JP2586129B2 - 1,1,1,2―テトラフルオロエタンの製造法 - Google Patents

1,1,1,2―テトラフルオロエタンの製造法

Info

Publication number
JP2586129B2
JP2586129B2 JP1039207A JP3920789A JP2586129B2 JP 2586129 B2 JP2586129 B2 JP 2586129B2 JP 1039207 A JP1039207 A JP 1039207A JP 3920789 A JP3920789 A JP 3920789A JP 2586129 B2 JP2586129 B2 JP 2586129B2
Authority
JP
Japan
Prior art keywords
reaction
hours
activated carbon
hydrogen
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1039207A
Other languages
English (en)
Other versions
JPH02218626A (ja
Inventor
真介 森川
俊一 鮫島
優 吉武
伸 立松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1039207A priority Critical patent/JP2586129B2/ja
Priority to EP89111176A priority patent/EP0347830B1/en
Priority to DE68912657T priority patent/DE68912657T2/de
Priority to CA000603343A priority patent/CA1337434C/en
Publication of JPH02218626A publication Critical patent/JPH02218626A/ja
Priority to US08/308,612 priority patent/US5426253A/en
Application granted granted Critical
Publication of JP2586129B2 publication Critical patent/JP2586129B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はフロン12(CCl2F2)の有望な代替候補とみな
されている1,1,1,2−テトラフルオロエタン(CF3CH2F)
の製造法に関するものである。
[従来の技術および課題] 1,1,1,2−テトラフルオロエタン(R−134a,化学式:C
F3CH2F)の製造法については、式CF2XCFYZ(式中、Xは
フッ素または塩素である。Xがフッ素である場合には
Y、Zは塩素、フッ素または水素であり(但しY、Zは
同時に水素ではない)、Y、Zの一方がフッ素である場
合にはY、Zの他方は水素または塩素である。Xが塩素
である場合には、Y、Zの一方はフッ素であり、Y、Z
の他方は塩素または水素である。)で表わされる4個ま
たは5個のフッ素原子を有するハロエタン原料を水素化
触媒の存在下で水素と反応させる方法がその一つの手段
として挙げられる。上式で表わされる原料の中で、2−
クロロ−1,1,1,2−テトラフルオロエタン(R−124,化
学式:CF3CHClF)を用いた場合は、次式に示すように原
料から1個の塩素原子を水素で置き換えることにより1,
1,1,2−テトラフルオロエタンを得ることができ、最も
単純な反応スキームとなるため、反応選択性の点におい
て有利である。
この反応においては上式に示すように塩化水素が副生
するため触媒には耐酸性が要求される。従って、白金族
元素または白金族元素を主成分とする合金触媒が使用可
能である。このための触媒として既にパラジウムを用い
る方法が報告されている。(特公昭56−38131号公報を
参照)しかし、反応活性および耐熱性が必ずしも充分で
はないという欠点を有している。
[課題を解決するための手段] 発明者は2−クロロ1,1,1,2−テトラフルオロエタン
の還元脱塩素反応について接触水素化分解の他、LiAl
H4、NaBH4、R3SnH等による化学的還元の手法の中から、
気相で水素還元を行なう方法が反応選択性、および量産
性の点から最も好適であることを見いだした。しかしな
がら、2−クロロ−1,1,1,2−テトラフルオロエタンは
水素還元に対する活性は低く比較的高い反応温度が必要
である。最も一般的な触媒であるPdは白金族元素の中で
は融点が低く、したがって原子の移動が活発になる温度
が低い。それゆえシンタリングによる触媒粒の成長が起
こり易く耐熱性が不十分である。
触媒のシンタリングは異種金属の添加、すなわち合金
化、および酸化物分散によって抑制できることが知られ
ている。発明者は主成分元素、添加元素について鋭意探
索、検討を行なうとともに反応条件を検討した結果、耐
熱性、反応活性、および反応選択性を満足する触媒を見
いだすに至った。
かくして本発明は完成されたものであり、2−クロロ
−1,1,1,2−テトラフルオロエタン(CF3CHClF)を、白
金族元素を主成分としIB族元素から選ばれる1種または
2種以上の元素を添加成分として含む水素化触媒の存在
下で水素と反応させることを特徴とするCF3CH2Fで表わ
される1,1,1,2−テトラフルオロエタンを高選択的に製
造できるという利点を有する製造方法を新規に提供する
ものである。
以下実施例と共に詳細を説明する。
すなわち、触媒の主成分としてはPd、Rh、Pt、Ruが耐
酸性および水素還元活性の点で好適であり、添加元素と
してはd−電子が満たされしたがって主成分の触媒特性
に影響の少ない典型元素の中で耐酸性に優れるIB族元素
が選ばれる。IB族元素は穏和な条件で還元が可能であっ
て、そのため比較的低い温度、短時間で触媒調製がで
き、結晶成長を抑制した条件での調製が可能である。本
反応においては、主成分にIB族元素を添加することによ
り未添加のものより高活性が得られることが見いだされ
た。添加成分の割合は0.01〜50重量%、好ましくは0.1
〜30重量%が耐熱性の向上および主成分元素の反応特性
を活かす上で好適である。50重量%より添加量を増やす
と本来触媒活性の無いIB族元素の特性が支配的となり反
応活性は低下する。一方、シンタリングを抑制するため
に反応条件にも依存するが、異種金属を0.01%以上、好
ましくは0.1%以上添加することが必要である。
触媒の担体としては、例えば、活性炭、アルミナ、ジ
ルコニア等が好適である。担持方法は、従来の貴金属触
媒の調製法が適用可能である。
なお、使用に当たってはかかる金属の化合物は少なく
とも一部還元することが安定した特性を得る上で望まし
いが、必ずしも行う必要はない。
水素と原料の割合は大幅に変動させ得る。通常、化学
量論量の水素を使用してハロゲン原子を除去する。出発
物質の全モル数に対して、化学量論量よりかなり多い
量、例えば2モルまたはそれ以上の水素を使用する場合
には、より高い反応率を得ることができる。
反応圧力については常圧、または常圧以上の圧力が使
用し得る。
反応温度は120℃以上が望ましいが、450℃を越えない
温度において気相で行なうことが、反応選択性、触媒寿
命の観点から好ましい。
接触時間は、通常0.1〜300秒、特には2〜60秒であ
る。
[実施例] 以下に本発明の実施例を示す。なお、以下の調製例お
よび比較調製例中の%はすべて重量%を表し、第1表中
の%はすべてモル%を表す。
調製例 1 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含
浸させた。これに塩化パラジウムと硫酸銅をそれぞれの
金属成分の重量比で95:5の割合で、活性炭の重量に対し
金属成分の全重量で0.5%だけ溶解した水溶液を少しず
つ滴下しイオン成分を活性炭に吸着させた。純水を用い
て洗浄した後、それを150℃で5時間乾燥した。次に窒
素中550℃で4時間乾燥した後、水素を導入し、5時
間、250℃に保持して還元した。
調製例 2 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含
浸させた。これに硫酸パラジウムと硝酸銀をそれぞれの
金属成分の重量比で92:8の割合で、活性炭の重量に対し
金属成分の全重量で0.5%だけ溶解した水溶液を少しず
つ滴下しイオン成分を活性炭に吸着させた。純水を用い
て洗浄した後、それをヒドラジンを用いて室温で還元し
た。
調製例 3 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含
浸させた。これに塩化パラジウムと塩化金をそれぞれの
金属成分の重量比で90:10の割合で、活性炭の重量に対
し金属成分の全重量で0.5%だけ溶解した水溶液を少し
ずつ滴下しイオン成分を活性炭に吸着させた。純水を用
いて洗浄した後、それを150℃で5時間乾燥した。次に
窒素中500℃で4時間乾燥した後、水素を導入し、5時
間、250℃に保持して還元した。
調製例 4 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含
浸させた。これに塩化ロジウムと硫酸銅をそれぞれの金
属成分の重量比で96:4の割合で、活性炭の重量に対し金
属成分の全重量で0.5%だけ溶解した水溶液を少しずつ
滴下しイオン成分を活性炭に吸着させた。純水を用いて
洗浄した後、それを150℃で5時間乾燥した。次に窒素
中550℃で4時間乾燥した後、水素を導入し、5時間、3
00℃に保持して還元した。
調製例 5 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含
浸させた。これに硫酸ロジウムと硝酸銀をそれぞれの金
属成分の重量比で93:7の割合で、活性炭の重量に対し金
属成分の全重量で0.5%だけ溶解した水溶液を少しずつ
滴下しイオン成分を活性炭に吸着させた。純水を用いて
洗浄した後、それを150℃で5時間乾燥した。次に窒素
中550℃で4時間乾燥した後、水素を導入し、5時間、3
00℃に保持して還元した。
調製例 6 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含
浸させた。これに塩化ロジウムと塩化金酸をそれぞれの
金属成分の重量比で80:20の割合で、活性炭の重量に対
し金属成分の全重量で0.5%だけ溶解した水溶液を少し
ずつ滴下しイオン成分を活性炭に吸着させた。純水を用
いて洗浄した後、それを150℃で5時間乾燥した。次に
窒素中550℃で4時間乾燥した後、水素を導入し、5時
間、300℃に保持して還元した。
調製例 7 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含
浸させた。これに塩化白金酸、硫酸銅をそれぞれの金属
成分の重量比で96:4の割合で、活性炭の重量に対し金属
成分の全重量で0.5%だけ溶解した水溶液を少しずつ滴
下しイオン成分を活性炭に吸着させた。純水を用いて洗
浄した後、それを150℃で5時間乾燥した。次に窒素中5
50℃で4時間乾燥した後、水素を導入し、5時間、300
℃に保持して還元した。
調製例 8 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含
浸させた。これに塩化白金酸、硫酸ジアンミン銀をそれ
ぞれの金属成分の重量比で91:9の割合で、活性炭の重量
に対し金属成分の全重量で0.5%だけ溶解した水溶液を
少しずつ滴下しイオン成分を活性炭に吸着させた。純水
を用いて洗浄した後、それを150℃で5時間乾燥した。
次に窒素中550℃で4時間乾燥した後、水素を導入し、
5時間、300℃に保持して還元した。
調製例 9 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含
浸させた。これに塩化白金酸、塩化金酸をそれぞれの金
属成分の重量比で85:15の割合で、活性炭の重量に対し
金属成分の全重量で0.5%だけ溶解した水溶液を少しず
つ滴下しイオン成分を活性炭に吸着させた。純水を用い
て洗浄した後、それを150℃で5時間乾燥した。次に窒
素中550℃で4時間乾燥した後、水素を導入し、5時
間、300℃に保持して還元した。
調製例 10 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含
浸させた。これに塩化ルテニウム、硫酸銅をそれぞれの
金属成分の重量比で99:1の割合で、活性炭の重量に対し
金属成分の全重量で0.5%だけ溶解した水溶液を少しず
つ滴下しイオン成分を活性炭に吸着させた。純水を用い
て洗浄した後、それを150℃で5時間乾燥した。次に窒
素中550℃で4時間乾燥した後、水素を導入し、5時
間、300℃に保持して還元した。
調製例 11 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに硫酸ルテニウム、硝酸銀をそれぞれの金
属成分の重量比で95:5の割合で、活性炭の重量に対し金
属成分の全重量で0.5%だけ溶解した水溶液を少しずつ
滴下しイオン成分を活性炭に吸着させた。純水を用いて
洗浄した後、それを150℃で5時間乾燥した。次に窒素
中550℃で4時間乾燥した後、水素を導入し、5時間、3
00℃に保持して還元した。
調製例 12 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含浸
させた。これに塩化ルテニウム、塩化金酸をそれぞれの
金属成分の重量比で90:10の割合で、活性炭の重量に対
し金属成分の全重量で0.5%だけ溶解した水溶液を少し
ずつ滴下しイオン成分を活性炭に吸着させた。純水を用
いて洗浄した後、それを150℃で5時間乾燥した。次に
窒素中550℃で4時間乾燥した後、水素を導入し、5時
間、300℃に保持して還元した。
比較調製例 ヤシガラ活性炭を純水中に浸漬し細孔内部まで水を含
浸させた。これに塩化パラジウムを、活性炭の重量に対
し金属成分の全重量で0.5%だけ溶解した水溶液を少し
ずつ滴下しイオン成分を活性炭に吸着させた。純水を用
いて洗浄した後、それを150℃で5時間乾燥した。次に
窒素中550℃で4時間乾燥した後、水素を導入し、5時
間、300℃に保持して還元した。
実施例 1〜3 調製例1〜3のようにして調製した触媒を300cc充填
した内径2.54cm、長さ100cmのインコネル600製反応管を
塩浴炉中に浸漬した。
水素と2−クロロ−1,1,1,2−テトラフルオロエタン
(CF3CHClF)を1:1のモル比で反応管に導入した。水
素、出発物質の流量はそれぞれ、200cc/分、200cc/分と
した。反応温度は250℃、接触時間は25秒であった。反
応物は−78℃に冷却したトラップに捕集した。捕集物の
酸分を除去した後、組成をガスクロマトグラフィー及び
19F−NMRを用いて分析した。その結果、主な反応生成物
は1,1,1,2−テトラフルオロエタン(CF3CH2F)および1,
1,1−トリフルオロエタン(CF3CH3)であることを確認
した。反応開始後500時間経過後の反応率について第1
表に示す。
実施例 4〜6 調製例4〜6のようにして調製した触媒を用い、水素
と出発物質のモル比を2:1とし接触時間を20秒とする他
は実施例1〜3と同様にして反応を行い、反応生成物を
分析した。反応開始後500時間経過後の反応率について
第1表に示す。
実施例7〜9 調製例7〜9のようにして調製した触媒を用い、水素
と出発物質のモル比を1.5:1とし接触時間を25秒とする
他は実施例1〜3と同様にして反応を行い、反応生成物
を分析した。反応開始後500時間経過後の反応率につい
て第1表に示す。
実施例10〜12 調製例10〜12のようにして調製した触媒を用い、反応
温度を260℃、接触時間を20秒とする他は実施例1〜3
と同様にして反応を行い、反応生成物を分析した。反応
開始後500時間経過後の反応率について第1表に示す。
比較例 比較調製例のようにして調製した触媒を用いて、実施
例1と同様にして反応を行ない反応管出口のガス組成を
分析した。その結果、主は反応生成物は1,1,1,2−テト
ラフルオロエタン(CF3CH2F)および1,1,1−トリフルオ
ロエタン(CF3CH3)であることを確認した。反応開始後
500時間経過後の反応率について第1表に示す。
[発明の効果] 本発明は、実施例に示すように、耐久性および反応活
性の向上に優れた効果を有する。

Claims (4)

    (57)【特許請求の範囲】
  1. 【請求項1】2−クロロ−1,1,1,2−テトラフルオロエ
    タンを、白金族元素を主成分としIB族元素から選ばれる
    1種または2種以上の元素を添加成分として含む水素化
    触媒の存在下で水素と反応させることを特徴とする1,1,
    1,2−テトラフルオロエタンの製造法。
  2. 【請求項2】添加成分の割合が0.01〜50重量%である白
    金族元素を主成分とする合金を水素化触媒として用いる
    請求項1に記載の製造法。
  3. 【請求項3】白金族元素を主成分としIB族元素から選ば
    れる1種または2種以上の元素を添加成分とする触媒が
    活性炭担体上、アルミナ担体上またはジルコニア担体上
    に担持されている水素化触媒を用いる請求項1または2
    に記載の製造法。
  4. 【請求項4】反応を気相中において120℃〜450℃の温度
    範囲で行なう請求項1、2または3に記載の製造法。
JP1039207A 1988-06-21 1989-02-21 1,1,1,2―テトラフルオロエタンの製造法 Expired - Fee Related JP2586129B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1039207A JP2586129B2 (ja) 1989-02-21 1989-02-21 1,1,1,2―テトラフルオロエタンの製造法
EP89111176A EP0347830B1 (en) 1988-06-21 1989-06-20 Process for producing 1,1,1,2-tetrafluoroethane
DE68912657T DE68912657T2 (de) 1988-06-21 1989-06-20 Verfahren zur Herstellung von 1,1,1,2-Tetrafluorethan.
CA000603343A CA1337434C (en) 1988-06-21 1989-06-20 Process for producing 1,1,1,2-tetrafluoroethane
US08/308,612 US5426253A (en) 1988-06-21 1994-09-19 Process for producing 1,1,1,2-tetrafluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1039207A JP2586129B2 (ja) 1989-02-21 1989-02-21 1,1,1,2―テトラフルオロエタンの製造法

