JP2022118976A - マスクブランクス及びフォトマスク - Google Patents

マスクブランクス及びフォトマスク Download PDF

Info

Publication number
JP2022118976A
JP2022118976A JP2021015862A JP2021015862A JP2022118976A JP 2022118976 A JP2022118976 A JP 2022118976A JP 2021015862 A JP2021015862 A JP 2021015862A JP 2021015862 A JP2021015862 A JP 2021015862A JP 2022118976 A JP2022118976 A JP 2022118976A
Authority
JP
Japan
Prior art keywords
layer
mask
compound layer
mol
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021015862A
Other languages
English (en)
Inventor
守男 細谷
Morio Hosoya
寿弘 鈴木
Toshihiro Suzuki
達也 磯崎
Tatsuya Isozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Seimaku KK
Original Assignee
Ulvac Seimaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Seimaku KK filed Critical Ulvac Seimaku KK
Priority to JP2021015862A priority Critical patent/JP2022118976A/ja
Priority to KR1020220007834A priority patent/KR20220112182A/ko
Publication of JP2022118976A publication Critical patent/JP2022118976A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof

Abstract

【課題】Moマイグレーションに起因するマスク層の線幅の増大を抑制することが可能なマスクブランクス及びフォトマスクを提供する。【解決手段】マスク層12を備えたマスクブランクスであって、マスク層12には、モリブデン、ケイ素及び窒素を含有し、更に酸素を選択的に含有し、かつ、下記(1)式を満足するMo化合物層が含まれるマスクブランクス。{(Si-O/2)×4/3+Mo/2-N}/Si≧0.25 …(1)ただし、上記(1)式におけるMo、Si、O及びNはそれぞれ、Mo化合物層に含まれるモリブデン、ケイ素、酸素及び窒素のモル分率(モル%)であり、Mo化合物層が酸素を含有しない場合は(1)式におけるOを0とする。【選択図】図1

Description

本発明は、マスクブランクス及びフォトマスクに関する。
FPD(flat panel display,フラットパネルディスプレイ)や、半導体デバイス製造等におけるフォトリソグラフィ工程で用いられるフォトマスクを形成するため、フォトマスクブランクス(マスクブランクス)が利用されている。マスクブランクスは、ガラス基板等の透明基板の一方の主面に、マスク層を積層したものからなる。
マスクブランクスの製造では、透明基板上に、遮光層等、所定の光学特性を有するマスク層である膜を形成する。このマスク層は、単層または複数が積層されていてもよい。マスク層上にレジストパターンを形成し、このレジストパターンをマスクとして、マスク層を選択的にエッチング除去して、所定のマスクパターンを形成することでフォトマスクが製造される。
マスクブランクスまたはフォトマスクに備えられるマスク層としては、ケイ素を含有する膜や、ケイ素およびモリブデンを含む膜からなるものなどが知られている(特許文献1)。
国際公開第2011/125337号
ところで、ケイ素及びモリブデンを含有するマスク層からなるパターン部に対して、露光工程において露光光としてのレーザー光を照射すると、レーザー光によって励起されたMoがパターン部外に移動する所謂Moマイグレーションと呼ばれる現象が起こり、更に、パターン部に残されたケイ素が酸化して酸化ケイ素が形成され、この酸化ケイ素によってパターン部の線幅が増大してしまい、パターン部の形状正確性が劣化する問題があった。
本発明は、上記の事情に鑑みてなされたもので、Moマイグレーションに起因するマスク層の線幅の増大を抑制することが可能なマスクブランクス及びフォトマスクを提供することを課題とする。
上記課題を解決するため、本発明は以下の構成を採用する。
[1]ブランクマスク層を備えたマスクブランクスであって、
前記ブランクマスク層には、モリブデン、ケイ素及び窒素を含有し、更に酸素を選択的に含有し、かつ、下記(1)式を満足するMo化合物層が含まれることを特徴とするマスクブランクス。
{(Si-O/2)×4/3+Mo/2-N}/Si≧0.25 …(1)
ただし、上記(1)式におけるMo、Si、O及びNはそれぞれ、前記Mo化合物層に含まれるモリブデン、ケイ素、酸素及び窒素のモル分率(モル%)であり、前記Mo化合物層が酸素を含有しない場合は(1)式におけるOを0とする。
[2] 前記Mo化合物層が、更に、下記(2)式を満足することを特徴とする[1]に記載のマスクブランクス。
Si/Mo≧4.0 …(2)
ただし、上記(2)式におけるMo及びSiはそれぞれ、前記Mo化合物層に含まれるモリブデン及びケイ素モル分率(モル%)である。
[3] 前記Mo化合物層におけるモリブデン、ケイ素、窒素及び酸素の組成が、Si:35~50モル%、Mo:3~10モル%、O:0~20モル%、N:35~60モル%、C:0~1モル%からなることを特徴とする[1]または[2]に記載のマスクブランクス。
[4] 前記Mo化合物層が、位相シフト層、遮光層、反射防止層、エッチングストップ層、耐薬層のいずれか1種又は2種以上であることを特徴とする[1]乃至[3]の何れか一項に記載のマスクブランクス。
[5]マスク層を備えたフォトマスクであって、
前記マスク層には、モリブデン、ケイ素及び窒素を含有し、更に酸素を選択的に含有し、かつ、下記(3)式を満足するMo化合物層が含まれることを特徴とするフォトマスク。
{(Si-O/2)×4/3+Mo/2-N}/Si≧0.25 …(3)
ただし、上記(3)式におけるMo、Si、O及びNはそれぞれ、前記Mo化合物層に含まれるモリブデン、ケイ素、酸素及び窒素のモル分率(モル%)であり、前記Mo化合物層が酸素を含有しない場合は(3)式におけるOを0とする。
[6] 前記Mo化合物層が、更に、下記(4)式を満足することを特徴とする[5]に記載のフォトマスク。
Si/Mo≧4.0 …(4)
ただし、上記(4)式におけるMo及びSiはそれぞれ、前記Mo化合物層に含まれるモリブデン及びケイ素モル分率(モル%)である。
[7] 前記Mo化合物層モリブデン、ケイ素、窒素及び酸素の組成が、Si:35~50モル%、Mo:3~10モル%、O:0~20モル%、N:35~60モル%、C:0~1モル%からなることを特徴とする[5]または[6]に記載のフォトマスク。
[8] 前記Mo化合物層が、位相シフト層、遮光層、反射防止層、エッチングストップ層、耐薬層のいずれか1種又は2種以上であることを特徴とする[5]乃至[7]の何れか一項に記載のフォトマスク。
なお、以下の説明では、上記(1)式または上記(3)式の左辺である{(Si-O/2)×4/3+Mo/2-N}/Siを、Si量に対する不足窒素量の比という場合がある。
本発明によれば、Moマイグレーションに起因するマスク層の線幅の増大を抑制することが可能なマスクブランクス及びフォトマスクを提供できる。
図1は、本発明の実施形態であるマスクブランクスの一例を示す断面模式図。 図2は、本発明の実施形態であるマスクブランクスの別の例を示す断面模式図。 図3は、本発明の実施形態であるフォトマスクの一例を示す断面模式図。 図4は、本発明の実施形態であるマスクブランクスの他の例を示す断面模式図。 図5は、本発明の実施形態であるマスクブランクスの他の例を示す断面模式図。 図6は、本発明の実施形態であるマスクブランクスの他の例を示す断面模式図。 図7は、本発明の実施形態であるマスクブランクスの他の例を示す断面模式図。 図8は、本発明の実施形態であるマスクブランクスの他の例を示す断面模式図。 図9は、本発明の実施形態であるマスクブランクスの製造装置を示す模式図。 図10は、本発明の実施形態であるマスクブランクスの製造装置を示す模式図。 図11は、Mo化合物層におけるSi量に対する不足窒素量の比と、Mo化合物層の線幅の増加量との関係を示すグラフ。 図12は、Mo化合物層における窒素量と、Mo化合物層の線幅の増加量との関係を示すグラフ。
フォトマスクのマスク層は、単層構造または多層構造を有する。また、マスク層には、Mo化合物層を含むものがある。本明細書において、Mo化合物層とは、ケイ素、モリブデン及び窒素を含有し、選択的に酸素を含有する層をいう。Mo化合物層は、マスク層において、位相シフト層、遮光層、反射防止層等として用いられる。フォトレジストの露光工程において、Mo化合物層を有するマスク層からなるパターン部に対して、レーザー光を照射すると、モリブデンがマスク層外に移動する所謂Moマイグレーションが起きる場合がある。Moマイグレーションが起きると、モリブデンが抜けた箇所に、マスク層の周囲にある酸素若しくは水が浸入し、浸入した酸素若しくは水によってケイ素が酸化されて酸化ケイ素が形成され、この酸化ケイ素の形成が、マスク層からなるパターン部の線幅の増大を引き起こすおそれがある。この問題を解決するため、本発明者らが鋭意検討した。
Mo化合物層は、その光学特性を調整するために、窒素や酸素を含有させる場合がある。マスク層において、窒素はケイ素に結合しやすいところ、窒素の全てがケイ素に結合してもなお、化学量論的に窒素が余る場合がある。この場合の余剰の窒素は、モリブデンに結合すると考えられる。一方、モリブデンはケイ素とも結合する。Mo化合物層の光学特性を調整するためにMo化合物層における窒素量を適宜調整すると、ケイ素・窒素間の結合またはモリブデン・窒素間の結合が増大する一方で、モリブデン・ケイ素間の結合が減少する場合がある。本発明者らは、Mo化合物層におけるモリブデン・ケイ素間の結合の減少が、Moマイグレーションを引き起こす一因になっていることを見出した。
そこで、更に本発明者らが検討したところ、モリブデン・ケイ素間の結合の減少を抑制するためには、Mo化合物層に含有されるケイ素、モリブデン及び窒素並びに選択的に含有される酸素の化学量論的な最適のバランスがあることを見出した。具体的には、下記(A)式を満足することが必要であることを見出した。なお、以下の説明では、下記(A)式の左辺である{(Si-O/2)×4/3+Mo/2-N}/Siを、Si量に対する不足窒素量の比という場合がある。
{(Si-O/2)×4/3+Mo/2-N}/Si≧0.25 …(A)
ただし、上記(A)式及び以下の説明において、Mo、Si、O及びNはそれぞれ、Mo化合物層に含まれるモリブデン、ケイ素、酸素及び窒素のモル分率(モル%)を表す。また、Mo化合物層が酸素を含有しない場合は(A)式におけるOを0とする。
上記(A)式の導出理由は以下の通りである。
マスク層が、ケイ素、モリブデン、窒素及び酸素を含有するMo化合物層を含む場合において、Mo化合物層中のケイ素は、Mo化合物中の酸素と結合してSiOの形になりやすく、また、Mo化合物層中の酸素に結合しなかった余剰のケイ素は、Mo化合物層中の窒素と結合してSiの形になりやすい。そこで、Mo化合物中のケイ素の全量を窒化させるために必要な窒素量は、(Si-O/2)×4/3となる。
また、Mo化合物層中のモリブデンが窒化すると、MoNの形になりやすい。そこで、Mo化合物層中のモリブデンの全量を窒化させるために必要な窒素量は、Mo/2で表される。
そして、Mo化合物層中のケイ素及びモリブデンの全量を窒化させるために必要な窒素量をNとすると、N=(Si-O/2)×4/3+Mo/2となる。
ここで、上記のNから、マスク層に実際に含有される窒素量Nを差し引いたものは、すなわち、{(Si-O/2)×4/3+Mo/2-N}は、ケイ素及びモリブデンの全量を窒化させるために必要な窒素量(N)の不足量となる。この不足量が大きいMo化合物層ほど、酸化または窒化しているケイ素及びモリブデンが少なく、ケイ素・モリブデン間の結合が多く含まれることになる。
本発明者らは、Mo化合物層中のケイ素量に対する窒素の不足量(={(Si-O/2)×4/3+Mo/2-N})の比が、パターン部の線幅の増大量と相関することを見出し、更にその臨界値を見出して上記(A)式を完成させ、本発明の完成に至った。以下、本発明の実施形態について説明する。
本実施形態のマスクブランクスは、フォトマスクのマスク層となるブランクマスク層を備え、このブランクマスク層には、モリブデン、ケイ素及び窒素を含有し、更に酸素を選択的に含有し、かつ、下記(B)式を満足するMo化合物層が含まれるマスクブランクスである。
また、本実施形態のフォトマスクは、マスク層を備え、マスク層には、モリブデン、ケイ素及び窒素を含有し、更に酸素を選択的に含有し、かつ、下記(B)式を満足するMo化合物層が含まれるフォトマスクである。
{(Si-O/2)×4/3+Mo/2-N}/Si≧0.25 …(B)
ただし、上記(B)式におけるMo、Si、O及びNはそれぞれ、Mo化合物層に含まれるモリブデン、ケイ素、酸素及び窒素のモル分率(モル%)であり、Mo化合物層が酸素を含有しない場合は(B)式におけるOを0とする。
本実施形態に係るフォトマスクは、露光光の波長が200nm以下の光、特に、位相シフトマスクを用いたフォトリソグラフィにおいて用いられるArFエキシマレーザー光(波長193nm)の露光光を利用したフォトリソグラフィ工程に用いられる。
また、本実施形態のマスクブランクスは、このフォトマスクの製造する際の素材となる。
図1には、本実施形態に係るマスクブランクスの一例を示す。本実施形態のマスクブランクスは、ガラス基板(透明基板)11と、ガラス基板11上に形成されたブランクマスク層12とからなる。また、本実施形態のマスクブランクスは、図2に示すように、ガラス基板(透明基板)11と、ガラス基板11上に形成されたブランクマスク層12と、ブランクマスク層12上に形成されたフォトレジスト層13とからなるものであってもよい。
また、図3には、本実施形態に係るフォトマスクの一例を示す。本実施形態のフォトマスクは、ガラス基板(透明基板)11と、ガラス基板11上に形成されたマスク層12Pとならなる。マスク層12Pは、マスクブランクスのブランクマスク層が所定の形状にパターニングされて形成されたものである。
ガラス基板(透明基板)11としては、透明性及び光学的等方性に優れた材料が用いられ、例えば、石英ガラス基板を用いることができる。ガラス基板11の大きさは特に制限されず、マスク層12Pを用いて露光する基板(例えば半導体、LCD(液晶ディスプレイ)、プラズマディスプレイ、有機EL(エレクトロルミネッセンス)ディスプレイなどのFPD用基板等)に応じて適宜選定される。
本実施形態では、ガラス基板(透明基板)11として、一辺100mm程度から、一辺250mm以上の矩形基板を適用可能であり、さらに、厚み1mm以下の基板、厚み数mmの基板や、厚み10mm以上の基板も用いることができる。
また、ガラス基板11の表面を研磨することで、ガラス基板11のフラットネスを低減するようにしてもよい。ガラス基板11のフラットネスは、例えば、5μm以下とすることができる。これにより、マスクの焦点深度が深くなり、微細かつ高精度なパターン形成に大きく貢献することが可能となる。さらにフラットネスは0.5μm以下と、小さい方が良好である。
本実施形態に係るブランクマスク層12及びマスク層12Pは、モリブデン、ケイ素及び窒素を含有するMo化合物層を有するものであってもよく、モリブデン、ケイ素及び窒素並びに酸素を含有するMo化合物層を有するものであってもよい。すなわち、本実施形態に係るブランクマスク層12及びマスク層12Pは、構成元素を列挙する形式で表した場合に、MoSiNまたはMoSiONからなるMo化合物層を有するものであってもよい。本実施形態に係るMo化合物層は、モリブデン、ケイ素及び窒素を基本成分とし酸素や炭素を含有してもよい。窒素、酸素及び炭素は、ブランクマスク層12及びマスク層12Pの光学特性、エッチングレートなどを所望の範囲に設定するために適宜含有される。
本実施形態に係るMo化合物層は、上記(B)式を満足することにより、Moマイグレーションが発生しにくくなり、フォトマスクにおけるマスク層12Pの線幅の増大を防ぐことができる。上記(B)式の左辺(Si量に対する不足窒素量の比)が0.25未満になると、Moマイグレーションが発生しやすくなり、フォトマスクにおけるマスク層12Pの線幅が増大してしまう。Si量に対する不足窒素量の比は0.30以上であってもよく、0.35以上であってもよい。また、上記(B)式の左辺(Si量に対する不足窒素量の比)の上限は特に制限はないが、例えば、Si量に対する不足窒素量の比は1.00以下であってもよく、0.70以下であってもよく、0.60以下であってもよい。
また、Mo化合物層におけるモリブデンとケイ素のモル比であるSi/Moは、4.0以上であることが好ましい。Si/Moを4.0以上にすることで、露光光の波長が200nm以下の光、特に、位相シフトマスクを用いたフォトリソグラフィにおいて用いられるArFエキシマレーザー光(波長193nm)の露光光を用いたフォトリソグラフィ工程に好適に用いることができる。
また、本実施形態のMo化合物層は、所定の光学特性、エッチングレートなどを所望に範囲に設定するために、モリブデン、ケイ素、窒素及び酸素並びに炭素の合計量を100モル%とした場合に、これらの元素の含有率が、Si:35~50モル%、Mo:3~10モル%、O:0~20モル%、N:35~60モル%、C:0~1モル%を満たすように含有してもよい。
Mo化合物層に含まれる元素の組成(モル分率)は、X線光電子分光法によって測定することができる。そして、X線光電子分光法の測定により求められた各元素のモル分率を、上記(B)式に代入することにより、上記(B)式を満たすかどうかを判定することができる。また、測定により求められたモリブデン及びケイ素のモル分率から、Si/Mo比を求めることもできる。
本実施形態に係るブランクマスク層12及びマスク層12Pは、Mo化合物層からなる単層のマスク層であってもよく、Mo化合物層と、その他の層とが積層された多層体であってもよい。
ブランクマスク層12及びマスク層12PがMo化合物層からなる単層のマスク層の場合は、ブランクマスク層12及びマスク層12Pが位相シフト層として機能することが好ましい。この場合のマスク層の厚みは、例えば、50~70nm程度にするとよい。
また、ブランクマスク層12及びマスク層12PがMo化合物層を含む多層体からなる場合は、Mo化合物層は、位相シフト層、遮光層、反射防止層、エッチングストップ層、耐薬層等のいずれか1種又は2種以上として機能することが好ましい。この場合のMo化合物層の厚みは、例えば、60~80nm程度にするとよい。
すなわち、一般に、ブランクマスク層12及びマスク層12Pが多層体からなる場合において、これらマスク層12、12Pを構成する各層に付与される機能として、位相シフト機能、露光光を遮光する遮光機能、露光光の反射を防止する反射防止機能、フォトマスク形成時のフォトレジストとの密着性を高める密着機能、フォトマスク形成時のエッチングストップ機能、フォトマスク形成時のエッチング液等に対する耐薬機能、露光光の反射率を抑制する低反射率機能等が挙げられる。これらの機能を実現するために、マスク層には、位相シフト層、遮光層、反射防止層、密着層、エッチングストップ層、耐薬層、低反射率層等の1種又は2種以上がマスク層に備えられる。本実施形態に係るMo化合物層は、これら位相シフト層、遮光層、反射防止層、密着層、エッチングストップ層、耐薬層、低反射率層のいずれかを構成するものであってもよい。
以下、ブランクマスク層12及びマスク層12Pの構成について、マスクブランクスを例にして説明する。
多層体から構成される場合のブランクマスク層12として、図4に示すように、ガラス基板11側から、位相シフト層12a及びCr系の遮光層12bがこの順に積層されてなるものでもよい。この場合は、位相シフト層12aを本実施形態に係るMo化合物層とする。
また、図4に示す例におけるCr系の遮光層12bとしては、例えば、Cr(クロム)、O(酸素)を主成分とし、さらに、C(炭素)およびN(窒素)を含むものとされる。より具体的には、遮光層12bとして、Crの酸化物、窒化物、炭化物、酸化窒化物、炭化窒化物および酸化炭化窒化物から選択される1つ、または、2種以上を積層して構成することもできる。さらに、遮光層12bが厚み方向に異なる組成を有することもできる。例えば、遮光層12bとして、窒素濃度、あるいは、酸素濃度などが、膜厚方向に傾斜した構成などを例示できる。
また、図5に示すように、ブランクマスク層12として、ガラス基板11側から、位相シフト層12c、エッチングストッパ層12d及びCr系の遮光層12eがこの順に積層されてなるものでもよい。この場合は、位相シフト層12c及びエッチングストッパ層12dのうちの一方または両方を、本実施形態に係るMo化合物層とする。
図5に示す例における位相シフト層12cは、Mo化合物層以外に、Crを主成分とする層であってもよく、具体的には、Cr単体、並びにCrの酸化物、窒化物、炭化物、酸化窒化物、炭化窒化物および酸化炭化窒化物から選択される1つで構成された層とすることができ、また、これらの中から選択される2種以上を積層して構成することもできる。
図5に示す例におけるエッチングストッパ層12dは、Mo化合物層以外に、窒素を含有する金属シリサイド化合物層であってもよく、例えば、Ni、Co、Fe、Ti、Al、Nb、Mo、WおよびHfから選択された少なくとも1種の金属や、これらの金属どうしの合金とSiとを含む層や、モリブデンシリサイド化合物層、MoSi(X≧2)膜(例えばMoSi膜、MoSi膜やMoSi膜など)であってもよい。
図5に示す例におけるCr系の遮光層12eとしては、例えば、Cr(クロム)、O(酸素)を主成分とし、さらに、C(炭素)およびN(窒素)を含む遮光層12eとすることができる。より具体的には、遮光層12eとして、Crの酸化物、窒化物、炭化物、酸化窒化物、炭化窒化物および酸化炭化窒化物から選択される1つ、または、2種以上を積層して構成した層とすることもできる。さらに、遮光層12eが厚み方向に異なる組成を有することもできる。例えば、遮光層12eとして、窒素濃度、あるいは、酸素濃度などが、膜厚方向に傾斜した構成などを例示できる。
更に、図6に示すように、ブランクマスク層12として、ガラス基板11側から、Cr系の位相シフト層12f及び反射防止層12gがこの順に積層されてなるものでもよく、また、図7に示すように、Cr系の位相シフト層12f、反射防止層12g及びCr系の密着層12hが積層されてなるものでもよい。この場合、反射防止層12gを、本実施形態に係るMo化合物層とする。
図6、図7の例におけるCr系の位相シフト層12fとしては、Crを主成分とする層が好ましく、さらに、C(炭素)、O(酸素)およびN(窒素)を含む層が好ましい。具体的には、位相シフト層12fとして、Cr単体、並びにCrの酸化物、窒化物、炭化物、酸化窒化物、炭化窒化物および酸化炭化窒化物から選択される1つで構成することができ、また、これらの中から選択される2種以上を積層して構成することもできる。
また、図7に示す例におけるCr系の密着層12hは、Cr(クロム)、O(酸素)を主成分とする層が好ましく、さらに、C(炭素)およびN(窒素)を含むものが好ましい。具体的には、密着層12hとして、Crの酸化物、窒化物、炭化物、酸化窒化物、炭化窒化物および酸化炭化窒化物から選択される1つ、または、2種以上を積層して構成することもできる。さらに、密着層12hが厚み方向に異なる組成を有することもできる。
更に、図8に示すように、ブランクマスク層12として、ガラス基板11側から、位相シフト層12i、低反射率層12j及び耐薬層12kがこの順に積層されてなるものでもよい。この場合は、位相シフト層12i、低反射率層12j及び耐薬層12kのうちの少なくとも1つまたは2つ以上を、本実施形態に係るMo化合物層とする。
図8に示す例における位相シフト層12i及び耐薬層12kは、Mo化合物層以外に、窒素を含有するシリサイド層、例えば、Ta、Ti、W、Mo、Zrなどの金属や、これらの金属どうしの合金とシリコンとを含む層や、MoSi(X≧2)膜(例えばMoSi膜、MoSi膜やMoSi膜など)とすることもできる。
また、図8に示す例における低反射率層12jとしては、上記の位相シフト層と耐薬層と同様に、Mo化合物層以外に、窒素を含有するシリサイド層とすることもでき、さらに、酸素を含有する層とすることもできる。
図4~図8では、マスクブランクスを例にして説明したが、図4~図8に示したブランクマスク層12の構成は、フォトマスクのマスク層12Pに適用してもよい。
次に、本実施形態のマスクブランクスの製造方法について説明する。
本実施形態のマスクブランクスの製造方法は、ガラス基板11(透明基板)にブランクマスク層12を成膜するものとされる。ブランクマスク層12を形成する際は、位相シフト層、遮光層、反射防止層、密着層、エッチングストップ層、耐薬層、低反射率層等の1種又は2種以上を積層することによってブランクマスク層としてもよい。この際、位相シフト層、遮光層、反射防止層、密着層、エッチングストップ層、耐薬層、低反射率層の1種または2種以上を本実施形態に係るMo化合物層としてもよい。
図9は、本実施形態のマスクブランクスの製造装置を示す模式図であり、図10は、本実施形態のマスクブランクスの製造装置を示す模式図である。本実施形態に係るマスクブランクスは、図9または図10に示す製造装置により製造される。
図9に示す製造装置S10は、枚葉式のスパッタリング装置とされ、ロード・アンロード室S11と、ロード・アンロード室S11に密閉手段S13を介して接続された成膜室(真空処理室)S12とを有するものとされる。
ロード・アンロード室S11には、外部から搬入されたガラス基板11を成膜室S12へと搬送するか成膜室S12を外部へと搬送する搬送手段S11aと、この室内を粗真空引きするロータリーポンプ等の排気手段S11bが設けられる。
成膜室S12には、基板保持手段S12aと、成膜材料を供給する手段として、ターゲットS12bを有するカソード電極(バッキングプレート)S12cと、バッキングプレートS12cに負電位のスパッタ電圧を印加する電源S12dと、この室内にガスを導入するガス導入手段S12eと、成膜室S12の内部を高真空引きするターボ分子ポンプ等の高真空排気手段S12fと、が設けられている。
基板保持手段S12aは、搬送手段S11aによって搬送されてきたガラス基板11を、成膜中にターゲットS12bと対向するようにガラス基板11を保持するとともに、ガラス基板11をロード・アンロード室S11からの搬入およびロード・アンロード室S11へ搬出可能とされている。
ターゲットS12bは、ガラス基板11に成膜するために必要な組成を有する材料からなる。例えば、Mo化合物層を形成する場合のターゲットとして、モリブデンを含有するターゲットとケイ素を含有するターゲットとを組合せて用いてもよく、モリブデン及びケイ素を含有する単独のターゲットを用いてもよい。更に、例えばCr系の膜を形成するためにクロムを含有するターゲットを用いてもよい。これらターゲットは、成膜する層毎に、交換してもよい。
図3に示す製造装置S10においては、ロード・アンロード室S11から搬入したガラス基板11に対して、成膜室(真空処理室)S12においてスパッタリング成膜をおこなった後、ロード・アンロード室S11から成膜の終了したガラス基板11を外部に搬出する。
成膜工程においては、ガス導入手段S12eから成膜室S12にスパッタガスと反応ガスとを供給し、外部の電源からバッキングプレート(カソード電極)S12cにスパッタ電圧を印加する。また、マグネトロン磁気回路によりターゲットS12b上に所定の磁場を形成してもよい。成膜室S12内でプラズマにより励起されたスパッタガスのイオンが、カソード電極S12cのターゲットS12bに衝突して成膜材料の粒子を飛び出させる。そして、飛び出した粒子と反応ガスとが結合した後、ガラス基板11に付着することにより、ガラス基板11の表面に所定の膜が形成される。
この際、本実施形態に係るMo化合物層、すなわち、モリブデン、ケイ素及び窒素を含有し、更に酸素を選択的に含有し、上記(B)式を満足するMo化合物層を形成する際は、ターゲットS12bとして、モリブデンを含有するターゲットとケイ素を含有するターゲットとを組合せて用いるか、モリブデン及びケイ素を含有する単独のターゲットを用いる。そして、ガス導入手段S12eから異なる量の窒素ガス、酸素含有ガスを供給してその分圧を制御するように切り替えて、その組成を設定した範囲内にする。
ここで、酸素含有ガスとしては、CO(二酸化炭素)、O(酸素)、NO(一酸化二窒素)、NO(一酸化窒素)等を挙げることができる。
次に、図10に示す製造装置S20は、枚葉式のスパッタリング装置とされ、ロード室S21と、ロード室S21に密閉手段S23を介して接続された成膜室(真空処理室)S22と、成膜室S22に密閉手段S24を介して接続されたアンロード室S25と、を有するものとされる。
ロード室S21には、外部から搬入されたガラス基板11を成膜室S22へと搬送する搬送手段S21aと、この室内を粗真空引きするロータリーポンプ等の排気手段S21bが設けられる。
成膜室S22には、基板保持手段S22aと、成膜材料を供給する手段として、ターゲットS22bを有するカソード電極(バッキングプレート)S22cと、バッキングプレートS22cに負電位のスパッタ電圧を印加する電源S22dと、この室内にガスを導入するガス導入手段S22eと、成膜室S22の内部を高真空引きするターボ分子ポンプ等の高真空排気手段S22fと、が設けられている。
基板保持手段S22aは、搬送手段S21aによって搬送されてきたガラス基板11を、成膜中にターゲットS22bと対向するようにガラス基板11を保持するとともに、ガラス基板11をロード室S21からの搬入およびアンロード室S25へ搬出可能とされている。
ターゲットS22bは、ガラス基板11に成膜するために必要な組成を有する材料からなる。図9に示す装置の場合と同様に、Mo化合物層を形成する際のターゲットとしては、モリブデンを含有するターゲットとケイ素を含有するターゲットとを組合せて用いてもよく、モリブデン及びケイ素を含有する単独のターゲットを用いてもよい。更に、例えば、Cr系の膜を形成するためにクロムを含有するターゲットを用いてもよい。これらターゲットは、成膜する層毎に、交換してもよい。
アンロード室S25には、成膜室S22から搬入されたガラス基板11を外部へと搬送する搬送手段S25aと、この室内を粗真空引きするロータリーポンプ等の排気手段S25bが設けられる。
図10に示す製造装置S20においては、ロード室S21から搬入したガラス基板11に対して、成膜室(真空処理室)S22においてスパッタリング成膜をおこなった後、アンロード室S25から成膜の終了したガラス基板11を外部に搬出する。
成膜工程においては、ガス導入手段S22eから成膜室S22にスパッタガスと反応ガスとを供給し、外部の電源からバッキングプレート(カソード電極)S22cにスパッタ電圧を印加する。また、マグネトロン磁気回路によりターゲットS22b上に所定の磁場を形成してもよい。成膜室S22内でプラズマにより励起されたスパッタガスのイオンが、カソード電極S22cのターゲットS22bに衝突して成膜材料の粒子を飛び出させる。そして、飛び出した粒子と反応ガスとが結合した後、ガラス基板11に付着することにより、ガラス基板11の表面に所定の膜が形成される。
この際、本実施形態に係るMo化合物層、すなわち、モリブデン、ケイ素及び窒素を含有し、更に酸素を選択的に含有し、上記(B)式を満足するMo化合物層を形成する際は、ターゲットS12bとして、モリブデンを含有するターゲットとケイ素を含有するターゲットとを組合せて用いるか、モリブデン及びケイ素を含有する単独のターゲットを用いる。そして、ガス導入手段S22eから異なる量の窒素ガス、酸素含有ガスを供給してその分圧を制御するように切り替えて、その組成を設定した範囲内にする。
ここで、酸素含有ガスとしては、CO(二酸化炭素)、O(酸素)、NO(一酸化二窒素)、NO(一酸化窒素)等を挙げることができる。
次に、本実施形態のフォトマスクの製造方法を説明する。
レジストパターン形成工程として、図2に示すように、マスクブランクスの最外面上にフォトレジスト層13を形成する。または、あらかじめフォトレジスト層13が最外面上に形成されたマスクブランクスを準備してもよい。
次いで、フォトレジスト層13を露光及び現像することで、レジストパターンを形成する。レジストパターンは、マスク層12のエッチングマスクとして機能する。
次いで、このレジストパターン越しにドライエッチング装置を用いてマスク層12をエッチングして、マスク層12を所定の形状にパターニングする。本実施形態に係るマスク層12のうち、Mo化合物層に対するエッチングガスとしては、四フッ化炭素に代表されるパーフルオロカーボン、トリフルオロメタンに代表されるハイドロフルオロカーボンから選ばれる少なくとも一つのフルオロカーボンガスを含むものを用いることが好ましい。
以上により、パターニングされたマスク層12Pを有するフォトマスクが、図3に示すように得られる。
本発明実施形態のマスクブランクス及びマスクによれば、上記(B)式を満足するMo化合物層を有するので、フォトリソグラフィ工程において露光光が照射された場合であっても、Moマイグレーションによるパターン部の線幅の増大を抑制することができる。特に、本実施形態のマスクブランクス及びマスクによれば、露光光の波長が200nm以下の光、特に、位相シフトマスクを用いたフォトリソグラフィにおいて用いられるArFエキシマレーザー光(波長193nm)の露光光を利用したフォトリソグラフィ工程に用いられるフォトマスクに供することができる。
以下、本発明を実施例によってより詳細に説明する。
大型ガラス基板(合成石英(QZ)10mm厚、サイズ850mm×1200mm)上に、大型インラインスパッタリング装置を使用し、Mo化合物層(ブランクマスク層)の形成を行った。具体的には、Xの値が5.6、7.6、9.6のMoSiターゲットを用意し、Arガス、Nガス、COガスまたはOガスの1種以上をスパッタリングガスとして、膜種A~KのMo化合物層を成膜した。表1に、成膜条件を示す。
また、Mo化合物層の構成元素の組成を、X線光電子分光法によって測定した。X線光電子分光法の測定により求められた各元素のモル分率を表1に示す。表1には、モリブデン及びケイ素のモル分率の比であるSi/Moと、上記式(B)の左辺の計算結果を併せて示す。
次に、得られたMo化合物層の上にパターニングしたフォトレジスト層を形成し、フォトレジスト層をマスクにしてウエットエッチングを行うことにより、Mo化合物層を100nmの線幅になるようにパターニングしてマスク層とした。パターニング後のMo化合物層に対して、ArFエキシマレーザー光(波長193nm)を照射することにより、Moマイグレーションを誘発させた。そして、ArFエキシマレーザー光(波長193nm)を照射後のMo化合物層の線幅の変化量を測定した。結果を表2に示す。表2には、上記式(B)の左辺の計算結果を併せて示す。また、図11には、横軸を上記式(B)の左辺の計算結果とし、縦軸をMo化合物層(マスク層)の線幅の増加量とした場合のグラフを示す。
図11に示すように、上記式(B)の左辺の値が大きくなるほど、Mo化合物層(マスク層)の線幅の増加量が小さくなり、両者はよく相関していることが分かる。Mo化合物層(マスク層)の線幅の増加量を4nm以下にするためには、上記式(B)の左辺の値を0.25以上、好ましくは0.30以上、更に好ましくは0.35以上にすれば良いことがわかる。
一方、図12には、横軸をMo化合物層の窒素量(モル%)とし、縦軸をMo化合物層(マスク層)の線幅の増加量とするグラフを示す。図12に示すように、Mo化合物層の窒素量と、Mo化合物層の線幅の増加量とは、相関が低く、単に、Mo化合物層の窒素量を指標にしてMo化合物層の線幅の増加量を予測することは困難であることが分かる。
図11及び図12の対比結果から明らかなように、本発明によれば、Moマイグレーションを抑制できるMo化合物層としては、上記(B)式を満足するMo化合物層が好ましいことが分かる。
Figure 2022118976000002
Figure 2022118976000003
11…ガラス基板、12…ブランクマスク層、12P…マスク層。

Claims (8)

  1. ブランクマスク層を備えたマスクブランクスであって、
    前記ブランクマスク層には、モリブデン、ケイ素及び窒素を含有し、更に酸素を選択的に含有し、かつ、下記(1)式を満足するMo化合物層が含まれることを特徴とするマスクブランクス。
    {(Si-O/2)×4/3+Mo/2-N}/Si≧0.25 …(1)
    ただし、上記(1)式におけるMo、Si、O及びNはそれぞれ、前記Mo化合物層に含まれるモリブデン、ケイ素、酸素及び窒素のモル分率(モル%)であり、前記Mo化合物層が酸素を含有しない場合は(1)式におけるOを0とする。
  2. 前記Mo化合物層が、更に、下記(2)式を満足することを特徴とする請求項1に記載のマスクブランクス。
    Si/Mo≧4.0 …(2)
    ただし、上記(2)式におけるMo及びSiはそれぞれ、前記Mo化合物層に含まれるモリブデン及びケイ素モル分率(モル%)である。
  3. 前記Mo化合物層におけるモリブデン、ケイ素、窒素及び酸素の組成が、Si:35~50モル%、Mo:3~10モル%、O:0~20モル%、N:35~60モル%、C:0~1モル%からなることを特徴とする請求項1または請求項2に記載のマスクブランクス。
  4. 前記Mo化合物層が、位相シフト層、遮光層、反射防止層、エッチングストップ層、耐薬層のいずれか1種又は2種以上であることを特徴とする請求項1乃至請求項3の何れか一項に記載のマスクブランクス。
  5. マスク層を備えたフォトマスクであって、
    前記マスク層には、モリブデン、ケイ素及び窒素を含有し、更に酸素を選択的に含有し、かつ、下記(3)式を満足するMo化合物層が含まれることを特徴とするフォトマスク。
    {(Si-O/2)×4/3+Mo/2-N}/Si≧0.25 …(3)
    ただし、上記(3)式におけるMo、Si、O及びNはそれぞれ、前記Mo化合物層に含まれるモリブデン、ケイ素、酸素及び窒素のモル分率(モル%)であり、前記Mo化合物層が酸素を含有しない場合は(3)式におけるOを0とする。
  6. 前記Mo化合物層が、更に、下記(4)式を満足することを特徴とする請求項5に記載のフォトマスク。
    Si/Mo≧4.0 …(4)
    ただし、上記(4)式におけるMo及びSiはそれぞれ、前記Mo化合物層に含まれるモリブデン及びケイ素モル分率(モル%)である。
  7. 前記Mo化合物層モリブデン、ケイ素、窒素及び酸素の組成が、Si:35~50モル%、Mo:3~10モル%、O:0~20モル%、N:35~60モル%、C:0~1モル%からなることを特徴とする請求項5または請求項6に記載のフォトマスク。
  8. 前記Mo化合物層が、位相シフト層、遮光層、反射防止層、エッチングストップ層、耐薬層のいずれか1種又は2種以上であることを特徴とする請求項5乃至請求項7の何れか一項に記載のフォトマスク。
    なお、以下の説明では、上記(1)式または上記(3)式の左辺である{(Si-O/2)×4/3+Mo/2-N}/Siを、Si量に対する不足窒素量の比という場合がある。
JP2021015862A 2021-02-03 2021-02-03 マスクブランクス及びフォトマスク Pending JP2022118976A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021015862A JP2022118976A (ja) 2021-02-03 2021-02-03 マスクブランクス及びフォトマスク
KR1020220007834A KR20220112182A (ko) 2021-02-03 2022-01-19 마스크 블랭크스 및 포토마스크

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021015862A JP2022118976A (ja) 2021-02-03 2021-02-03 マスクブランクス及びフォトマスク

Publications (1)

Publication Number Publication Date
JP2022118976A true JP2022118976A (ja) 2022-08-16

Family

ID=82845065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021015862A Pending JP2022118976A (ja) 2021-02-03 2021-02-03 マスクブランクス及びフォトマスク

Country Status (2)

Country Link
JP (1) JP2022118976A (ja)
KR (1) KR20220112182A (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059384A1 (ja) * 2002-12-26 2004-07-15 Hoya Corporation リソグラフィーマスクブランク
US20040191646A1 (en) * 2003-03-31 2004-09-30 Shin-Etsu Chemical Co., Ltd. Method of producing phase shift mask blank, method of producing phase shift mask, phase shift mask blank, and phase shift mask
JP2005200688A (ja) * 2004-01-14 2005-07-28 Hoya Corp スパッタリングターゲット及びこれを用いたフォトマスクブランクの製造方法
JP2008257239A (ja) * 2008-03-31 2008-10-23 Hoya Corp 位相シフトマスクブランクの製造方法、及び位相シフトマスクブランクの製造装置
JP2010164777A (ja) * 2009-01-15 2010-07-29 Shin-Etsu Chemical Co Ltd フォトマスクの製造方法及びフォトマスクブランク
US20130095414A1 (en) * 2011-10-14 2013-04-18 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography Mask and Method of Forming a Lithography Mask
JP2014059575A (ja) * 2009-03-31 2014-04-03 Hoya Corp マスクブランクおよび転写用マスク
JP2016018192A (ja) * 2014-07-11 2016-02-01 Hoya株式会社 マスクブランク、位相シフトマスク、位相シフトマスクの製造方法及び半導体デバイスの製造方法
WO2017169587A1 (ja) * 2016-03-29 2017-10-05 Hoya株式会社 マスクブランク、マスクブランクの製造方法、転写用マスクの製造方法および半導体デバイスの製造方法
JP2018106144A (ja) * 2016-12-26 2018-07-05 信越化学工業株式会社 フォトマスクブランク及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999609B2 (en) 2010-04-09 2015-04-07 Hoya Corporation Phase shift mask blank, method of manufacturing the same, and phase shift mask

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059384A1 (ja) * 2002-12-26 2004-07-15 Hoya Corporation リソグラフィーマスクブランク
US20040191646A1 (en) * 2003-03-31 2004-09-30 Shin-Etsu Chemical Co., Ltd. Method of producing phase shift mask blank, method of producing phase shift mask, phase shift mask blank, and phase shift mask
JP2005200688A (ja) * 2004-01-14 2005-07-28 Hoya Corp スパッタリングターゲット及びこれを用いたフォトマスクブランクの製造方法
JP2008257239A (ja) * 2008-03-31 2008-10-23 Hoya Corp 位相シフトマスクブランクの製造方法、及び位相シフトマスクブランクの製造装置
JP2010164777A (ja) * 2009-01-15 2010-07-29 Shin-Etsu Chemical Co Ltd フォトマスクの製造方法及びフォトマスクブランク
JP2014059575A (ja) * 2009-03-31 2014-04-03 Hoya Corp マスクブランクおよび転写用マスク
US20130095414A1 (en) * 2011-10-14 2013-04-18 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography Mask and Method of Forming a Lithography Mask
JP2016018192A (ja) * 2014-07-11 2016-02-01 Hoya株式会社 マスクブランク、位相シフトマスク、位相シフトマスクの製造方法及び半導体デバイスの製造方法
WO2017169587A1 (ja) * 2016-03-29 2017-10-05 Hoya株式会社 マスクブランク、マスクブランクの製造方法、転写用マスクの製造方法および半導体デバイスの製造方法
JP2018106144A (ja) * 2016-12-26 2018-07-05 信越化学工業株式会社 フォトマスクブランク及びその製造方法

Also Published As

Publication number Publication date
KR20220112182A (ko) 2022-08-10

Similar Documents

Publication Publication Date Title
JP6367401B2 (ja) 位相シフトマスクブランク及びその製造方法、位相シフトマスク及びその製造方法、並びに表示装置の製造方法
TWI767053B (zh) 光罩基底、相位偏移光罩、光罩基底之製造方法、及相位偏移光罩之製造方法
JP7280296B2 (ja) マスクブランクス及びフォトマスク
JP7037919B2 (ja) マスクブランク、ハーフトーンマスクおよびその製造方法
JP6756796B2 (ja) マスクブランクス、ハーフトーンマスク、製造方法
TWI761942B (zh) 光罩基底、光罩基底之製造方法、光罩、及光罩之製造方法
JP7280297B2 (ja) マスクブランクス及びフォトマスク
JP2022118976A (ja) マスクブランクス及びフォトマスク
JP7366810B2 (ja) マスクブランクス、ハーフトーンマスク、製造方法、製造装置
JP7402002B2 (ja) マスクブランクス、位相シフトマスク、製造方法
JP7217620B2 (ja) マスクブランクスおよびマスク
JP7356857B2 (ja) マスクブランクス及びフォトマスク
JP6987912B2 (ja) マスクブランクス、位相シフトマスク、製造方法
JP7381374B2 (ja) マスクブランクス、位相シフトマスク、製造方法
JP2020177048A (ja) マスクブランクスおよび位相シフトマスク、その製造方法
JP2023166182A (ja) マスクブランクス、ハーフトーンマスク、製造方法
KR20240003726A (ko) 마스크 블랭크스의 제조 방법 및 마스크 블랭크스,포토마스크
CN112015044A (zh) 掩模坯、半色调掩模、制造方法、制造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230606