JP2022151716A - 回路基板 - Google Patents

回路基板 Download PDF

Info

Publication number
JP2022151716A
JP2022151716A JP2022038392A JP2022038392A JP2022151716A JP 2022151716 A JP2022151716 A JP 2022151716A JP 2022038392 A JP2022038392 A JP 2022038392A JP 2022038392 A JP2022038392 A JP 2022038392A JP 2022151716 A JP2022151716 A JP 2022151716A
Authority
JP
Japan
Prior art keywords
polyimide
layer
insulating layer
circuit board
thermoplastic polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022038392A
Other languages
English (en)
Inventor
智典 安藤
Tomonori Ando
哲平 西山
Teppei Nishiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Publication of JP2022151716A publication Critical patent/JP2022151716A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0254High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
    • H05K1/0256Electrical insulation details, e.g. around high voltage areas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/205Compounds containing groups, e.g. carbamates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Abstract

【課題】誘電特性と長期耐熱接着性に優れた、ポリイミド絶縁層を有する回路基板を提供する。【解決手段】回路基板1Aは、配線層10及び配線層10と接するポリイミド絶縁層100Aを備え、配線層10に直接的に接する熱可塑性ポリイミド層120Aと、配線層10に間接的に接する非熱可塑性ポリイミド層110とを有し、ビア接続部の少なくとも1つ以上がポリイミド絶縁層100Aに形成されている。ポリイミド絶縁層100Aは、熱膨張係数が10~30ppm/Kの範囲内であり、酸素透過度が1.8×10-12mol/(m2・s・Pa)以下であり、非熱可塑性ポリイミド層及び熱可塑性ポリイミド層を構成する全モノマー成分から誘導される全モノマー残基に対し、ビフェニル骨格を有するモノマー残基の割合が50mol%以上であり、かつ、非熱可塑性ポリイミド層110のイミド基濃度が33重量%以下であることを満たす。【選択図】図1

