JP2022107449A - 顕微鏡 - Google Patents
顕微鏡 Download PDFInfo
- Publication number
- JP2022107449A JP2022107449A JP2021002410A JP2021002410A JP2022107449A JP 2022107449 A JP2022107449 A JP 2022107449A JP 2021002410 A JP2021002410 A JP 2021002410A JP 2021002410 A JP2021002410 A JP 2021002410A JP 2022107449 A JP2022107449 A JP 2022107449A
- Authority
- JP
- Japan
- Prior art keywords
- magnification
- microscope
- optical
- observation method
- observation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 350
- 238000000034 method Methods 0.000 claims abstract description 322
- 230000004044 response Effects 0.000 claims abstract description 4
- 230000010287 polarization Effects 0.000 claims description 28
- 238000003384 imaging method Methods 0.000 claims description 22
- 238000005286 illumination Methods 0.000 claims description 14
- 230000007246 mechanism Effects 0.000 claims description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 41
- 235000013601 eggs Nutrition 0.000 description 30
- 239000003990 capacitor Substances 0.000 description 22
- 210000001747 pupil Anatomy 0.000 description 15
- 230000008859 change Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 238000003825 pressing Methods 0.000 description 8
- 230000004720 fertilization Effects 0.000 description 6
- 230000000394 mitotic effect Effects 0.000 description 6
- 210000004508 polar body Anatomy 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- 230000012447 hatching Effects 0.000 description 4
- 210000003128 head Anatomy 0.000 description 4
- 230000004899 motility Effects 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 210000004602 germ cell Anatomy 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000004304 visual acuity Effects 0.000 description 2
- 210000004340 zona pellucida Anatomy 0.000 description 2
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 230000035606 childbirth Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 208000000509 infertility Diseases 0.000 description 1
- 231100000535 infertility Toxicity 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 210000004681 ovum Anatomy 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000019100 sperm motility Effects 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/02—Objectives
- G02B21/025—Objectives with variable magnification
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/06—Means for illuminating specimens
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/24—Base structure
- G02B21/26—Stages; Adjusting means therefor
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Microscoopes, Condenser (AREA)
Abstract
【課題】観察法と観察倍率の切り換え後に素早く観察を開始可能とする。【解決手段】顕微鏡10は、複数の観察法で使用される顕微鏡である。顕微鏡10は、複数の観察法で共通して使用される対物レンズ40と、対物レンズ40の像側に配置され、複数の観察法の切り替えに応じて顕微鏡10の光学倍率を調整する倍率調整装置70を備える。【選択図】図1
Description
本明細書の開示は、顕微鏡に関する。
晩婚化・晩産化が進む現在、不妊治療を受ける患者の数は年々増加しており、生殖補助医療(ART:Assisted Reproductive Technology)の需要もますます高まっている。
ARTは、卵細胞質内精子注入法(ICSI:Intracytoplasmic sperm injection)を用いた顕微授精や、体外受精(IVF:In vitro fertilization)など、ヒトから取り出した卵子と精子を体外で受精させる技術の総称であり、採取した精子を子宮に注入し体内で卵子と受精させる一般的な人工授精とは区別される。
ARTに関連する技術は、例えば、特許文献1に記載されている。特許文献1には、ARTの一種である顕微授精において用いられる卵細胞質内精子注入法(ICSI:Intracytoplasmic sperm injection)に好適な顕微鏡が記載されている。なお、ICSIは、ホールディングピペットで固定した卵子に精子が納められたインジェクションピペットを突き刺すことで卵子内に精子を直接注入する方法である。
顕微授精では、胚培養士により顕微鏡下で精子が選別されて受精に適した精子が卵子に注入される。顕微授精の成功率を高めるためには、観察法と観察倍率を様々に切り替えながら顕微鏡下で行われる一連の作業を短時間で手際よく行う必要がある。特許文献1に記載の顕微鏡を用いることで、胚培養士は、観察法と観察倍率をボタン操作で一度に変更することができるため、顕微鏡操作が簡素化され、その結果、作業時間を短縮することができる。
しかしながら、特許文献1に記載される顕微鏡では、観察法とともに観察倍率を変更する時に、ボタン操作に応じて対物レンズが切り替わる。このため、切り替え前後の対物レンズ間での同焦点距離のわずかな違いに起因してピントがずれてしまうことがある。また、芯ずれに起因して視野の中心がずれてしまうこともある。このような事象が生じた場合には、胚培養士は、これらのずれを補正する作業に時間を取られてしまうため、観察法の切り替え後にスムーズに観察を継続することができない。
以上のような実情を踏まえ、本発明の一側面に係る目的は、観察法と観察倍率の切り換え後に素早く観察を開始可能とする技術を提供することである。
本発明の一態様に係る顕微鏡装置は、複数の観察法で使用される顕微鏡であって、前記複数の観察法で共通して使用される対物レンズと、前記対物レンズの像側に配置され、前記複数の観察法の切り替えに応じて前記顕微鏡の光学倍率を調整する倍率調整手段と、を備える。
上記の態様によれば、観察法と観察倍率の切り換え後に素早く観察を開始可能とする技術を提供することができる。
[第1の実施形態]
図1は、顕微鏡システム1の構成を例示した図である。図2は、顕微鏡10の構成を例示した図である。図3は、入力装置3の操作部の構成を例示した図である。図4は、観察法毎の所定倍率と、対物レンズの倍率と、倍率調整装置の倍率(中間変倍)の関係を例示した図である。
図1は、顕微鏡システム1の構成を例示した図である。図2は、顕微鏡10の構成を例示した図である。図3は、入力装置3の操作部の構成を例示した図である。図4は、観察法毎の所定倍率と、対物レンズの倍率と、倍率調整装置の倍率(中間変倍)の関係を例示した図である。
図1に示す顕微鏡システム1は、顕微授精などに用いられる顕微鏡システムであり、複数の観察法で使用される顕微鏡10を含んでいる。顕微鏡システム1の利用者は、特に限定しないが、例えば、胚培養士である。顕微鏡システム1が観察対象とする試料は、例えば、シャーレなどに収容された精子や卵子などの生殖細胞であり、位相物体である。
顕微鏡10は、少なくとも、複数の観察法で共通して使用される対物レンズ40と、複数の観察法の切り替えに応じて顕微鏡10の光学倍率を調整する倍率調整手段の一例である倍率調整装置70と、を備えている。倍率調整装置70は、図1に示すように、対物レンズ40を切り替えるレボルバ45とは異なる装置であり、対物レンズ40の像側に配置されている。なお、本明細書において、“調整する”とは、調整する対象を必要があれば変更し、必要がなければ変更しないことを意味する。
ここで、観察法(microscopy)とは、顕微鏡の観察法のことであり、顕微鏡法ともいう。代表的な観察法としては、明視野(BF:Bright Field)観察法、暗視野(DF:Dark Field)観察法、偏光(PO:POlarized light)観察法、位相差(PC:Phase Contrast)観察法、微分干渉(DIC:Differential Interference Contrast)観察法、蛍光(FL:Fluorescence)観察法、レリーフコントラスト(RC:Relief Contrast)観察法などが挙げられる。なお、レリーフコントラスト(RC)観察法は、変調コントラスト(MC:Modulation Contrast)観察法とも称される。
また、顕微鏡10の光学倍率とは、顕微鏡10が形成する試料の光学像の倍率であり、その光学像が試料の何倍の大きさで形成されるかを示している。顕微鏡10の光学倍率は、例えば、顕微鏡10が有する接眼鏡筒80における観察倍率(総合倍率)であってもよく、顕微鏡10が有する撮像装置90の撮像面における倍率であってもよい。なお、顕微鏡システム1に含まれるコンピュータ4のモニタにおける観察倍率(総合倍率)は、撮像面における倍率にモニタ倍率を掛けたものである。従って、顕微鏡システム1では、倍率調整装置70が顕微鏡10の光学倍率を調整することで、観察倍率も同時に調整される。
顕微授精では、後述するように、使用する観察法毎に観察対象又は観察目的が異なる。このため、一般に、胚培養士は、観察法を切り替える際に、観察倍率も切り替える必要がある。なお、観察法毎に使用される観察倍率は、その観察法での観察対象と観察目的によって制限されるため、およそ決まっている。従って、観察倍率に対応する顕微鏡10の光学倍率もおよそ決まっている。このような状況下では、本実施形態に係る顕微鏡10を用いることで、倍率調整装置70が複数の観察法の切替に応じて顕微鏡10の光学倍率を適切に調整することができる。具体的には、倍率調整装置70は、例えば、顕微鏡10の光学倍率が切替後の観察法のための所定倍率とは異なる場合に、顕微鏡10の光学倍率を所定倍率へ近づけてもよく、より望ましくは、顕微鏡10の光学倍率を所定倍率へ変更してもよい。観察法毎の所定倍率が適切に設定されることで、胚培養士は観察法の切替操作とは別の操作によって観察倍率を切り替える必要がないため、顕微授精における顕微鏡操作を簡素化することができる。
さらに、顕微鏡10では、複数の観察法で対物レンズ40が共通に利用され、顕微鏡10の光学倍率の調整が対物レンズ40よりも像側の倍率調整装置70によって行われる。即ち、観察法の切り替え時に対物レンズ40の切り替えが生じない。これにより、対物レンズ40の切替に起因するピントずれや視野中心の移動などが発生しないため、観察法と観察倍率の切替後に行うべき調整作業の量を抑制することができる。
このように、顕微鏡10では、観察法と観察倍率の切替そのものに要する作業を簡素化するとともに切替後の調整作業も簡素化することができる。従って、顕微鏡10によれば、観察法と観察倍率を素早く切り替えるとともに、切り換え後の観察法で素早く試料の観察を開始することができる。
以下、図1から図4を参照しながら、顕微鏡システム1の構成の具体例について詳細に説明する。顕微鏡システム1は、図1に示すように、顕微鏡10と、顕微鏡10を制御する顕微鏡コントローラ2と、観察法を切り替えるための入力装置3を備えている。顕微鏡システム1は、さらに、図1に示すように、顕微鏡10で取得した画像が出力されるコンピュータ4を備えてもよい。
顕微鏡コントローラ2は、入力装置3及びコンピュータ4を用いて胚培養士によって行われる操作に応じて、顕微鏡10を制御する制御装置である。顕微鏡コントローラ2は、例えば、顕微鏡10に含まれるユニバーサルコンデンサ29のターレットと倍率調整装置70のターレットの回転制御を行ってもよく、光源装置21の発光制御を行ってもよい。顕微鏡コントローラ2は、顕微鏡10で取得した画像をコンピュータ4へ出力してもよく、コンピュータ4の代わりに設けられたモニタへ出力してもよい。
入力装置3は、観察法と観察倍率に関する設定を変更するためのハンドスイッチ装置である。入力装置3は、例えば、図3に示すように、複数の観察法のそれぞれに対応する、5つのボタン(ボタンB1~ボタンB5)を有している。顕微鏡システム1では、入力装置3のボタンが押下されることで、ユニバーサルコンデンサ29のターレットと倍率調整装置70のターレットが回転し、観察法と観察倍率に関する設定が押下されたボタンに応じて切り替わる。このため、胚培養士はこれらのボタンのいずれかを押下するだけで、観察法と観察倍率に関する設定を素早く切り替えることができる。
コンピュータ4は、少なくともプロセッサとメモリを含んでいる。コンピュータ4は、パーソナルコンピュータなどの汎用装置であってもよく、顕微鏡システム1専用のコンピュータであってもよい。コンピュータ4は、図1に示すように、モニタを備えていてもよく、顕微鏡10で取得した画像をモニタに表示してもよい。
なお、顕微鏡システム1は、コンピュータ4を備えなくてもよい。コンピュータ4は必ずしも必要ではなく、顕微鏡10で取得した画像を顕微鏡コントローラ2に接続されたモニタに表示してもよい。また、顕微鏡システム1は、モニタを備えなくてもよく、胚培養士は、顕微鏡10が備える後述する接眼鏡筒80を介して試料を目視観察し、入力装置3を操作してもよい。また、入力装置3の機能をコンピュータ4が有してもよく、上述した入力装置3を操作することで顕微鏡コントローラ2へ入力された指示は、コンピュータ4から顕微鏡コントローラ2へ入力されてもよい。
顕微鏡システム1は、図1に示すように、左右のハンドル(ハンドル5、ハンドル6)で操作する一対のピペット(ピペット7、ピペット8)を含むマニピュレータを備えてもよい。マニピュレータは、胚培養士による顕微授精の作業を支援するために用いられる。
顕微鏡10は、ステージ30の上方に透過照明系20を備えた倒立顕微鏡である。レボルバ45には、結像レンズ60との組み合わせによって試料の光学像を形成する複数の対物レンズ40が装着されている。顕微鏡10は、さらに、接眼鏡筒80と撮像装置90を備えていて、試料の目視観察とデジタル撮影に対応可能である。
顕微鏡10は、後述するように、無染色の位相物体を可視化するための変調光学素子を、照明光路と観察光路のそれぞれに対して挿脱可能に備えている。観察法に応じた変調光学素子が光路に対して挿脱されることで、胚培養士は、複数の観察法を切り替えながら顕微鏡10で位相物体を観察することができる。
なお、顕微鏡10は、明視野観察法、レリーフコントラスト観察法、微分干渉観察法、位相差観察法、及び、偏光観察法の5つの観察法に対応可能である。ただし、顕微鏡10が対応可能な観察法には、上記の例に限らず、蛍光観察法、暗視野観察法など、その他の観察法が含まれてもよい。また、顕微鏡10は、顕微授精で使用するためには、少なくとも、明視野観察法、レリーフコントラスト観察法、及び、微分干渉観察法又は位相差観察法に対応していることが望ましく、さらに、偏光観察法にも対応していることがさらに望ましい。顕微授精では、明視野観察法は、4倍、10倍といった低倍率の対物レンズを用いてサンプルの位置出し、ピペットの位置出しを行う際に用いられる。また、レリーフコントラスト観察法は、20倍、40倍といった倍率の対物レンズを用いて卵子の形態観察、精子の運動性確認(具体的には、速くまっすぐに泳いでいるか)を行う際に用いられる。微分干渉観察法は、60倍といった高倍の対物レンズを用いて精子の観察を行い、精子頭部に欠陥があるかどうかを見る際に用いられる。偏光観察法は、20倍、40倍といった倍率の対物レンズを用いて成熟した卵子にあらわれる偏光性をもつ紡錘体を観察する際に用いられる。
透過照明系20は、ステージ30に載置された試料を、ステージ30の上方から照明する。透過照明系20は、図1及び図2に示すように、光源装置21と、ユニバーサルコンデンサ29を含んでいる。さらに、透過照明系20は、図2に示すように、照明光を出射する光源装置21とユニバーサルコンデンサ29の間に、ポラライザ22とコンペンセータ23を含んでいる。
光源装置21は、例えば、LED(Light Emitting Diode)光源を含んでもよく、ハロゲンランプを含んでもよい。ポラライザ22は、特定の振動方向を有する直線偏光を取り出す変調光学素子であり、顕微鏡10では、主に、レリーフコントラスト観察法、微分干渉観察法、偏光観察法で使用される。明視野観察法(及び位相差観察法)では、ポラライザ22は光路外に取り除かれてもよい。なお、ポラライザ22は、後述するアナライザ61(図2参照)や偏光板25a(図2参照)が有する振動方向に対して、自身が有する振動方向を変更するために、回転自在に顕微鏡10に配置されている。
コンペンセータ23は、試料の複屈折性に起因するリタデーションを測定するために用いられる変調光学素子である。コンペンセータ23は、例えば、セナルモンコペンセータ、液晶変調素子、または、ブレースケーラコンペンセータである。コンペンセータ23は、顕微鏡10では、コンペンセータ23で生じるリタデーションを変更して画像のコントラストを調整するために、偏光観察法で使用される。明視野観察法、レリーフコントラスト観察法、微分干渉観察法(及び位相差観察法)では、コンペンセータ23は、光路外に取り除かれてもよい。
ユニバーサルコンデンサ29は、図2に示すように、ターレットに収容された複数の変調光学素子と、コンデンサレンズ28を含んでいる。複数の変調光学素子には、レリーフコントラスト観察法用のモジュレータ25、微分干渉(DIC)プリズム26、リングスリット板27が含まれる。これらの複数の変調光学素子と開口板24が、ターレットの回転により観察法に応じて切り替えて使用される。
なお、開口板24は、いわゆるターレットの空穴であり、変調光学素子が配置されていないターレットのスロットを示している。開口板24は、明視野観察法と偏光観察法で使用される。モジュレータ25は、矩形のスリットが形成された矩形スリット板25bと、スリットの一部を覆うように配置された偏光板25aと、を組み合わせたものである。モジュレータ25は、レリーフコントラスト観察法で使用される。DICプリズム26は、微分干渉観察法で使用される。リング形状のスリットが形成されたリングスリット板27は、位相差観察法で使用される。なお、モジュレータ25、DICプリズム26、リングスリット板27は、例えば、ターレットの回転によりコンデンサレンズ28の瞳面(入射瞳、前側焦点位置)に対して挿脱される。
ステージ30の下方には、図2に示すように、複数の対物レンズ40(対物レンズ41、対物レンズ42、対物レンズ43)がレボルバ45で切替可能に設けられている。これらの対物レンズ40は、結像レンズ60との組み合わせで、試料の光学像を形成する。結像レンズ60の像側の光路上には、さらに、リレーレンズ62とアナライザ61が設けられている。
なお、アナライザ61は、ポラライザ22と同様に特定の振動方向を有する直線偏光を取り出す変調光学素子であり、顕微鏡10では、主に、微分干渉観察法、偏光観察法で使用される。明視野観察法、レリーフコントラスト観察法(及び位相差観察法)では、アナライザ61は、光路外に取り除かれてもよく、又は、ポラライザ22とアナライザ61が平行ニコルの関係になるようにポラライザ22又はアナライザ61の向きが調整されてもよい。なお、アナライザ61は、ポラライザ22が有する振動方向に対して自身が有する振動方向を変更するために、ポラライザ22と同様に、回転自在に顕微鏡10に配置されていてもよい。また、アナライザ61は、後述する倍率調整装置70に含まれる光学ユニット内に設けられてもよく、例えば、偏光観察法に対応する光学ユニットである光学ユニット71と、微分干渉観察法に対応する光学ユニットである光学ユニット74に設けられてもよい。
複数の対物レンズ40のうちの少なくとも1つは、複数の観察法で共通に使用される。複数の観察法で共通に使用される対物レンズは、特に限定しない。以降では、倍率が20倍の対物レンズ(例えば、対物レンズ41)が複数の観察法で共通に使用される場合を例に説明するが、共通に使用される複数の対物レンズがレボルバ45に装着されていてもよい。なお、この例では、対物レンズ41は、開口数が0.7の20倍の対物レンズであるが、対物レンズ41の代わりに、例えば、開口数が0.7の10倍の対物レンズである対物レンズ42が複数の観察法で共通に使用されてもよい。開口数0.7は、60倍以上の観察倍率で精子(例えば、精子の頭部内部)の形態を観察する際においても十分な解像力を有する開口数である。
倍率調整装置70は、図2に示すように、複数の観察法に対応する複数の光学ユニット(光学ユニット71、光学ユニット72、光学ユニット73、光学ユニット74、光学ユニット75)と、複数の光学ユニットを切り替える切替装置であるターレットを含んでいる。
光学ユニット71は、偏光観察法に対応する光学ユニットであり、偏光(PO)観察法で試料を観察するときに光路上に挿入される。光学ユニット71には、顕微鏡10の光学倍率を調整するための光学系71aが含まれている。光学系71aの倍率は、顕微鏡10の光学倍率が顕微授精において偏光観察法で頻繁に使用される所定倍率となるように、予め決められている。具体的には、偏光観察法は後述するように、卵子の紡錘体を確認するために使用されるため、偏光観察法のための所定倍率は、図4に示すように、卵子の構造の観察に適した、例えば20倍である。従って、複数の観察法で20倍の対物レンズ40が共通して使用される場合であれば、光学系71aの倍率は1倍である。なお、光学ユニット71には、さらに、アナライザが含まれていてもよく、その場合、倍率調整装置70とミラー63の間のアナライザ61は省略されてもよい。光学ユニット71にアナライザを含めて、アナライザ61を省略することで、アナライザが不要な観察法(明視野観察法、リレーフコントラスト観察法、位相差観察法)において、より明るい観察が可能となる。
光学ユニット72は、明視野観察法に対応する光学ユニットであり、明視野(BF)観察法で試料を観察するときに光路上に挿入される。光学ユニット72には、顕微鏡10の光学倍率を調整するための光学系72aが含まれている。光学系72aの倍率は、顕微鏡10の光学倍率が顕微授精において明視野観察法で頻繁に使用される所定倍率となるように、予め決められている。具体的には、明視野観察法は後述するように、シャーレ内のドロップの探索やピペットの位置決めなどに使用される。このため、明視野観察法のための所定倍率は、広い視野を確保するために比較的低倍であり、図4に示すように、例えば10倍である。従って、複数の観察法で20倍の対物レンズ40が共通して使用される場合であれば、光学系72aの倍率は0.5倍であり、1倍未満である。
光学ユニット73は、レリーフコントラスト観察法に対応する光学ユニットであり、レリーフコントラスト(RC)観察法で試料を観察するときに光路上に挿入される。光学ユニット73には、顕微鏡10の光学倍率を調整するための光学系73aと、レリーフコントラスト観察法用のモジュレータ73bが含まれている。光学系73aの倍率は、顕微鏡10の光学倍率が顕微授精においてレリーフコントラスト観察法で頻繁に使用される所定倍率となるように、予め決められている。具体的には、レリーフコントラスト観察法は後述するように、精子の全体形状や精子の運動性、さらに、卵子の第1極体を確認するために使用される。このため、レリーフコントラスト観察法のための所定倍率は、図4に示すように、卵子の構造や精子の運動の観察に適した、例えば20倍である。従って、複数の観察法で20倍の対物レンズ40が共通して使用される場合であれば、光学系73aの倍率は1倍である。モジュレータ73bは、透過率の異なる3つ領域(例えば、透過率100%程度の領域、5%程度の領域、0%程度の領域)を含んでいる。モジュレータ73bは、ユニバーサルコンデンサ29に収容されたモジュレータ25と対をなす変調光学素子であり、モジュレータ25と共に、レリーフコントラスト観察法で使用される。
光学ユニット74は、微分干渉観察法に対応する光学ユニットであり、微分干渉(DIC)観察法で試料を観察するときに光路上に挿入される。光学ユニット74には、顕微鏡10の光学倍率を調整するための光学系74aと、DICプリズム74bが含まれている。光学系74aの倍率は、顕微鏡10の光学倍率が顕微授精において微分干渉観察法で頻繁に使用される所定倍率となるように、予め決められている。具体的には、微分干渉観察法は後述するように、精子内の空包を観察するために使用される。このため、微分干渉観察法のための所定倍率は、比較的高倍であり、図4に示すように、精子の構造の観察に適した、例えば60倍である。従って、複数の観察法で20倍の対物レンズ40が共通して使用される場合であれば、光学系74aの倍率は3倍であり、1倍を超える倍率である。DICプリズム74bは、ユニバーサルコンデンサ29に収容されたDICプリズム26と対をなす変調光学素子であり、DICプリズム26と共に微分干渉観察法で使用される。なお、光学ユニット74には、さらに、アナライザが含まれていてもよく、その場合、倍率調整装置70とミラー63の間のアナライザ61は省略されてもよい。光学ユニット74にアナライザを含めて、アナライザ61を省略することで、アナライザが不要な観察法(明視野観察法、リレーフコントラスト観察法、位相差観察法)において、より明るい観察が可能となる。
光学ユニット75は、位相差観察法に対応する光学ユニットであり、位相差(PC)観察法で試料を観察するときに光路上に挿入される。光学ユニット75には、顕微鏡10の光学倍率を調整するための光学系75aと、位相板75bが含まれている。光学系75aの倍率は、顕微鏡10の光学倍率が顕微授精において位相差観察法で頻繁に使用される所定倍率となるように、予め決められている。具体的には、位相差観察法は微分干渉観察法と同様に、精子内の空包を観察するために使用される。このため、位相差観察法のための所定倍率は、比較的高倍であり、図4に示すように、精子の構造の観察に適した、例えば60倍である。従って、複数の観察法で20倍の対物レンズ40が共通して使用される場合であれば、光学系75aの倍率は3倍であり、1倍を超える倍率である。位相板75bは、ユニバーサルコンデンサ29に収容されたリングスリット板27と対をなす変調光学素子であり、リングスリット板27と共に位相差観察法で使用される。
上述したように、複数の光学ユニットの各々は、光学系と、その光学ユニットに対応する観察法に応じた変調光学素子と、の少なくとも一方を含んでいる。また、光学ユニットに含まれる光学系は、対物レンズ40の倍率とその光学ユニットに対応する観察法のための所定倍率との間の倍率比(所定倍率/対物レンズの倍率)に応じた倍率を有している。
この例では、光学ユニット71と光学ユニット72は、光学系のみを含んでいる。即ち、光学ユニット71と光学ユニット72の筐体には、それぞれ光学系のみが収容されている。また、光学ユニット73、光学ユニット74、及び、光学ユニット75は、光学系と変調光学素子の両方を含んでいる。即ち、光学ユニット73、光学ユニット74、及び、光学ユニット75の筐体には、それぞれ光学系と変調光学素子の両方が収容されている。ただし、複数の光学ユニットには、変調光学素子のみを含む光学ユニットが含まれてもよく、複数の光学ユニットの各々は、光学系と変調光学素子の少なくとも一方をまとめて収容する筐体を含んでいればよい。
倍率調整装置70は、対物レンズ40の像側に配置された結像レンズ60と、接眼鏡筒80(及び撮像装置90)との間に配置されている。具体的には、倍率調整装置70は、光学ユニットに含まれている瞳変調素子(モジュレータ73b、DICプリズム74b、位相板75bなど)が対物レンズ40の瞳面(射出瞳、後側焦点位置)と光学的に共役な面に配置できるように、リレーレンズ62とミラー63との間に配置されている。なお、ミラー63は、光路に対して挿脱可能に配置されたミラーであり、目視観察とデジタル撮影を切り替えるために用いられる。さらに具体的には、倍率調整装置70は、光学ユニット74に含まれているDICプリズム74bが照明光路上に配置されたポラライザ22と、観察光路上に配置されたアナライザ61の間の光路上に挿入されるように、リレーレンズ62とアナライザ61の間に配置されている。このような配置により、倍率調整装置70は、結像レンズ60よりも像側の光路上で、顕微鏡10の光学倍率を調整する。
以上のように構成された倍率調整装置70は、切替装置により光路上に配置する光学ユニットを観察法に応じて切り替える。これにより、倍率調整装置70は、結像レンズ60よりも像側の光路上で顕微鏡10の光学倍率を調整するとともに、複数の観察法の切替を行うことができる。即ち、倍率調整装置70は、複数の光学ユニットを切り替えることで、複数の観察法の切り替えと顕微鏡10の光学倍率の調整を一度に行うことができる。
なお、複数の光学ユニットに含まれる光学系について上述した倍率は、あくまで一例である。各観察法での観察対象及び目的に適した倍率であればよい。例えば、明視野観察法のための所定倍率(第1の所定倍率)は微分干渉観察法又は位相差観察法のための所定倍率(第2の所定倍率)よりも低ければよい。従って、光学系72aの倍率は光学系74a又は光学系75aの倍率よりも低くければよい。また、例えば、レリーフコントラスト観察法のための所定倍率(第3の所定倍率)は明視野観察法のための所定倍率(第1の所定倍率)よりも高く、微分干渉観察法又は位相差観察法のための所定倍率(第2の所定倍率)よりも低ければよい。従って、光学系73aの倍率は光学系72aの倍率よりも高く、光学系74a又は光学系75aの倍率よりも低くければよい。また、例えば、偏光観察法のための所定倍率(第4の所定倍率)は明視野観察法のための所定倍率(第1の所定倍率)よりも高く、微分干渉観察法又は位相差観察法のための所定倍率(第2の所定倍率)よりも低ければよい。より具体的には、偏光観察法のための所定倍率(第4の所定倍率)はレリーフコントラスト観察法のための所定倍率(第3の所定倍率)と等しくてもよい。従って、光学系71aの倍率は光学系72aの倍率よりも高く、光学系74a又は光学系75aの倍率よりも低ければよく、光学系73aの倍率と等しくてもよい。
また、倍率調整装置70が顕微鏡10の光学倍率を10倍から60倍まで調整する例を示したが、このような光学倍率の調整範囲も、あくまで一例である。光学倍率の上限値と下限値の倍率比は上述した6倍未満であってもよい。ただし、顕微授精における様々な観察対象を適切に観察できるように光学倍率が調整されればよく、そのためには、倍率調整装置70は、光学倍率の上限値と下限値の倍率比が3倍以上ある調整範囲内で光学倍率を調整することが望ましい。
また、上述したように、倍率調整装置70は、顕微鏡10の光学倍率を、対物レンズ40の光学倍率よりも低い倍率(この例では10倍)から対物レンズ40の光学倍率よりも高い倍率(この例では60倍)まで調整することが望ましい。具体的には、倍率調整装置70は、所定の観察法への切替に応じて、顕微鏡10の光学倍率を、対物レンズ40の倍率と対物レンズのOFN(Objective Feild Number)で定まる標本面上の範囲(例えば、20倍の対物レンズでOFNが22の場合であればΦ1.1mm)よりも広い範囲を観察可能な倍率へ調整することが望ましい。より具体的には、倍率調整装置70は、例えば、明視野観察法への切替に応じて、1倍以下の中間変倍を行うことが望ましい。これにより、十分な解像力を有する対物レンズを複数の観察法で共通に使用しながら、広い視野を確保することが可能となる。
接眼鏡筒80と撮像装置90は、目視観察とデジタル撮影を切り替えるためのミラー63の後段に配置されている。ミラー63を光路に挿入することで光が接眼鏡筒80へ導かれ、ミラー63を光路から取り除くことで光が撮像装置90へ導かれる。接眼鏡筒80には、接眼レンズ81が含まれている。また、撮像装置90には、アダプタレンズ91と、撮像素子92が含まれている。撮像素子92は、例えば、CCD(Charge Coupled Device)イメージセンサ、CMOS(Complementary Metal-Oxide-Semiconductor)イメージセンサなどである。
以上では、接眼レンズ81とアダプタレンズ91の倍率がそれぞれ1倍の場合を想定して説明したが、接眼レンズ81とアダプタレンズ91の倍率は特に限定されない。接眼レンズ81(アダプタレンズ91)の倍率は、顕微鏡10の光学倍率に影響するため、倍率調整装置70は、接眼レンズ81(アダプタレンズ91)の倍率を考慮して光学倍率を調整すればよい。
さらに、顕微鏡10は、図2に示すように、レーザアシステッドハッチングユニット50を備えてもよい。レーザアシステッドハッチングユニット50は、対物レンズ40と結像レンズ60の間から光路にレーザ光を導入することによって、試料にレーザ光を照射する。より具体的には、レーザアシステッドハッチングユニット50は、例えば、受精卵から成長した胚が着床できるように、胚を取り囲み透明帯にレーザ光を照射し、透明帯の一部を薄くする、又は、切開するために使用される。レーザアシステッドハッチングユニット50は、スプリッタ51と、スキャナ52と、レンズ53と、レーザ54を含んでいる。スプリッタ51は、例えば、ダイクロイックミラーである。スキャナ52は、例えば、ガルバノスキャナであり、レーザ光の照射位置を対物レンズ40の光軸と直交する方向に調整する。レンズ53は、レーザ光を平行光束に変換する。
図5は、顕微授精の手順の一例を示したフローチャートである。以下、図5を参照しながら、上述した顕微鏡システム1を用いて胚培養士によって行われる顕微授精の手順と、顕微授精における顕微鏡システム1の動作について、具体的に説明する。
まず、胚培養士は、試料を準備する(ステップS1)。ここでは、胚培養士は、例えば、シャーレ内に複数のドロップを含む試料を作成し、ステージ30上に配置する。複数のドロップには、ピペットの洗浄に使用される洗浄用のドロップ、精子を含む精子浮遊ドロップ、卵子を含む卵子操作用ドロップなどが含まれる。これらのドロップは、例えば、ミネラルオイルで覆われている。
次に、胚培養士は、顕微鏡システム1をセットアップする(ステップS2)。ここでは、胚培養士は、例えば、入力装置3のボタンB1を押下して、顕微鏡システム1の観察法と観察倍率の設定を変更する。ボタンB1の押下を検知した顕微鏡コントローラ2は、顕微鏡10を制御して、観察法を明視野観察法に、顕微鏡10の光学倍率を10倍に切り替える。より具体的には、顕微鏡10は、開口板24が光路上に位置するようにユニバーサルコンデンサ29のターレットを回転し、さらに、光学ユニット72が光路上に位置するように倍率調整装置70のターレットを回転する。その後、胚培養士は、ハンドル5及びハンドル6を操作してピペット7及びピペット8の位置を調整し、ピペット7及びピペット8にピントを合わせる。さらに、ステージ30を動かして、ピペット7及びピペット8を洗浄用ドロップで洗浄する。なお、明視野観察法での観察中は、ポラライザ22とアナライザ61が平行ニコルの関係になるように、ポラライザ22又はアナライザ61が調整されることが望ましい。ただし、倍率調整装置70とミラー63の間のアナライザ61が省略され、光学ユニット71と光学ユニット74のそれぞれにアナライザが含まれている場合には、ポラライザとアナライザが平行ニコルの関係になるよう調整する必要はない。
セットアップが完了すると、胚培養士は、精子を選別する(ステップS3からステップS6)。まず、胚培養士は、形態と運動性に基づいて良好精子を選別する(ステップS3)。ここでは、胚培養士は、例えば、入力装置3のボタンB2を押下して、顕微鏡システム1の観察法と観察倍率の設定を変更する。ボタンB2の押下を検知した顕微鏡コントローラ2は、顕微鏡10を制御して、観察法をレリーフコントラスト観察法に、顕微鏡10の光学倍率を20倍に切り替える。より具体的には、顕微鏡10は、モジュレータ25が光路上に位置するようにユニバーサルコンデンサ29のターレットを回転し、さらに、光学ユニット73が光路上に位置するように倍率調整装置70のターレットを回転する。その後、胚培養士は、ステージ30を動かして精子浮遊ドロップに観察位置を移動し、精子浮遊ドロップ内の精子にピントを合わせて、受精に適した良好精子を選別する。ここでは、レリーフコントラスト観察法により陰影の付いた精子の形態と運動性に基づいて精子の質を判断し、その判断に基づいて良好精子を選別する。この際、ポラライザ22を回転してコントラストを調整することが望ましい。
形態と運動性に基づいて良好精子が選別されると、胚培養士は、選別した良好精子を不動化する(ステップS4)。ここでは、胚培養士は、良好精子の尾部をピペットでシャーレの底面に擦り付けることで、良好精子の尾部を傷つけて不動化する。なお、この作業は、ステップS3と同じく、20倍のレリーフコントラスト観察法で行われる。
その後、胚培養士は、不動化した良好精子の内部構造に基づいて、良好精子をさらに選別する(ステップS5)。ここでは、胚培養士は、例えば、入力装置3のボタンB4を押下して、顕微鏡システム1の観察法と観察倍率の設定を変更する。ボタンB4の押下を検知した顕微鏡コントローラ2は、顕微鏡10を制御して、観察法を微分干渉観察法に、顕微鏡10の光学倍率を60倍に切り替える。より具体的には、顕微鏡10は、DICプリズム26が光路上に位置するようにユニバーサルコンデンサ29のターレットを回転し、さらに、光学ユニット74が光路上に位置するように倍率調整装置70のターレットを回転する。その後、胚培養士は、不動化した良好精子の頭部を詳細に観察し、受精に適した良好精子を選別する。ここでは、微分干渉観察法により可視化された頭部に存在する空包の大きさによって精子の質を判断し、その判断に基づいて良好精子を選別する。具体的には、空包が小さな良好精子を選別する。なお、微分干渉観察法での観察中は、ポラライザ22とアナライザ61がクロスニコルの関係になるように、ポラライザ22又はアナライザ61が調整される。
なお、ステップS5では、微分干渉観察法の代わりに位相差観察法が用いられてもよい。その場合、胚培養士は、例えば、入力装置3のボタンB5を押下して、顕微鏡システム1の観察法と観察倍率の設定を変更すればよい。ボタンB5の押下を検知した顕微鏡コントローラ2は、顕微鏡10を制御して、観察法を位相差観察法に、顕微鏡10の光学倍率を60倍に切り替える。より具体的には、顕微鏡10は、リングスリット板27が光路上に位置するようにユニバーサルコンデンサ29のターレットを回転し、さらに、光学ユニット75が光路上に位置するように倍率調整装置70のターレットを回転する。位相差観察法での観察中は、ポラライザ22とアナライザ61が平行ニコルの関係になるように、ポラライザ22又はアナライザ61が調整される。
その後、胚培養士は、ステップS5で選別された良好精子をインジェクションピペット(ピペット7)中に取り込む(ステップS6)。これにより、精子の選別作業が完了する。
良好精子の選別が完了すると、胚培養士は、精子の注入準備のため、卵子を確認する(ステップS7からステップS8)。まず、胚培養士は、卵子の第1極体の位置を確認する(ステップS7)。ここでは、胚培養士は、例えば、入力装置3のボタンB2を押下して、顕微鏡システム1の観察法と観察倍率の設定を変更する。ボタンB2の押下を検知した顕微鏡コントローラ2は、顕微鏡10を制御して、観察法をレリーフコントラスト観察法に、顕微鏡10の光学倍率を20倍に切り替える。より具体的には、顕微鏡10は、モジュレータ25が光路上に位置するようにユニバーサルコンデンサ29のターレットを回転し、さらに、光学ユニット73が光路上に位置するように倍率調整装置70のターレットを回転する。その後、胚培養士は、ステージ30を動かして卵子操作ドロップに観察位置を移動し、卵子操作ドロップ内の卵子にピントを合わせる。さらに、卵子の第1極体の位置を確認し、ホールディングピペット(ピペット8)を操作して、第1極体を12時又は6時の方向に位置するように、卵子の向きを変える。これは、ステップS8で確認する紡錘体が比較的高い確率で第1極体付近に存在しているためである。ステップS7でも、ポラライザ22を回転してコントラストを調整することが望ましい。
その後、胚培養士は、卵子の紡錘体を確認する(ステップS8)。ここでは、胚培養士は、例えば、入力装置3のボタンB3を押下して、顕微鏡システム1の観察法と観察倍率の設定を変更する。ボタンB3の押下を検知した顕微鏡コントローラ2は、顕微鏡10を制御して、観察法を偏光観察法に切り替えるとともに、顕微鏡10の光学倍率を20倍のままに維持する。より具体的には、顕微鏡10は、開口板24が光路上に位置するようにユニバーサルコンデンサ29のターレットを回転し、さらに、光学ユニット71が光路上に位置するように倍率調整装置70のターレットを回転する。これにより、顕微鏡10では、観察法は切り替わるが光学倍率は変更されずに維持される。その後、胚培養士は、卵子の紡錘体の位置を確認し、ホールディングピペット(ピペット8)を操作して、紡錘体を12時又は6時の方向に位置するように、卵子の向きを変える。これは、後述するステップS9において、3時又は9時の方向から卵子に突き立てられるインジェクションピペットによって、紡錘体が傷つくことを避けるためである。ステップS8では、ポラライザ22とアナライザ61がクロスニコルの関係になるように、ポラライザ22又はアナライザ61が調整されることが望ましい。
最後に、胚培養士は、精子を卵子に注入する(ステップS9)。ここでは、胚培養士は、例えば、入力装置3のボタンB2を押下して、顕微鏡システム1の観察法と観察倍率の設定を変更する。ボタンB2の押下を検知した顕微鏡コントローラ2は、顕微鏡10を制御して、観察法をレリーフコントラスト観察法に切り替えるとともに、顕微鏡10の光学倍率を20倍のままに維持する。より具体的には、顕微鏡10は、モジュレータ25が光路上に位置するようにユニバーサルコンデンサ29のターレットを回転し、さらに、光学ユニット73が光路上に位置するように倍率調整装置70のターレットを回転する。これにより、顕微鏡10では、観察法が切り替わるが光学倍率は変更されずに維持される。その後、胚培養士は、卵子をホールディングピペット(ピペット8)で吸引することで固定し、インジェクションピペット(ピペット7)を3時又は9時の方向から卵子に突き刺す。最後に、インジェクションピペット(ピペット7)から卵子内部に良好精子を注入して、一連の手順を終了する。なお、ステップS9でも、ポラライザ22を回転してコントラストを調整することが望ましい。図5に示す一連の手順が終了すると、胚培養士は、精子が注入された卵子をインキュベータに戻し、培養する。
以上のように、顕微鏡10及び顕微鏡システム1によれば、顕微授精で頻繁に発生する観察法の切替の際に、観察法の切替操作を行うだけで、観察倍率も同時に且つ適切に調整することができる。このため、所望の観察法と観察倍率の組み合わせへ短時間で切り替えることができる。また、観察倍率の調整が対物レンズを切り替えることなく行われるため、フォーカスや視野中心のズレが生じにくい。このため、切り替え後に素早くその後の作業に取り掛かることができる点も、顕微授精の作業時間の短縮に寄与する。従って、顕微鏡10及び顕微鏡システム1によれば、生殖細胞へ与えるダメージを最小限に抑えることが可能であり、顕微授精の成功率を向上させることができる。
[第2の実施形態]
図6は、顕微鏡100の構成を例示した図である。本実施形態に係る顕微鏡システムは、顕微鏡10の代わりに図6に示す顕微鏡100を含む点が、顕微鏡システム1とは異なる。その他の点については、顕微鏡システム1と同様である。
図6は、顕微鏡100の構成を例示した図である。本実施形態に係る顕微鏡システムは、顕微鏡10の代わりに図6に示す顕微鏡100を含む点が、顕微鏡システム1とは異なる。その他の点については、顕微鏡システム1と同様である。
顕微鏡100と顕微鏡10の主な違いは、アナライザと倍率調整装置の配置が異なる点、位相差観察法用の構成を含まない点、複数の観察法で共通に使用される対物レンズ44がレリーフ観察法用のモジュレータ44aを含む点、である。アナライザと倍率調整装置の配置について、より具体的には、顕微鏡100は、偏光観察法及び微分干渉観察法で使用されるアナライザが倍率調整装置内に配置されている点、倍率調整装置が対物レンズ40aと結像レンズ60の間に配置されている点が、顕微鏡10とは異なっている。以下では、これらの相違点を注目して顕微鏡100について説明する。
対物レンズ40aの射出瞳位置に、瞳変調素子を配置可能であれば、顕微鏡100及び顕微鏡100を含む顕微鏡システムも、顕微鏡10及び顕微鏡システム1と同様に、顕微授精で頻繁に発生する観察法の切替の際に、観察法の切替操作を行うだけで、観察倍率も同時に且つ適切に調整することができる。従って、顕微授精の作業時間を短縮することができる。なお、この実施形態では、対物レンズ44の瞳位置に瞳変調素子であるRC観察用のモジュレータ44aが配置されている。
顕微鏡100に含まれる倍率調整装置170は、複数の観察法に対応する複数の光学ユニットを含む点は、倍率調整装置70と同様である。光学ユニット171、光学ユニット172、光学ユニット173、光学ユニット174は、それぞれ、偏光観察法、明視野観察法、レリーフコントラスト観察法、微分干渉観察法に対応する光学ユニットである。
光学ユニット171は、アナライザ171bを含んでいる。光学ユニット172は、0.5倍の倍率を有する光学系172aを含んでいる。光学ユニット173は、光学素子及び光学系を含まない空のユニットである。レリーフコントラスト観察法用のモジュレータ44aは、光学ユニット173内ではなく対物レンズ44内に配置されている。光学ユニット174は、3倍の倍率を有する光学系174aと、DICプリズム174bと、アナライザ174cを含んでいる。
このように、倍率調整装置170に含まれる複数の光学ユニットは、光学ユニット173を除き、対物レンズ40aの倍率とその光学ユニットに対応する観察法のための所定倍率との間の倍率比に応じた倍率を有する光学系と、その光学ユニットに対応する観察法に応じた変調光学素子と、の少なくとも一方を含んでいる点は、倍率調整装置70に含まれる複数の光学ユニットと同様である。
[第3の実施形態]
図7は、顕微鏡200の構成を例示した図である。本実施形態に係る顕微鏡システムは、顕微鏡10の代わりに図7に示す顕微鏡200を含む点が、顕微鏡システム1とは異なる。その他の点については、顕微鏡システム1と同様である。
図7は、顕微鏡200の構成を例示した図である。本実施形態に係る顕微鏡システムは、顕微鏡10の代わりに図7に示す顕微鏡200を含む点が、顕微鏡システム1とは異なる。その他の点については、顕微鏡システム1と同様である。
顕微鏡200は、まず、倍率調整装置280とは別に複数の観察法を切り替える観察法切替装置270を含む点、位相差観察法用の構成を含まない点、複数の観察法で共通に使用される対物レンズ44がレリーフ観察法用のモジュレータ44aを含む点が、顕微鏡10とは異なる。なお、位相差観察法用の構成を含まない点、複数の観察法で共通に使用される対物レンズ44がレリーフ観察法用のモジュレータ44aを含む点については、顕微鏡200は、第2の実施形態に係る顕微鏡100と同様である。観察法切替装置270は、それぞれ複数の観察法の少なくとも1つで使用される、1つ以上の変調光学素子(アナライザ271、モジュレータ273)と、これらを切り替えるターレットを含んでいる。観察法切替装置270は、1つ以上の変調光学素子の少なくとも1つを光路に対して挿抜することによって複数の観察法を切り替える。
具体的には、観察法切替装置270は、偏光観察法に切り替える際には、アナライザ271を光路に挿入し、その他の変調光学素子を光路外に取り除けばよい。また、観察法切替装置270は、明視野観察法又はレリーフコントラスト観察法に切り替える際には、光路上にある変調光学素子を光路外に取り除けばよい。また、観察法切替装置270は、微分干渉観察法に切り替える際には、DICプリズム273aとアナライザ273bを組み合わせたモジュレータ273を光路に挿入し、その他の変調光学素子を光路外に取り除けばよい。
顕微鏡200は、さらに、倍率調整装置280が変倍光学系を含む点も、顕微鏡10とは異なる。倍率調整装置280に含まれる変倍光学系は、自身の倍率を変更する構造を有している。変倍光学系は、例えば、図7に示すように、変倍光学系の一部のレンズを光軸方向に移動することで倍率を変更するズームレンズを含んでもよい。また、変倍光学系は、例えば、レンズ形状を変更することで焦点距離を変更する可変焦点レンズを含んでもよい。
倍率調整装置280は、顕微鏡200の光学倍率が観察法切替装置270による切替後の観察法のための所定倍率と異なる場合に、倍率調整装置280の倍率を変更することによって顕微鏡200の倍率を変更する。具体的には、顕微鏡200は、観察法切替装置270と倍率調整装置280を機械的に連動するための連動機構を含んでもよく、観察法切替装置270の回転に応じて倍率調整装置280のハンドルが所定の位置まで回転してもよい。
また、顕微鏡200を含む顕微鏡システムでは、顕微鏡コントローラ2が観察法切替装置270と倍率調整装置280を制御することで、結果的に観察法切替装置270と倍率調整装置280が連動してもよい。即ち、顕微鏡コントローラ2は、観察法切替装置270による複数の観察法の切替と倍率調整装置280による光学倍率の調整が連動するように、観察法切替装置270と倍率調整装置280を制御してもよい。
対物レンズ40aの射出瞳位置に、瞳変調素子を配置可能であれば、顕微鏡200及び顕微鏡200を含む顕微鏡システムも、顕微鏡10及び顕微鏡システム1と同様に、顕微授精で頻繁に発生する観察法の切替の際に、観察法の切替操作を行うだけで、観察倍率も同時に且つ適切に調整することができる。従って、顕微授精の作業時間を短縮することができる。なお、この実施形態では、対物レンズ44の瞳位置に瞳変調素子であるRC観察用のモジュレータ44aが配置されている。
[第4の実施形態]
図8は、顕微鏡300の構成を例示した図である。本実施形態に係る顕微鏡システムは、顕微鏡200の代わりに図8に示す顕微鏡300を含む点が、第3の実施形態に係る顕微鏡システムとは異なる。その他の点については、第3の実施形態に係る顕微鏡システムと同様である。
図8は、顕微鏡300の構成を例示した図である。本実施形態に係る顕微鏡システムは、顕微鏡200の代わりに図8に示す顕微鏡300を含む点が、第3の実施形態に係る顕微鏡システムとは異なる。その他の点については、第3の実施形態に係る顕微鏡システムと同様である。
顕微鏡300は、観察法切替装置と倍率調整装置を含む点は、図7に示す顕微鏡200と同様である。ただし、顕微鏡300では、観察法切替装置270と倍率調整装置380が結像レンズ60よりも像側の光路上に配置されている点が、顕微鏡200とは異なっている。また、第1の実施形態に係る顕微鏡1と同様に、位相差観察法用の構成を含む点、及び、複数の観察法で共通に使用される対物レンズ41がレリーフ観察法用のモジュレータを含まない点も、顕微鏡200とは異なっている。なお、倍率調整装置380は、自身の倍率を変更する構造を有する変倍光学系を含んでいる。
顕微鏡300及び顕微鏡300を含む顕微鏡システムも、顕微授精で頻繁に発生する観察法の切替の際に、観察法の切替操作を行うだけで、観察倍率も同時に且つ適切に調整することができる。従って、顕微授精の作業時間を短縮することができる。
[第5の実施形態]
図9は、顕微鏡400の構成を例示した図である。本実施形態に係る顕微鏡システムは、顕微鏡300の代わりに図9に示す顕微鏡400を含む点が、第4の実施形態に係る顕微鏡システムとは異なる。その他の点については、第4の実施形態に係る顕微鏡システムと同様である。
図9は、顕微鏡400の構成を例示した図である。本実施形態に係る顕微鏡システムは、顕微鏡300の代わりに図9に示す顕微鏡400を含む点が、第4の実施形態に係る顕微鏡システムとは異なる。その他の点については、第4の実施形態に係る顕微鏡システムと同様である。
顕微鏡400は、結像レンズ60よりも像側の光路上に観察法切替装置と倍率調整装置を含む点は、図8に示す顕微鏡300と同様である。ただし、顕微鏡400では、倍率調整装置480は、変倍光学系の代わりに、それぞれ複数の観察法の少なくとも1つで使用される1つ以上の光学系(光学系481、光学系482、光学系483)を含み、この1つ以上の光学系の少なくとも1つを光路に対して挿脱することで顕微鏡400の光学倍率を調整する点が、顕微鏡300とは異なっている。
顕微鏡400及び顕微鏡400を含む顕微鏡システムも、顕微授精で頻繁に発生する観察法の切替の際に、観察法の切替操作を行うだけで、観察倍率も同時に且つ適切に調整することができる。従って、顕微授精の作業時間を短縮することができる。
[第6の実施形態]
図10は、顕微鏡500の構成を例示した図である。本実施形態に係る顕微鏡システムは、顕微鏡400の代わりに図10に示す顕微鏡500を含む点が、第5の実施形態に係る顕微鏡システムとは異なる。その他の点については、第5の実施形態に係る顕微鏡システムと同様である。
図10は、顕微鏡500の構成を例示した図である。本実施形態に係る顕微鏡システムは、顕微鏡400の代わりに図10に示す顕微鏡500を含む点が、第5の実施形態に係る顕微鏡システムとは異なる。その他の点については、第5の実施形態に係る顕微鏡システムと同様である。
顕微鏡500は、観察法切替装置と倍率調整装置を含む点は、図9に示す顕微鏡400と同様である。ただし、顕微鏡500では、観察法切替装置270と倍率調整装置580を、対物レンズ40と結像レンズ60の間の光路上に含む点が、顕微鏡400とは異なっている。なお、倍率調整装置580は、それぞれ複数の観察法の少なくとも1つで使用される1つ以上の光学系(光学系581、光学系582、光学系583)を含み、この1つ以上の光学系の少なくとも1つを光路に対して挿脱することで顕微鏡500の光学倍率を調整する点については、顕微鏡400と同様である。
対物レンズ40の射出瞳位置に、瞳変調素子(モジュレータ272、DICプリズム273a、位相板274)を配置可能であれば、顕微鏡500及び顕微鏡500を含む顕微鏡システムも、顕微授精で頻繁に発生する観察法の切替の際に、観察法の切替操作を行うだけで、観察倍率も同時に且つ適切に調整することができる。従って、顕微授精の作業時間を短縮することができる。
上述した実施形態は、発明の理解を容易にするために具体例を示したものであり、本発明はこれらの実施形態に限定されるものではない。上述の実施形態を変形した変形形態および上述した実施形態に代替する代替形態が包含され得る。つまり、各実施形態は、その趣旨および範囲を逸脱しない範囲で構成要素を変形することが可能である。また、1つ以上の実施形態に開示されている複数の構成要素を適宜組み合わせることにより、新たな実施形態を実施することができる。また、各実施形態に示される構成要素からいくつかの構成要素を削除してもよく、または実施形態に示される構成要素にいくつかの構成要素を追加してもよい。さらに、各実施形態に示す処理手順は、矛盾しない限り順序を入れ替えて行われてもよい。即ち、本発明の顕微鏡は、特許請求の範囲の記載を逸脱しない範囲において、さまざまな変形、変更が可能である。
図11は、ユニバーサルコンデンサ600の構成を例示した図である。上述した実施形態では、照明光路上に配置するポラライザ22とコンペンセータ23をユニバーサルコンデンサ29のターレットの外に配置する例を示したが、ポラライザ22とコンペンセータ23は、図11に示すように、ユニバーサルコンデンサ600に含まれてもよく、他の変調光学素子と同様に、コンデンサレンズ601の入射側に設けられたターレットにより、必要に応じて光路に対して挿脱されてもよい。
なお、図11には、偏光観察法で使用される光学ユニット610と、明視野観察法で使用される光学ユニット620と、レリーフコントラスト観察法で使用される光学ユニット630と、微分干渉観察法で使用される光学ユニット640と、位相差観察法で使用される光学ユニット650が、ユニバーサルコンデンサ600のターレットで切り替え可能な構成が示されている。
光学ユニット610には、開口板613がポラライザ611とコンペンセータ612とともに収容されている。光学ユニット620には、開口板621が収容されている。光学ユニット630には、ポラライザ631とモジュレータ632が収容されている。モジュレータ632は偏光板632aと矩形スリット板632bから構成されている。なお、ポラライザ631は偏光板632aが有する振動方向に対してポラライザ631が有する振動方向を変更するために回転自在にポラライザ631に収容されている。光学ユニット640には、ポラライザ641とDICプリズム642が収容されている。光学ユニット650には、リングスリット板651が収容されている。
図12は、倍率調整装置700の構成を例示した図である。図1では、観察光路上に配置するアナライザ61を倍率調整装置のターレット外に配置する例を示したが、アナライザ61は、図12に示すように、倍率調整装置に含まれてもよく、他の変調光学素子と同様に、倍率調整装置のターレットにより、必要に応じて光路に対して挿脱されてもよい。
なお、図12には、偏光観察法で使用される光学ユニット710と、明視野観察法で使用される光学ユニット720と、レリーフコントラスト観察法で使用される光学ユニット730と、微分干渉観察法で使用される光学ユニット740と、位相差観察法で使用される光学ユニット750が、倍率調整装置700のターレットで切り替え可能な構成が示されている。
光学ユニット710には、アナライザ711が光学系712とともに収容されている。光学ユニット720には、光学系721が収容されている。光学ユニット730には、モジュレータ731と光学系732が収容されている。光学ユニット740には、アナライザ741とDICプリズム742と光学系743が収容されている。光学ユニット750には、位相板751と光学系752が収容されている。
図13は、顕微鏡システム1aの構成を例示した図である。顕微鏡システム1aは、顕微鏡10の代わりに顕微鏡800を含む点が、図1に示す顕微鏡システム1とは異なっている。顕微鏡800は、上述した図11に示すユニバーサルコンデンサ600と図12に示す倍率調整装置700をそれぞれ照明光路と観察光路上に含む、正立顕微鏡である。顕微鏡800は、光源装置801から出射した照明光からバンドパスフィルタ802で近赤外光を抽出し、コレクターレンズ804を経由して入射するユニバーサルコンデンサ600により試料に照射する。胚培養士は、対物レンズ805と結像レンズ806と倍率調整装置700を経由して形成された試料の光学像を接眼レンズ807で目視観察してもよく、撮像装置808で撮像した試料の画像をコンピュータ4のモニタで確認してもよい。顕微鏡800では、倍率調整装置700とユニバーサルコンデンサ600を連動して切り替えることで、観察法と観察倍率を変更することができる。
上述した実施形態では、倒立顕微鏡が例示されたが、図13に示すように、正立顕微鏡に本発明を適用してもよく、その場合も、同様の効果を得ることができる。また、上述した実施形態では、ターレットを用いて光学素子や光学系を切り替える例を示したが、スライダなど、その他の切替手段を用いて光学素子や光学系を切り替えてもよい。また、上述した実施形態では、観察法と観察倍率を連動して切り替える例を示したが、さらに、これらに連動して光源装置から出射される照明光量を調整してもよい。具体的には、光源制御装置として機能する顕微鏡コントローラ2が光源装置21から出射される照明光量を複数の観察法に切り替えに応じて調整してもよい。例えば、顕微鏡コントローラ2は、ポラライザ22とアナライザ61がクロスニコルの関係になるように調整される偏光観察法や微分干渉観察法では、画像が暗くなりやすいため、光量が大きくなるように制御してもよい。
1、1a・・・顕微鏡システム、10、100、200、300、400、500、800・・・顕微鏡、40、41、42、43・・・対物レンズ、70、170、280、380、480、580、700・・・倍率調整装置、270・・・観察法切替装置
Claims (20)
- 複数の観察法で使用される顕微鏡であって、
前記複数の観察法で共通して使用される対物レンズと、
前記対物レンズの像側に配置され、前記複数の観察法の切り替えに応じて前記顕微鏡の光学倍率を調整する倍率調整手段と、を備える
ことを特徴とする顕微鏡。 - 請求項1に記載の顕微鏡において、
前記倍率調整手段は、前記顕微鏡の光学倍率が切替後の観察法のための所定倍率と異なる場合に、前記顕微鏡の光学倍率を前記所定倍率へ変更する
ことを特徴とする顕微鏡。 - 請求項2に記載の顕微鏡において、
前記倍率調整手段は、前記複数の観察法に対応する複数の光学ユニットを含み、
前記複数の光学ユニットの各々は、
前記対物レンズの倍率と前記光学ユニットに対応する観察法のための所定倍率との間の倍率比に応じた倍率を有する光学系と、
前記光学ユニットに対応する観察法に応じた変調光学素子と、の少なくとも一方を含み、
前記倍率調整手段は、前記複数の光学ユニットを切り替えることで、前記複数の観察法の切り替えと前記光学倍率の調整を行う
ことを特徴とする顕微鏡。 - 請求項3に記載の顕微鏡において、
前記複数の光学ユニットの各々は、さらに、前記光学ユニットに含まれる前記光学系と前記変調光学素子の少なくとも一方をまとめて収容する筐体を備える
ことを特徴とする顕微鏡。 - 請求項4に記載の顕微鏡において、
前記複数の光学ユニットは、明視野観察法に対応する第1の光学ユニット、レリーフコントラスト観察法に対応する第2の光学ユニットと、位相差観察法又は微分干渉観察法に対応する第3の光学ユニットを含み、
前記第1の光学ユニットは、1倍未満の倍率を有する光学系を含み、
前記第2の光学ユニットは、前記レリーフコントラスト観察法で使用される変調光学素子を含み、
前記第3の光学ユニットは、1倍を超える倍率を有する光学系と、前記位相差観察法又は前記微分干渉観察法で使用される変調光学素子を含む
ことを特徴とする顕微鏡。 - 請求項5に記載の顕微鏡において、
前記複数の光学ユニットは、さらに、偏光観察法に対応する第4の光学ユニットを含み、
前記第4の光学ユニットは、前記偏光観察法で使用される変調光学素子を含む
ことを特徴とする顕微鏡。 - 請求項2に記載の顕微鏡において、さらに、
それぞれ前記複数の観察法の少なくとも1つで使用される1つ以上の変調光学素子を含み、前記1つ以上の変調光学素子の少なくとも1つを光路に対して挿抜することによって前記複数の観察法を切り替える切替手段を備え、
前記倍率調整手段は、前記顕微鏡の光学倍率が前記切替手段による切替後の観察法のための前記所定倍率と異なる場合に、前記光学倍率を前記所定倍率へ変更する
ことを特徴とする顕微鏡。 - 請求項7に記載の顕微鏡において、
前記倍率調整手段は、それぞれ前記複数の観察法の少なくとも1つで使用される1つ以上の光学系を含み、前記1つ以上の光学系の少なくとも1つを前記光路に対して挿脱することによって前記光学倍率を前記所定倍率へ変更する
ことを特徴とする顕微鏡。 - 請求項7に記載の顕微鏡において、
前記倍率調整手段は、自身の倍率を変更する構造を有する変倍光学系を含み、前記変倍光学系の倍率を変更することによって前記光学倍率を前記所定倍率へ変更する
ことを特徴とする顕微鏡。 - 請求項9に記載の顕微鏡において、
前記変倍光学系は、ズームレンズを含む
ことを特徴とする顕微鏡。 - 請求項7乃至請求項10のいずれか1項に記載の顕微鏡において、
前記切替手段と前記倍率調整手段とを機械的に連動させる連動機構を備える
ことを特徴とする顕微鏡。 - 請求項7乃至請求項10のいずれか1項に記載の顕微鏡において、さらに、
前記倍率調整手段と前記切替手段を制御する制御装置を備え、
前記制御装置は、前記切替手段による前記複数の観察法の切り替えと前記倍率調整手段による前記光学倍率の調整が連動するように、前記倍率調整手段と前記切替手段を制御する
ことを特徴とする顕微鏡。 - 請求項2乃至請求項12のいずれか1項に記載の顕微鏡において、
前記複数の観察法は、少なくとも、明視野観察法、レリーフコントラスト観察法、及び、位相差観察法又は微分干渉観察法を含み、
前記明視野観察法のための第1の所定倍率は、前記位相差観察法又は前記微分干渉観察法のための第2の所定倍率よりも低く、
前記レリーフコントラスト観察法のための第3の所定倍率は、前記第1の所定倍率よりも高く、前記第2の所定倍率よりも低い
ことを特徴とする顕微鏡。 - 請求項13に記載の顕微鏡において、
前記複数の観察法は、さらに、偏光観察法を含み、
前記偏光観察法のための第4の所定倍率は、前記第3の所定倍率に等しい
ことを特徴とする顕微鏡。 - 請求項1乃至請求項14のいずれか1項に記載の顕微鏡において、
前記倍率調整手段は、前記光学倍率の上限値と下限値の倍率比が3倍以上ある調整範囲内で前記光学倍率を調整する
ことを特徴とする顕微鏡。 - 請求項1乃至請求項15のいずれか1項に記載の顕微鏡において、
前記倍率調整手段は、所定の観察法への切り替えに応じて、前記光学倍率を、前記対物レンズの倍率と前記対物レンズのOFNとで定まる標本面上の範囲よりも広い範囲を観察可能な倍率へ調整する
ことを特徴とする顕微鏡。 - 請求項1乃至請求項16のいずれか1項に記載の顕微鏡において、さらに、
前記対物レンズの像側に配置された結像レンズを備え、
前記倍率調整手段は、前記結像レンズよりも像側の間の光路上で、前記光学倍率を調整する
ことを特徴とする顕微鏡。 - 請求項1乃至請求項16のいずれか1項に記載の顕微鏡において、さらに、
前記対物レンズの像側に配置された結像レンズを備え、
前記倍率調整手段は、前記対物レンズと前記結像レンズの間の光路上で、前記光学倍率を調整する
ことを特徴とする顕微鏡。 - 請求項1乃至請求項18のいずれか1項に記載の顕微鏡において、さらに、
照明光を出射する光源装置と、
前記複数の観察法の切り替えに応じて前記光源装置から出射される前記照明光の光量を制御する光源制御装置を備える
ことを特徴とする顕微鏡。 - 請求項1乃至請求項19のいずれか1項に記載の顕微鏡において、
前記顕微鏡は、倒立顕微鏡である
ことを特徴とする顕微鏡。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021002410A JP2022107449A (ja) | 2021-01-08 | 2021-01-08 | 顕微鏡 |
US17/568,981 US20220221702A1 (en) | 2021-01-08 | 2022-01-05 | Microscope used in multiple microscopies |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021002410A JP2022107449A (ja) | 2021-01-08 | 2021-01-08 | 顕微鏡 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022107449A true JP2022107449A (ja) | 2022-07-21 |
Family
ID=82322756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021002410A Pending JP2022107449A (ja) | 2021-01-08 | 2021-01-08 | 顕微鏡 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20220221702A1 (ja) |
JP (1) | JP2022107449A (ja) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07218841A (ja) * | 1993-12-07 | 1995-08-18 | Nikon Corp | 顕微鏡 |
US6226118B1 (en) * | 1997-06-18 | 2001-05-01 | Olympus Optical Co., Ltd. | Optical microscope |
JP5730671B2 (ja) * | 2011-05-31 | 2015-06-10 | オリンパス株式会社 | ズーム結像光学系、及び、それを備えた顕微鏡 |
US9213174B2 (en) * | 2012-11-01 | 2015-12-15 | Olympus Corporation | Microscope and controlling method |
JP7163079B2 (ja) * | 2018-06-22 | 2022-10-31 | 株式会社エビデント | 撮像システム、画像構築方法 |
-
2021
- 2021-01-08 JP JP2021002410A patent/JP2022107449A/ja active Pending
-
2022
- 2022-01-05 US US17/568,981 patent/US20220221702A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20220221702A1 (en) | 2022-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6674574B1 (en) | Focusing system for a microscope and a reflected illumination fluorescence microscope using the focusing system | |
US10317664B2 (en) | Microscope device | |
EP2202557B1 (en) | A method of modifying an inverted microscope | |
WO2012150689A1 (ja) | 顕微鏡、及び、顕微鏡を用いた顕微授精方法 | |
JP5863357B2 (ja) | 拡大観察装置、並びに、拡大観察装置の画像表示方法及び検鏡法切換方法 | |
US7551351B2 (en) | Microscope with evanescent sample illumination | |
JP5338677B2 (ja) | 顕微授精用変調コントラスト顕微鏡および変調コントラスト顕微鏡 | |
JP2007334319A (ja) | 照明装置 | |
US20060250689A1 (en) | Objective for evanescent illumination and microscope | |
US20170363864A1 (en) | Dynamic Microscope with Combined Optical Focus and Aberrational Correction | |
JP4624695B2 (ja) | システム顕微鏡 | |
JP2022107449A (ja) | 顕微鏡 | |
JPH11231227A (ja) | 実体顕微鏡 | |
JPH1130753A (ja) | 光学顕微鏡 | |
JP2008102535A (ja) | 実体顕微鏡 | |
JP4689975B2 (ja) | 顕微鏡照明強度測定装置 | |
JP2019155147A (ja) | スリットランプ顕微鏡を含む眼科システム | |
JP4576106B2 (ja) | 顕微鏡フォーカス維持装置 | |
JPH10115781A (ja) | 光学顕微鏡 | |
JP4027546B2 (ja) | 顕微鏡システム | |
JP4046525B2 (ja) | 倒立型顕微鏡 | |
JP3405252B2 (ja) | 生体試料観察装置 | |
JP6391340B2 (ja) | 顕微鏡 | |
JP2000155266A (ja) | 顕微鏡光学系 | |
US20030030898A1 (en) | Microscope having switchable illumination in at least two spectral regions, and apparatus for illumination switchover |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20220622 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231213 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20231213 |