JP2720173B2 - 焦電材料 - Google Patents
焦電材料Info
- Publication number
- JP2720173B2 JP2720173B2 JP63201633A JP20163388A JP2720173B2 JP 2720173 B2 JP2720173 B2 JP 2720173B2 JP 63201633 A JP63201633 A JP 63201633A JP 20163388 A JP20163388 A JP 20163388A JP 2720173 B2 JP2720173 B2 JP 2720173B2
- Authority
- JP
- Japan
- Prior art keywords
- pyroelectric
- temperature
- pbzro
- coefficient
- pyroelectric material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Light Receiving Elements (AREA)
- Inorganic Insulating Materials (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は特に室温付近の作動温度において大きな焦電
係数を有する焦電材料に関する。
係数を有する焦電材料に関する。
近年各種のセンサが開発され、実用に供されるように
なってきたが、その中で赤外線検出を行う焦電素子が知
られている。
なってきたが、その中で赤外線検出を行う焦電素子が知
られている。
焦電素子は焦電体を加工、分極して電極を取り付け、
受光可能な状態で支持台に取り付けたものである。焦電
体の表面に赤外線が照射されると温度が上昇し、表面に
電荷が現われる。従って、焦電体に外部電極を接続して
おけば電流を検出することができる。
受光可能な状態で支持台に取り付けたものである。焦電
体の表面に赤外線が照射されると温度が上昇し、表面に
電荷が現われる。従って、焦電体に外部電極を接続して
おけば電流を検出することができる。
焦電素子の性能は、温度変化に応じてその焦電体表面
上に発生する荷電の量により決まり、これは一般に焦電
係数pと言われている。すなわち、焦電材料の焦電係数
Pは以下の式により表わされる。
上に発生する荷電の量により決まり、これは一般に焦電
係数pと言われている。すなわち、焦電材料の焦電係数
Pは以下の式により表わされる。
(ただし、Psは自発分極、Tは温度) また焦電電流密度iは以下の式により表わされる。
従って、温度の時間変化に比例した電流が流れること
になる。
になる。
このような焦電材料として、PbZrO3−PbTiO3系におい
て、PbZrO3に近い組成のセラミックス(PZT)が提案さ
れている。この材料は、 室温より少し上(約50℃以上)に相転移温度があるこ
とにより、自発分極の温度係数、すなわち焦電係数が大
きく、 誘電率が余り大きくなく、焦電材料としての性能指数
が大きく、電気回路への整合性も良く、 相転移点を超えても、分極処理効果が維持される 等の特徴を有する。
て、PbZrO3に近い組成のセラミックス(PZT)が提案さ
れている。この材料は、 室温より少し上(約50℃以上)に相転移温度があるこ
とにより、自発分極の温度係数、すなわち焦電係数が大
きく、 誘電率が余り大きくなく、焦電材料としての性能指数
が大きく、電気回路への整合性も良く、 相転移点を超えても、分極処理効果が維持される 等の特徴を有する。
しかしながら、PbZrO3−PbTiO3系の焦電材料は、第5
図に示すように、PbZrO3とPbTiO3とのいずれのモル比に
おいても焦電係数が温度により著しく変化し、特に室温
付近においては比較的小さい。従って、人体センサーの
ように室温付近で使用する場合、高感度の焦電素子を作
ることができないという問題がある。そのため、焦電素
子をヒータにより最適温度まで加熱しながら使用しなけ
ればならなかった。
図に示すように、PbZrO3とPbTiO3とのいずれのモル比に
おいても焦電係数が温度により著しく変化し、特に室温
付近においては比較的小さい。従って、人体センサーの
ように室温付近で使用する場合、高感度の焦電素子を作
ることができないという問題がある。そのため、焦電素
子をヒータにより最適温度まで加熱しながら使用しなけ
ればならなかった。
従って、本発明の目的は室温付近において大きな焦電
係数を有する焦電材料を提供することを目的とする。
係数を有する焦電材料を提供することを目的とする。
上記目的に鑑み鋭意研究の結果、本発明者は、PbZrO3
−PbTiO3にPb(Mg1/2W1/2)O3を添加することにより優
れた焦電材料が得られることを発見し、本発明を完成し
た。
−PbTiO3にPb(Mg1/2W1/2)O3を添加することにより優
れた焦電材料が得られることを発見し、本発明を完成し
た。
すなわち本発明の焦電材料はPbZrO370〜93モル%と、
PbTiO36〜10モル%と、Pb(Mg1/2W1/2)O31〜20モル%
とからなることを特徴とする。
PbTiO36〜10モル%と、Pb(Mg1/2W1/2)O31〜20モル%
とからなることを特徴とする。
まず(1−x)PbZrO3−xPbTiO3系焦電材料におい
て、xが0.06〜0.10範囲にある場合、大きな焦電係数を
示す。
て、xが0.06〜0.10範囲にある場合、大きな焦電係数を
示す。
次にこの(1−x)PbZrO3−xPbTiO3系にPb(Mg1/2W
1/2)O3を、全体を100モル%として、1〜20モル%の割
