JP3063209B2 - 容量型加速度センサ - Google Patents

容量型加速度センサ

Info

Publication number
JP3063209B2
JP3063209B2 JP3090037A JP9003791A JP3063209B2 JP 3063209 B2 JP3063209 B2 JP 3063209B2 JP 3090037 A JP3090037 A JP 3090037A JP 9003791 A JP9003791 A JP 9003791A JP 3063209 B2 JP3063209 B2 JP 3063209B2
Authority
JP
Japan
Prior art keywords
substrate
electrode
acceleration sensor
capacitive acceleration
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3090037A
Other languages
English (en)
Other versions
JPH04299267A (ja
Inventor
止水城 桜井
史郎 桑原
仲根 國江
良太 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP3090037A priority Critical patent/JP3063209B2/ja
Priority to US07/853,292 priority patent/US5388460A/en
Publication of JPH04299267A publication Critical patent/JPH04299267A/ja
Application granted granted Critical
Publication of JP3063209B2 publication Critical patent/JP3063209B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0002Arrangements for avoiding sticking of the flexible or moving parts
    • B81B3/0008Structures for avoiding electrostatic attraction, e.g. avoiding charge accumulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pressure Sensors (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、電極が形成された基板
同士を陽極接合して形成した容量型加速度センサに関す
る。
【0002】
【従来技術】容量型加速度センサは移動電極を有する一
方の基板と固定電極を有する他方の基板との各電極を対
向させてそれら両基板を陽極接合して構成される。上記
一方の基板に形成された移動電極はその周囲からバネ性
を有した複数のビームにて支持されている。そして、加
速度を受けるとそれらビームが撓んで一方の基板の移動
電極と他方の基板に形成された固定電極との間隔が変化
する。容量型加速度センサはこの両電極間の間隔が変化
することによる容量の変化により加速度を測定してい
る。一般に、容量Cは、次式にて求められる。 C=εS/d (ε:誘電率,S:電極面
積,d:電極間隔)
【0003】
【発明が解決しようとする課題】ここで、両基板には、
陽極接合時に静電力Pe が発生する。この静電力Pe
次式にて求められる。 Pe=εSV2/2d2 (ε:誘電率,S:電極面積,V:電圧,d:電極間
隔) 即ち、静電力Pe は陽極接合時に両基板間に印加さる電
圧Vの二乗に比例して大きくなる。そして、この静電力
e が両基板間に作用すると、一方の基板に形成され移
動電極をその周囲から支持する撓み易い部分である上記
複数のビームなどが他方の基板側に引っ張られることに
なる。
【0004】上記容量型加速度センサは、例えば、一方
の基板の材質をシリコン(Si )、他方の基板の材質を
ガラス、更に、基台の材質をガラスとした三層構造から
成る。そして、各ガラスとシリコンとは周知の陽極接合
により接合される。先ず、一方の基板を 0V、他方の基
板を-800Vとして陽極接合される。この接合工程におい
ては、両基板表面に蓄積される電荷により両基板間に大
きな静電力Pe が生じる。すると、一方の基板に形成さ
れた複数のビームが対向する他方の基板の表面に吸着さ
れるという状況が起こる。このような状況が起こると、
容量型加速度センサは加速度を受けても両電極間の間隔
が変化できなくなり、以降の容量の検出が不可能となる
という問題があった。更に、一方の基板を 0V、基台を
-900Vとして陽極接合される。この接合工程において
は、一方の基板と基台との表面に蓄積される電荷により
一方の基板と基台との間に大きな静電力Pe が生じる。
すると、一方の基板に形成された移動電極の裏面側が対
向する基台の表面に吸着されるという状況が起こる。こ
のような状況が起こった場合にも、上述と同様に、容量
型加速度センサは以降の容量の検出が不可能となるとい
う問題があった。
【0005】本発明は、上記の課題を解決するために成
されたものであり、その目的とするところは、陽極接合
の接合工程における静電力にて必要以外の部分が吸着す
ることなく、接合後において正常に動作することのでき
る容量型加速度センサを提供することである。
【0006】
【課題を解決するための手段】上記課題を解決するため
の発明の構成は、一方の基板の周囲からバネ性を有した
ビームにて支持され形成された移動電極と他方の基板に
形成された固定電極とを微小ギャップを有するように対
向させてそれら両基板を陽極接合し、前記両電極間の容
量の変化により加速度を測定する容量型加速度センサで
あって、前記一方の基板に形成された前記ビームに対向
して前記他方の基板の前記固定電極の周囲に形成され、
前記一方の基板に短絡されるダミー電極を備えたことを
特徴とする。
【0007】
【作用】ダミー電極は一方の基板の移動電極を周囲から
バネ性を有して支持するビームに対向して他方の基板の
固定電極の周囲に形成される。そして、上記ダミー電極
は上記一方の基板に短絡される。すると、陽極接合のと
き、一方の基板に形成された上記ビームと他方の基板に
形成されたダミー電極とは同電位となり、それらの間に
は静電力が生じない。
【0008】
【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1は本発明に係る容量型加速度センサ10を
示した中央縦断面図である。又、図2は図1の容量型加
速度センサ10のシリコン基板20を移動電極21側か
ら見た平面図である。又、図3は図1の容量型加速度セ
ンサ10のガラス基板30を固定電極31側から見た平
面図である。そして、図4は図1の容量型加速度センサ
10の基台40を接合面側から見た平面図である。
【0009】容量型加速度センサ10は移動電極21な
どが形成されたシリコン基板20と固定電極31が形成
されたガラス基板30とガラスから成る基台40とから
主として構成されている。上記移動電極21と固定電極
31とが微小ギャップを有するように対向させて両基板
20,30を陽極接合し、更に、それらを基台40上に
陽極接合している。上記移動電極21はシリコン基板2
0の表面に不純物としてリン拡散により形成され、その
下部に加速度により移動するおもり22を有する。又、
シリコン基板20には移動電極21をその周囲からバネ
性を有して支持する4本の細いビーム23a,23b,
23c,23dが形成されている。又、上記固定電極3
1はガラス基板30上にアルミニウムなどの金属を蒸着
して形成されている。尚、上記移動電極21の下部のお
もり22及び上記ビーム23a,23b,23c,23
d等はシリコン基板20をエッチングすることで達成さ
れる。
【0010】ガラス基板30が陽極接合されたシリコン
基板20の周辺部にはCMOS回路を用いたIC50が
配設されている。又、シリコン基板20の表面にはリン
拡散による移動電極21と同時に配線25が形成され、
その配線25により移動電極21とIC50とが接続さ
れている。
【0011】ここで、ガラス基板30に形成された固定
電極31の周囲にはシリコン基板20に形成されたビー
ム23a,23b,23c,23dに対向してダミー電
極32が形成されている。このダミー電極32には陽極
接合時、上記シリコン基板20に短絡するように端子部
33が形成されている。又、基台40にはシリコン基板
20に形成されたおもり22に対向してダミー電極41
が形成されている。このダミー電極41には陽極接合
時、上記シリコン基板20に短絡するように端子部42
が形成されている。
【0012】上述したように、陽極接合の接合工程で
は、先ず、シリコン基板20が 0V、ガラス基板30が
-800Vとされる。ところで、ガラス基板30のダミー電
極32はその端子部33を介してシリコン基板20に短
絡している。即ち、シリコン基板20に形成されたビー
ム23a,23b,23c,23dとガラス基板30に
形成されたダミー電極32とは同電位となる。すると、
ビーム23a,23b,23c,23dとダミー電極3
2との間には、陽極接合時に上述の静電力Pe は生じる
ことがない。従って、シリコン基板20に形成されたビ
ーム23a,23b,23c,23dが対向するガラス
基板30の表面に吸着することがなくなる。更に、陽極
接合のためシリコン基板20が 0V、基台40が-900V
とされる。ところで、基台40のダミー電極41はその
端子部42を介してシリコン基板20に短絡している。
即ち、シリコン基板20に形成されたおもり22と基台
40に形成されたダミー電極41とは同電位となる。す
ると、おもり22とダミー電極41との間には、陽極接
合時に上述の静電力Pe は生じることがない。従って、
シリコン基板20に形成されたおもり22が対向する基
台40の表面に吸着することがなくなる。
【0013】尚、上記ガラス基板30のダミー電極32
の端子部33や上記基台40のダミー電極41の端子部
42はできるだけ小さくて確実に短絡できるように設け
ることが良い。この理由としては、陽極接合時にシリコ
ン基板20とガラス基板30との接合面やシリコン基板
20と基台40との接合面における端子部33,42の
厚みによる隙間を最小限とし、それら接合面の密着性が
悪くならないようにするためである。
【0014】
【発明の効果】本発明は、一方の基板に形成されたビー
ムに対向して他方の基板の固定電極の周囲に形成され、
一方の基板に短絡されるダミー電極を備えており、陽極
接合時に一方の基板に形成されたビームと他方の基板に
形成されたダミー電極とは同電位となり、それらの間に
静電力が生じることはない。従って、一方の基板の移動
電極をその周囲からバネ性を有して支持するビームなど
が対向する他方の基板の表面に吸着することが防止され
る。従って、本発明の容量型加速度センサにおいては、
陽極接合した後に電極間の間隔が変化できなくなり容量
が検出できなくなるという不都合が解消される。
【図面の簡単な説明】
【図1】本発明の具体的な一実施例に係る容量型加速度
センサを示した中央縦断面図である。
【図2】図1の容量型加速度センサのシリコン基板を移
動電極側から見た平面図である。
【図3】図1の容量型加速度センサのガラス基板を固定
電極側から見た平面図である。
【図4】図1の容量型加速度センサの基台を接合面側か
ら見た平面図である。
【符号の説明】
10−容量型加速度センサ 20−シリコン基板
21−移動電極 22−おもり 23a,23b,23c,23d−ビ
ーム 30−ガラス基板 31−固定電極 32−ダミー
電極 40−基台 41−ダミー電極 50−IC
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高木 良太 愛知県刈谷市朝日町1丁目1番地 豊田 工機株式会社内 (56)参考文献 特開 平2−134570(JP,A) 特開 平1−152369(JP,A) 特開 平4−116465(JP,A) 特開 平4−130670(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01P 15/125 H01L 29/84

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】 一方の基板の周囲からバネ性を有したビ
    ームにて支持され形成された移動電極と他方の基板に形
    成された固定電極とを微小ギャップを有するように対向
    させてそれら両基板を陽極接合し、前記両電極間の容量
    の変化により加速度を測定する容量型加速度センサであ
    って、前記一方の基板に形成された前記ビームに対向し
    て前記他方の基板の前記固定電極の周囲に形成され、前
    記一方の基板に短絡されるダミー電極を備えたことを特
    徴とする容量型加速度センサ。
JP3090037A 1991-03-27 1991-03-27 容量型加速度センサ Expired - Lifetime JP3063209B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3090037A JP3063209B2 (ja) 1991-03-27 1991-03-27 容量型加速度センサ
US07/853,292 US5388460A (en) 1991-03-27 1992-03-18 Capacitive sensor for detecting a physical value such as acceleration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3090037A JP3063209B2 (ja) 1991-03-27 1991-03-27 容量型加速度センサ

Publications (2)

Publication Number Publication Date
JPH04299267A JPH04299267A (ja) 1992-10-22
JP3063209B2 true JP3063209B2 (ja) 2000-07-12

Family

ID=13987457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3090037A Expired - Lifetime JP3063209B2 (ja) 1991-03-27 1991-03-27 容量型加速度センサ

Country Status (2)

Country Link
US (1) US5388460A (ja)
JP (1) JP3063209B2 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2831195B2 (ja) * 1992-03-25 1998-12-02 富士電機株式会社 半導体加速度センサ
US5665915A (en) * 1992-03-25 1997-09-09 Fuji Electric Co., Ltd. Semiconductor capacitive acceleration sensor
DE4311762C2 (de) * 1993-04-08 1995-02-02 Josef Dr Kemmer Verfahren zur Verbindung elektrischer Kontaktstellen
JP2586406B2 (ja) * 1994-10-27 1997-02-26 日本電気株式会社 静電容量型加速度センサ
DE4439238A1 (de) * 1994-11-03 1996-05-09 Telefunken Microelectron Kapazitiver Beschleunigungssensor
US5901031A (en) * 1995-02-01 1999-05-04 Murata Manufacturing Co., Ltd. Variable capacitor
JPH08279444A (ja) * 1995-04-07 1996-10-22 Nec Corp 微小構造体およびその製造方法
US6196067B1 (en) * 1998-05-05 2001-03-06 California Institute Of Technology Silicon micromachined accelerometer/seismometer and method of making the same
CA2254538C (en) 1998-11-26 2006-02-07 Canpolar East Inc. Collision deformation sensor for use in the crush zone of a vehicle
CA2254535C (en) 1998-11-26 2003-10-28 Canpolar East Inc. Sensor for detection of acceleration and attitude within a vehicle
US6257062B1 (en) 1999-10-01 2001-07-10 Delphi Technologies, Inc. Angular Accelerometer
US6393914B1 (en) 2001-02-13 2002-05-28 Delphi Technologies, Inc. Angular accelerometer
US6761070B2 (en) 2002-01-31 2004-07-13 Delphi Technologies, Inc. Microfabricated linear accelerometer
NO315915B1 (no) * 2002-02-25 2003-11-10 Sintef Elektronikk Og Kybernet Fj¶rvekt
US6718826B2 (en) 2002-02-28 2004-04-13 Delphi Technologies, Inc. Balanced angular accelerometer
US6666092B2 (en) 2002-02-28 2003-12-23 Delphi Technologies, Inc. Angular accelerometer having balanced inertia mass
US7194376B2 (en) * 2004-04-27 2007-03-20 Delphi Technologies, Inc. Circuit and method of processing multiple-axis sensor output signals
US20050235751A1 (en) * 2004-04-27 2005-10-27 Zarabadi Seyed R Dual-axis accelerometer
JP4572686B2 (ja) * 2005-01-14 2010-11-04 パナソニック電工株式会社 静電容量型半導体物理量センサ及びその製造方法
US20060207327A1 (en) * 2005-03-16 2006-09-21 Zarabadi Seyed R Linear accelerometer
US7250322B2 (en) * 2005-03-16 2007-07-31 Delphi Technologies, Inc. Method of making microsensor
US7640805B2 (en) * 2006-12-18 2010-01-05 Akustica, Inc. Proof-mass with supporting structure on integrated circuit-MEMS platform
WO2008086537A2 (en) * 2007-01-11 2008-07-17 Analog Devices, Inc. Aluminum based bonding of semiconductor wafers
JP2014052263A (ja) * 2012-09-06 2014-03-20 Nippon Dempa Kogyo Co Ltd 外力検出装置及び外力検出センサー
US9250144B2 (en) * 2013-07-24 2016-02-02 Ncr Corporation Dual capacitor load cell
US9810712B2 (en) 2014-08-15 2017-11-07 Seiko Epson Corporation Physical quantity sensor, physical quantity sensor device, electronic equipment, and moving body
JP6464613B2 (ja) 2014-08-27 2019-02-06 セイコーエプソン株式会社 物理量センサー、電子機器および移動体
JP6327384B2 (ja) * 2017-05-18 2018-05-23 セイコーエプソン株式会社 物理量センサー、電子機器、および移動体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165114A (ja) * 1984-09-06 1986-04-03 Yokogawa Hokushin Electric Corp 容量式変換装置
US5195371A (en) * 1988-01-13 1993-03-23 The Charles Stark Draper Laboratory, Inc. Semiconductor chip transducer
US5134887A (en) * 1989-09-22 1992-08-04 Bell Robert L Pressure sensors

Also Published As

Publication number Publication date
JPH04299267A (ja) 1992-10-22
US5388460A (en) 1995-02-14

Similar Documents

Publication Publication Date Title
JP3063209B2 (ja) 容量型加速度センサ
US5864063A (en) Electrostatic capacity-type acceleration sensor
EP0718632B1 (en) Torsion beam accelerometer
EP0490419B1 (en) Accelerometer
US8084285B2 (en) Forming a micro electro mechanical system
JPH07191055A (ja) 静電容量式加速度センサ
JPH0623782B2 (ja) 静電容量式加速度センサ及び半導体圧力センサ
JP2003240797A (ja) 半導体加速度センサ
CN100373161C (zh) 加速度传感器
US20050178203A1 (en) Physical quantity sensor having sensor chip and circuit chip
US9511993B2 (en) Semiconductor physical quantity detecting sensor
US5535626A (en) Sensor having direct-mounted sensing element
JPH06342007A (ja) 半導体加速度センサおよびその試験方法
US7225675B2 (en) Capacitance type dynamic quantity sensor
JP2728237B2 (ja) 静電容量式加速度センサ
JP3265641B2 (ja) 半導体加速度センサ
US5889311A (en) Semiconductor acceleration sensor
JP3173256B2 (ja) 半導体加速度センサとその製造方法
JP2003136494A (ja) マイクロ構造体、物理量検出装置及びその製造方法
JP4214572B2 (ja) 半導体力学量センサの製造方法
JP3161736B2 (ja) 加速度センサ
JP2002005954A (ja) 半導体力学量センサ
JPH1019923A (ja) 電子部品およびその製造方法
JP3019549B2 (ja) 半導体加速度センサ
JP3310154B2 (ja) 半導体式加速度センサおよびその製造方法