Description

本発明は、ポリイミド絶縁層を有する回路基板に関する。
ポリイミド樹脂は、高い絶縁性、寸法安定性、易成形性、軽量等の特徴を有するために、回路基板などの材料として電子機器、電気機器、電子部品に広く用いられている。特に近年、電子機器や電気機器の高性能、高機能化に伴い、情報の高速伝送化が要求されており、これらに使用される部品や部材にも高速伝送への対応が求められている。そのため、そのような用途に使用されるポリイミド材料について、高速伝送化に対応した電気特性を有するように、比誘電率や誘電正接を低下させる試みがなされている。
ポリイミド材料の比誘電率や誘電正接の低下に関する従来技術の多くは、比誘電率又は誘電正接が低い樹脂(フッ素系樹脂、液晶ポリマーなど)との多層化、比誘電率又は誘電正接が低いフィラーの配合といった異種材料との複合化、多孔質化、エステル構造の導入等が主なものであった。しかし、複合化や多孔質化については、ポリイミド材料の加工性が低下するなどの問題があり、エステル構造の導入については、ポリイミドフィルムの強度が低下するためにエステル構造を多量に使用できないという問題がある。
また、特許文献1、2では、ポリイミドの原料モノマー構成を工夫することによって誘電特性の改善を図り、高周波用回路基板への適用が可能なポリイミドフィルムが提案されている。
一方、近年では、回路基板が150℃を超える環境で使用されることを想定することが必要となっている。たとえば、車載用電子機器に用いられるフレキシブルプリント基板(FPC;Flexible Printed Circuits)は、150℃程度の高温環境に繰り返し晒されることがある。車載用電子機器以外のデバイス、たとえば、高速処理を行うことができるCPU(Central Processing Unit)を有するノートパソコンやスーパーコンピュータ等においても、さらなる小型化、軽量化を図るためにフレキシブルプリント基板が用いられることが増えており、このようなデバイスではCPUが発する熱により、フレキシブルプリント基板は高温環境に繰り返し晒される。
高温環境での使用に起因するフレキシブルプリント基板の代表的な劣化の要因は、配線層と絶縁樹脂層との接着性の低下による配線層の浮きや剥がれである。
このような背景から、今後、フレキシブルプリント基板においては、誘電特性の改善と、高温環境下での耐熱接着性の維持(即ち、ピール強度の保持)の両立が必要になることが予想され、特に、長期間に亘る耐熱接着性の維持が要求されると考えられる。
WO2017/159274 WO2018/061727
従って、本発明の課題は、誘電特性と長期耐熱接着性に優れた、ポリイミド絶縁層を有する回路基板を提供することである。
本発明者らは、配線層と接するポリイミド絶縁層を有する回路基板において、該ポリイミド絶縁層を構成するポリイミドにおける、ビフェニル骨格を有するモノマー残基の含有比率を高めることによって上記本発明の課題を解決できることを見出し、本発明を完成した。
即ち、本発明の回路基板は、配線層と、該配線層と接する少なくとも一層のポリイミド絶縁層と、を備えるとともに、複数のビア接続部を有する回路基板であって、
前記ビア接続部の少なくとも1つ以上が前記ポリイミド絶縁層に形成されており、該ポリイミド絶縁層が、配線層に直接的に接する熱可塑性ポリイミド層と、該配線層に間接的に接する非熱可塑性ポリイミド層と、を有し、
該ポリイミド絶縁層が下記の条件(i)~(iv);
(i)熱膨張係数が10~30ppm/Kの範囲内であること;
(ii)酸素透過度が1.8×10-12mol/(m2・s・Pa)以下であること;
(iii)前記非熱可塑性ポリイミド層及び前記熱可塑性ポリイミド層を構成する全モノマー成分から誘導される全モノマー残基に対し、下記式(1)によって算出されるビフェニル骨格を有するモノマー残基の割合が50mol%以上であること;
(iv)前記非熱可塑性ポリイミド層のイミド基濃度が33重量%以下であること;
を満たすことを特徴とする。
Figure 2022151716000002
[式(1)において、nは、前記ポリイミド絶縁層を構成する非熱可塑性ポリイミド層及び熱可塑性ポリイミド層の総層数であって、2以上の整数であり、Mは、前記ポリイミド絶縁層の第i層のポリイミド層を構成するポリイミドにおける全モノマー成分から誘導される全モノマー残基のうち、ビフェニル骨格を有するモノマー残基が占める割合(単位;mol%)であり、Lは、第i層のポリイミド層の厚み(単位;μm)であり、Lは前記ポリイミド絶縁層の厚み(単位;μm)である。]
本発明の回路基板において配線層と接するポリイミド絶縁層は、ビフェニル骨格を有するモノマー残基の含有率を50モル%以上とすることによって、酸素透過度が抑制されており、誘電特性と長期耐熱接着性に優れており、さらにビア加工性も良好である。そのため、本発明の回路基板は、高速伝送に対応することができ、また、繰り返し高温環境に晒される使用環境であっても、長期間にわたり配線層とポリイミド絶縁層との接着性が維持される。
図1は、本発明の回路基板1Aの模式的断面図である。 図2は、本発明の回路基板1Bの模式的断面図である。 図3は、ストリップ構造を有する本発明の回路基板1Cの模式的断面図である。 図4は、マイクロストリップ構造を有する本発明の回路基板1Dの模式的断面図である。 図5は、差動式ストリップ構造を有する本発明の回路基板1Eの模式的断面図である。 図6は、コプレーナ構造を有する本発明の回路基板1Fの模式的断面図である。 図7は、さらに他の構造を有する本発明の回路基板1Gの模式的断面図である。 図8は、酸素透過度の測定で用いるスリット付きアルミテープの平面図である。 図9は、ポリイミドフィルムの酸素透過度測定用サンプルの断面図である。 図10は、回路基板に形成されたビアホールの走査顕微鏡(SEM)による断面写真である。 図11は、回路基板に形成されたスルーホールの走査顕微鏡(SEM)による断面写真である。 図12は、回路基板に形成されたビアホールをめっきした後の走査顕微鏡(SEM)による断面写真である。 図13は、回路基板に形成されたスルーホールをめっきした後の走査顕微鏡(SEM)による断面写真である。
次に、図面を参照しつつ本発明の実施形態を説明する。なお、各図中、同一符号は同一または同等の構成要素を表している。
<全体構成>
本発明の回路基板は、配線層と、該配線層と接する少なくとも一層のポリイミド絶縁層と、を備えるとともに、複数のビア接続部を有している。ビア接続部の少なくとも1つ以上はポリイミド絶縁層に形成されている。ポリイミド絶縁層は、配線層に直接的に接する熱可塑性ポリイミド層と、配線層に間接的に接する非熱可塑性ポリイミド層を有する。配線層を被覆する絶縁樹脂層が存在してもよく、硬化性樹脂又は熱可塑性樹脂のいずれであっても差し支えない。
ここで、「熱可塑性ポリイミド層」とは、動的粘弾性測定装置(DMA)を用いて測定された30℃における貯蔵弾性率が1.0×109Pa以上であり、350℃での貯蔵弾性率が1.0×108Pa未満のポリイミド層をいい、「非熱可塑性ポリイミド層」とは、動的粘弾性測定装置(DMA)を用いて測定された30℃における貯蔵弾性率が1.0×109Pa以上であり、350℃での貯蔵弾性率が1.0×108Pa以上のポリイミド層をいう。配線層に直接的に接するポリイミド層を熱可塑性ポリイミド層とすることにより、配線層とポリイミド層との接着性を高めることができる。
また、非熱可塑性ポリイミド層及び熱可塑性ポリイミド層は、いずれも「モノマー残基」として、酸二無水物残基及びジアミン残基を含む。ここで、「酸二無水物残基」とは、テトラカルボン酸二無水物から誘導された4価の基を意味し、「ジアミン残基」とは、ジアミン化合物から誘導された2価の基を意味する。
図1及び図2は、それぞれ本発明の実施の形態の回路基板の要部の模式的断面図であって、ポリイミド絶縁層の層構成の例を示している。このうち図1に示す回路基板1Aは、配線層10と、配線層10に接するポリイミド絶縁層100Aを備え、ポリイミド絶縁層100Aは、配線層10に直接的に接する熱可塑性ポリイミド層120Aと、配線層10に間接的に接する非熱可塑性ポリイミド層110、より具体的には熱可塑性ポリイミド層120Aに接する非熱可塑性ポリイミド層110を有している。
また、図2に示す回路基板1Bでは、配線層10に接するポリイミド絶縁層100Bが、配線層10側から熱可塑性ポリイミド層120A、非熱可塑性ポリイミド層110、及び熱可塑性ポリイミド層120Bの3層構成になっている。
なお、図1及び図2において、ビア接続部は図示を省略しているが、少なくとも1つ以上のビア接続部がポリイミド絶縁層100A,100Bに形成されている。
本発明の回路基板において、配線層に接するポリイミド絶縁層の層構成は図1、図2に示した例に限られず、例えば、熱可塑性ポリイミド層と非熱可塑性ポリイミド層の合計層数が4層以上であってもよい。
また、配線層とポリイミド絶縁層の配置も図1、図2に示した例に限られない。以下、上述のポリイミド絶縁層100A、100Bも含めてポリイミド絶縁層を符号100で示すと、例えば、図3に示すように、信号線11とする配線層の表裏にポリイミド絶縁層100を介してグランド層12とする配線層を設けたストリップ構造の回路基板1Cとしてもよい。図3中、符号20は接着剤層である。なお、図3において、ビア接続部は図示を省略しているが、少なくとも1つ以上のビア接続部が、2層のポリイミド絶縁層100のうちの片方又は両方に形成されている(図5においても同様である)。
図4に示すように、信号線11とする配線層の片面にポリイミド絶縁層100を介してグランド層12とする配線層を設けたマイクロストリップ構造の回路基板1Dとしてもよい。この信号線11上には接着剤層20とポリイミドフィルム130からなるカバーレイ30を設けても良い。なお、図4において、ビア接続部は図示を省略しているが、少なくとも1つ以上のビア接続部がポリイミド絶縁層100に形成されている(図6においても同様である)。
また、図5に示すように、ストリップ構造において、信号線11を同一面上に並行に設けた差動型の回路基板1Eとしてもよい。
また、図6に示すように、信号線11とグランド層12とを同一面上に設けたコプレーナ構造の回路基板1Fとしてもよい。
また、図7に示すように、信号線11と、信号線11を電磁気的に遮蔽するシールド配線13を同一面上に設けた回路基板1Gとしてもよい。図7に示す回路基板1Gでは、第1のグランド層12’に積層された第1のポリイミド絶縁層100’上に信号線11及びシールド配線13が形成され、これらの信号線11及びシールド配線13を覆う接着剤層20が設けられており、この接着剤層20には第2のポリイミド絶縁層100”が積層され、第2のポリイミド絶縁層100”にはさらに第2のグランド層12”が積層されている。ここで、第1のグランド層12’と第2のグランド層12”、第1のポリイミド絶縁層100’と第2のポリイミド絶縁層100”の「第1」、「第2」は説明のために便宜的に区別したものであり、それぞれ、同じ構成でもよいし、異なる構成でもよい。
図7に示す回路基板1Gは、第1のグランド層12’から第2のグランド層12”までを積層方向に貫通する複数のビア接続部40を有している。ビア接続部40は、めっき加工されたビアホール(スルーホールを含む)でもよく、ホール内部に導体が充填されている充填ビアでもよい。図7のビア接続部40は、第1のグランド層12’/第1のポリイミド絶縁層100’/シールド配線13/接着剤層20/第2のポリイミド絶縁層100”/第2のグランド層12”の各層を厚み方向に貫通して設けられたスルーホールである。
ここで、ビアホールの形成方法(穴あけ方法)としては、一般に、ドリル加工や、UV-YAGレーザー、COレーザー等を用いるレーザー加工が挙げられる。図7に示す回路基板1Gでは、少なくとも第1のポリイミド絶縁層100’が条件(iii)を満たし、ビフェニル骨格を有するモノマー残基の割合が50mol%以上であることによってUV吸収性に優れるため、UV-YAGレーザーでビア加工する際の加工性に優れている。また、COレーザーについては、ビフェニル骨格を多く含むことで炭化が促進されやすいため、炭化層周囲のダメージが少なく、ビア加工形状が悪化しにくくなる。更に、ビフェニル骨格を多く含むことで、低誘電正接と高引張弾性率化の両立が可能となるため、ドリル加工時に隣接層との層間の段差を小さくすることが可能で、ドリル加工性も向上する。更に、ビフェニル骨格を多く含むことで強度も向上するため、多数のビアホールを形成する場合においても、回路基板の破断等を抑制した加工が可能であり、回路基板の信頼性と歩留まりの向上を図ることができる。なお、図7において、第2のポリイミド絶縁層100”が第1のポリイミド絶縁層100’と同じ構成である場合も上記効果が得られるため、回路基板全体のビア加工性はさらに改善される。
本発明におけるポリイミド絶縁層による上記の効果は、図7に示す構造に限らず、例えば図1~図6に示す構造や、他の構造の回路基板においても同様に奏される。
<配線層>
配線層10を構成する金属の材質としては、特に制限はないが、例えば、銅、ステンレス、鉄、ニッケル、ベリリウム、アルミニウム、亜鉛、インジウム、銀、金、スズ、ジルコニウム、タンタル、チタン、鉛、マグネシウム、マンガン及びこれらの合金等が挙げられる。この中でも、特に銅又は銅合金が好ましい。
配線層10を銅箔から形成する場合、圧延銅箔を使用してもよく、電解銅箔を使用してもよい。市販の銅箔を使用することができる。
また、例えば、防錆処理や、接着力の向上を目的として、配線層10には、例えばサイディング、アルミニウムアルコラート、アルミニウムキレート、シランカップリング剤等による表面処理を施しておいてもよい。
配線層10の厚みは特に限定されるものではないが、例えば配線層10を銅箔から形成する場合に、配線層10の厚みは好ましくは35μm以下であり、より好ましくは5~25μmの範囲である。5μm未満とすると、生産安定性及びハンドリング性が低下しやすくなる。
<ポリイミド絶縁層>
本発明の回路基板を構成する、配線層10に接するポリイミド絶縁層100は次の(i)~(iv)の特徴を有する。配線層10に接するポリイミド絶縁層100が回路基板に複数層存在する場合には、好ましくはそれぞれのポリイミド絶縁層が次の(i)~(iv)の特徴を有する。
(i)熱膨張係数(CTE)
ポリイミド絶縁層100の熱膨張係数(CTE)は10~30ppm/Kの範囲内である。ポリイミド絶縁層100の熱膨張係数をこの範囲とすることにより、回路基板において、反りの発生や寸法安定性の低下を防止することができる。ポリイミド絶縁層100の熱膨張係数は、10~25ppm/Kが好ましく、15~25ppm/Kの範囲内がより好ましい。熱膨張係数が10ppm/K未満であるか、又は30ppm/Kを超えると、反りが発生したり、寸法安定性が低下したりする。
ポリイミド絶縁層100の熱膨張係数は、非熱可塑性ポリイミド層110の熱膨張係数とその厚み、及び熱可塑性ポリイミド層120A,120Bの熱膨張係数とその厚みに応じて定まる。
非熱可塑性ポリイミド層110は、熱可塑性ポリイミド層120A,120Bに比して熱膨張性が低く、非熱可塑性ポリイミド層110の熱膨張係数(CTE)は、好ましくは1~25ppm/Kの範囲内、より好ましくは3~25ppm/Kの範囲内である。
一方、熱可塑性ポリイミド層120A,120Bの熱膨張係数は、好ましくは35ppm/K以上、より好ましくは35~80ppm/K、更に好ましくは35~70ppm/Kの範囲内である。
熱可塑性ポリイミド層120A,120B及び非熱可塑性ポリイミド層110の熱膨張係数は、当該ポリイミド層を形成する原料の組合せ、乾燥・硬化条件、ポリイミド層の厚みを適宜変更することで所望の値とすることができる。
(ii)酸素透過度
ポリイミド絶縁層100の酸素透過度は1.8×10-12mol/(m2・s・Pa)以下である。この酸素透過度は、実施例で説明するように回路基板からポリイミド絶縁層を単離し、特定のスリットにより酸素透過度測定の面積を規定し、差圧法(JIS K7126-1)に準拠して測定することができる。
また、配線層と接するポリイミド絶縁層が回路基板中に複数層ある場合、この酸素透過度は個々のポリイミド絶縁層の酸素透過度である。
ポリイミド絶縁層100の酸素透過度を1.8×10-12mol/(m2・s・Pa)以下に制御することによって、回路基板が繰り返し高温に晒される環境におかれても、長期間に亘って配線層10とポリイミド絶縁層100との接着性を良好に維持することができる。これに対し、酸素透過度が1.8×10-12mol/(m2・s・Pa)を超えると、回路基板が繰り返し高温に晒された場合に、ポリイミド絶縁層100を透過した酸素によって配線層10の酸化が進み、配線層10とポリイミド絶縁層100との接着性が低下してしまう。
(iii)ビフェニル骨格を有するモノマー残基の割合
ポリイミド絶縁層100は、該ポリイミド絶縁層100を構成する非熱可塑性ポリイミド層及び熱可塑性ポリイミド層について、それらを構成する全モノマー成分から誘導される全モノマー残基に対し、下記式(1)によって算出されるビフェニル骨格を有するモノマー残基(以下、ビフェニル骨格含有残基ともいう)の割合が50mol%以上である。
Figure 2022151716000003
式(1)において、nは、前記ポリイミド絶縁層100を構成する非熱可塑性ポリイミド層及び熱可塑性ポリイミド層の総層数であって、2以上の整数であり、Mは、前記ポリイミド絶縁層100の第i層のポリイミド層を構成するポリイミドにおける全モノマー成分から誘導される全モノマー残基のうち、ビフェニル骨格を有するモノマー残基が占める割合(単位;mol%)であり、Lは、第i層のポリイミド層の厚みであり、Lは前記ポリイミド絶縁層100の厚みである。
式(1)によって算出されるビフェニル骨格を有するモノマー残基の割合が50mol%以上であることにより、モノマー由来の剛直構造によりポリマー全体に秩序構造が形成されやすくなり、酸素透過度を低下させるとともに、分子の運動抑制により誘電正接を低下させることができる。これに対し、ビフェニル骨格含有残基の割合が50mol%未満では、誘電正接が十分に低下しない。また、ポリイミド絶縁層100の厚みを薄くすると酸素透過度が十分に低下しない。このため、例えば回路基板を使用したときに、長期耐熱接着性が不十分になるとともに、高速伝送への適応が困難となる。かかる観点から、式(1)によって算出されるビフェニル骨格含有残基の割合は、60mol%以上であることが好ましく、65mol%以上であることがより好ましい。一方、ポリイミド絶縁層100が、回路基板材料として必要な物性を維持するため、式(1)によって算出されるビフェニル骨格含有残基の割合は80mol%以下とすることが好ましい。
ここで、ビフェニル骨格とは、下記の式(a)に示すように、2つのフェニル基が単結合した骨格である。従って、ビフェニル骨格を有するモノマー残基としては、例えば、ビフェニルジイル基、ビフェニルテトライル基などを有するモノマー残基を挙げることができる。これらの残基に含まれる芳香環は、任意の置換基を有していてもよい。
ビフェニルジイル基の代表例としては、下記の式(b)で表されるものを挙げることができる。ビフェニルテトライル基の代表例としては、下記の式(c)で表されるものを挙げることができる。なお、ビフェニルジイル基及びビフェニルテトライル基において、芳香環における結合手は式(b)及び式(c)に示す位置に限定されるものではなく、また、上記のとおり、これらの残基に含まれる芳香環は、任意の置換基を有していてもよい。
Figure 2022151716000004
ビフェニル骨格を有するモノマー残基は、ポリイミド絶縁層100を構成する非熱可塑性ポリイミド層及び熱可塑性ポリイミド層の原料モノマーに由来する構造であり、酸二無水物から誘導されるものでもよいし、ジアミン化合物から誘導されるものでもよい。
ビフェニル骨格を有する酸二無水物残基の代表例としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、2,3’,3,4’-ビフェニルテトラカルボン酸二無水物、4,4’-ビフェノール-ビス(トリメリテート無水物)などの酸二無水物から誘導される残基を挙げることができる。これらの中でも、特に、BPDAから誘導される酸二無水物残基(以下、「BPDA残基」ともいう。)は、ポリマーの秩序構造を形成しやすく、分子の運動抑制により誘電正接や吸湿性を低下させることができるため好ましい。また、BPDA残基は、ポリイミド前駆体のポリアミド酸としてのゲル膜の自己支持性を付与できる。
ビフェニル骨格を有するジアミン化合物の代表例としては、芳香環を2つのみ有するジアミン化合物が挙げられ、2,2’-ジメチル-4,4’-ジアミノビフェニル(m-TB)、2,2’-ジエチル-4,4’-ジアミノビフェニル(m-EB)、2,2’-ジエトキシ-4,4’-ジアミノビフェニル(m-EOB)、2,2’-ジプロポキシ-4,4’-ジアミノビフェニル(m-POB)、2,2’-ジ-n-プロピル-4,4’-ジアミノビフェニル(m-NPB)、2,2’-ジビニル-4,4’-ジアミノビフェニル(VAB)、4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB)などを挙げることができる。これらのジアミン化合物から誘導される残基は、剛直構造を有しているため、ポリマー全体に秩序構造を付与する作用を有している。これらのジアミン化合物から誘導される残基を含有することによって、酸素透過度が低く、低吸湿性のポリイミドが得られ、分子鎖内部の水分を低減できるため、誘電正接を下げることができる。
(iv)非熱可塑性ポリイミド層のイミド基濃度
ポリイミド絶縁層100を構成する非熱可塑性ポリイミド層におけるイミド基濃度は33重量%以下である。
ここで、「イミド基濃度」は、非熱可塑性ポリイミド中のイミド基部(-(CO)2-N-)の分子量を、非熱可塑性ポリイミドの構造全体の分子量で除した値を意味する。このイミド基濃度が33重量%を超えると、極性基の増加によって吸湿性が増加する。これに対し、イミド基濃度を低下させるとポリイミド層の熱膨張係数が増加しやすくなるが、酸二無水物とジアミン化合物の組み合わせを選択することで非熱可塑性ポリイミド中の分子の配向性を制御することにより、イミド基濃度低下に伴う熱膨張係数の増加を抑制し、低吸湿性を担保することができる。
また、ビアホールへの無電解めっき時に無電解めっきとポリイミドとの密着性を担保するために、ポリイミド絶縁層100を構成する非熱可塑性ポリイミド層におけるイミド基濃度は、20重量%以上が好ましく、25重量%以上がより好ましい。
なお、ポリイミド絶縁層100を構成する熱可塑性ポリイミド層におけるイミド基濃度も30重量%以下であることが好ましい。ここで、「イミド基濃度」は、熱可塑性ポリイミド中のイミド基部(-(CO)2-N-)の分子量を、熱可塑性ポリイミドの構造全体の分子量で除した値を意味する。熱可塑性ポリイミド層におけるイミド基濃度が30重量%を超えると、ガラス転移温度以上の温度での弾性率が低下しにくくなり、また極性基の増加によって低吸湿性が悪化する。
また、ビアホールへの無電解めっき時に無電解めっきとポリイミドとの密着性を担保するために、ポリイミド絶縁層100を構成する熱可塑性ポリイミド層におけるイミド基濃度は、20重量%以上が好ましく、25重量%以上がより好ましい。
ポリイミド絶縁層100は、上記(i)~(iv)の特徴に加え、さらに次の条件(v)を充たすことが好ましい。
(v)熱可塑性ポリイミド層における全モノマー成分から誘導される全モノマー残基のうち、ビフェニル骨格を有するモノマー残基が占める割合が30mol%以上であること。
熱可塑性ポリイミド層を構成する全モノマー残基のうち、ビフェニル骨格を有するモノマー残基の占める割合が30mol%以上であることによって、モノマー由来の剛直構造により、ポリマー全体に秩序構造が形成されるので、熱可塑性でありながら、酸素透過度及び吸湿性が低く、長期耐熱接着性に優れ、誘電正接が低い熱可塑性ポリイミド層を得られる。なお、図2に示したように、回路基板が、非熱可塑性ポリイミド層110の両側に熱可塑性ポリイミド層120A,120Bを有する場合は、熱可塑性ポリイミド層120A、120Bのいずれか片方が上記条件(v)を満たせばよいが、両方の熱可塑性ポリイミド層120A,120Bが共に上記条件(v)を満たすことが好ましい。
<厚み>
本実施形態のポリイミド絶縁層100の全体の厚みT1は、使用する目的に応じて、所定の範囲内に設定することが可能であり、例えば30~60μmの範囲内にあることが好ましく、35~50μmの範囲内にあることがより好ましい。厚みT1が上記下限値に満たないと、酸素透過度を十分に下げることが困難となり、繰り返し高温に晒された場合に配線層10とポリイミド絶縁層100との接着性が低下してしまう懸念がある。一方、厚みT1が上記上限値を超えると、ポリイミドフィルムを曲げた際にクラックが生じ破れるなどの不具合が生じる。
また、ポリイミド絶縁層100の厚みT1に対する熱可塑性ポリイミド層120A,120Bの合計厚みT2(ここで、T2は図1のT2Aを、図2のT2A+T2Bを意味する)の比率T2/T1が0.17以下であることが好ましく、0.10~0.15の範囲内であることがより好ましい。この比の値が0.17より大きいと、酸素透過度が大きくなるとともに、誘電正接の低下が困難となる。そのため、例えば回路基板に使用したときに、長期耐熱接着性が不十分になるとともに、高速伝送への適応が困難となる。
比率T2/T1の下限は特に限定されない。比率T2/T1が小さくなるほど、酸素透過度及び誘電正接の低減が図りやすくなるからである。ただし、比率T2/T1が小さくなるほど、相対的に熱可塑性ポリイミド層120A,120Bの占める厚み割合が小さくなることから、比率T2/T1の下限は、ポリイミド絶縁層100と配線層10との接着信頼性が確保できる値として、例えば0.02程度が好ましい。
さらに、非熱可塑性ポリイミド層110の厚みT3は、使用する目的に応じて、所定の範囲内に設定することが可能であり、例えば25~49μmの範囲内にあることが好ましく、30~49μmの範囲内にあることがより好ましい。厚みT3が上記下限値に満たないと、ポリイミド絶縁層100の誘電特性の改善効果が小さくなるとともに、酸素透過度が大きくなり、繰り返し高温に晒された場合に配線層10とポリイミド絶縁層100との接着性が低下してしまう懸念がある。
<ポリイミドの一般的な合成法>
一般にポリイミドは、酸二無水物とジアミン化合物を溶媒中で反応させ、ポリアミド酸を生成したのち加熱閉環(イミド化)させることにより製造できる。例えば、酸二無水物とジアミン化合物をほぼ等モルで有機溶媒中に溶解させて、0~100℃の範囲内の温度で30分~24時間撹拌し重合反応させることでポリイミドの前駆体であるポリアミド酸が得られる。反応にあたっては、生成する前駆体が有機溶媒中に5~30重量%の範囲内、好ましくは10~20重量%の範囲内となるように反応成分を溶解する。重合反応に用いる有機溶媒としては、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン(NMP)、2-ブタノン、ジメチルスルホキシド(DMSO)、ヘキサメチルホスホルアミド、N-メチルカプロラクタム、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム、クレゾール等が挙げられる。これらの溶媒を2種以上併用して使用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。また、このような有機溶媒の使用量としては特に制限されるものではないが、重合反応によって得られるポリアミド酸溶液の濃度が5~30重量%程度になるような使用量に調整して用いることが好ましい。
合成されたポリアミド酸は、通常、反応溶媒溶液として使用することが有利であるが、必要により濃縮、希釈又は他の有機溶媒に置換することができる。また、ポリアミド酸は一般に溶媒可溶性に優れるので、有利に使用される。ポリアミド酸の溶液の粘度は、500cps~100,000cpsの範囲内であることが好ましい。この範囲を外れると、コーター等による塗工作業の際にフィルムに厚みムラ、スジ等の不良が発生し易くなる。ポリアミド酸をイミド化させる方法は、特に制限されず、例えば前記溶媒中で、80~400℃の範囲内の温度条件で1~24時間かけて加熱するといった熱処理が好適に採用される。次に、非熱可塑性ポリイミド及び熱可塑性ポリイミドについて、より具体的に説明する。
<非熱可塑性ポリイミド>
非熱可塑性ポリイミド層110を構成する非熱可塑性ポリイミドは、酸二無水物残基及びジアミン残基を含む。非熱可塑性ポリイミドは、全モノマー成分から誘導される全モノマー残基のうち、ビフェニル骨格含有残基を60mol%以上含有することが好ましく、70mol%以上含有することがより好ましい。非熱可塑性ポリイミド中のビフェニル骨格含有残基を60mol%以上とすることによって、ポリイミド絶縁層100を構成するポリイミド全体におけるビフェニル骨格含有残基の含有比率を高め、酸素透過度を下げ、低誘電正接化を図ることができる。
(酸二無水物残基)
非熱可塑性ポリイミドは、全酸二無水物残基のうち、ビフェニル骨格を有する酸二無水物残基を35mol%以上含有することが好ましく、50mol%以上含有することがより好ましい。さらに好ましくは、式(c)で表されるビフェニルテトライル基を上記の量で含有することがよい。
非熱可塑性ポリイミドは、上記のビフェニル骨格を有する酸二無水物残基のほかに、発明の効果を損なわない範囲で、一般にポリイミドの原料として用いられる酸二無水物の残基を含有することができる。そのような酸二無水物残基として、例えば、ピロメリット酸二無水物(PMDA)、1,4-フェニレンビス(トリメリット酸モノエステル)二無水物(TAHQ)、2,3,6,7-ナフタレンテトラカルボン酸二無水物(NTCDA)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、2,2’,3,3’-、2,3,3’,4’-又は3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3’,3,4’-ジフェニルエーテルテトラカルボン酸二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、3,3’’,4,4’’-、2,3,3’’,4’’-又は2,2’’,3,3’’-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-又は3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-又は3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-又は3,4-ジカルボキシフェニル)エタン二無水物、1,2,7,8-、1,2,6,7-又は1,2,9,10-フェナンスレン-テトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)テトラフルオロプロパン二無水物、2,3,5,6-シクロヘキサン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、2,6-又は2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-(又は1,4,5,8-)テトラクロロナフタレン-1,4,5,8-(又は2,3,6,7-)テトラカルボン酸二無水物、2,3,8,9-、3,4,9,10-、4,5,10,11-又は5,6,11,12-ペリレン-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、4,4’-ビス(2,3-ジカルボキシフェノキシ)ジフェニルメタン二無水物、エチレングリコールビスアンヒドロトリメリテート等の芳香族テトラカルボン酸二無水物から誘導される酸二無水物残基が挙げられる。
(ジアミン残基)
非熱可塑性ポリイミドは、全ジアミン残基のうち、ビフェニル骨格を有するジアミン残基を70mol%以上含有することが好ましく、85mol%以上含有することがより好ましい。さらに好ましくは、式(b)で表されるビフェニルジイル基を上記の量で含有することがよい。式(b)で表されるビフェニルジイル基は、剛直構造を有し、ポリマー全体に秩序構造を付与する作用を有しているため、酸素透過度を下げるとともに、分子の運動抑制により誘電正接を低下させることができる。
非熱可塑性ポリイミドは、上記のビフェニル骨格を有するジアミン残基のほかに、発明の効果を損なわない範囲で、一般にポリイミドの原料として用いられるジアミン化合物の残基を含有することができる。そのようなジアミン残基として、例えば、1,4-ジアミノベンゼン(p-PDA;パラフェニレンジアミン)、4-アミノフェニル-4’-アミノベンゾエート(APAB)、3,3’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルプロパン、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノベンゾフェノン、(3,3’-ビスアミノ)ジフェニルアミン、1,4-ビス(3-アミノフェノキシ)ベンゼン、3-[4-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン、3-[3-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、4,4’-[2-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4’-[4-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4’-[5-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、ビス[4,4’-(3-アミノフェノキシ)]ベンズアニリド、4-[3-[4-(4-アミノフェノキシ)フェノキシ]フェノキシ]アニリン、4,4’-[オキシビス(3,1-フェニレンオキシ)]ビスアニリン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル(BAPE)、ビス[4-(4-アミノフェノキシ)フェニル]スルホン(BAPS)、ビス[4-(4-アミノフェノキシ)フェニル]ケトン(BAPK)、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、9,9-ビス[4-(3-アミノフェノキシ)フェニル]フルオレン、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-メチレンジ-o-トルイジン、4,4’-メチレンジ-2,6-キシリジン、4,4’-メチレン-2,6-ジエチルアニリン、3,3’-ジアミノジフェニルエタン、3,3’-ジアミノビフェニル、3,3’-ジメトキシベンジジン、3,3’’-ジアミノ-p-テルフェニル、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-d-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン、2’-メトキシ-4,4’-ジアミノベンズアニリド、4,4’-ジアミノベンズアニリド、1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、1,4-ビス(4-アミノフェノキシ)-2,5-ジ-tert-ブチルベンゼン、6-アミノ-2-(4-アミノフェノキシ)ベンゾオキサゾール、2,6-ジアミノ-3,5-ジエチルトルエン、2,4-ジアミノ-3,5-ジエチルトルエン、2,4-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、ビス(4-アミノ-3-エチル-5-メチルフェニル)メタン等の芳香族ジアミン化合物から誘導されるジアミン残基、ダイマー酸の二つの末端カルボン酸基が1級のアミノメチル基又はアミノ基に置換されてなるダイマー酸型ジアミン等の脂肪族ジアミン化合物から誘導されるジアミン残基などが挙げられる。
非熱可塑性ポリイミドにおいて、上記酸二無水物残基及びジアミン残基の種類や、2種以上の酸二無水物残基又はジアミン残基を適用する場合のそれぞれのモル比を選定することにより、酸素透過度、誘電特性、熱膨張係数、貯蔵弾性率、引張弾性率等を制御することができる。また、非熱可塑性ポリイミドにおいて、ポリイミドの構造単位を複数有する場合は、ブロックとして存在しても、ランダムに存在していてもよいが、ランダムに存在することが好ましい。
非熱可塑性ポリイミドは、芳香族テトラカルボン酸二無水物から誘導される芳香族テトラカルボン酸残基及び芳香族ジアミンから誘導される芳香族ジアミン残基を含むことが好ましい。非熱可塑性ポリイミドに含まれる酸二無水物残基及びジアミン残基を、いずれも芳香族基とすることで、ポリイミド絶縁層100の高温環境下での寸法精度を向上させることができる。
非熱可塑性ポリイミドの重量平均分子量は、例えば10,000~400,000の範囲内が好ましく、50,000~350,000の範囲内がより好ましい。重量平均分子量が10,000未満であると、フィルムの強度が低下して脆化しやすい傾向となる。一方、重量平均分子量が400,000を超えると、過度に粘度が増加して塗工作業の際にフィルム厚みムラ、スジ等の不良が発生しやすい傾向になる。
<熱可塑性ポリイミド>
ポリイミド絶縁層100において、熱可塑性ポリイミド層120A,120Bを構成する熱可塑性ポリイミドは、酸二無水物残基及びジアミン残基を含むものである。熱可塑性ポリイミドは、上記の条件(v)のとおり、全モノマー成分から誘導される全モノマー残基のうち、ビフェニル骨格含有残基を30mol%以上含有することが好ましく、40mol%以上含有することがより好ましい。熱可塑性ポリイミド中のビフェニル骨格含有残基を30mol%以上とすることによって、ポリイミド絶縁層100を構成するポリイミド全体における、ビフェニル骨格含有残基の含有比率を高め、酸素透過度を低減するとともに、低誘電正接化を図ることができる。一方で、熱可塑性ポリイミドは、金属層との接着性を確保するためにポリイミド分子鎖の柔軟性を向上させ、熱可塑性を付与する必要があることから、ビフェニル骨格含有残基の含有量の上限を65mol%とすることが好ましい。
(酸二無水物残基)
熱可塑性ポリイミドは、全酸二無水物残基のうち、ビフェニル骨格を有する酸二無水物残基を60mol%以上含有することが好ましい。より好ましくは、前述の式(c)で表されるビフェニルテトライル基を上記の量で含有することがよい。
熱可塑性ポリイミドは、上記のビフェニル骨格を有する酸二無水物の残基のほかに、発明の効果を損なわない範囲で、一般にポリイミドの原料として用いられる酸二無水物の残基を含有することができる。そのような酸二無水物残基として、非熱可塑性ポリイミドについて例示した酸二無水物の残基が挙げられる。
(ジアミン残基)
熱可塑性ポリイミドは、全ジアミン残基のうち、ビフェニル骨格を有するジアミン残基を1mol%以上含有することが好ましく、5mol%以上含有することがより好ましい。さらに好ましくは、前述の式(b)で表されるビフェニルジイル基を上記の量で含有することがよい。式(b)で表されるビフェニルジイル基は、剛直構造を有し、ポリマー全体に秩序構造を付与する作用を有しているため、分子の運動抑制により誘電正接や吸湿性を低下させることができる。更に、熱可塑性ポリイミドの原料として使用することで、酸素透過度が低く、長期耐熱接着性に優れたポリイミドが得られる。
熱可塑性ポリイミドは、上記のビフェニル骨格を有するジアミン残基のほかに、発明の効果を損なわない範囲で、一般にポリイミドの原料として用いられるジアミン化合物の残基を含有することができる。そのようなジアミン残基として、非熱可塑性ポリイミドについて例示したジアミン化合物の残基が挙げられる。
熱可塑性ポリイミドにおいて、上記酸二無水物残基及びジアミン残基の種類や、2種以上の酸二無水物残基又はジアミン残基を適用する場合のそれぞれのモル比を選定することにより、熱膨張係数、引張弾性率、ガラス転移温度等を制御することができる。また、熱可塑性ポリイミドにおいて、ポリイミドの構造単位を複数有する場合は、ブロックとして存在しても、ランダムに存在していてもよいが、ランダムに存在することが好ましい。
熱可塑性ポリイミドは、芳香族テトラカルボン酸二無水物から誘導される芳香族テトラカルボン酸残基及び芳香族ジアミンから誘導される芳香族ジアミン残基を含むことが好ましい。熱可塑性ポリイミドに含まれる酸二無水物残基及びジアミン残基を、いずれも芳香族基とすることで、ポリイミド絶縁層100の高温環境下でのポリイミドの劣化を抑制することができる。
熱可塑性ポリイミド層120A,120Bにおけるイミド基濃度は、前述の通り30重量%以下であることが好ましい。このイミド基濃度が30重量%を超えると、ガラス転移温度以上の温度での弾性率が低下しにくくなり、また極性基の増加によって低吸湿性も悪化する。
熱可塑性ポリイミドの重量平均分子量は、例えば10,000~400,000の範囲内が好ましく、50,000~350,000の範囲内がより好ましい。重量平均分子量が10,000未満であると、フィルムの強度が低下して脆化しやすい傾向となる。一方、重量平均分子量が400,000を超えると、過度に粘度が増加して塗工作業の際にフィルム厚みムラ、スジ等の不良が発生しやすい傾向になる。
ポリイミド絶縁層100おいて、熱可塑性ポリイミド層120A,120Bは配線層10の接着層として機能し、銅箔などの金属層との密着性を向上させることができる。そのため、熱可塑性ポリイミド層120A,120Bは、ガラス転移温度が200℃以上350℃以下の範囲内が好ましく、200℃以上320℃以下の範囲内がより好ましい。
また、熱可塑性ポリイミド層120A,120Bは配線層10の接着層となるため、銅の拡散を抑制するために完全にイミド化された構造が最も好ましい。但し、ポリイミドの一部がアミド酸となっていてもよい。そのイミド化率は、フーリエ変換赤外分光光度計(市販品:日本分光製FT/IR620)を用い、1回反射ATR法にてポリイミド薄膜の赤外線吸収スペクトルを測定することによって、1015cm-1付近のベンゼン環吸収体を基準とし、1780cm-1のイミド基に由来するC=O伸縮の吸光度から算出される。
<ポリイミドフィルムの形態>
本発明においてポリイミド絶縁層100は、上記条件を満たすものであれば特に限定されるものではなく、絶縁樹脂からなるフィルム(シート)であってもよく、例えば、銅箔などの金属箔、ガラス板、ポリイミド系フィルム、ポリアミド系フィルム、ポリエステル系フィルムなどの樹脂シート等の基材に積層された状態の絶縁樹脂のフィルムであってもよい。
<誘電正接>
ポリイミド絶縁層100は、高周波信号の伝送時における誘電損失を低減するため、ポリイミド絶縁層100全体として、スプリットポスト誘電体共振器(SPDR)により測定したときの10GHzにおける誘電正接が、0.004以下であることが好ましい。回路基板の伝送損失を改善するためには、特にポリイミド絶縁層の誘電正接を制御することが重要であり、誘電正接を上記範囲内とすることで、伝送損失を下げる効果が増大する。従って、本発明の回路基板を高周波用途の回路基板として適用する場合、伝送損失を効率よく低減できる。10GHzにおける誘電正接が0.004を超えると、高周波信号の伝送経路上で電気信号のロスが大きくなるなどの不都合が生じやすくなる。10GHzにおける誘電正接の下限値は特に制限されないが、ポリイミド絶縁層100の物性制御を考慮する必要がある。
<比誘電率>
本発明においてポリイミド絶縁層100は、インピーダンス整合性を確保するため、ポリイミド絶縁層100全体として、10GHzにおける比誘電率が4.0以下であることが好ましい。10GHzにおける比誘電率が4.0を超えると、誘電損失の悪化に繋がり、高周波信号の伝送経路上で電気信号のロスが大きくなるなどの不都合が生じやすくなる。
<フィラー>
本発明においてポリイミド絶縁層100は、必要に応じて、非熱可塑性ポリイミド層110又は熱可塑性ポリイミド層120A,120B中に、無機フィラーや有機フィラーを含有してもよい。具体的には、例えば二酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、フッ化アルミニウム、フッ化カルシウム等の無機フィラーやフッ素系ポリマー粒子や液晶ポリマー粒子等の有機フィラーが挙げられる。これらは1種又は2種以上を混合して用いることができる。なお、有機フィラーを含有する場合、有機フィラーは非熱可塑性ポリイミド層110又は熱可塑性ポリイミド層120A,120Bを構成する全モノマー成分に該当しないものとする。
<回路基板の製造方法>
本発明の回路基板は、ポリイミド絶縁層100と金属層が積層した金属張積層板を作製し、金属張積層板を常法によって配線加工することにより得ることができ、金属張積層板は、ポリイミド絶縁層100に、配線層10を構成する金属をスパッタリング又はメッキすることにより、又は金属箔を熱圧着などの方法でラミネートすることにより得ることができる。
金属張積層板は、銅箔等の金属箔上にポリイミドの前駆体であるポリアミド酸を含有する塗布液をキャストし、乾燥して塗布膜とした後、熱処理してイミド化し、ポリイミド層を形成することによって作製してもよい。
また、ポリイミド絶縁層100は次のようにして製造することができる。
[ポリイミド絶縁層の製造方法]
ポリイミド絶縁層100の製造方法の好ましい態様として、例えば、以下の[1]~[3]を例示することができる。
[1]支持基材に、ポリアミド酸溶液を塗布・乾燥することを複数回繰り返した後、イミド化してポリイミド絶縁層100を製造する方法。
[2]支持基材に、ポリアミド酸溶液を塗布・乾燥することを複数回繰り返した後、ポリアミド酸のゲルフィルムを支持基材から剥がし、イミド化してポリイミド絶縁層100を製造する方法。
[3]多層押出により、同時にポリアミド酸溶液を多層に積層した状態で塗布・乾燥した後、イミド化を行うことによってポリイミド絶縁層100を製造する方法(以下、多層押出法)。
上記[1]の方法は、例えば、次の工程1a~1c;
(1a)支持基材にポリアミド酸溶液を塗布し、乾燥させる工程と、
(1b)支持基材上でポリアミド酸を熱処理してイミド化することによりポリイミド層を形成する工程と、
(1c)支持基材とポリイミド層とを分離することによりポリイミド絶縁層100を得る工程と、
を含むことができる。
上記[2]の方法は、例えば、次の工程2a~2c;
(2a)支持基材にポリアミド酸溶液を塗布し、乾燥させる工程と、
(2b)支持基材とポリアミド酸のゲルフィルムとを分離する工程と、
(2c)ポリアミド酸のゲルフィルムを熱処理してイミド化することによりポリイミド絶縁層100を得る工程と、
を含むことができる。
上記[1]の方法又は[2]の方法において、工程1a又は工程2aを複数回繰り返し行うことによって、支持基材上にポリアミド酸の積層構造体を形成することができる。なお、ポリアミド酸溶液を支持基材上に塗布する方法としては特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能である。
上記[3]の方法は、上記[1]の方法の工程1a、又は[2]の方法の工程2aにおいて、多層押出により、同時にポリアミド酸の積層構造体を塗布し、乾燥させる以外は、上記[1]の方法又は[2]の方法と同様に実施できる。
ポリイミド絶縁層100は、支持基材上でポリアミド酸のイミド化を完結させることが好ましい。ポリアミド酸の樹脂層が支持基材に固定された状態でイミド化されるので、イミド化過程におけるポリイミド層の伸縮変化を抑制して、ポリイミド絶縁層100の厚みや寸法精度を維持することができる。
以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。
[粘度の測定]
E型粘度計(ブルックフィールド社製、商品名;DV-II+Pro)を用いて、25℃における粘度を測定した。トルクが10%~90%になるよう回転数を設定し、測定を開始してから2分経過後、粘度が安定した時の値を読み取った。
[ガラス転移温度(Tg)の測定]
幅5mmのポリイミドフィルムを、動的粘弾性測定装置(DMA:TAインスツルメント社製、商品名;RSA G2)を用いて、測定時のチャック間距離を23mmとして、30℃から400℃まで昇温速度4℃/分、周波数11Hzで測定を行い、弾性率変化(tanδ)が最大となる温度をガラス転移温度とした。なお、DMAを用いて測定された30℃における貯蔵弾性率が1.0×10Pa以上であり、350℃での貯蔵弾性率が1.0×10Pa未満を示すものを「熱可塑性」とし、30℃における貯蔵弾性率が1.0×10Pa以上であり、350℃での貯蔵弾性率が1.0×10Pa以上を示すものを「非熱可塑性」とした。
[熱膨張係数(CTE)の測定]
幅3mmのポリイミドフィルムを、サーモメカニカルアナライザー(日立ハイテクテクノロジー社製、商品名;TMA/SS6100)を用い、測定時のチャック間距離を15mmとして、5.0gの荷重を加えながら一定の昇温速度で30℃から260℃まで昇温させ、更にその温度で10分保持した後、5℃/分の速度で冷却し、250℃から100℃までの平均熱膨張係数(熱膨張係数)を求めた。
[吸湿率の測定]
ポリイミドフィルムの試験片(幅;4cm×長さ;25cm)を2枚用意し、80℃で1時間乾燥した。乾燥後直ちに23℃/50%RHの恒温恒湿室に入れ、24時間以上静置し、その前後の重量変化から次式により求めた。
吸湿率(重量%)=[(吸湿後重量-乾燥後重量)/乾燥後重量]×100
[比誘電率及び誘電正接の測定]
ベクトルネットワークアナライザ(Agilent社製、商品名;E8363C)及びスプリットポスト誘電体共振器(SPDR共振器)を用いて、周波数10GHzにおけるポリイミドフィルムの比誘電率および誘電正接を測定した。なお、測定に使用した材料は、温度;24~26℃、湿度;45~55%の条件下で、24時間放置したものである。
[イミド基濃度の計算]
イミド基部(-(CO)-N-)の分子量をポリイミドの構造全体の分子量で除した値をイミド基濃度とした。
[銅箔の表面粗度の測定]
銅箔の表面粗度は、AFM(ブルカー・エイエックスエス社製、商品名;Dimension Icon型SPM)、プローブ(ブルカー・エイエックスエス社製、商品名;TESPA(NCHV)、先端曲率半径10nm、ばね定数42N/m)を用いて、タッピングモードで、銅箔表面の80μm×80μmの範囲で測定し、十点平均粗さ(Rzjis)を求めた。
[初期ピール強度の測定]
後述する実施例で作製した銅張積層板(銅箔/多層ポリイミド層)の銅箔を10mm間隔で樹脂の塗工方向に幅1mmに回路加工した後、幅;8cm×長さ;4cmに切断した。ピール強度は、テンシロンテスター(東洋精機製作所社製、商品名;ストログラフVE-1D)を用いて、切断した測定サンプルのポリイミド層面を両面テープによりアルミ板に固定し、回路加工された銅箔を180°方向に50mm/分の速度で剥離していき、ポリイミド層から10mm剥離したときの中央値強度を求め、初期ピール強度とした。
[加熱後ピール強度の測定]
後述する実施例で作製した銅張積層板(銅箔/多層ポリイミド層)の銅箔を10mm間隔で樹脂の塗工方向に幅1mmに回路加工した後、幅;8cm×長さ;4cmに切断した。切断したサンプルを150℃に設定させた熱風オーブン(大気雰囲気下)に保管し、1000時間後に取り出しを行った。ピール強度は、テンシロンテスター(東洋精機製作所社製、商品名;ストログラフVE-1D)を用いて、取り出した測定サンプルのポリイミド層面を両面テープによりアルミ板に固定し、回路加工された銅箔を180°方向に50mm/分の速度で剥離していき、ポリイミド層から10mm剥離したときの中央値強度を求め加熱後ピール強度とした。
[酸素透過度の測定]
後述する実施例に記載のようにマイクロストリップライン形成後に単離したポリイミドフィルムについて、穴あけ箇所を除いた2.5mm×30mmのポリイミドフィルムを2枚切り出した。次に粘着面付きアルミテープ(東洋アルミ・キッチンアルミテープ70)を58mmφのサイズに2枚カットし、図8に示すように直径L1が58mmφのサイズにカットした2枚のアルミテープ200のそれぞれに幅L2が2.0mm、長さL3が20mmのスリット202を2か所形成した。図9に示すようにスリット202を形成したアルミテープ200の1枚の粘着面201のスリット202の箇所に、該スリット202を覆うようにして、切り出した2枚のポリイミドフィルム100xを張り合わせた。次にポリイミドフィルム100xを貼り合わせた面に、もう1枚のスリット202を形成したアルミテープ200を、他方のアルミテープ200とスリット202の位置が合うようにして張り合わせを行うことにより酸素透過度測定用サンプル100sを得た。
得られたサンプル100sについて、温度23℃±2℃、湿度65%RH±5%RHの条件下でJIS K7126-1の差圧法(ガス量測定:ガスクロマト法)に準拠し、酸素ガスの透過度の測定を実施した。なお、酸素透過度測定装置として、GTRテック社製、GTR-30XAを用いて実施し、差圧は1atmとし、ポリイミドフィルム厚みは表1記載の厚み(第1層、第2層及び第3層の和)である。また透過した酸素量については、ISO15105-1に準拠し、ヤナコテクニカルサイエンス社製、G2700T・F測定を行った。
なお、この際、酸素透過度測定の有効面積はポリイミドフィルムの有効透過面積である0.8cmとして算出した。
H-NMRを用いた各ポリイミド層の組成分析]
酸素透過度測定後のポリイミドフィルムについて一部を切り出した後、アセトンでの洗浄、乾燥を実施した。乾燥後のポリイミドフィルムの第1層について、測定に必要量の削り出しを行った後、高温アルカリメタノール分解を行った。次に本分解液についてH-NMR(600MHz)での測定を行い、ポリイミド組成を解析した。この際、削り出しを行った部分が第2層となっていないことを確認するため、FT-IRの測定を行いながら実施し、削り出しを行った部分についてはFT-IRでのピーク変化がないことを確認した。
次に第1層の測定と同様に第3層の測定についてもH-NMR(600MHz)での測定を行い、ポリイミド組成の解析を行った。
最後に第1層の削り出しが完了したことをFT-IRで確認した後、第1層、第3層の測定同様に第2層の削り出し及びH-NMR(600MHz)での測定を実施することでポリイミド組成の解析を行った。
[ポリイミド層の厚みの測定]
後述する実施例で記載の銅張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムを得た。得られたポリイミドフィルムを短冊状に切り出し、樹脂包埋した後、ミクロトームにてフィルム厚み方向の切断を行い約100nmの超薄切片を作製した。作製した超薄切片について、日立ハイテクテクノロジー社製SEM(SU9000)のSTEM機能を用いて、加速電圧30kVで観察を行い、各ポリイミド層の厚みを各5点測定し、その平均値を各ポリイミド層の厚みとした。
実施例及び参考例に用いた略号は、以下の化合物を示す。
PMDA:ピロメリット酸二無水物
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
m-TB:2,2’-ジメチル-4,4’-ジアミノビフェニル
TPE-R:1,3-ビス(4-アミノフェノキシ)ベンゼン
TPE-Q:1,4-ビス(4-アミノフェノキシ)ベンゼン
DAPE:4,4’-ジアミノ-ジフェニルエーテル
PDA:パラフェニレンジアミン
BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
ビスアニリン-P:1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン(三井化学ファイン社製、商品名;ビスアニリン-P)
DDA:炭素数36の脂肪族ジアミン(クローダジャパン社製、商品名;PRIAMINE1074、アミン価;210mgKOH/g、環状構造及び鎖状構造のダイマージアミンの混合物、ダイマー成分の含有量;95重量%以上)
DMAc:N,N‐ジメチルアセトアミド
(合成例1)
窒素気流下で、300mlのセパラブルフラスコに、12.061gのm-TB(0.0568モル)、0.923gのTPE-Q(0.0032モル)及び1.0874gのビスアニリン-P(0.0032モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、6.781gのPMDA(0.0311モル)及び9.147gのBPDA(0.0311モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液aを得た。ポリアミド酸溶液aの溶液粘度は29,800cpsであった。
次に、銅箔1(電解銅箔、厚み;12μm、樹脂側の表面粗さRzjis;2.1μm)の上に、ポリアミド酸溶液aを硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた銅張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムa(非熱可塑性、Tg;316℃、吸湿率;0.61重量%)を調製した。また、ポリイミドフィルムaを構成するポリイミドのイミド基濃度は31.6重量%であった。
(合成例2)
窒素気流下で、300mlのセパラブルフラスコに、11.825gのm-TB(0.0557モル)、0.905gのTPE-Q(0.0031モル)及び1.653gのDDA(0.0031モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、6.649gのPMDA(0.0305モル)及び8.968gのBPDA(0.0305モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液bを得た。ポリアミド酸溶液bの溶液粘度は27,800cpsであった。
次に、銅箔1の上に、ポリアミド酸溶液bを硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた銅張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムb(非熱可塑性、Tg;258℃、吸湿率;0.54重量%)を調製した。また、ポリイミドフィルムbを構成するポリイミドのイミド基濃度は30.9重量%であった。
(合成例3)
窒素気流下で、300mlのセパラブルフラスコに、11.920gのm-TB(0.0562モル)及び2.897gのTPE-Q(0.0099モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、11.354gのPMDA(0.0521モル)及び3.829gのBPDA(0.0130モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液cを得た。ポリアミド酸溶液cの溶液粘度は31,200cpsであった。
次に、銅箔1の上に、ポリアミド酸溶液cを硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた銅張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムc(非熱可塑性、Tg;375℃、吸湿率;0.81重量%)を調製した。また、ポリイミドフィルムcを構成するポリイミドのイミド基濃度は33.2重量%であった。
(合成例4)
窒素気流下で、300mlのセパラブルフラスコに、1.548gのPDA(0.0143モル)及び11.465gのDAPE(0.0573モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、10.764gのPMDA(0.0494モル)及び6.223gのBPDA(0.0212モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液dを得た。ポリアミド酸溶液dの溶液粘度は23,500cpsであった。
次に、ポリアミド酸溶液dをTダイ金型のスリットから硬化後厚みが25μmとなるようにキャスティングし、乾燥炉中の平滑なベルト状の金属支持体上に押出して薄膜を形成し、130℃で所定時間加熱後、支持体から剥離して自己支持性フィルムを得た。さらに、この自己支持性フィルムの幅方向の両端部を把持して連続加熱炉へ挿入し、100℃から最高加熱温度が380℃となる条件で当該フィルムを加熱、イミド化して、ポリイミドフィルムd(非熱可塑性、Tg;>400℃、吸湿率;1.14重量%)を調製した。また、ポリイミドフィルムdを構成するポリイミドのイミド基濃度は36.2重量%であった。
(合成例5)
窒素気流下で、300mlのセパラブルフラスコに、15.591gのBAPP(0.0380モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、8.409gのPMDA(0.0386モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液eを得た。ポリアミド酸溶液eの溶液粘度は2,350cpsであった。
次に、銅箔1の上に、ポリアミド酸溶液eを硬化後の厚みが約10μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた銅張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムe(熱可塑性、Tg;320℃、吸湿率;0.55重量%)を調製した。また、ポリイミドフィルムeを構成するポリイミドのイミド基濃度は23.6重量%であった。
(合成例6)
窒素気流下で、300mlのセパラブルフラスコに、1.847gのm-TB(0.0087モル)及び10.172gのTPE-R(0.0348モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、2.889gのPMDA(0.0132モル)及び9.092gのBPDA(0.0309モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液fを得た。ポリアミド酸溶液fの溶液粘度は2,210cpsであった。
次に、銅箔1の上に、ポリアミド酸溶液fを硬化後の厚みが約10μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた銅張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムf(熱可塑性、Tg;226℃、吸湿率;0.41重量%)を調製した。また、ポリイミドフィルムfを構成するポリイミドのイミド基濃度は27.4重量%であった。
[実施例1]
銅箔2(電解銅箔、厚み;12μm、樹脂側の表面粗さRzjis;0.6μm)の上に、ポリアミド酸溶液fを硬化後の厚みが2.5μmとなるように均一に塗布した後、120℃で1分間加熱乾燥して溶媒を除去した。その上にポリアミド酸溶液aを硬化後の厚みが25μmとなるように均一に塗布した後、120℃で3分間加熱乾燥して溶媒を除去した。更に、その上にポリアミド酸fを硬化後の厚みが2.5μmとなるように均一に塗布した後、120℃で1分間加熱乾燥して溶媒を除去した。その後、140℃から360℃まで段階的な熱処理を行い、イミド化を完結して、片面銅張積層板1を調製した。
得られた片面銅張積層板1を用いて初期ピール強度及び加熱後ピール強度を測定した結果、それぞれ1.06kN/m及び0.69kN/mであった。各測定結果を表1に示す。
片面銅張積層板1について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルム1aを得た。得られたポリイミドフィルム1aについて、CTE及び誘電特性の評価を実施した結果、CTE;22ppm/K、誘電率;3.56、誘電正接;0.0032であった。各測定結果を表2に示す。
更に調製した片面銅張積層板1について20cm×20cmにカットした後、ポリイミド面を、同一サイズにカットした銅箔2(電解銅箔、厚み;12μm、樹脂側の表面粗さRzjis;0.6μm)の粗化面と重なるように積層し、330℃で10分間、6.5MPaの圧力をかけて圧着することで、両面銅張積層板2を調製した。調製した両面回路積層板2についてのグランド層との接続を行うためのドリル穴あけを実施後、スルーホール接続及び銅箔2へ10μmの電解銅めっきを実施した。次に一方の表面の銅層に線幅60μm、線長50mmのシグナル配線を形成し、他方の銅層をグランド層とした回路形成を両面銅張積層板2上に複数行った。その後形成した配線面側にニッカン工業製カバーレイフィルム(SAFY)を160℃で90分間、4MPaの圧力をかけて圧着することで、マイクロストリップラインを複数調製した。
次に調製したマイクロストリップラインの1ピースをカットし、カバーレイフィルムを剥離するためにN-メチルピロリドンへの浸漬を24時間実施した。24時間後に膨潤したカバーレイフィルムを引き剥がすことで、シグナル配線を形成した回路基板を単離した後、シグナル配線を形成した回路基板を塩化第二鉄水溶液に浸漬することで、一部穴あけされたポリイミドフィルム1a’の単離を行った。更に、穴あけ部分を取り除くことで5mm×40mmのポリイミドフィルム1a’を得た。得られたポリイミドフィルム1a’について酸素透過度測定とH-NMR測定を用いた各層のポリイミドの組成分析を実施した。酸素透過度測定結果を表3に記載する。なおポリイミドの組成分析については、合成例で記載の仕込み比と同一であったため記載を省略する。
[実施例2~実施例4、比較例1及び参考例1~2]
表1に記載したポリアミド酸溶液を用いるとともに、厚み構成を変更した以外は、実施例1と同様にして、実施例2~4、比較例1及び参考例1~2の片面銅張積層板2~4、片面銅張積層板5及び片面銅張積層板6~7ならびにポリイミドフィルム2a~4a、ポリイミドフィルム5a及びポリイミドフィルム6a~7aを得た。各測定結果を表1及び表2に示す。
また得られた片面銅張積層板について、実施例4、比較例1の両面銅張積層板調製時の銅箔圧着におけるプレス温度を380℃とした以外は実施例1と同様にして、両面銅張積層板の調製やマイクロストリップライン形成、マイクロストリップライン形成後のポリイミドフィルム単離を実施し、ポリイミドフィルム2a’~4a’、ポリイミドフィルム5a’及びポリイミドフィルム6a’~7a’を得た。得られたポリイミドフィルムについて酸素透過度測定を実施した結果を表3に示す。なおポリイミドの組成分析については、実施例1と同様に合成例で記載の仕込み比と同一であったため記載を省略する。
Figure 2022151716000005
Figure 2022151716000006
Figure 2022151716000007
比較例2
ポリアミド酸溶液dをTダイ金型のスリットから硬化後厚みが30μmとなるようにキャスティングし、乾燥炉中の平滑なベルト状の金属支持体上に押出して薄膜を形成し、130℃で所定時間加熱後、支持体から剥離して自己支持性フィルムを得た。さらに自己支持性フィルムを連続的に搬送しながら、自己支持性フィルムの大気面にダイコーターを用いてポリアミド酸溶液eを硬化後厚みが2.5μmとなるように塗布し、120℃の乾燥炉で所定時間乾燥させた。次いで、ポリアミド酸溶液eを塗布面と反対の面についても前記同様にポリアミド酸溶液eを硬化後厚みが2.5μmとなるように塗布し、120℃の乾燥炉で所定時間乾燥させた。
この自己支持性フィルムの幅方向の両端部を把持して連続加熱炉へ挿入し、100℃から最高加熱温度が380℃となる条件で当該フィルムを加熱、イミド化して、ポリイミドフィルム8bを得た。このポリイミドフィルム8bの片面に銅箔、もう一方の面にテフロン(登録商標)フィルムを重ね合わせ、温度320℃、圧力340MPa/mの条件で15分間熱圧着して、圧着後にテフロン(登録商標)フィルムを剥がすことで、銅張積層板8を調製した。
得られた銅張積層板8を用いて初期ピール強度及び加熱後ピール強度を測定した結果、それぞれ1.15kN/m及び1.01kN/mであった。
片面銅張積層板8について、実施例1と同様にして銅箔をエッチング除去して、ポリイミドフィルム8aを得た。得られたポリイミドフィルム8aについて、CTE及び誘電特性を評価した結果、CTE;22ppm/K、比誘電率;3.65、誘電正接;0.0073であった。
また、得られた片面銅張積層板8と銅箔2を圧着する際のプレス温度を380℃とした以外は実施例1と同様にして、両面銅張積層板の調製、マイクロストリップライン形成、及びマイクロストリップライン形成後のポリイミドフィルムの単離を行い、ポリイミドフィルム8a’を得た。得られたポリイミドフィルム8a’について酸素透過度測定を実施した結果、0.39×10-12[mol/(m・s・Pa)]であった。なおポリイミドの組成分析については、実施例1と同様に合成例で記載の仕込み比と同一であったため記載を省略する。
[ビア加工性の確認]
実施例1で調製した両面銅張積層板2に対し、レーザービア加工機1(UV-YAGレーザー、ESI社製、型番;ESI5335)を用いて、穴径φ100μmのビアホールを形成した。ビアホール形成後、クロスセクションポリッシャーにて断面研磨加工し、走査顕微鏡(SEM)にて断面観察を行った。ポリイミド層の層間の段差は確認できず、加工性は良好であった。SEM写真を図10に示す。なお、図10における矢印は銅箔を示している。
また、両面銅張積層板2に対し、レーザービア加工機2(COレーザー、ビアメカニクス社製、型番;LC-2K212/2C)を用いて、コンフォーマル方式による穴径φ150μmのビアホールを形成した。ビアホール形成後、クロスセクションポリッシャーにて断面研磨加工し、SEM観察を行ったところ、加工性が良好であることを確認した。
実施例3で調製した片面銅張積層板3について、実施例1と同様に両面銅張積層板を調製し、ビアメカニクス社製NCドリル加工機を用いて、φ150μmのスルーホールを形成した。スルーホール形成後、クロスセクションポリッシャーにて断面研磨加工し、SEM観察を行った。ポリイミド層の層間の段差は確認できず、加工性は良好であった。SEM写真を図11に示す。なお、図11における矢印は銅箔を示している。
[めっき加工性の確認]
レーザー加工機1によるビアホール形成後の両面銅張積層板2のブラインドビアに対するデスミア処理を行った後、メッキ前処理及び無電解めっきを行った。クロスセクションポリッシャーにて断面研磨加工し、SEM観察を行った。ポリイミド層及びめっき層の剥離等は確認されず、めっき加工性は良好であった。SEM写真を図12に示す。
また、NCドリル加工機によるスルーホール形成後の両面銅張積層板のスルーホールに対してメッキ前処理及び無電解めっきを行った。クロスセクションポリッシャーにて断面研磨加工し、SEM観察を行った。ポリイミド層及びめっき層の剥離等は確認されず、めっき加工性は良好であった。SEM写真を図13に示す。
以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。
1A、1B、1C、1D、1E、1F、1G 回路基板
10 配線層
11 信号線
12、12’、12” グランド層
13 シールド配線
20 接着剤層
30 カバーレイ
40 ビア接続部
100、100’、100”、100A、100B ポリイミド絶縁層
100s 酸素透過度測定用サンプル
110 非熱可塑性ポリイミド層
120A、120B 熱可塑性ポリイミド層
130 ポリイミドフィルム
200 アルミテープ
201 粘着面
202 スリット