合で添加する。Pb(Mg1/2W1/2)O3の添加量が増大する
につれて焦電材料の相転移温度が低下するとともに、室
温付近の焦電係数pは増加する傾向を示す。
1/2)O3を、全体を100モル%として、1〜20モル%の割
合で添加する。Pb(Mg1/2W1/2)O3の添加量が増大する
につれて焦電材料の相転移温度が低下するとともに、室
温付近の焦電係数pは増加する傾向を示す。
本発明の焦電材料の組成の三角グラフを第1図に示
す。好ましい組成範囲は、(1−x)PbZrO3−xPbTiO3
系においてx=0.06〜0.10であり、かつPb(Mg
1/2W1/2)O3が8〜15モル%である。
す。好ましい組成範囲は、(1−x)PbZrO3−xPbTiO3
系においてx=0.06〜0.10であり、かつPb(Mg
1/2W1/2)O3が8〜15モル%である。
本発明のPbZrO3−PbTiO3−Pb(Mg1/2W1/2)O3系焦電
材料から所望の形状の焦電体を製造するには、種々の方
法を使用することができる。例えば特開昭60−84712号
に記載されているように、必要な成分の酸化物を所定の
割合で配合し、焼成、溶融、加工をすることにより一体
的な焦電体とすることができる。しかし、最近の焦電セ
ンサーの高性能化に伴ない、焦電体が薄膜化され、それ
に応じてRFスパッタリング法、マグネトロンスパッタリ
ング法、イオンビームスパッタリング法、イオンプレー
ティング法、電子ビーム蒸着法、CVD法等の薄膜化技術
を使用するのが好ましい。
材料から所望の形状の焦電体を製造するには、種々の方
法を使用することができる。例えば特開昭60−84712号
に記載されているように、必要な成分の酸化物を所定の
割合で配合し、焼成、溶融、加工をすることにより一体
的な焦電体とすることができる。しかし、最近の焦電セ
ンサーの高性能化に伴ない、焦電体が薄膜化され、それ
に応じてRFスパッタリング法、マグネトロンスパッタリ
ング法、イオンビームスパッタリング法、イオンプレー
ティング法、電子ビーム蒸着法、CVD法等の薄膜化技術
を使用するのが好ましい。
本発明の焦電材料を用いて焦電センサーを作成する場
合、白金、Si等の基板上に焦電体薄膜を形成し、その上
にAu、Al等で電極を形成する。焦電体薄膜の厚さは一般
に1〜10μm程度とするのが好ましい。
合、白金、Si等の基板上に焦電体薄膜を形成し、その上
にAu、Al等で電極を形成する。焦電体薄膜の厚さは一般
に1〜10μm程度とするのが好ましい。
本発明を以下の実施例によりさらに詳細に説明する。
実施例1 第2図に示すようにAl2O3からなる基板1上に下部白
金電極2をRFスパッタ法により形成し、この電極上にPb
Zr0.92Ti0.08O3とPb(Mg1/2W1/2)O3とを種々の割合で
含有する焦電体薄膜3を5μmの厚さに形成した。さら
にこの上に上部Pt電極4をRFスパッタリング法により形
成した。
金電極2をRFスパッタ法により形成し、この電極上にPb
Zr0.92Ti0.08O3とPb(Mg1/2W1/2)O3とを種々の割合で
含有する焦電体薄膜3を5μmの厚さに形成した。さら
にこの上に上部Pt電極4をRFスパッタリング法により形
成した。
このようにして得られた焦電体の相転移温度を測定し
た。結果を第3図に示す。
た。結果を第3図に示す。
第3図から明らかな通り、Pb(Mg1/2W1/2)O3が8〜
15モル%の範囲において相転移温度が約50℃以下となる
ことがわかる。
15モル%の範囲において相転移温度が約50℃以下となる
ことがわかる。
実施例2 PbZr0.92Ti0.08O3とPb(Mg1/2W1/2)O3とを種々の割
合で配合して集電体を形成した。得られた各焦電体薄膜
について、温度と焦電係数との関係を求めた。結果を第
4図に示す。
合で配合して集電体を形成した。得られた各焦電体薄膜
について、温度と焦電係数との関係を求めた。結果を第
4図に示す。
第4図から明らかな通り、Pb(Mg1/2W1/2)O3が8〜
15モル%の範囲の場合、20〜80℃の範囲において十分に
高い焦電係数pを有する。
15モル%の範囲の場合、20〜80℃の範囲において十分に
高い焦電係数pを有する。
以上に詳述した通り、本発明の焦電材料はPbZrO3−Pb
TiO3系にPb(Mg1/2W1/2)O3を添加したものであるの
で、特に室温付近において、十分に高い焦電係数を有す
る。
TiO3系にPb(Mg1/2W1/2)O3を添加したものであるの
で、特に室温付近において、十分に高い焦電係数を有す
る。
このように焦電係数の温度特性が改善された焦電材料
を用いた焦電型赤外線センサーは、室温付近で使用され
る人体検出センサー、非接触型温度センサー等に広く利
用することができる。
を用いた焦電型赤外線センサーは、室温付近で使用され
る人体検出センサー、非接触型温度センサー等に広く利
用することができる。
第1図は本発明の焦電材料の組成を表す三角グラフであ
り、 第2図は本発明の焦電材料を用いた焦電センサーの一例
を示す断面図であり、 第3図はPb(Mg1/2W1/2)O3の添加量(モル%)と相転
移温度との関係を示すグラフであり、 第4図は本発明の焦電材料の焦電係数の温度依存性を示
すグラフであり、 第5図は(1−x)PbZrO3−xPbTiO3系焦電材料の焦電
係数の温度依存性を示すグラフである。
り、 第2図は本発明の焦電材料を用いた焦電センサーの一例
を示す断面図であり、 第3図はPb(Mg1/2W1/2)O3の添加量(モル%)と相転
移温度との関係を示すグラフであり、 第4図は本発明の焦電材料の焦電係数の温度依存性を示
すグラフであり、 第5図は(1−x)PbZrO3−xPbTiO3系焦電材料の焦電
係数の温度依存性を示すグラフである。
Claims (1)
- 【請求項1】PbZrO370〜93モル%と、PbTiO36〜10モル
%と、Pb(Mg1/2W1/2)O31〜20モル%とからなる焦電
材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63201633A JP2720173B2 (ja) | 1988-08-12 | 1988-08-12 | 焦電材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63201633A JP2720173B2 (ja) | 1988-08-12 | 1988-08-12 | 焦電材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0251803A JPH0251803A (ja) | 1990-02-21 |
JP2720173B2 true JP2720173B2 (ja) | 1998-02-25 |
Family
ID=16444311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63201633A Expired - Fee Related JP2720173B2 (ja) | 1988-08-12 | 1988-08-12 | 焦電材料 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2720173B2 (ja) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5264700A (en) * | 1975-11-25 | 1977-05-28 | Murata Manufacturing Co | Piezooelectric ceramic for elastic surface wave element |
JPS6318253A (ja) * | 1986-07-09 | 1988-01-26 | Omron Tateisi Electronics Co | 生化学測定装置 |
-
1988
- 1988-08-12 JP JP63201633A patent/JP2720173B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0251803A (ja) | 1990-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jin et al. | Giant effective pyroelectric coefficients from graded ferroelectric devices | |
US5821598A (en) | Uncooled amorphous YBaCuO thin film infrared detector | |
Schreiter et al. | Sputtering of self-polarized PZT films for IR-detector arrays | |
JPH075036A (ja) | 人体感知センサー及びその製造方法 | |
JP2720173B2 (ja) | 焦電材料 | |
JP2727327B2 (ja) | 焦電材料 | |
EP0274881A1 (en) | Thermal detectors and process for manufacturing the same | |
Bruchhaus et al. | Sputtering of PZT thin films for surface micromachined IR-detector arrays | |
JPH0792025A (ja) | 赤外線センサ | |
Bruchhaus et al. | A 11× 6 element pyroelectric detector array utilizing self-polarized pzt thin films grown by sputtering | |
JP2678625B2 (ja) | 焦電型センサー素子 | |
JP2531231B2 (ja) | 熱型赤外線センサ | |
JPH055291B2 (ja) | ||
JPH03255923A (ja) | 薄膜型サーミスタ素子 | |
JPH10215008A (ja) | 圧電体セラミックス薄膜デバイス | |
JPH06105235B2 (ja) | 湿度検知素子 | |
JPH08136342A (ja) | 赤外線検出器用焦電体素子 | |
JPS63182532A (ja) | 温度センサ及びそれを用いた温度検知器 | |
JPH0810202B2 (ja) | ガス検知方法 | |
JPS643524A (en) | Infrared detecting element | |
JPS643525A (en) | Infrared detecting element | |
JP2571658B2 (ja) | 焦電性磁器組成物 | |
JPS6332328A (ja) | 焦電型赤外線センサ | |
JPS63151828A (ja) | 熱センサ | |
Dudkevich et al. | Light influence on fatigue in PZT films with planar electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |