JP2649359B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法

Info

Publication number
JP2649359B2
JP2649359B2 JP62235820A JP23582087A JP2649359B2 JP 2649359 B2 JP2649359 B2 JP 2649359B2 JP 62235820 A JP62235820 A JP 62235820A JP 23582087 A JP23582087 A JP 23582087A JP 2649359 B2 JP2649359 B2 JP 2649359B2
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicon layer
oxide film
region
thermal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62235820A
Other languages
English (en)
Other versions
JPS63226075A (ja
Inventor
幸夫 都築
正美 山岡
浩司 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Publication of JPS63226075A publication Critical patent/JPS63226075A/ja
Application granted granted Critical
Publication of JP2649359B2 publication Critical patent/JP2649359B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Landscapes

  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、特に半導体基板の表面に形成された絶縁
膜上に、P−N接合を形成するようにした半導体装置に
関する。
〔従来の技術〕
例えば特開昭58−151051号公報及び特開昭57−141962
号公報等に示されるように、半導体基板上に絶縁膜を形
成し、この絶縁膜上にP−N接合を形成するようにした
半導体装置が知られている。このような半導体装置は、
寄生動作が存在しないものであるため、P−N接合によ
り構成される素子を、容易に複数個直列に接続すること
ができるようになるものであり、その応用できる範囲が
大きいものである。例えばP−N接合により構成される
ダイオードを、複数個直列接続した状態で構成できるも
のであり、これらダイオードの順方向電圧の温度特性を
利用して、温度検出素子を容易に構成することができ
る。
ダイオードを複数個直列接続した状態で構成した半導
体素子の具体例を第8図、第9図及び第10図に示す。
尚、第8図はその断面図、第9図はその平面図、第10図
はその電気回路図である。図において、100は半導体基
板であり、その主表面上は絶縁膜101が形成される。そ
して、この絶縁膜101上の所定領域には多結晶シリコン
による島102が形成され、この多結晶シリコン内にリ
ン、あるいはボロンをイオン注入することにより、それ
ぞれn+領域102a、P+領域102bを形成し、そのn+領域102a
及びP+領域102bが相互に隣接される状態で形成されるよ
うにして、複数のP−N接合を同心円状に形成してい
る。
そして、この多結晶シリコンの島102の表面を酸化膜1
03、表面保護膜104で順次覆った後、開口部を形成し
て、同心円の中心に配置するn+領域102aと最も外側に配
置するn+領域102aにそれぞれ電極105aおよび105bを形成
することにより半導体装置を構成している。
〔発明が解決しようとする問題点〕
しかしながら、このように構成される従来の半導体装
置にあっては、P−N接合の電流容量は、P−N接合の
単位長さ当りの電流密度で決定されるものであり、した
がって、最も接合長の短い内側のP−N接合長さによっ
てこの半導体装置の電流容量が決まることになるので、
十分な電流容量を得ようとする場合には、最も接合長の
短い内側のP−N接合長さを長くする必要があり、それ
につれて外側のP−N接合長ほどその長さが長くなり、
この長く設計される部分によってP−N接合半導体素子
部分それぞれの占有面積が大きくなり、設計上の面積効
率が悪くなる。又、このような構成ではn+領域102a(あ
るいはP+領域102b)の内側に反対導電型の領域であるP+
領域102b(あるいはn+領域)が形成されることとなり、
その形状に角部を有することからその角部において電流
が集中してしまい、破壊耐量が低下してしまう。
そこで、第1図、第2図あるいは第5図、第6図に示
されるような多結晶シリコンからなるラテラル構造のダ
イオードが考えられる。これは、どのダイオードにおい
てもP−N接合面積をほぼ同一にすることができるた
め、従来のダイオードに比べ、面積効率が良くなるので
高集積化が可能となる。また、従来のダイオードのよう
な角部を無くすことができるため、電界集中部分を低減
でき、破壊耐量を向上させることができることが考えら
れる。
そして、さらに破壊耐量を向上させる要求がある。
そこで本発明は、多結晶シリコン表面の凹凸に着目し
て、より破壊耐量の向上する半導体装置の製造方法を提
供することを目的としている。
〔問題点を解決するための手段〕
上記の目的を達成するために本願の半導体装置の製造
方法は、基板上に絶縁膜を形成する工程と、 前記絶縁膜上の所定領域に、その周辺部に互いに相対
する第1の側面および第2の側面を有する島状の多結晶
シリコン層を形成する工程と、 熱酸化することにより前記多結晶シリコン層の表面に
第1の熱酸化膜を形成し、前記多結晶シリコン層の表面
をほぼ平滑化する工程と、 前記多結晶シリコン層内に選択的に不純物を注入して
熱処理することにより方形状に延びるP領域およびN領
域を隣接させる状態で形成し、前記多結晶シリコン層の
前記第1の側面から前記第2の側面へ直線状に延びると
ともに、前記多結晶シリコン層の前記第1の側面および
前記第2の側面にて切断されるように終端する少なくと
も1つのP−N接合を形成する工程と、 前記多結晶シリコン層に対して所定の配線を施す工程
と、 を備えることを特徴としている。
〔実施例〕
以下、図面を参照して本発明の実施例を説明する。
第1図、第2図及び第3図は本発明の第1実施例を示
す図であり、第1図(a)〜(g)は第1実施例を製造
工程順に説明するための断面図であり、第2図は第1実
施例による半導体装置の平面図、第3図はその電気回路
図である。この第1実施例による半導体装置の製造方法
を説明すると、まず、第1図(a)に示すように、例え
ばシリコンの単結晶でなる半導体基板1の主表面上に10
50℃、wet HClの条件にて1μm程度の熱酸化膜による
絶縁膜2を全面にわたり形成する。そして、同図(b)
に示すように、この絶縁膜2上に、ノンドーピングの多
結晶シリコンを例えばCVD法により約600℃の条件にて約
4000Åの厚さで堆積させ、引き続き、ホトエッチングに
よりこの多結晶シリコンをパターニングし、リアクティ
ブイオンエッチング(RIE)等のドライエッチング法で
エッチングして多結晶シリコンにより1つの島3を形成
する。尚、この時の多結晶シリコンの島3の表面は、多
結晶シリコンの堆積時における多結晶シリコン自体の堆
積状態のバラツキ、あるいはRIE(反応性イオンエッチ
ング)工程による影響を受けて凹凸形状となっている。
次に、同図(c)に示すように、多結晶シリコンの島
3の表面に、900〜1200℃の望ましくは1050℃程度の温
度、DryO2ガス雰囲気中にて熱酸化を行い、600〜700Å
の厚みの熱酸化膜4を形成する。この時、熱酸化膜4は
多結晶シリコンの島3の表面の凹凸形状を継承している
が、熱酸化後の多結晶シリコンの島3aの表面はほぼ平滑
化される。
次に、同図(d)に示すように、この熱酸化膜4をウ
ェットエッチングにより除去した後、再び同図(e)に
示すように、500〜700Åの厚みの熱酸化膜5を形成す
る。この時の熱酸化条件は、例えば1000℃程度の温度に
てDryO2ガス雰囲気中にて約50分、引き続きN2ガス雰囲
気中にて約20分で行われる。ここで、熱酸化膜5は前の
工程にてその表面をほぼ平滑化した多結晶シリコンの島
3に形成されるものであるから、この熱酸化膜5の表面
もほぼ平滑な状態となっている。次に、例えば1170℃程
度、N2等の不活性ガス雰囲気中にて170分の高温アニー
ルを行い、多結晶シリコンの膜質を改善する。この高温
アニールは、第11図に示すグラフからわかるように1100
℃以上の温度、且つ15分以上の時間にて行うと不対電子
密度を小さくでき、微小欠陥を低減できるので、良質の
多結晶シリコンを得ることができる。
次に、レジスト塗布、露光処理、レジストの選択的除
去、及びイオン注入という一連の工程をそれぞれ行い、
第1図(f)に示すように、多結晶シリコンの島3内に
P+領域3a及びn+領域3bを形成する。尚、P+領域3aを形成
する時はボロン等のP型不純物を40KeV、8×1014dose
にてイオン注入し、n+領域3bを形成する時はリン等のn
型不純物を100KeV、5×1015doseにてイオン注入する。
又、P+領域3a、n+領域3bの各領域は第2図に示すよう
に、縦長の方形状にて形成し、P+領域3a、及びn+領域3b
が交互に隣接される状態で形成されるようにする。すな
わち、複数のP−N接合が、上記島3の1つの辺からこ
れに対向する他の辺に向けてほぼ等間隔で形成されるよ
うになっているものであり、上記各P−N接合は多結晶
シリコンの島3の辺部分でそれぞれ終端されるようにな
っている。
次に、1000〜1100℃、20分以上、N2等の不活性ガス雰
囲気中にて熱処理し、多結晶シリコン内に注入された不
純物のドライブインを行うとと同時に、P+領域3aの内の
ボロンの吸出しを行う。なお、このボロンの吸出しはボ
ロンとリンの偏析係数の差を利用するものであり、これ
により表面濃度が低下するので耐圧が上がる。
次に、第1図(g)に示すように、多結晶シリコンの
島3上の熱酸化膜5上には、BPSGを約7000Å堆積し、層
間絶縁層6を形成すると共に、この層間絶縁層6に開口
部を形成して、上記島3の両端に位置するP+領域3a、お
よびn+領域3bにそれぞれAl−Siによる電極7aおよび7bを
形成する。また、それぞれP+領域3aとn+領域3bのペアに
よって形成される複数のP−N接合を順次接続するよう
にして、電極7cが形成されるようにしている。
このようにして形成される半導体装置は、第3図に示
すようにダイオードが配線されるものであり、図中矢印
方向に順方向を設定するものである。
そこで、この第1実施例によると、複数のP−N接合
のそれぞれの長さは、多結晶シリコンの島3の幅によっ
て等しい状態に設定される。したがって、第8図、第9
図及び第10図に示した従来の構成のように余分に長く設
計される部分がなくなり、面積効率が良くなるので高集
積化が可能となる。尚、この第1実施例のP−N接合長
と上記従来の装置における最も内側のP−N接合長とが
等しくなるように設計した場合、第1実施例は1/3程度
にまで素子面積を小さくできる。
又、第1実施例によると、複数のP−N接合は島3の
1つの辺からこれに対向する他の辺に向けてほぼ等間隔
で形成され、島3の辺部分でそれぞれ終端されるように
なっており、従来のように角部が存在しないことから電
流は集中することなく均一に流れ、破壊耐量は向上す
る。第12図はP−N接合長と破壊電流との関係を表す特
性図であり、特性Aは第13図の模式的平面図の(a)に
示すように本発明の技術思想を用いたダイオード(以
下、「サンプルA」という)の形状における特性で、特
性Bは第13図(b)に示すように、従来のようにn+領域
の内側にP+領域を形成したダイオード(以下、「サンプ
ルB」という)の特性、特性Cは参考として第13図
(c)に示すように、従来の形状を変形してさらに角部
が多くなるように形成したダイオード(以下、「サンプ
ルC」という)の特性である。これらの特性から破壊電
流密度(=破壊電流/P−N接合長)を求めると、特性A
は1.64mA/μm、特性Bは0.88mA/μm、特性Cは0.61mA
/μmであり、角部が多いほど密度は小さくなってお
り、又、サンプルAは最も密度が高いことから、所望と
する破壊電流を同一に設定しようとする場合、P−N接
合長を最も短くできるので、より面積を小さくできる。
尚、サンプルAの密度が最も高くなる理由は、上述した
ように電流が均一に流れることに起因すると考えられ
る。
第14図(a)及び(b)は、同図(c)の電気回路図
に示すようにダイオードをセットして逆バイアスを印加
した場合における電圧−電流特性を表しており、同図
(a)が第13図(a)によるサンプルAの特性、同図
(b)が第13図(b)によるサンプルBの特性をそれぞ
れ示している。そして、それぞれのブレークダウン電圧
はサンプルAでは6.04Vで、サンプルBでは5.97Vとなっ
ており、本発明によると耐圧を高く設定できる。この第
14図で特に注目すべき点は同図(b)中矢印が指す特性
の折れ曲がりであり、この折れ曲がりはP+領域の角部に
おけるブレークダウンと、直線部分におけるブレークダ
ウンとの2回のブレークダウンが起きており、角部にお
けるブレークダウン電圧の方が小さいことからこのよう
な特性になるものと推察できる。
第15図は耐圧の変動量ΔVzを示す図であり、第16図に
示すような電気回路にダイオードをセットし、150℃に
て1mAの電流を3時間流した結果によるものである。各
プロットは第13図(a)〜(c)によるサンプルA,B,C
をそれぞれ表している。この第15図からわかるように、
サンプルAによると、耐圧の変動量ΔVzを効果的に小さ
くすることができ、本発明によるダイオードを例えばツ
ェナーダイオードとして使用した場合、特性の安定した
良好な素子を提供できる。
以上、本発明による効果を実験データを用いて説明し
たが、上記第1実施例の製造工程においては、より破壊
耐量を向上させるために以下に示す配慮がされている。
まず多結晶シリコンの島3の表面に熱酸化膜を形成する
際に、所定の条件にて一度熱酸化膜4を形成した後、そ
れを除去して、再び熱酸化膜5を形成しており、それに
より多結晶シリコン島3の表面および熱酸化膜5の表面
をほぼ平滑な状態にしているので、凹凸形状による電界
の集中を低減することができ、又、多結晶シリコンの島
3の表面を清浄できるので、それらに起因するリーク電
流を少なくすることができる。
又、多結晶シリコン内に注入された不純物のドライブ
インを行うと同時に、P+領域3a内のボロンの吸出しを行
っており、その際に島3の辺でP−N接合が終端する部
分においては、島3の上面および側面の二面からボロン
が吸出されることとなるので、その部分の表面濃度はよ
り低下し、耐圧が上がるので、この終端部分における破
壊耐量の劣化を低減することができる。尚、この終端部
分における破壊耐量は、島3上に形成される各電極7a,7
b,7cと終端部分までの距離も影響しており、各電極7a,7
b,7cが第2図に示すように形成される場合、終端部分ま
での距離が他の部分までの距離よりも長くなるように設
定されているので、その分抵抗が大きくなりリーク電流
が流れるのを抑制している。
尚、上記第1実施例においては絶縁膜2上に多結晶シ
リコンによるダイオードのみを形成した半導体装置につ
いて説明したが、絶縁膜2上に他の半導体素子を形成し
てもよく、又、第4図に示すように半導体基板内に他の
半導体素子を形成してもよい。第4図はその一例として
n型の半導体基板1aを用い、パワーMOSを形成したもの
を示しており、半導体基板1a内にP型拡散層8及びn+
拡散層9を公知の拡散技術により形成した後、絶縁膜2
を介してゲートとなる多結晶シリコン3cを選択的に形成
し、前述の各工程と同様にして層間絶縁膜6及び電極7d
を順次形成してパワーMOSを構成する。
次に、第5図、第6図及び第7図を用いて本発明の第
2実施例を説明する。第5図は、第2実施例による半導
体素子の断面図、第6図はその平面図、第7図はその電
気回路図である。この第2実施例は上記第1実施例にお
ける電極7cをなくしたものであり、又、多結晶シリコン
の島3の最も外側の領域は両領域ともn+領域3bとなるよ
うに選択的にイオン注入して形成される。尚、上記第1
実施例における工程とほとんどが同様の工程にて形成さ
れるので各構成には同一符号を付してその説明は省略す
る。そして、このように構成すれば第7図に示すように
複数のダイオードを双逆方向P−N接合を接続した状態
となるもので、ツェナーダイオードとしての使用が可能
となる。
以上、本発明を上記第1及び第2実施例を用いて説明
したが、本発明はこれらに限定されることなく、その主
旨を逸脱しない限り種々変形可能であり、例えば絶縁膜
2上に形成されるP−N接合の数は複数でなくてもよ
く、少なくとも1つのP−N接合があればよい。又、多
結晶シリコンによる2つ以上の島にそれぞれP−N接合
を構成するようにしてもよい。
〔発明の効果〕
以上述べたように、本発明によると方形状に延びるP
領域およびn領域を隣接される状態で形成し、多結晶シ
リコン層の周辺部で互いに相対する切断面を有するよう
に切断され、かつ一方の切断面から他方の切断面へ直線
状に延びる少なくとも1つのP−N接合を形成し、多結
晶シリコン層の表面の少なくともP−N接合が形成され
た部分上は熱酸化処理により形成した熱酸化膜にて覆わ
れるようにしているから、高集積化が可能となり、且
つ、破壊耐量を向上させることができる。
又、本発明の製造方法においては、多結晶シリコン層
の表面を熱酸化することにより第1の熱酸化膜を形成
し、多結晶シリコン層の表面をほぼ平滑化しているか
ら、凹凸形状による電界の集中を低減することができ、
より破壊耐量を向上させることができるという優れた効
果がある。その上、P−N接合を形成する際の熱処理時
に該P領域からP型不純物が吸出され、その表面濃度が
低下し耐圧が向上する。
【図面の簡単な説明】
第1図(a)〜(g)は本発明の第1実施例を製造工程
順に説明するための断面図、第2図は第1実施例による
半導体装置の平面図、第3図は第1実施例による半導体
装置の電気回路図、第4図は第1実施例による半導体装
置の変形を表す断面図、第5図は本発明の実施例による
半導体装置の断面図、第6図は第2実施例による半導体
装置の平面図、第7図は第2実施例による半導体装置の
電気回路図、第8図は従来の半導体装置の断面図、第9
図は従来の半導体装置の平面図、第10図は従来の半導体
装置の電気回路図、第11図はアニール時間及び温度と不
対電子密度との関係を示すグラフ、第12図はP−N接合
長と破壊電流との関係を表す特性図、第13図(a)〜
(c)は各ダイオードの形状を表す模式的平面図、第14
図(a),(b)はそれぞれ第13図(a),(b)にお
けるダイオードの電圧−電流特性を表す特性図、第14図
(c)は第14図(a),(b)における測定状態を示す
電気回路図、第15図は第13図(a)〜(c)におけるダ
イオードの耐圧の変動量を示す図、第16図は第15図にお
ける測定状態を示す電気回路図である。 1……半導体基板,2……絶縁膜,3……島,3a……P+領域,
3b……n+領域,4,5……熱酸化膜,7a,7b,7c……電極。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 武藤 浩司 愛知県刈谷市昭和町1丁目1番地 日本 電装株式会社内 (56)参考文献 特開 昭50−134774(JP,A) 特開 昭54−128678(JP,A) 特開 昭56−114381(JP,A) 実開 昭61−119435(JP,U)

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】基板上に絶縁膜を形成する工程と、 前記絶縁膜上の所定領域に、その周辺部に互いに相対す
    る第1の側面および第2の側面を有する島状の多結晶シ
    リコン層を形成する工程と、 熱酸化することにより前記多結晶シリコン層の表面に第
    1の熱酸化膜を形成し、前記多結晶シリコン層の表面を
    ほぼ平滑化する工程と、 前記多結晶シリコン層内に選択的に不純物を注入して熱
    処理することにより方形状に延びるP領域およびN領域
    を隣接させる状態で形成し、前記多結晶シリコン層の前
    記第1の側面から前記第2の側面へ直線状に延びるとと
    もに、前記多結晶シリコン層の前記第1の側面および前
    記第2の側面にて切断されるように終端する少なくとも
    1つのP−N接合を形成する工程と、 前記多結晶シリコン層に対して所定の配線を施す工程
    と、 を備えることを特徴とする半導体装置の製造方法。
  2. 【請求項2】前記多結晶シリコン層を熱酸化して第1の
    熱酸化膜を形成し、前記多結晶シリコン層の表面をほぼ
    平滑化した後、前記第1の熱酸化膜を除去し、再び熱酸
    化することにより前記多結晶シリコン層の表面に第2の
    熱酸化膜を形成するようにした特許請求の範囲第1項記
    載の半導体装置の製造方法。
  3. 【請求項3】前記第1の熱酸化膜を形成する工程は、90
    0〜1200℃の温度にて行われる特許請求の範囲第1項ま
    たは第2項記載の半導体装置の製造方法。
JP62235820A 1986-10-08 1987-09-18 半導体装置の製造方法 Expired - Lifetime JP2649359B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23965886 1986-10-08
JP61-239658 1986-10-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP6077304A Division JP2768265B2 (ja) 1994-04-15 1994-04-15 半導体装置
JP6077303A Division JP2803565B2 (ja) 1994-04-15 1994-04-15 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JPS63226075A JPS63226075A (ja) 1988-09-20
JP2649359B2 true JP2649359B2 (ja) 1997-09-03

Family

ID=17047974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62235820A Expired - Lifetime JP2649359B2 (ja) 1986-10-08 1987-09-18 半導体装置の製造方法

Country Status (3)

Country Link
EP (1) EP0263711B1 (ja)
JP (1) JP2649359B2 (ja)
DE (1) DE3785287T2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7800195B2 (en) 2007-02-27 2010-09-21 Denso Corporation Semiconductor apparatus having temperature sensing diode

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136348A (en) * 1986-10-08 1992-08-04 Nippondenso Co., Ltd. Structure and manufacturing method for thin-film semiconductor diode device
FR2789226B1 (fr) * 1999-01-29 2002-06-14 Commissariat Energie Atomique Dispositif de protection contre les decharges electrostatiques pour composants microelectroniques sur substrat du type soi
JP5309497B2 (ja) * 2007-08-09 2013-10-09 富士電機株式会社 半導体装置
JP2011003588A (ja) * 2009-06-16 2011-01-06 Hamamatsu Photonics Kk 赤外線検出素子及びその製造方法
JP5729371B2 (ja) * 2012-12-27 2015-06-03 富士電機株式会社 半導体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988769A (en) * 1973-10-30 1976-10-26 General Electric Company High voltage diodes
JPS50134774A (ja) * 1974-04-15 1975-10-25
JPS5841659B2 (ja) * 1977-08-30 1983-09-13 株式会社東芝 絶縁膜の形成方法
US4236831A (en) * 1979-07-27 1980-12-02 Honeywell Inc. Semiconductor apparatus
JPS56114381A (en) * 1980-02-15 1981-09-08 Toshiba Corp Semiconductor device
KR890004495B1 (ko) * 1984-11-29 1989-11-06 가부시끼가이샤 도오시바 반도체 장치
US4616404A (en) * 1984-11-30 1986-10-14 Advanced Micro Devices, Inc. Method of making improved lateral polysilicon diode by treating plasma etched sidewalls to remove defects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7800195B2 (en) 2007-02-27 2010-09-21 Denso Corporation Semiconductor apparatus having temperature sensing diode

Also Published As

Publication number Publication date
JPS63226075A (ja) 1988-09-20
EP0263711A2 (en) 1988-04-13
EP0263711A3 (en) 1988-08-31
DE3785287T2 (de) 1993-11-04
DE3785287D1 (de) 1993-05-13
EP0263711B1 (en) 1993-04-07

Similar Documents

Publication Publication Date Title
EP0578973A1 (en) Method of forming short-circuiting regions for insulated gate semiconductor devices
JPH0427712B2 (ja)
JPS58212164A (ja) バイポ−ラメモリセル
JPH01103876A (ja) 絶縁ゲート型半導体装置
US5952679A (en) Semiconductor substrate and method for straightening warp of semiconductor substrate
US5691555A (en) Integrated structure current sensing resistor for power devices particularly for overload self-protected power MOS devices
JP2649359B2 (ja) 半導体装置の製造方法
US4597166A (en) Semiconductor substrate and method for manufacturing semiconductor device using the same
US5136348A (en) Structure and manufacturing method for thin-film semiconductor diode device
JP2768265B2 (ja) 半導体装置
JP2803565B2 (ja) 半導体装置の製造方法
JP3921764B2 (ja) 半導体装置の製造方法
US5869372A (en) Method of manufacturing a power semiconductor device
JPH06177390A (ja) 絶縁ゲート型バイポーラトランジスタの製造方法
JP3068814B2 (ja) 高電圧電力素子の製造方法
JP3313566B2 (ja) ダイオードの製造方法
JPH0466393B2 (ja)
JP3791854B2 (ja) 半導体装置及びその製造方法
JPH1012897A (ja) ガラス被覆半導体装置及びその製造方法
JPH06120523A (ja) 半導体装置
JP2588464B2 (ja) 光電変換装置
JPS61284961A (ja) 半導体装置
JPH05283701A (ja) 半導体装置の製造方法
JP2633411B2 (ja) 半導体装置の製造方法
KR19980074222A (ko) 반도체 장치의 제조방법

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 11