換され常温となるからこれを導管
6 及び弁V8 を介して上記切換式除炭乾燥器8bに導
入し、この除炭乾燥器8bに吸着されている炭酸ガスや
水分やアセチレン等と共に弁V6 、導管P7 を介して排
気すると共に除炭乾燥器8bを再生する。
【0046】上記切換式除炭乾燥器8a,8bは一定時
間毎に流路を切り換え運転する。
【0047】製品高純度窒素ガス導管P16に連絡してい
るバックアップライン導管P19の圧力が低下した場合
は、自動圧力調整弁V13を作動して高純度液体窒素貯槽
1から導管P17を介して高純度液体窒素を導出し、蒸発
器12で気化し、自動圧力調整弁V13を介して導管P19
に高純度窒素ガスを供給せしめる。
【0048】導管P1 とP17による高純度液体窒素供給
によって高純度液体窒素貯槽1の内圧が低下した場合に
は、加圧サイクルラインの導管P18に挿入されている自
動圧力調整弁V12を作動し、高純度液体窒素を導管P17
を介して蒸発器11に導入して気化し、自動圧力調整弁
12、導管P18を介して高純度液体窒素貯槽1に戻し、
高純度液体窒素貯槽1内の圧力を所定圧に昇圧せしめ
る。
【0049】本発明の他の実施例においては、図3に示
すように規則充填物式精留部6の充填物6bとしての屈
折精留板に多数の孔あき突起を形成し、この孔を介して
その上部からの還流液を落下し、下部から窒素リッチ空
気を上昇せしめ、上記精留部6で激しく乱流状態で気液
接触状態を形成せしめ、これにより精留が良好に行なわ
れ、その結果精留段数を削減可能ならしめる。
【0050】なお、上記の孔を微小孔とし、上部からの
還流液の一部が充填物面からこの微小孔を介して浸透す
る形で滴下し残部は充填物面に沿って流下し、下部から
の窒素リッチ空気と気液接触されるようにしても良い。
【0051】
【発明の効果】従来、一日8時間運転し、残り16時間
は停止しているような高純度窒素ガス供給設備として
は、液体窒素貯槽と蒸発器を組み合わせた高純度窒素ガ
ス供給設備以外提案されていないが、本発明の高純度窒
素ガス製造装置によれば上記従来の高純度窒素ガス供給
設備に精留塔を組み込むことが可能になり、しかも冷熱
の損失を極力押さえることが可能になる。従って、小規
模の高純度窒素ガス供給の場合においてもエネルギー消
費量を大幅に下げることが可能になり、高純度窒素ガス
製造装置で高純度窒素を供給しても経済的に成立するよ
うになる大きな利益がある。
【図面の簡単な説明】
【図1】本発明の高純度窒素ガス製造装置の構成図であ
る。
【図2】本発明の高純度窒素ガス製造装置における規則
充填物式精留塔の充填物説明図である。
【図3】本発明の他の実施例における規則充填物式精留
塔の充填物の要部の拡大断面図である。
【図4】従来の高純度窒素ガス製造装置の構成図であ
る。
【図5】従来の高純度窒素ガス製造装置における精留板
式精留塔の精留板説明図である。
【符号の説明】
1 高純度液体窒素貯槽 2 精留塔 3 高純度窒素ガス凝縮器 4 主熱交換器 5 真空断熱容器 6 精留部 6a 精留板 6b 充填物 7 液化器 8a 切換式除炭乾燥器 8b 切換式除炭乾燥器 9 空気圧縮機 10 冷却器 11 蒸発器 12 蒸発器 13 ドレン分離器 14 吸着塔 15 製品ガス取り出し管 16 真空保冷函 17 蒸発器

Claims (4)

    (57)【特許請求の範囲】
  1. 【請求項1】 高純度液体窒素貯槽と、高純度窒素凝縮
    器と、規則充填物式精留塔と、主熱交換器と、これら及
    びこれら相互の連結導管とを収納する単一断熱容器と、
    上記高純度液体窒素貯槽から高純度液体窒素を上記規則
    充填物式精留塔上部に導入する手段と、外部より取り入
    れた圧縮原料空気から二酸化炭素及び水分を除去する手
    段と、この圧縮原料空気を上記主熱交換器で液化点近く
    まで冷却し上記規則充填物式精留塔下部に導入する手段
    とより成り、上記規則充填物式精留塔がその精留面に多
    数の孔を形成した充填物を用いており、上記圧縮原料空
    気より製品高純度窒素ガスを精留分離することを特徴と
    する高純度窒素ガス製造装置。
  2. 【請求項2】 高純度液体窒素貯槽と、高純度窒素凝縮
    器と、規則充填物式精留塔と、主熱交換器と、これら及
    びこれら相互の連結導管とを収納する単一断熱容器と、
    上記高純度液体窒素貯槽から高純度液体窒素を上記規則
    充填物式精留塔上部に導入する手段と、外部より取り入
    れた圧縮原料空気から二酸化炭素及び水分を除去する手
    段と、この圧縮原料空気を上記主熱交換器で液化点近く
    まで冷却し上記規則充填物式精留塔下部に導入する手段
    とより成り、上記規則充填物式精留塔がその精留面に多
    数の孔あき突起のついた充填物を用いていることを特徴
    とする高純度窒素ガス製造装置。
  3. 【請求項3】 高純度液体窒素を気化する加圧サイクル
    とバックアップサイクルとを付加したことを特徴とする
    請求項1または2記載の高純度窒素ガス製造装置。
  4. 【請求項4】 高純度液体窒素貯槽から高純度液体窒素
    その精留面に多数の孔を形成した充填物を用いた規則
    充填物式精留塔上部に導入する工程と、 外部より取り入れた圧縮原料空気から二酸化炭素及び水
    分を除去する工程と、 この圧縮原料空気を主熱交換器内で規則充填物式精留塔
    からの製品高純度窒素ガス及び廃ガスと熱交換せしめて
    液化点近くまで冷却する工程と、 この冷却した圧縮原料空気を上記規則充填物式精留塔下
    部に導入する工程と、 この圧縮原料空気を上記規則充填物式精留塔内で上記高
    純度液体窒素貯槽からの高純度液体窒素及び高純度窒素
    凝縮器で液化された高純度液体窒素とに気液接触させる
    工程とより成り、 上記圧縮原料空気より製品高純度窒素ガスを精留分類す
    ることを特徴とする高純度窒素ガス製造方法。
JP02755594A 1994-02-01 1994-02-01 高純度窒素ガス製造方法及び装置 Expired - Lifetime JP3211070B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02755594A JP3211070B2 (ja) 1994-02-01 1994-02-01 高純度窒素ガス製造方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02755594A JP3211070B2 (ja) 1994-02-01 1994-02-01 高純度窒素ガス製造方法及び装置

Publications (2)

Publication Number Publication Date
JPH07218121A JPH07218121A (ja) 1995-08-18
JP3211070B2 true JP3211070B2 (ja) 2001-09-25

Family

ID=12224308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02755594A Expired - Lifetime JP3211070B2 (ja) 1994-02-01 1994-02-01 高純度窒素ガス製造方法及び装置

Country Status (1)

Country Link
JP (1) JP3211070B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200497734Y1 (ko) 2021-10-22 2024-02-13 희 달 유 멸치건조판

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3447437B2 (ja) * 1995-07-26 2003-09-16 日本エア・リキード株式会社 高純度窒素ガス製造装置
JPH09184681A (ja) * 1995-11-02 1997-07-15 Teisan Kk 超高純度窒素及び酸素の製造装置
JPH09217982A (ja) * 1996-02-09 1997-08-19 Nippon Sanso Kk 空気液化分離装置及び空気液化分離方法
JP6774905B2 (ja) 2017-04-19 2020-10-28 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 液化ガス供給予備システムおよび液化ガス予備供給方法
FR3118145B1 (fr) * 2020-12-23 2023-03-03 Air Liquide Procédé de redémarrage d’un appareil de séparation d’air

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200497734Y1 (ko) 2021-10-22 2024-02-13 희 달 유 멸치건조판

Also Published As

Publication number Publication date
JPH07218121A (ja) 1995-08-18

Similar Documents

Publication Publication Date Title
KR860006681A (ko) 고순도 질소 및 산소 가스 제조장치
KR890001744B1 (ko) 고순도 질소가스 제조장치
KR900005985B1 (ko) 고순도 질소가스 제조 장치
WO1987001184A1 (en) Oxygen gas production unit
US20060272352A1 (en) Air separator
JP3211070B2 (ja) 高純度窒素ガス製造方法及び装置
CN106524666A (zh) 一体化移动式天然气液化装置
JP2585955B2 (ja) 空気分離装置
US8549878B2 (en) Method of generating nitrogen and apparatus for use in the same
JPS6158747B2 (ja)
JPH08291967A (ja) 空気分離方法およびそれに用いる装置
KR100427138B1 (ko) 공기분리방법및그에사용하는장치
JPS6119902B2 (ja)
JPH0942831A (ja) 高純度窒素ガス製造装置
JPH10325674A (ja) 空気液化分離装置
JPH09217982A (ja) 空気液化分離装置及び空気液化分離方法
JP3021389B2 (ja) 高純度窒素ガス製造装置
JP2686050B2 (ja) 高純度窒素ガス製造装置
JP3476526B2 (ja) 窒素ガス製造装置
JPH0882476A (ja) 高純度窒素ガス製造装置
JPH0620073Y2 (ja) 液体窒素貯蔵装置
JPH0514152Y2 (ja)
JPS6152388B2 (ja)
JPH0533912Y2 (ja)
JPH0418223B2 (ja)