JP2675998B2 - 粒子高配向性高緻密焼結体の製造法 - Google Patents

粒子高配向性高緻密焼結体の製造法

Info

Publication number
JP2675998B2
JP2675998B2 JP63214282A JP21428288A JP2675998B2 JP 2675998 B2 JP2675998 B2 JP 2675998B2 JP 63214282 A JP63214282 A JP 63214282A JP 21428288 A JP21428288 A JP 21428288A JP 2675998 B2 JP2675998 B2 JP 2675998B2
Authority
JP
Japan
Prior art keywords
highly
sintering
superconducting
manufacturing
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63214282A
Other languages
English (en)
Other versions
JPH0264056A (ja
Inventor
村山  宣光
正信 淡野
修三 神崎
保良 鳥居
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP63214282A priority Critical patent/JP2675998B2/ja
Publication of JPH0264056A publication Critical patent/JPH0264056A/ja
Application granted granted Critical
Publication of JP2675998B2 publication Critical patent/JP2675998B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超電導電線や超電導コイルなど高い臨界電
流密度(Jc)を持つ超電導材料として応用できるビスマ
ス系超電導セラミックスの粒子高配向性微細組織を持つ
高緻密焼結体の製造法を提供するものである。
〔従来技術〕
超電導体には、ゼロ抵抗、ジョセフソン効果、完全反
磁性などの特異な性質があり、それらの現象を利用して
巨大な超電導発電機、超高速コンピュータなどの開発が
見込まれている。最近になって、液体窒素温度(77K)
以上で超電導を示す高温超電導セラミックスが発見され
るに伴い、産業への応用は、電力、エレクトロニクス、
輸送、医療などの各分野で飛躍的に広がり、近未来の社
会を変えてしまうことが予期されている。
しかしながら、これらの材料を実用化するためには10
6A/cm2程度の高い臨界電流密度(Jc)が必要とされる。
ビスマス系超電導セラミックスは105K前後の臨界温度
(Tc)を持ち、高温超電導体としても最も期待されてい
る素材ではあるが、薄板状の微細結晶粒子であるために
充填性も焼結性も悪く、また、臨界電流密度においても
大きな異方性があるため100A/cm2以上のJcを得た報告例
はない。
従来、ビスマス系超電導体については、例えば、特定
の材料組成からなるビスマス系超電導体の高Tc相につい
て、当該ビスマス系のBiをPbにより部分置換することに
よって、出発材料と加熱プロセスが適当な条件に設定さ
れた場合に、高Tc相が形成される反応が生起するととも
に、当該高Tc相が安定化されることを示す研究例が報告
されているが、これはBi系高Tc相のPb置換による安定化
の問題に関するものであり、臨界電流密度に関するもの
ではない。
また、従来、例えば、ホットフォージ(HF)によりイ
ットリウム系超電導体について配向性焼結体を作製した
研究例が報告されているが、その作製方法は、成形と焼
結を別工程で行う方法を採用していることから、焼結体
の作製に2段階の操作が必要であり、また、試料寸法が
HF加工前より大きく変化するものであり(収縮率約55〜
82%)、更に、配向していない焼結体をHF加工するもの
であるので配向度が低く(約30〜50%)、得られたイッ
トリウム系超電導体のJcは110A/cm2程度のものである。
このような状況の中で、超電導実用化の最大の課題と
なっている高Jc化を図るためには、高度な粒子配向性組
織を持つ高緻密焼結体を作製する技術の開発が強く望ま
れている。
〔発明が解決しようとする問題点〕
上記のように、従来、110K級ビスマス系超電導セラミ
ックスの微細結晶粒子は薄板状のものしか得られていな
いが、これらの微細結晶粒子を特定方向に揃えて粒子配
向化させることができれば、焼結性も飛躍的に向上して
結晶粒子間の結合も強くなり、また、超電導の流れる経
路も連続的に接続するようになり、Jcの向上が大いに期
待される。これが実現できれば、無損失の巨大な超電導
コイルの開発に明るい見通しが立ち、電力輸送や電力貯
蔵、リニヤモーターカーなどの実現も容易に加速され
る。
本発明は、上記の点に鑑みて、難焼結性であるビスマ
ス系超電導セラミックス粉体を一軸性の高温加圧成形・
焼結手段により同時的に高温加圧成形・焼結することに
より、粒子高配向性微細組織を持つ高緻密焼結体を得よ
うとするものである。
〔問題点を解決するための手段〕
本発明は、上記目的を達成するために、一般式Bi2-vP
bVSrwCaxCuyOzにおいて、 0.25≦v≦0.50, 1.40≦w≦2.20, 1.60≦x≦2.40, 2.80≦y≦3.50, 9.00≦z≦11.0 の組成範囲で得られる110K級超電導セラミックス粉体を
一軸性の高温加圧成形・焼結手段により同時的に高温加
圧成形・焼結することにより、少なくとも90%以上の配
向性と90%以上の相対密度を有する粒子高配向性微細組
織を持つ高緻密な焼結体を得るとともに、微細結晶粒子
が特定方向に揃った高い臨界電流密度を持つ超電導セラ
ミックス材料を構成するものである。
なお、材料組成は、上記組成範囲のものであれば適宜
のものでよく、また、当該材料組成の110K級超電導セラ
ミックス粉体を成形・焼結するために必要とされる上記
の一軸性の高温加圧成形・焼結の方法としては、ホット
プレス法などがある。
〔作用〕
上記構成によれば、上記組成範囲内での超電導セラミ
ックス粉体を用いることによって110K級の臨界温度を示
し、少なくとも90%以上の配向度と90%以上の相対密度
を保ち、高い臨界電流密度を有する高温超電導セラミッ
クス焼結体の作製が可能である。これにより超電導材料
としての実用化が加速される。
〔実施例〕
以下に実施例及び参考例をあげて説明する。
原料としては、通常入手しうる酸化ビスマス(Bi
2O3)、酸化鉛(PbO)、炭酸ストロンチウム(SrC
O3)、炭酸カルシウム(CaCO3)及び酸化銅(CuO)を用
いた。
Bi1.6Pb0.4Sr1.6Ca2.0Cu2.8O2なる組成の調合物を830
℃、60時間で固相反応させて110K級の超電導セラミック
スの単一相を作り、それを粉砕したものをホットプレス
による一軸性の高温加圧成形・焼結手段を用いて800
℃、39MPaの条件で2時間高温加圧成形・焼結を同時的
に行った。焼結体の密度は6.2kg/cm3で、理論密度の95
%以上であった。臨界温度(Tc)は108℃、77Kで臨界電
流密度を測定すると、Jc=731A/cm2であった。
X線回析法によって調べると、c軸が加圧方向に並行
に配向し、また、a軸ないしb軸が加圧方向に垂直に配
向した焼結体になることが明かとなった。配向度は少な
くとも95%以上であった。
第1図および第2図は、ホットプレスによる一軸性の
高温加圧成形・焼結手段で作製された本発明に係るビス
マス系超電導セラミックスの微細組織を示すもので、そ
れぞれ加圧軸に対して平行な断面および垂直な断面であ
り、当該ビスマス系超電導セラミックスは、この図から
も高度に粒子配向した微細組織を持つ高緻密焼結体であ
ることは明かである。
なお、650MPaの圧力で加圧した成形体とそれを常圧で
焼成した試料のかさ密度は、共に4.8g/cm3であった。常
圧焼結した試料は、臨界温度を105Kに示すが、77KでのJ
cは32A/cm2のかなり小さい値で、これは焼結性が悪く、
さらに、結晶粒子の配向度が小さいためである。
【図面の簡単な説明】
第1図は、ホットプレス法による一軸性の高温加圧成形
・焼結手段で作製した本発明に係るビスマス系超電導セ
ラミックスの加圧軸に対して平行な断面を、第2図は、
その加圧軸に対して垂直な断面を、それぞれ、示す粒子
構造の写真である。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鳥居 保良 愛知県名古屋市西区比良3―435 (56)参考文献 Japanese Journal of Applied Physics Vol.27 No.6 P.L1041〜 1043 Japanese Journal of Applied Physics Vol.27 No.7 P.L1209〜 1212

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】一般式Bi2-vPbVSrwCaxCuyOzにおいて、 0.25≦v≦0.50, 1.40≦w≦2.20, 1.60≦x≦2.40, 2.80≦y≦3.50, 9.00≦z≦11.0 の組成範囲とした110K級酸化物超電導粉体を一軸性の高
    温加圧成形・焼結手段により同時的に高温加圧成形・焼
    結することを特徴とする少なくとも90%以上の配向性と
    90%以上の相対密度を有する粒子高配向性微細組織を持
    つ高温超電導セラミックス高緻密焼結体の製造法。
JP63214282A 1988-08-29 1988-08-29 粒子高配向性高緻密焼結体の製造法 Expired - Lifetime JP2675998B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63214282A JP2675998B2 (ja) 1988-08-29 1988-08-29 粒子高配向性高緻密焼結体の製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63214282A JP2675998B2 (ja) 1988-08-29 1988-08-29 粒子高配向性高緻密焼結体の製造法

Publications (2)

Publication Number Publication Date
JPH0264056A JPH0264056A (ja) 1990-03-05
JP2675998B2 true JP2675998B2 (ja) 1997-11-12

Family

ID=16653154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63214282A Expired - Lifetime JP2675998B2 (ja) 1988-08-29 1988-08-29 粒子高配向性高緻密焼結体の製造法

Country Status (1)

Country Link
JP (1) JP2675998B2 (ja)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Japanese Journal of Applied Physics Vol.27 No.6 P.L1041〜1043
Japanese Journal of Applied Physics Vol.27 No.7 P.L1209〜1212

Also Published As

Publication number Publication date
JPH0264056A (ja) 1990-03-05

Similar Documents

Publication Publication Date Title
JP2859602B2 (ja) 超伝導材料からなる製品の製造方法
US5145829A (en) Method for manufacturing oxide high-temperature superconductor
JP2675998B2 (ja) 粒子高配向性高緻密焼結体の製造法
EP0296893B1 (en) Superconducting material and a process for preparing the same
US5108985A (en) Bi-Pb-Sr-Ca-Cu oxide superconductor containing alkali metal and process for preparation thereof
US5273956A (en) Textured, polycrystalline, superconducting ceramic compositions and method of preparation
JP2859516B2 (ja) 酸化物超電導体およびその製造方法
JP2840349B2 (ja) 高Tc超伝導体とその製造方法
JP3219563B2 (ja) 金属酸化物とその製造方法
JPH02137762A (ja) 配向した多結晶質超伝導体
JP2677882B2 (ja) ビスマス系酸化物超電導体の製造方法
JP3257000B2 (ja) 銅酸化物超電導体及びその製造方法
EP0430568B1 (en) Method of making high Tc superconductor material, and article produced by the method
JP2821568B2 (ja) 超電導ウィスカー複合体の製造方法
JP2969221B2 (ja) 酸化物超電導体の製造方法
JPH02204358A (ja) 酸化物超電導体及びその製法
JPH07187670A (ja) 酸化物超電導体およびその製造方法
JP2789103B2 (ja) 酸化物超電導体およびその製造方法
EP0436723B1 (en) Oxide superconductor and method of producing the same
Shao et al. Growth of the high‐T c phase, flux pinning, and critical current of Bi‐Sr‐Ca‐Cu‐O superconductors
JPH01160825A (ja) 酸化物超電導体の製造方法
JPH02258665A (ja) 超伝導材料の製造方法
JPH01301555A (ja) 酸化物超電導成形体の製造方法
JPH01298056A (ja) 超電導体用焼結体及び超電導体の製造方法
JPH04170320A (ja) 酸化物超伝導材料の製造方法

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term