Claims (4)

  1. 配線層と、該配線層と接する少なくとも一層のポリイミド絶縁層と、を備えるとともに、複数のビア接続部を有する回路基板であって、
    前記ビア接続部の少なくとも1つ以上が前記ポリイミド絶縁層に形成されており、該ポリイミド絶縁層が、配線層に直接的に接する熱可塑性ポリイミド層と、該配線層に間接的に接する非熱可塑性ポリイミド層と、を有し、
    該ポリイミド絶縁層が下記の条件(i)~(iv);
    (i)熱膨張係数が10~30ppm/Kの範囲内であること;
    (ii)酸素透過度が1.8×10-12mol/(m2・s・Pa)以下であること;
    (iii)前記非熱可塑性ポリイミド層及び前記熱可塑性ポリイミド層を構成する全モノマー成分から誘導される全モノマー残基に対し、下記式(1)によって算出されるビフェニル骨格を有するモノマー残基の割合が50mol%以上であること;
    (iv)前記非熱可塑性ポリイミド層のイミド基濃度が33重量%以下であること;
    を満たすことを特徴とする回路基板。
    Figure 2022151716000008
    [式(1)において、nは、前記ポリイミド絶縁層を構成する非熱可塑性ポリイミド層及び熱可塑性ポリイミド層の総層数であって、2以上の整数であり、Mは、前記ポリイミド絶縁層の第i層のポリイミド層を構成するポリイミドにおける全モノマー成分から誘導される全モノマー残基のうち、ビフェニル骨格を有するモノマー残基が占める割合(単位;mol%)であり、Lは、第i層のポリイミド層の厚みであり、Lは前記ポリイミド絶縁層の厚みである。]
  2. 前記熱可塑性ポリイミド層のイミド基濃度が30重量%以下であることを特徴とする請求項1に記載の回路基板。
  3. 前記(i)~(iv)の条件に加え、更に下記の条件(v);
    (v)前記熱可塑性ポリイミド層における全モノマー成分から誘導される全モノマー残基のうち、ビフェニル骨格を有するモノマー残基が占める割合が30mol%以上であること;
    を満たすことを特徴とする請求項1に記載の回路基板。
  4. 前記ポリイミド絶縁層の厚みが30~60μmの範囲内であることを特徴とする請求項1から3のいずれか1項に記載の回路基板。

JP2022038392A 2021-03-26 2022-03-11 回路基板 Pending JP2022151716A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021054405 2021-03-26
JP2021054405 2021-03-26

Publications (1)

Publication Number Publication Date
JP2022151716A true JP2022151716A (ja) 2022-10-07

Family

ID=83376797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022038392A Pending JP2022151716A (ja) 2021-03-26 2022-03-11 回路基板

Country Status (4)

Country Link
JP (1) JP2022151716A (ja)
KR (1) KR20220134475A (ja)
CN (1) CN115134990A (ja)
TW (1) TW202237765A (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108699243B (zh) 2016-03-17 2021-05-18 日铁化学材料株式会社 聚酰胺酸、热塑性聚酰亚胺、树脂膜、层叠板及电路基板
KR102290631B1 (ko) 2016-09-29 2021-08-19 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 폴리이미드 필름, 동장 적층판 및 회로 기판

Also Published As

Publication number Publication date
KR20220134475A (ko) 2022-10-05
TW202237765A (zh) 2022-10-01
CN115134990A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
KR102290631B1 (ko) 폴리이미드 필름, 동장 적층판 및 회로 기판
JP6908590B2 (ja) ポリアミド酸、熱可塑性ポリイミド、樹脂フィルム、金属張積層板及び回路基板
JP6473028B2 (ja) 銅張積層板、プリント配線板及びその使用方法
JP2017165909A (ja) ポリイミド、樹脂フィルム及び金属張積層板
JP7053208B2 (ja) ポリイミドフィルム、金属張積層板及び回路基板
KR20230117670A (ko) 금속 피복 적층판 및 회로 기판
JP7428646B2 (ja) 金属張積層板及び回路基板
JP7212518B2 (ja) 金属張積層板、その製造方法及び回路基板
KR102560356B1 (ko) 폴리이미드 필름 및 금속장 적층체
JP2022101484A (ja) ポリイミドフィルム、金属張積層板、その製造方法及び回路基板
JP7405644B2 (ja) 金属張積層板及び回路基板
JP2022151716A (ja) 回路基板
JP7453434B2 (ja) 金属張積層板及び回路基板
JP7486393B2 (ja) 金属張積層板、その製造方法及び回路基板
JP7453433B2 (ja) 金属張積層板及び回路基板
KR102543928B1 (ko) 금속장 적층판 및 회로 기판
JP2023051810A (ja) 金属張積層板、回路基板、電子デバイス及び電子機器
JP2023006387A (ja) ポリアミド酸、ポリイミド、ポリイミドフィルム、金属張積層板及び回路基板
JP2022047880A (ja) ポリイミドフィルムの製造方法及び金属張積層板の製造方法
KR20220044147A (ko) 금속박 적층판, 그 제조방법 및 회로기판
JP2024000978A (ja) 金属張積層板、回路基板、電子デバイス及び電子機器
JP2024066870A (ja) ポリイミド積層体
JP2020015236A (ja) 両面金属張積層板及び回路基板

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220329