Publications (2)

Publication Number Publication Date
JPH02218626A JPH02218626A (ja) 1990-08-31
JP2586129B2 true JP2586129B2 (ja) 1997-02-26

Family

ID=12546690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1039207A Expired - Fee Related JP2586129B2 (ja) 1988-06-21 1989-02-21 1,1,1,2―テトラフルオロエタンの製造法

Country Status (1)

Country Link
JP (1) JP2586129B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3010847B2 (ja) * 1991-10-30 2000-02-21 ダイキン工業株式会社 1,1−ジクロロ−2,2,2−トリフルオロエタンの製造方法
US5447896A (en) * 1992-06-23 1995-09-05 E. I. Du Pont De Nemours And Company Hydrodehalogenation catalysts and their preparation and use

Also Published As

Publication number Publication date
JPH02218626A (ja) 1990-08-31

Similar Documents

Publication Publication Date Title
EP0347830B1 (en) Process for producing 1,1,1,2-tetrafluoroethane
US5136113A (en) Catalytic hydrogenolysis
JPH10509711A (ja) 塩素化アルカンを塩素化度のより低いアルケンに転化させる方法
US5663464A (en) Method for producing1,1,1,3,3-pentafluoropropane
JP2586129B2 (ja) 1,1,1,2―テトラフルオロエタンの製造法
JP2531205B2 (ja) 1,1,1,2−テトラフルオロエタンの製造法
JP2814606B2 (ja) ペンタフルオロエタンを製造する方法
JP2531215B2 (ja) テトラフルオロエタンの製造法
EP0669304B1 (en) Process for producing difluoromethane
US6218587B1 (en) Catalytic hydrogenolysis
JP2581170B2 (ja) 1,1−ジクロロ−2,2,2−トリフルオロエタンの製造方法
JP5028731B2 (ja) ハロゲン化アルコ−ルの製造方法
JPH06279328A (ja) ヘキサフルオロプロパンの製造方法
JPH0733342B2 (ja) 1,1,1,2―テトラフルオロエタンの製造方法
JP2508807B2 (ja) R−134aの製造法
JP2541256B2 (ja) テトラフルオロエタンの製造法
JP2636314B2 (ja) テトラフルオロエタンの製造方法
JP2712475B2 (ja) ジフルオロメチレン基を有するプロパンの製造法
JP2581169B2 (ja) R−134aの製造法
JP2581168B2 (ja) R−134aの製造法
JP2000226346A (ja) ヘプタフルオロシクロペンタンの製造方法
JPH02218625A (ja) HCFC―134aの製造方法
JP2551051B2 (ja) 1、1、1、2ーテトラフルオロエタンの製法
JP2551052B2 (ja) 1、1、1、2ーテトラフルオロエタンの製法
JPH01319443A (ja) テトラフルオロエタンの製造法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees