JP2022001960A - Euv光用感光性組成物、パターン形成方法、電子デバイスの製造方法 - Google Patents

Euv光用感光性組成物、パターン形成方法、電子デバイスの製造方法 Download PDF

Info

Publication number
JP2022001960A
JP2022001960A JP2021163220A JP2021163220A JP2022001960A JP 2022001960 A JP2022001960 A JP 2022001960A JP 2021163220 A JP2021163220 A JP 2021163220A JP 2021163220 A JP2021163220 A JP 2021163220A JP 2022001960 A JP2022001960 A JP 2022001960A
Authority
JP
Japan
Prior art keywords
group
euv light
acid
preferable
photosensitive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021163220A
Other languages
English (en)
Other versions
JP7239661B2 (ja
Inventor
三千紘 白川
Michihiro Shirakawa
創 古谷
So Furuya
光宏 藤田
Mitsuhiro Fujita
智孝 土村
Tomotaka Tsuchimura
敬史 川島
Takashi Kawashima
倫弘 小川
Tsunehiro Ogawa
明弘 金子
Akihiro Kaneko
宏哲 岡
Hiroaki Oka
康晴 白石
Yasuharu SHIRAISHI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JP2022001960A publication Critical patent/JP2022001960A/ja
Application granted granted Critical
Publication of JP7239661B2 publication Critical patent/JP7239661B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】Z−factorが良好で、かつ、パターン倒れが抑制されたパターンを形成可能なEUV光用感光性組成物、パターン形成方法、及び、電子デバイスの製造方法を提供する。【解決手段】所定の樹脂、及び、光酸発生剤を含むか、または、光酸発生基を有する繰り返し単位を有する、所定の樹脂を含み、要件1及び要件2を満たす、EUV光用感光性組成物。要件1:式(1)で求められるA値が0.14以上である。式(1):A=([H]×0.04+[C]×1.0+[N]×2.1+[O]×3.6+[F]×5.6+[S]×1.5+[I]×39.5)/([H]×1+[C]×12+[N]×14+[O]×16+[F]×19+[S]×32+[I]×127)要件2:EUV光用感光性組成物中の固形分濃度が2.5質量%以下である。【選択図】なし

Description

本発明は、EUV光用感光性組成物、パターン形成方法、及び、電子デバイスの製造方法に関する。
IC(Integrated Circuit、集積回路)及びLSI(Large Scale Integrated circuit、大規模集積回路)等の半導体デバイスの製造プロセスにおいては、感光性組成物を用いたリソグラフィーによる微細加工が行われている。
リソグラフィーの方法としては、感光性組成物によりレジスト膜を形成した後、得られた膜を露光して、その後、現像する方法が挙げられる。特に、近年、露光の際にEUV(Extreme ultraviolet)光を用いる検討がなされている(特許文献1)。
特開2016−85382号公報
一方で、近年、より微細なパターンをパターン倒れなく形成することが求められている。
また、同様に、Z−factorのより一層の改善も求められている。なお、Z−factorとは、解像度、LER(line edge roughness)、及び、感度のトータル性能を表す値であり、数値が小さい方が解像度、LER、及び、感度のトータル性能が良好であることを示す。なお、Z−factorは、以下式で求められる。
Z−factor=(解像力)×(LER)×(感度)
本発明者らは、従来技術に関して検討したところ、良好なZ−factorと、パターン倒れの抑制とを同時に満たすことができず、更なる改良の余地があることを知見した。
本発明は、Z−factorが良好で、かつ、パターン倒れが抑制されたパターンを形成可能なEUV光用感光性組成物を提供することを課題とする。
また、本発明は、パターン形成方法、及び、電子デバイスの製造方法を提供することも課題とする。
本発明者らは、以下の構成により上記課題を解決できることができることを見出した。
(1) 酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する樹脂、及び、光酸発生剤を含むか、または、
光酸発生基を有する繰り返し単位を有する、酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する樹脂を含み、
後述する要件1及び要件2を満たす、EUV光用感光性組成物。
(2) 酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する樹脂、並びに、カチオン部及びアニオン部からなる光酸発生剤を含み、
後述する式(2)より求められるB値が0eV以上である、(1)に記載のEUV光用感光性組成物。
(3) 光酸発生剤より発生する酸の体積が、240Å以上である、(1)又は(2)に記載のEUV光用感光性組成物。
(4) 樹脂のガラス転移温度が90℃より大きい、(1)〜(3)のいずれかに記載のEUV光用感光性組成物。
(5) 光酸発生剤の含有量が、EUV光用感光性組成物中の全固形分に対して、5〜50質量%である、(1)〜(4)のいずれかに記載のEUV光用感光性組成物。
(6) 樹脂が、酸解離定数が13以下の酸基を有する、(1)〜(5)のいずれかに記載のEUV光用感光性組成物。
(7) 酸基の含有量が0.80〜6.00mmol/gである、(6)に記載のEUV光用感光性組成物。
(8) (1)〜(7)のいずれかに記載のEUV光用感光性組成物を用いて、基板上にレジスト膜を形成する工程と、
レジスト膜をEUV光で露光する工程と、
アルカリ現像液を用いて、露光されたレジスト膜を現像し、パターンを形成する工程と、を有するパターン形成方法。
(9) (8)に記載のパターン形成方法を含む、電子デバイスの製造方法。
本発明によれば、Z−factorが良好で、かつ、パターン倒れが抑制されたパターンを形成可能なEUV光用感光性組成物を提供できる。
また、本発明によれば、パターン形成方法、及び、電子デバイスの製造方法を提供できる。
以下に、本発明を実施するための形態の一例を説明する。
なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
なお、本明細書における基(原子団)の表記において、置換又は無置換を記していない表記は、置換基を有していない基と共に置換基を有する基をも含む。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも含む。
本明細書における、「(メタ)アクリル」とは、アクリル及びメタクリルを含む総称であり、「アクリル及びメタクリルの少なくとも1種」を意味する。同様に「(メタ)アクリル酸」とは、「アクリル酸及びメタクリル酸の少なくとも1種」を意味する。
本明細書において、樹脂の重量平均分子量(Mw)、数平均分子量(Mn)、及び分散度(分子量分布ともいう)(Mw/Mn)は、GPC(Gel Permeation Chromatography)装置(東ソー製HLC−8120GPC)によるGPC測定(溶媒:テトラヒドロフラン、流量(サンプル注入量):10μL、カラム:東ソー社製TSK gel Multipore HXL−M、カラム温度:40℃、流速:1.0mL/分、検出器:示差屈折率検出器(Refractive Index Detector))によるポリスチレン換算値として定義される。
1Åは1×10−10mである。
<<EUV光用感光性組成物>>
本発明のEUV光用感光性組成物(以下、「レジスト組成物」とも称する)は、後述する要件1及び要件2を満たす。これらの要件を満たすことにより、所望の効果が得られる理由を以下に示す。
EUV光は波長13.5nmであり、ArF(波長193nm)光等に比べて、より短波長であるため、同じ感度で露光された際の入射フォトン数が少ない。そのため、確率的にフォトンの数がばらつく“フォトンショットノイズ”の影響が大きく、LERの悪化を招く。フォトンショットノイズを減らすには、露光量を大きくして入射フォトン数を増やす方法があるが、高感度化の要求とトレードオフとなる。また、レジスト膜厚を上げて吸収フォトン数を増やす方法もあるが、解像性の低下を招く。
それに対して、本発明では、EUV光の吸収効率を高くすると共に、形成されるパターンを薄膜化することにより、上記問題を解決できることを知見している。要件1で示すA値が高いと、レジスト組成物より形成されるレジスト膜のEUV光の吸収が高く、要件2を満たすことにより、レジスト組成物より形成されるパターンが薄膜化される。結果として、解像度、LER(lineedge roughness)、及び、感度のトータル性能であるZ−factorが向上すると共に、パターン倒れの発生が抑制される。
レジスト組成物は、要件1を満たす。上述したように、要件1で規定されるA値が高い場合は、レジスト組成物より形成されるレジスト膜のEUV光の吸収効率が高くなる。A値は、レジスト膜の質量割合のEUV光の吸収効率を表す。
要件1:式(1)で求められるA値が0.14以上である。
式(1):A=([H]×0.04+[C]×1.0+[N]×2.1+[O]×3.6+[F]×5.6+[S]×1.5+[I]×39.5)/([H]×1+[C]×12+[N]×14+[O]×16+[F]×19+[S]×32+[I]×127)
上記のように、A値は0.14以上であるが、Z−factorのより一層の向上、及び、パターン倒れのより一層の抑制の少なくとも一方が得られる点(以下、単に「本発明の効果がより優れる点」ともいう。)で、0.16以上が好ましく、0.18以上がより好ましく、0.20以上が特に好ましい。上限は特に制限されないが、A値が大きすぎる場合、レジスト膜のEUV光透過率が低下し、レジスト膜中の光学像プロファイルが劣化し、結果として良好なパターン形状が得られにくくなるため、0.24以下が好ましく、0.22以下がより好ましい。
Aが0.14未満であると、主に、Z−factorが悪化する。
なお、式(1)中、[H]は、EUV光用感光性組成物中の全固形分の全原子に対する、全固形分由来の水素原子のモル比率を表し、[C]は、EUV光用感光性組成物中の全固形分の全原子に対する、全固形分由来の炭素原子のモル比率を表し、[N]は、EUV光用感光性組成物中の全固形分の全原子に対する、全固形分由来の窒素原子のモル比率を表し、[O]は、EUV光用感光性組成物中の全固形分の全原子に対する、全固形分由来の酸素原子のモル比率を表し、[F]は、EUV光用感光性組成物中の全固形分の全原子に対する、全固形分由来のフッ素原子のモル比率を表し、[S]は、EUV光用感光性組成物中の全固形分の全原子に対する、全固形分由来の硫黄原子のモル比率を表し、[I]は、EUV光用感光性組成物中の全固形分の全原子に対する、全固形分由来のヨウ素原子のモル比率を表す。
例えば、レジスト組成物が酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する樹脂、光酸発生剤、酸拡散制御剤、及び、溶剤を含む場合、上記樹脂、上記光酸発生剤、及び、上記酸拡散制御剤が固形分に該当する。つまり、全固形分の全原子とは、上記樹脂由来の全原子、上記光酸発生剤由来の全原子、及び、上記酸拡散制御剤由来の全原子の合計に該当する。例えば、[H]は、全固形分の全原子に対する、全固形分由来の水素原子のモル比率を表し、上記例に基づいて説明すると、[H]は、上記樹脂由来の全原子、上記光酸発生剤由来の全原子、及び、上記酸拡散制御剤由来の全原子の合計に対する、上記樹脂由来の水素原子、上記光酸発生剤由来の水素原子、及び、上記酸拡散制御剤由来の水素原子の合計のモル比率を表すことになる。
A値の算出は、レジスト組成物中の全固形分の構成成分の構造、及び、含有量が既知の場合には、含有される原子数比を計算し、算出できる。また、構成成分が未知の場合であっても、レジスト組成物の溶剤成分を蒸発させて得られたレジスト膜に対して、元素分析等の解析的な手法によって構成原子数比を算出可能である。
また、レジスト組成物は、要件2を満たす。
要件2:EUV光用感光性組成物中の固形分濃度が2.5質量%以下である。
レジスト組成物中の固形分濃度は、2.5質量%以下であり、本発明の効果がより優れる点で、2.3質量%以下が好ましく、2.0質量%以下がより好ましく、1.7質量%以下が更に好ましい。下限は特に制限されないが、0.5質量%以上の場合が多い。
なお、固形分とは、溶媒を除く、レジスト膜を構成し得る成分を意図する。
レジスト組成物は、ポジ型及びネガ型のいずれでもよいが、ポジ型が好ましい。なお、EUV光の露光部は、アルカリ現像液により溶けやすくなる。
レジスト組成物は、上記要件1及び2を満たしていればその構成成分は特に制限されないが、通常、酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する樹脂、及び、光酸発生剤を含むか、または、光酸発生基を有する繰り返し単位を有する、酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する樹脂を含む。なかでも、後述するように、酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する樹脂、並びに、カチオン部及びアニオン部からなる光酸発生剤を含むことが好ましい。
レジスト組成物が酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する樹脂、並びに、カチオン部及びアニオン部からなる光酸発生剤を含む場合、本発明の効果がより優れる点で、式(2)より求められるB値が0eV以上であることが好ましく、0.2eV以上であることがより好ましい。上限は特に制限されないが、3.0eV以下が好ましく、2.5eV以下がより好ましい。B値を大きくすることで、樹脂から光酸発生剤のカチオン部への電子移動効率が上がるため、酸発生を効率的に起こすことができると考えられる。B値は、0.4eV以上としてもよいし、0.6eV以上としてもよいし、0.8eV以上としてもよいし、1.0eV以上としてもよい。
式(2):B値=LUMO(Polymer)−LUMO(PAG_Cation)
上記LUMO(Polymer)は、上記樹脂(レジスト組成物が酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する樹脂)の全繰り返し単位に対して5質量%以上含まれる繰り返し単位のうち、最低空軌道準位のエネルギー値が最も低いモノマー由来の繰り返し単位の、モノマーの最低空軌道準位のエネルギー値を表す。
上記LUMO(PAG_Cation)は、質量換算でレジスト組成物中に最も多く含有されている光酸発生剤のカチオン部の最低空軌道準位のエネルギー値を表す。
各化合物の上記LUMO(Lowest Unoccupied Molecular Orbital)値は、現在広く用いられている量子化学計算プログラムGaussian09(Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.)により計算する。
計算手法としては密度汎関数法を、汎関数にはB3LYPを用いる。基底関数には、ヨウ素以外の原子は6-31+G(d,p)を用い、ヨウ素原子はaug-cc-PVDZ-PPを用いる。aug-cc-PVDZ-PPは、WEBで公開されているデータベース「Basis Set Exchange (https://bse.pnl.gov/bse/portal)」より入手する。
ところで、密度汎関数法で得られる計算値は、通常は真空中の孤立分子についての値に相当する。しかし、レジスト膜内に含まれる分子(レジスト膜内に存在する分子)は、真空中の孤立分子とは異なり、周囲に存在する他の分子からの影響を受けることとなる。
従って、密度汎関数法を用いて化合物のLUMO値を計算する際に、薄膜の状態を考慮した数値を用いることがより適切であると言える。
真空と薄膜の違いとして考慮すべき点として、誘電率の差異がある。真空中の比誘電率は1であるが、レジスト膜の比誘電率は2〜5程度であると考えられる。従って、LUMO値は、誘電率を考慮した値を用いることが好ましい。
誘電率を考慮したLUMO値は、Gaussian09に搭載の溶媒効果計算(PCM法)で計算できる。薄膜のパラメータは含まれないため、比誘電率が2〜5の化合物で代用する必要がある。本明細書では、ベンゼン(比誘電率=2.2706)のパラメータを利用する。
本手法により、構造最適化計算を行い生成エネルギーが最小となる構造に対してLUMO値を計算する。光酸発生剤のカチオン部のLUMO値を計算する際は、カウンターアニオンとしてトリフルオロメタンスルホン酸由来のアニオンを用いる。
以下、特定組成物が含み得る成分について詳述する。
<(A)酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する樹脂>
レジスト組成物は、酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する樹脂(以下、「樹脂(A)」ともいう)を含む。なお、後述するように、樹脂(A)は、光酸発生基を有する繰り返し単位を有していてもよい。
中でも、樹脂(A)は、酸解離定数(pKa)が13以下の酸基を有することが好ましい。上記酸基の酸解離定数は、上記のように、13以下が好ましく、3〜13がより好ましく、5〜10が更に好ましい。
上記所定のpKaの酸基を有する場合、レジスト組成物の保存安定性が優れ、現像がより良好に進行する。
酸解離定数(pKa)が13以下の酸基としては、例えば、カルボキシル基、フェノール性水酸基、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール基)、スルホン酸基、又は、スルホンアミド基などが挙げられる。
樹脂(A)が、pKaが13以下の酸基を有する場合、樹脂(A)中における酸基の含有量は特に制限されないが、0.2〜6.0mmol/gの場合が多い。なかでも、0.8〜6.0mmol/gが好ましく、1.2〜5.0mmol/gがより好ましく、1.6〜4.0mmol/gが更に好ましい。酸基の含有量が上記範囲内であれば、現像が良好に進行し、形成されるパターン形状に優れ、解像性にも優れる。
(酸の作用により脱離する脱離基で極性基が保護された構造を有する繰り返し単位)
樹脂(A)は、酸の作用により脱離する脱離基で極性基が保護された構造を有する繰り返し単位を有することが好ましい。つまり、樹脂(A)は、酸の作用により分解して極性基を生じる基を有する繰り返し単位を有することが好ましい。この繰り返し単位を有する樹脂は、酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する。
酸の作用により脱離する脱離基で極性基が保護された構造(酸分解性基)を有する繰り返し単位における極性基としては、アルカリ可溶性基が好ましく、例えば、カルボキシル基、フェノール性水酸基、フッ素化アルコール基、スルホン酸基、スルホンアミド基、スルホニルイミド基、(アルキルスルホニル)(アルキルカルボニル)メチレン基、(アルキルスルホニル)(アルキルカルボニル)イミド基、ビス(アルキルカルボニル)メチレン基、ビス(アルキルカルボニル)イミド基、ビス(アルキルスルホニル)メチレン基、ビス(アルキルスルホニル)イミド基、トリス(アルキルカルボニル)メチレン基、及び、トリス(アルキルスルホニル)メチレン基等の酸性基、並びに、アルコール性水酸基等が挙げられる。
中でも、極性基としては、カルボキシル基、フェノール性水酸基、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール基)、又は、スルホン酸基が好ましい。
酸の作用により脱離する脱離基としては、例えば、式(Y1)〜(Y4)で表される基が挙げられる。
式(Y1):−C(Rx)(Rx)(Rx
式(Y2):−C(=O)OC(Rx)(Rx)(Rx
式(Y3):−C(R36)(R37)(OR38
式(Y4):−C(Rn)(H)(Ar)
式(Y1)及び式(Y2)中、Rx〜Rxは、各々独立に、アルキル基(直鎖状若しくは分岐鎖状)又はシクロアルキル基(単環若しくは多環)を表す。なお、Rx〜Rxの全てがアルキル基(直鎖若しくは分岐)である場合、Rx〜Rxのうち少なくとも2つはメチル基であることが好ましい。
なかでも、Rx〜Rxは、各々独立に、直鎖状又は分岐鎖状のアルキル基を表すことが好ましく、Rx〜Rxは、各々独立に、直鎖状のアルキル基を表すことがより好ましい。
Rx〜Rxの2つが結合して、単環又は多環を形成してもよい。
Rx〜Rxのアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、及び、t−ブチル基等の炭素数1〜4のアルキル基が好ましい。
Rx〜Rxのシクロアルキル基としては、シクロペンチル基、及び、シクロヘキシル基等の単環のシクロアルキル基、並びに、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の多環のシクロアルキル基が好ましい。
Rx〜Rxの2つが結合して形成されるシクロアルキル基としては、シクロペンチル基、及び、シクロヘキシル基等の単環のシクロアルキル基、並びに、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の多環のシクロアルキル基が好ましく、炭素数5〜6の単環のシクロアルキル基がより好ましい。
Rx〜Rxの2つが結合して形成されるシクロアルキル基は、例えば、環を構成するメチレン基の1つが、酸素原子等のヘテロ原子、又は、カルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
式(Y1)又は式(Y2)で表される基は、例えば、Rxがメチル基又はエチル基であり、RxとRxとが結合して上述のシクロアルキル基を形成している態様が好ましい。
式(Y3)中、R36〜R38は、各々独立に、水素原子又は1価の有機基を表す。R37とR38とは、互いに結合して環を形成してもよい。1価の有機基としては、アルキル基、シクロアルキル基、アリール基、アラルキル基、及び、アルケニル基等が挙げられる。R36は水素原子であることも好ましい。
式(Y3)としては、下記式(Y3−1)で表される基が好ましい。
Figure 2022001960
ここで、L及びLは、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、又は、これらを組み合わせた基(例えば、アルキル基とアリール基とを組み合わせた基)を表す。
Mは、単結合又は2価の連結基を表す。
Qは、ヘテロ原子を含んでいてもよいアルキル基、ヘテロ原子を含んでいてもよいシクロアルキル基、ヘテロ原子を含んでいてもよいアリール基、アミノ基、アンモニウム基、メルカプト基、シアノ基、アルデヒド基、又は、これらを組み合わせた基(例えば、アルキル基とシクロアルキル基とを組み合わせた基)を表す。
アルキル基及びシクロアルキル基は、例えば、メチレン基の1つが、酸素原子等のヘテロ原子、又は、カルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
なお、L及びLのうち一方は水素原子であり、他方はアルキル基、シクロアルキル基、アリール基、又は、アルキレン基とアリール基とを組み合わせた基であることが好ましい。
Q、M、及び、Lの少なくとも2つが結合して環(好ましくは、5員若しくは6員環)を形成してもよい。
パターンの微細化の点では、Lが2級又は3級アルキル基であることが好ましく、3級アルキル基であることがより好ましい。2級アルキル基としては、イソプロピル基、シクロヘキシル基又はノルボルニル基が挙げられ、3級アルキル基としては、tert−ブチル基又はアダマンタン基を挙げることができる。これらの態様では、Tg(ガラス転移温度)や活性化エネルギーが高くなるため、膜強度の担保に加え、かぶりの抑制ができる。
式(Y4)中、Arは、芳香環基を表す。Rnは、アルキル基、シクロアルキル基又はアリール基を表す。RnとArとは互いに結合して非芳香族環を形成してもよい。Arはより好ましくはアリール基である。
酸の作用により脱離する脱離基で極性基が保護された構造を有する繰り返し単位としては、式(A)で表される繰り返し単位が好ましい。
Figure 2022001960
は、フッ素原子又はヨウ素原子を有していてもよい2価の連結基を表し、Rは水素原子、フッ素原子、ヨウ素原子、又は、フッ素原子若しくはヨウ素原子を有していてもよいアルキル基を表し、Rは酸の作用によって脱離し、フッ素原子又はヨウ素原子を有していてもよい脱離基を表す。ただし、L、R、及び、Rのうち少なくとも1つは、フッ素原子又はヨウ素原子を有する。
は、フッ素原子又はヨウ素原子を有していてもよい2価の連結基を表す。フッ素原子又はヨウ素原子を有していてもよい2価の連結基としては、−CO−、−O−、−S―、−SO−、―SO−、フッ素原子又はヨウ素原子を有していてもよい炭化水素基(例えば、アルキレン基、シクロアルキレン基、アルケニレン基、アリーレン基等)、及び、これらの複数が連結した連結基等が挙げられる。中でも、本発明の効果がより優れる点で、Lとしては、−CO−、−アリーレン基−フッ素原子又はヨウ素原子を有するアルキレン基−が好ましい。
アリーレン基としては、フェニレン基が好ましい。
アルキレン基は、直鎖状であっても、分岐鎖状であってもよい。アルキレン基の炭素数は特に制限されないが、1〜10が好ましく、1〜3がより好ましい。
フッ素原子又はヨウ素原子を有するアルキレン基に含まれるフッ素原子及びヨウ素原子の合計数は特に制限されないが、本発明の効果がより優れる点で、2以上が好ましく、2〜10がより好ましく、3〜6が更に好ましい。
は、水素原子、フッ素原子、ヨウ素原子、又は、フッ素原子若しくはヨウ素原子が有していてもよいアルキル基を表す。
アルキル基は、直鎖状であっても、分岐鎖状であってもよい。アルキル基の炭素数は特に制限されないが、1〜10が好ましく、1〜3がより好ましい。
フッ素原子又はヨウ素原子を有するアルキル基に含まれるフッ素原子及びヨウ素原子の合計数は特に制限されないが、本発明の効果がより優れる点で、1以上が好ましく、1〜5がより好ましく、1〜3が更に好ましい。
は、酸の作用によって脱離し、フッ素原子又はヨウ素原子を有していてもよい脱離基を表す。
中でも、脱離基としては、式(Z1)〜(Z4)で表される基が挙げられる。
式(Z1):−C(Rx11)(Rx12)(Rx13
式(Z2):−C(=O)OC(Rx11)(Rx12)(Rx13
式(Z3):−C(R136)(R137)(OR138
式(Z4):−C(Rn)(H)(Ar
式(Z1)、(Z2)中、Rx11〜Rx13は、各々独立に、フッ素原子若しくはヨウ素原子を有していてもよいアルキル基(直鎖状若しくは分岐鎖状)、又は、フッ素原子若しくはヨウ素原子を有していてもよいシクロアルキル基(単環若しくは多環)を表す。なお、Rx11〜Rx13の全てがアルキル基(直鎖状若しくは分岐鎖状)である場合、Rx11〜Rx13のうち少なくとも2つはメチル基であることが好ましい。
Rx11〜Rx13は、フッ素原子又はヨウ素原子を有していてもよい点以外は、上述した(Y1)、(Y2)中のRx〜Rxと同じであり、アルキル基及びシクロアルキル基の定義及び好適範囲と同じである。
式(Z3)中、R136〜R138は、各々独立に、水素原子、又は、フッ素原子若しくはヨウ素原子を有していてもよい1価の有機基を表す。R137とR138とは、互いに結合して環を形成してもよい。フッ素原子又はヨウ素原子を有していてもよい1価の有機基としては、フッ素原子又はヨウ素原子を有していてもよいアルキル基、フッ素原子又はヨウ素原子を有していてもよいシクロアルキル基、フッ素原子又はヨウ素原子を有していてもよいアリール基、フッ素原子又はヨウ素原子を有していてもよいアラルキル基、及び、これらを組み合わせた基(例えば、アルキル基とシクロアルキル基とを組み合わせた基)が挙げられる。
なお、上記アルキル基、シクロアルキル基、アリール基、及び、アラルキル基には、フッ素原子及びヨウ素原子以外に、酸素原子等のヘテロ原子が含まれていてもよい。つまり、上記アルキル基、シクロアルキル基、アリール基、及び、アラルキル基は、例えば、メチレン基の1つが、酸素原子等のヘテロ原子、又は、カルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
式(Z3)としては、下記式(Z3−1)で表される基が好ましい。
Figure 2022001960
ここで、L11及びL12は、各々独立に、水素原子;フッ素原子、ヨウ素原子及び酸素原子からなる群から選択されるヘテロ原子を有していてもよいアルキル基;フッ素原子、ヨウ素原子及び酸素原子からなる群から選択されるヘテロ原子を有していてもよいシクロアルキル基;フッ素原子、ヨウ素原子及び酸素原子からなる群から選択されるヘテロ原子を有していてもよいアリール基;又は、これらを組み合わせた基(例えば、フッ素原子、ヨウ素原子及び酸素原子からなる群から選択されるヘテロ原子を有していてもよい、アルキル基とシクロアルキル基とを組み合わせた基)を表す。
は、単結合又は2価の連結基を表す。
は、フッ素原子、ヨウ素原子及び酸素原子からなる群から選択されるヘテロ原子を有していてもよいアルキル基;フッ素原子、ヨウ素原子及び酸素原子からなる群から選択されるヘテロ原子を有していてもよいシクロアルキル基;フッ素原子、ヨウ素原子及び酸素原子からなる群から選択されるアリール基;アミノ基;アンモニウム基;メルカプト基;シアノ基;アルデヒド基;又は、これらを組み合わせた基(例えば、フッ素原子、ヨウ素原子及び酸素原子からなる群から選択されるヘテロ原子を有していてもよい、アルキル基とシクロアルキル基とを組み合わせた基)を表す。
式(Y4)中、Arは、フッ素原子又はヨウ素原子を有していてもよい芳香環基を表す。Rnは、フッ素原子若しくはヨウ素原子を有していてもよいアルキル基、フッ素原子若しくはヨウ素原子を有していてもよいシクロアルキル基、又は、フッ素原子若しくはヨウ素原子を有していてもよいアリール基を表す。RnとArとは互いに結合して非芳香族環を形成してもよい。
酸の作用により脱離する脱離基で極性基が保護された構造を有する繰り返し単位としては、一般式(AI)で表される繰り返し単位も好ましい。
Figure 2022001960
一般式(AI)において、
Xaは、水素原子、又は、置換基を有していてもよいアルキル基を表す。
Tは、単結合、又は、2価の連結基を表す。
Rx〜Rxは、それぞれ独立に、アルキル基(直鎖状、又は、分岐鎖状)、又は、シクロアルキル基(単環、又は、多環)を表す。ただし、Rx〜Rxの全てがアルキル基(直鎖状、又は、分岐鎖状)である場合、Rx〜Rxのうち少なくとも2つはメチル基であることが好ましい。
Rx〜Rxの2つが結合して、シクロアルキル基(単環若しくは多環)を形成してもよい。
Xaにより表される、置換基を有していてもよいアルキル基としては、例えば、メチル基又は−CH−R11で表される基が挙げられる。R11は、ハロゲン原子(フッ素原子等)、水酸基又は1価の有機基を表し、例えば、炭素数5以下のアルキル基、及び、炭素数5以下のアシル基が挙げられ、炭素数3以下のアルキル基が好ましく、メチル基がより好ましい。Xaとしては、水素原子、メチル基、トリフルオロメチル基、又は、ヒドロキシメチル基が好ましい。
Tの2価の連結基としては、アルキレン基、芳香環基、−COO−Rt−基、及び、−O−Rt−基等が挙げられる。式中、Rtは、アルキレン基、又は、シクロアルキレン基を表す。
Tは、単結合又は−COO−Rt−基が好ましい。Tが−COO−Rt−基を表す場合、Rtは、炭素数1〜5のアルキレン基が好ましく、−CH−基、−(CH−基、又は、−(CH−基がより好ましい。
Rx〜Rxのアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、及び、t−ブチル基等の炭素数1〜4のアルキル基が好ましい。
Rx〜Rxのシクロアルキル基としては、シクロペンチル基、及び、シクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の多環のシクロアルキル基が好ましい。
Rx〜Rxの2つが結合して形成されるシクロアルキル基としては、シクロペンチル基、及び、シクロヘキシル基等の単環のシクロアルキル基が好ましく、その他にも、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の多環のシクロアルキル基が好ましい。中でも、炭素数5〜6の単環のシクロアルキル基が好ましい。
Rx〜Rxの2つが結合して形成されるシクロアルキル基は、例えば、環を構成するメチレン基の1つが、酸素原子等のヘテロ原子、又は、カルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
一般式(AI)で表される繰り返し単位は、例えば、Rxがメチル基又はエチル基であり、RxとRxとが結合して上述のシクロアルキル基を形成している態様が好ましい。
上記各基が置換基を有する場合、置換基としては、例えば、アルキル基(炭素数1〜4)、ハロゲン原子、水酸基、アルコキシ基(炭素数1〜4)、カルボキシル基、及び、アルコキシカルボニル基(炭素数2〜6)等が挙げられる。置換基中の炭素数は、8以下が好ましい。
一般式(AI)で表される繰り返し単位としては、好ましくは、酸分解性(メタ)アクリル酸3級アルキルエステル系繰り返し単位(Xaが水素原子又はメチル基を表し、かつ、Tが単結合を表す繰り返し単位)である。
酸の作用により脱離する脱離基で極性基が保護された構造を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対し、15〜80モル%が好ましく、20〜70モル%がより好ましく、25〜60モル%が更に好ましい。
(酸基を有する繰り返し単位)
樹脂(A)は、酸基を有する繰り返し単位を有していてもよい。
酸基としては、上述したpKaが13以下の酸基が好ましい。
酸基を有する繰り返し単位は、フッ素原子又はヨウ素原子を有していていてもよい。
酸基を有する繰り返し単位としては、式(B)で表される繰り返し単位が好ましい。
Figure 2022001960
は、水素原子、又は、フッ素原子若しくはヨウ素原子を有していてもよい1価の有機基を表す。
フッ素原子又はヨウ素原子を有していてもよい1価の有機基としては、−L−Rで表される基が好ましい。Lは、単結合、又は、エステル基を表す。Rは、フッ素原子若しくはヨウ素原子を有していてもよいアルキル基、フッ素原子若しくはヨウ素原子を有していてもよいシクロアルキル基、フッ素原子若しくはヨウ素原子を有していてもよいアリール基、又は、これらを組み合わせた基が挙げられる。
及びRは、各々独立に、水素原子、フッ素原子、ヨウ素原子、又は、フッ素原子若しくはヨウ素原子を有していてもよいアルキル基を表す。
は、単結合、又は、エステル基を表す。
は、(n+m+1)価の芳香族炭化水素環基、又は、(n+m+1)価の脂環式炭化水素環基を表す。芳香族炭化水素環基としては、ベンゼン環基、及び、ナフタレン環基が挙げられる。脂環式炭化水素環基としては、単環であっても、多環であってもよく、例えば、シクロアルキル環基が挙げられる。
は、水酸基、又は、フッ素化アルコール基(好ましくは、ヘキサフルオロイソプロパノール基)を表す。なお、Rが水酸基の場合、Lは(n+m+1)価の芳香族炭化水素環基であることが好ましい。
は、ハロゲン原子を表す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、又は、ヨウ素原子が挙げられる。
mは、1以上の整数を表す。mは、1〜3の整数が好ましく、1〜2の整数が好ましい。
nは、0又は1以上の整数を表す。nは、1〜4の整数が好ましい。
なお、(n+m+1)は、1〜5の整数が好ましい。
酸基を有する繰り返し単位としては、下記一般式(I)で表される繰り返し単位も好ましい。
Figure 2022001960
一般式(I)中、
41、R42及びR43は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基又はアルコキシカルボニル基を表す。但し、R42はArと結合して環を形成していてもよく、その場合のR42は単結合又はアルキレン基を表す。
は、単結合、−COO−、又は−CONR64−を表し、R64は、水素原子又はアルキル基を表す。
は、単結合又はアルキレン基を表す。
Arは、(n+1)価の芳香環基を表し、R42と結合して環を形成する場合には(n+2)価の芳香環基を表す。
nは、1〜5の整数を表す。
一般式(I)におけるR41、R42、及び、R43のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、ヘキシル基、2−エチルヘキシル基、オクチル基、及び、ドデシル基等の炭素数20以下のアルキル基が好ましく、炭素数8以下のアルキル基がより好ましく、炭素数3以下のアルキル基が更に好ましい。
一般式(I)におけるR41、R42、及び、R43のシクロアルキル基としては、単環型でも、多環型でもよい。なかでも、シクロプロピル基、シクロペンチル基、及び、シクロヘキシル基等の炭素数3〜8個で単環型のシクロアルキル基が好ましい。
一般式(I)におけるR41、R42、及び、R43のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及び、ヨウ素原子が挙げられ、フッ素原子が好ましい。
一般式(I)におけるR41、R42、及び、R43のアルコキシカルボニル基に含まれるアルキル基としては、上記R41、R42、R43におけるアルキル基と同様のものが好ましい。
上記各基における好ましい置換基としては、例えば、アルキル基、シクロアルキル基、アリール基、アミノ基、アミド基、ウレイド基、ウレタン基、水酸基、カルボキシル基、ハロゲン原子、アルコキシ基、チオエーテル基、アシル基、アシロキシ基、アルコキシカルボニル基、シアノ基、及び、ニトロ基が挙げられる。置換基の炭素数は8以下が好ましい。
Arは、(n+1)価の芳香環基を表す。nが1である場合における2価の芳香環基は、置換基を有していてもよく、例えば、フェニレン基、トリレン基、ナフチレン基、及び、アントラセニレン基等の炭素数6〜18のアリーレン基、又は、チオフェン環、フラン環、ピロール環、ベンゾチオフェン環、ベンゾフラン環、ベンゾピロール環、トリアジン環、イミダゾール環、ベンゾイミダゾール環、トリアゾール環、チアジアゾール環、及び、チアゾール環等のヘテロ環を含む芳香環基が好ましい。
nが2以上の整数である場合における(n+1)価の芳香環基の具体例としては、2価の芳香環基の上記した具体例から、(n−1)個の任意の水素原子を除してなる基が挙げられる。
(n+1)価の芳香環基は、更に置換基を有していてもよい。
上述したアルキル基、シクロアルキル基、アルコキシカルボニル基、アルキレン基、及び、(n+1)価の芳香環基が有し得る置換基としては、例えば、一般式(I)におけるR41、R42、及び、R43で挙げたアルキル基、メトキシ基、エトキシ基、ヒドロキシエトキシ基、プロポキシ基、ヒドロキシプロポキシ基、及び、ブトキシ基等のアルコキシ基;フェニル基等のアリール基;等が挙げられる。
により表わされる−CONR64−(R64は、水素原子又はアルキル基を表す)におけるR64のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、ヘキシル基、2−エチルヘキシル基、オクチル基、及び、ドデシル基等の炭素数20以下のアルキル基が挙げられ、炭素数8以下のアルキル基が好ましい。
としては、単結合、−COO−、又は、−CONH−が好ましく、単結合、又は、−COO−がより好ましい。
におけるアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、及び、オクチレン基等の炭素数1〜8のアルキレン基が好ましい。
Arとしては、炭素数6〜18の芳香環基が好ましく、ベンゼン環基、ナフタレン環基、及び、ビフェニレン環基がより好ましい。
一般式(I)で表される繰り返し単位は、ヒドロキシスチレン構造を備えていることが好ましい。即ち、Arは、ベンゼン環基であることが好ましい。
一般式(I)で表される繰り返し単位としては、下記一般式(1)で表される繰り返し単位が好ましい。
Figure 2022001960
一般式(1)中、
Aは水素原子、アルキル基、シクロアルキル基、ハロゲン原子、又はシアノ基を表す。
Rは、ハロゲン原子、アルキル基、シクロアルキル基、アリール基、アルケニル基、アラルキル基、アルコキシ基、アルキルカルボニルオキシ基、アルキルスルホニルオキシ基、アルキルオキシカルボニル基又はアリールオキシカルボニル基を表し、複数個ある場合には同じであっても異なっていてもよい。複数のRを有する場合には、互いに共同して環を形成していてもよい。Rとしては水素原子が好ましい。
aは1〜3の整数を表す。
bは0〜(3−a)の整数を表す。
以下、一般式(I)で表される繰り返し単位の具体例を示すが、本発明は、これに限定されるものではない。式中、aは1又は2を表す。
Figure 2022001960
Figure 2022001960
Figure 2022001960
なお、上記繰り返し単位のなかでも、以下に具体的に記載する繰り返し単位が好ましい。式中、Rは水素原子又はメチル基を表し、aは2又は3を表す。
Figure 2022001960
酸基を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対し、10〜70モル%が好ましく、15〜65モル%がより好ましく、20〜60モル%が更に好ましい。
(フッ素原子又はヨウ素原子を有する繰り返し単位)
樹脂(A)は、上述した(酸の作用により脱離する脱離基で極性基が保護された構造を有する繰り返し単位)及び(酸基を有する繰り返し単位)とは別に、フッ素原子又はヨウ素原子を有する繰り返し単位を有していてもよい。
つまり、フッ素原子又はヨウ素原子を有する繰り返し単位には、酸の作用により脱離する脱離基で極性基が保護された構造、及び、酸基のいずれも含まれない。
フッ素原子又はヨウ素原子を有する繰り返し単位としては、式(C)で表される繰り返し単位が好ましい。
Figure 2022001960
は、単結合、又は、エステル基を表す。
は、水素原子、又は、フッ素原子若しくはヨウ素原子を有していてもよいアルキル基を表す。
10は、水素原子、フッ素原子若しくはヨウ素原子を有していてもよいアルキル基、フッ素原子若しくはヨウ素原子を有していてもよいシクロアルキル基、フッ素原子若しくはヨウ素原子を有していてもよいアリール基、又は、これらを組み合わせた基を表す。
フッ素原子又はヨウ素原子を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対し、0〜50モル%が好ましく、5〜45モル%がより好ましく、10〜40モル%が更に好ましい。
なお、上述したように、フッ素原子又はヨウ素原子を有する繰り返し単位には、(酸の作用により脱離する脱離基で極性基が保護された構造を有する繰り返し単位)及び(酸基を有する繰り返し単位)は含まれないことから、上記フッ素原子又はヨウ素原子を有する繰り返し単位の含有量も、酸の作用により脱離する脱離基で極性基が保護された構造を有する繰り返し単位)及び(酸基を有する繰り返し単位)を除いたフッ素原子又はヨウ素原子を有する繰り返し単位の含有量を意図する。
上述したように、酸の作用により脱離する脱離基で極性基が保護された構造を有する繰り返し単位はフッ素原子又はヨウ素原子を含んでいてもよく、酸基を有する繰り返し単位もフッ素原子又はヨウ素原子を含んでいてもよい。
樹脂(A)の繰り返し単位のうち、フッ素原子及びヨウ素原子の少なくとも一方を含む繰り返し単位の合計含有量は、樹脂(A)の全繰り返し単位に対して、20〜100モル%が好ましく、30〜100モル%がより好ましく、40〜100モル%が更に好ましい。
なお、フッ素原子及びヨウ素原子の少なくとも一方を含む繰り返し単位としては、例えば、フッ素原子又はヨウ素原子を有し、かつ、酸の作用により脱離する脱離基で極性基が保護された構造を有する繰り返し単位、フッ素原子又はヨウ素原子を有し、かつ、酸基を有する繰り返し単位、及び、フッ素原子又はヨウ素原子を有する繰り返し単位が挙げられる。
(ラクトン基を有する繰り返し単位)
樹脂(A)は、更にラクトン基を有する繰り返し単位を有していてもよい。
ラクトン基としては、ラクトン構造を有していればいずれの基でも用いることができるが、好ましくは5〜7員環ラクトン構造を有する基であり、5〜7員環ラクトン構造にビシクロ構造、又は、スピロ構造を形成する形で他の環構造が縮環しているものが好ましい。下記一般式(LC1−1)〜(LC1−17)のいずれかで表されるラクトン構造を有する基を有する繰り返し単位を有することがより好ましい。また、ラクトン構造を有する基が主鎖に直接結合していてもよい。ラクトン構造としては、一般式(LC1−1)、一般式(LC1−4)、一般式(LC1−5)、一般式(LC1−6)、一般式(LC1−13)、及び、一般式(LC1−14)で表される基が好ましい。
Figure 2022001960
ラクトン構造部分は、置換基(Rb)を有していてもよい。好ましい置換基(Rb)としては、炭素数1〜8のアルキル基、炭素数4〜7のシクロアルキル基、炭素数1〜8のアルコキシ基、炭素数1〜8のアルコキシカルボニル基、カルボキシル基、ハロゲン原子、水酸基、シアノ基、及び、酸分解性基等が挙げられる。n2は、0〜4の整数を表す。n2が2以上の時、複数存在するRbは、異なっていてもよく、また、複数存在するRb同士が結合して環を形成してもよい。
一般式(LC1−1)〜(LC1−17)のいずれかで表されるラクトン構造を有する基を有する繰り返し単位としては、例えば、下記一般式(AI)で表される繰り返し単位等が挙げられる。
Figure 2022001960
一般式(AI)中、Rbは、水素原子、ハロゲン原子、又は、炭素数1〜4のアルキル基を表す。
Rbのアルキル基が有していてもよい好ましい置換基としては、水酸基、及び、ハロゲン原子が挙げられる。
Rbのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及び、ヨウ素原子が挙げられる。Rbは、水素原子又はメチル基が好ましい。
Abは、単結合、アルキレン基、単環又は多環の脂環炭化水素構造を有する2価の連結基、エーテル基、エステル基、カルボニル基、カルボキシル基、又は、これらを組み合わせた2価の基を表す。なかでも、単結合、又は、−Ab−CO−で表される連結基が好ましい。Abは、直鎖状若しくは分岐鎖状のアルキレン基、又は、単環若しくは多環のシクロアルキレン基であり、メチレン基、エチレン基、シクロヘキシレン基、アダマンチレン基、又は、ノルボルニレン基が好ましい。
Vは、一般式(LC1−1)〜(LC1−17)のうちのいずれかで示される基を表す。
ラクトン構造を有する基を有する繰り返し単位は、通常、光学異性体が存在するが、いずれの光学異性体を用いてもよい。また、1種の光学異性体を単独で用いても、複数の光学異性体を混合して用いてもよい。1種の光学異性体を主に用いる場合、その光学純度(ee)は90以上が好ましく、95以上がより好ましい。
ラクトン構造を有する基を有する繰り返し単位の具体例を以下に挙げるが、本発明はこれらに限定されない。
Figure 2022001960
ラクトン基を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対し、1〜30モル%が好ましく、5〜25モル%がより好ましく、5〜20モル%が更に好ましい。
(光酸発生基を有する繰り返し単位)
樹脂(A)は、上記以外の繰り返し単位として、活性光線又は放射線の照射により酸を発生する基(以下「光酸発生基」とも言う)を有する繰り返し単位を有していてもよい。
この場合、この光酸発生基を有する繰り返し単位が、後述する活性光線又は放射線の照射により酸を発生する化合物(「光酸発生剤」とも言う)にあたると考えることができる。
このような繰り返し単位としては、例えば、下記一般式(4)で表される繰り返し単位が挙げられる。
Figure 2022001960
41は、水素原子又はメチル基を表す。L41は、単結合、又は、2価の連結基を表す。L42は、2価の連結基を表す。R40は、活性光線又は放射線の照射により分解して側鎖に酸を発生させる構造部位を表す。
以下に、一般式(4)で表される繰り返し単位の具体例を示すが、本発明はこれに限定されるものではない。
Figure 2022001960
そのほか、一般式(4)で表される繰り返し単位としては、例えば、特開2014−041327号公報の段落<0094>〜<0105>に記載された繰り返し単位が挙げられる。
樹脂(A)が光酸発生基を有する繰り返し単位を有する場合、光酸発生基を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対して、1〜40モル%が好ましく、5〜35モル%がより好ましく、5〜30モル%が更に好ましい。
(一般式(V−1)又は下記一般式(V−2)で表される繰り返し単位)
樹脂(A)は、下記一般式(V−1)、又は、下記一般式(V−2)で表される繰り返し単位を有していてもよい。
Figure 2022001960
式中、
及びRは、それぞれ独立に、水素原子、水酸基、炭素数1〜10の直鎖状、分岐鎖状又は環状のアルキル基、アルコキシ基又はアシロキシ基、シアノ基、ニトロ基、アミノ基、ハロゲン原子、エステル基(−OCOR又は−COOR:Rは炭素数1〜6のアルキル基又はフッ素化アルキル基)、又は、カルボキシル基を表す。
は、0〜6の整数を表す。
は、0〜4の整数を表す。
は、メチレン基、酸素原子、又は、硫黄原子である。
一般式(V−1)又は(V−2)で表される繰り返し単位の具体例を下記に示すが、これらに限定されない。
Figure 2022001960
樹脂(A)は、常法に従って(例えばラジカル重合)合成することができる。
GPC法によりポリスチレン換算値として、樹脂(A)の重量平均分子量は、1,000〜200,000が好ましく、3,000〜20,000がより好ましく、5,000〜15,000が更に好ましい。樹脂(A)の重量平均分子量を、1,000〜200,000とすることにより、耐熱性及びドライエッチング耐性の劣化を防ぐことができ、更に、現像性の劣化、及び、粘度が高くなって製膜性が劣化することを防ぐことができる。
樹脂(A)の分散度(分子量分布)は、通常1〜5であり、1〜3が好ましく、1.2〜3.0がより好ましく、1.2〜2.0が更に好ましい。分散度が小さいものほど、解像度、及び、レジスト形状が優れ、更に、レジストパターンの側壁がスムーズであり、ラフネス性に優れる。
樹脂(A)は、発生酸の過剰な拡散または現像時のパターン崩壊を抑制できる観点から、ガラス転移温度(Tg)が高い方が好ましい。Tgは、90℃より大きいことが好ましく、100℃より大きいことがより好ましく、110℃より大きいことが更に好ましく、125℃より大きいことが特に好ましい。なお、過度な高Tg化は現像液への溶解速度低下を招くため、Tgは400℃以下が好ましく、350℃以下がより好ましい。
なお、本明細書において、樹脂(A)などのポリマーのガラス転移温度(Tg)は、以下の方法で算出する。まず、ポリマー中に含まれる各繰り返し単位のみからなるホモポリマーのTgを、Bicerano法によりそれぞれ算出する。以後、算出されたTgを、「繰り返し単位のTg」という。次に、ポリマー中の全繰り返し単位に対する、各繰り返し単位の質量割合(%)を算出する。次に、Foxの式(Materials Letters 62(2008)3152等に記載)を用いて各質量割合におけるTgを算出して、それらを総和して、ポリマーのTg(℃)とする。
Bicerano法はPrediction of polymer properties, Marcel Dekker Inc, New York(1993)等に記載されている。またBicerano法によるTgの算出は、ポリマーの物性概算ソフトウェアMDL Polymer(MDL Information Systems, Inc.)を用いて行うことができる。
樹脂(A)のTgを90℃より大きくするには、樹脂(A)の主鎖の運動性を低下させることが好ましい。樹脂(A)の主鎖の運動性を低下させる方法は、以下の(a)〜(e)の方法が挙げられる。
(a)主鎖への嵩高い置換基の導入
(b)主鎖への複数の置換基の導入
(c)主鎖近傍への樹脂(A)間の相互作用を誘発する置換基の導入
(d)環状構造での主鎖形成
(e)主鎖への環状構造の連結
なお、樹脂(A)は、ホモポリマーのTgが130℃以上を示す繰り返し単位を有することが好ましい。
なお、ホモポリマーのTgが130℃以上を示す繰り返し単位の種類は特に制限されず、Bicerano法により算出されるホモポリマーのTgが130℃以上である繰り返し単位であればよい。なお、後述する式(A)〜式(E)で表される繰り返し単位中の官能基の種類によっては、ホモポリマーのTgが130℃以上を示す繰り返し単位に該当する。
上記(a)の具体的な達成手段の一例としては、樹脂(A)に式(A)で表される繰り返し単位を導入する方法が挙げられる。
Figure 2022001960
式(A)、Rは、多環構造を有する基を表す。Rは、水素原子、メチル基、またはエチル基を表す。多環構造を有する基とは、複数の環構造を有する基であり、複数の環構造は縮合していても、縮合していなくてもよい。
式(A)で表される繰り返し単位の具体例としては、下記繰り返し単位が挙げられる。
Figure 2022001960
Figure 2022001960
上記式中、Rは、水素原子、メチル基、またはエチル基を表す。
Raは、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルケニル基、水酸基、アルコキシ基、アシロキシ基、シアノ基、ニトロ基、アミノ基、ハロゲン原子、エステル基(−OCOR’’’又は−COOR’’’:R’’’は炭素数1〜20のアルキル基又はフッ素化アルキル基)、又は、カルボキシル基を表す。なお、上記アルキル基、上記シクロアルキル基、上記アリール基、上記アラルキル基、及び、上記アルケニル基は、それぞれ、置換機を有してもよい。また、Raで表される基中の炭素原子に結合している水素原子は、フッ素原子またはヨウ素原子で置換されていてもよい。
また、R’及びR’’は、それぞれ独立に、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルケニル基、水酸基、アルコキシ基、アシロキシ基、シアノ基、ニトロ基、アミノ基、ハロゲン原子、エステル基(−OCOR’’’又は−COOR’’’:R’’’は炭素数1〜20のアルキル基又はフッ素化アルキル基)、又は、カルボキシル基を表す。なお、上記アルキル基、上記シクロアルキル基、上記アリール基、上記アラルキル基、及び、上記アルケニル基は、それぞれ、置換機を有してもよい。また、R’及びR’’で表される基中の炭素原子に結合している水素原子は、フッ素原子またはヨウ素原子で置換されていてもよい。
Lは、単結合または2価の連結基を表す。2価の連結基としては、例えば、―COO−、−CO−、−O−、−S―、−SO−、−SO−、アルキレン基、シクロアルキレン基、アルケニレン基、及び、これらの複数が連結した連結基等が挙げられる。
m及びnは、それぞれ独立に、0以上の整数を表す。m及びnの上限は特に制限されないが、2以下の場合が多く、1以下の場合がより多い。
上記(b)の具体的な達成手段の一例としては、樹脂(A)に式(B)で表される繰り返し単位を導入する方法が挙げられる。
Figure 2022001960
式(B)中、Rb1〜Rb4は、それぞれ独立に、水素原子または有機基を表し、Rb1〜Rb4のうち少なくとも2つ以上が有機基を表す。
また、有機基の少なくとも1つが、繰り返し単位中の主鎖に直接環構造が連結している基である場合、他の有機基の種類は特に制限されない。
また、有機基のいずれも繰り返し単位中の主鎖に直接環構造が連結している基ではない場合、有機基の少なくとも2つ以上は、水素原子を除く構成原子の数が3つ以上である置換基である。
式(B)で表される繰り返し単位の具体例としては、下記繰り返し単位が挙げられる。
Figure 2022001960
上記式中、Rは、それぞれ独立に、水素原子又は有機基を表す。有機基としては、置換機を有してもよい、アルキル基、シクロアルキル基、アリール基、アラルキル基、及び、アルケニル基、等の有機基が挙げられる。
R’は、それぞれ独立に、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルケニル基、水酸基、アルコキシ基、アシロキシ基、シアノ基、ニトロ基、アミノ基、ハロゲン原子、エステル基(−OCOR’’又は−COOR’’:R’’は炭素数1〜20のアルキル基又はフッ素化アルキル基)、又は、カルボキシル基を表す。なお、上記アルキル基、上記シクロアルキル基、上記アリール基、上記アラルキル基、及び、上記アルケニル基は、それぞれ、置換機を有してもよい。また、R’で表される基中の炭素原子に結合している水素原子は、フッ素原子またはヨウ素原子で置換されていてもよい。
mは0以上の整数を表す。mの上限は特に制限されないが、2以下の場合が多く、1以下の場合がより多い。
上記(c)の具体的な達成手段の一例としては、樹脂(A)に式(C)で表される繰り返し単位を導入する方法が挙げられる。
Figure 2022001960
式(C)中、Rc1〜Rc4は、それぞれ独立に、水素原子または有機基を表し、Rc1〜Rc4のうち少なくとも1つが、主鎖炭素から原子数3以内に水素結合性の水素原子を有する基である。なかでも、樹脂(A)の主鎖間の相互作用を誘発するうえで、原子数2以内(より主鎖近傍側)に水素結合性の水素原子を有することが好ましい。
式(C)で表される繰り返し単位の具体例としては、下記繰り返し単位が挙げられる。
Figure 2022001960
上記式中、Rは有機基を表す。有機基としては、置換機を有してもよい、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルケニル基、及び、エステル基(−OCOR又は−COOR:Rは炭素数1〜20のアルキル基又はフッ素化アルキル基)等が挙げられる。
R’は、水素原子又は有機基を表す。有機基としては、アルキル基、シクロアルキル基、アリール基、アラルキル基、及び、アルケニル基、等の有機基が挙げられる。なお、有機基中の水素原子は、フッ素原子またはヨウ素原子で置換されていてもよい。
上記(d)の具体的な達成手段の一例としては、樹脂(A)に式(D)で表される繰り返し単位を導入する方法が挙げられる。
Figure 2022001960
式(D)中、「cylic」は、環状構造で主鎖を形成している基を表す。環の構成原子数は特に制限されない。
式(D)で表される繰り返し単位の具体例としては、下記繰り返し単位が挙げられる。
Figure 2022001960
上記式中、Rは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルケニル基、水酸基、アルコキシ基、アシロキシ基、シアノ基、ニトロ基、アミノ基、ハロゲン原子、エステル基(−OCOR’’又は−COOR’’:R’’は炭素数1〜20のアルキル基又はフッ素化アルキル基)、又は、カルボキシル基を表す。なお、上記アルキル基、上記シクロアルキル基、上記アリール基、上記アラルキル基、及び、上記アルケニル基は、それぞれ、置換機を有してもよい。また、Rで表される基中の炭素原子に結合している水素原子は、フッ素原子またはヨウ素原子で置換されていてもよい。
上記式中、R’は、それぞれ独立に、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルケニル基、水酸基、アルコキシ基、アシロキシ基、シアノ基、ニトロ基、アミノ基、ハロゲン原子、エステル基(−OCOR’’又は−COOR’’:R’’は炭素数1〜20のアルキル基又はフッ素化アルキル基)、又は、カルボキシル基を表す。なお、上記アルキル基、上記シクロアルキル基、上記アリール基、上記アラルキル基、及び、上記アルケニル基は、それぞれ、置換機を有してもよい。また、R’で表される基中の炭素原子に結合している水素原子は、フッ素原子またはヨウ素原子で置換されていてもよい。
mは0以上の整数を表す。mの上限は特に制限されないが、2以下の場合が多く、1以下の場合がより多い。
上記(e)の具体的な達成手段の一例としては、樹脂(A)に式(E)で表される繰り返し単位を導入する方法が挙げられる。
Figure 2022001960
式(E)中、Reは、それぞれ独立に、水素原子または有機基を表す。有機基としては、置換機を有してもよい、アルキル基、シクロアルキル基、アリール基、アラルキル基、及び、アルケニル基等が挙げられる。
「cylic」は、主鎖の炭素原子を含む環状基である。環状基に含まれる原子数は特に制限されない。
式(E)で表される繰り返し単位の具体例としては、下記繰り返し単位が挙げられる。
Figure 2022001960
上記式中、Rは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、及び、アルケニル基、水酸基、アルコキシ基、アシロキシ基、シアノ基、ニトロ基、アミノ基、ハロゲン原子、エステル基(−OCOR’’又は−COOR’’:R’’は炭素数1〜20のアルキル基又はフッ素化アルキル基)、又は、カルボキシル基を表す。なお、上記アルキル基、上記シクロアルキル基、上記アリール基、上記アラルキル基、及び、上記アルケニル基は、それぞれ、置換機を有してもよい。また、Rで表される基中の炭素原子に結合している水素原子は、フッ素原子またはヨウ素原子で置換されていてもよい。
R’は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、及び、アルケニル基、水酸基、アルコキシ基、アシロキシ基、シアノ基、ニトロ基、アミノ基、ハロゲン原子、エステル基(−OCOR’’又は−COOR’’:R’’は炭素数1〜20のアルキル基又はフッ素化アルキル基)、又は、カルボキシル基を表す。なお、上記アルキル基、上記シクロアルキル基、上記アリール基、上記アラルキル基、及び、上記アルケニル基は、それぞれ、置換機を有してもよい。また、R’で表される基中の炭素原子に結合している水素原子は、フッ素原子またはヨウ素原子で置換されていてもよい。
mは0以上の整数を表す。mの上限は特に制限されないが、2以下の場合が多く、1以下の場合がより多い。
また、式(E−2)、式(E−4)、式(E−6)、及び、式(E−8)中、2つRは互いに結合して環を形成していてもよい。
レジスト組成物において、樹脂(A)の含有量は、全固形分中、50〜99.9質量%が好ましく、60〜99.0質量%がより好ましい。
また、樹脂(A)は、1種で使用してもよいし、複数併用してもよい。
<(B)光酸発生剤>
レジスト組成物は、光酸発生剤を含んでいてもよい。光酸発生剤は、EUV光の露光により酸を発生する化合物である。
光酸発生剤は、低分子化合物の形態であってもよく、重合体の一部に組み込まれた形態であってもよい。また、低分子化合物の形態と重合体の一部に組み込まれた形態を併用してもよい。
光酸発生剤が、低分子化合物の形態である場合、分子量が3000以下であることが好ましく、2000以下であることがより好ましく、1000以下であることが更に好ましい。
光酸発生剤が、重合体の一部に組み込まれた形態である場合、樹脂(A)の一部に組み込まれてもよく、樹脂(A)とは異なる樹脂に組み込まれてもよい。
本発明において、光酸発生剤が、低分子化合物の形態であることが好ましい。
光酸発生剤としては、公知のものであれば特に限定されないが、EUV光の照射により、有機酸を発生する化合物が好ましく、分子中にフッ素原子又はヨウ素原子を有する光酸発生剤がより好ましい。
上記有機酸として、例えば、スルホン酸(脂肪族スルホン酸、芳香族スルホン酸、及び、カンファースルホン酸等)、カルボン酸(脂肪族カルボン酸、芳香族カルボン酸、及び、アラルキルカルボン酸等)、カルボニルスルホニルイミド酸、ビス(アルキルスルホニル)イミド酸、及び、トリス(アルキルスルホニル)メチド酸等が挙げられる。
光酸発生剤より発生する酸の体積は特に制限されないが、露光で発生した酸の非露光部への拡散を抑制し、解像性を良好にする点から、240Å以上が好ましく、305Å以上がより好ましく、350Å以上が更に好ましく、400Å以上が特に好ましい。なお、感度又は塗布溶剤への溶解性の点から、光酸発生剤より発生する酸の体積は、1500Å以下が好ましく、1000Å以下がより好ましく、700Å以下が更に好ましい。
上記体積の値は、富士通株式会社製の「WinMOPAC」を用いて求める。上記体積の値の計算にあたっては、まず、各例に係る酸の化学構造を入力し、次に、この構造を初期構造としてMM(Molecular Mechanics)3法を用いた分子力場計算により、各酸の最安定立体配座を決定し、その後、これら最安定立体配座についてPM(Parameterized Model number)3法を用いた分子軌道計算を行うことにより、各酸の「accessible volume」を計算できる。
光酸発生剤より発生する酸の構造は特に制限されないが、酸の拡散を抑制し、解像性を良好にする点で、光酸発生剤より発生する酸と樹脂(A)との間の相互作用が強いことが好ましい。この点から、光酸発生剤より発生する酸が有機酸である場合、例えば、スルホン酸基、カルボン酸基、カルボニルスルホニルイミド酸基、ビススルホニルイミド酸基、及び、トリススルホニルメチド酸基等の有機酸基、以外に、更に極性基を有することが好ましい。
極性基としては、例えば、エーテル基、エステル基、アミド基、アシル基、スルホ基、スルホニルオキシ基、スルホンアミド基、チオエーテル基、チオエステル基、ウレア基、カーボネート基、カーバメート基、ヒドロキシル基、及び、メルカプト基が挙げられる。
発生する酸が有する極性基の数は特に制限されず、1個以上であることが好ましく、2個以上であることがより好ましい。ただし、過剰な現像を抑制する観点から、極性基の数は、6個未満であることが好ましく、4個未満であることがより好ましい。
光酸発生剤としては、以下に例示する酸を発生する光酸発生剤が好ましい。なお、例の一部には、体積の計算値を付記している(単位Å)。
Figure 2022001960
Figure 2022001960
Figure 2022001960
なかでも、本発明の効果がより優れる点で、光酸発生剤は、アニオン部及びカチオン部からなる光酸発生剤であることが好ましい。
より具体的には、光酸発生剤は、下記一般式(ZI)、又は、一般式(ZII)で表される化合物が好ましい。
Figure 2022001960
上記一般式(ZI)において、
201、R202及びR203は、それぞれ独立に、有機基を表す。
201、R202及びR203としての有機基の炭素数は、1〜30が好ましく、1〜20がより好ましい。
また、R201〜R203のうち2つが結合して環構造を形成してもよく、環内に酸素原子、硫黄原子、エステル結合、アミド結合、又は、カルボニル基を含んでいてもよい。R201〜R203の内の2つが結合して形成する基としては、アルキレン基(例えば、ブチレン基、又は、ペンチレン基等)を挙げることができる。
は、非求核性アニオン(求核反応を起こす能力が著しく低いアニオン)を表す。
非求核性アニオンとしては、例えば、スルホン酸アニオン(脂肪族スルホン酸アニオン、芳香族スルホン酸アニオン、及び、カンファースルホン酸アニオン等)、カルボン酸アニオン(脂肪族カルボン酸アニオン、芳香族カルボン酸アニオン、及び、アラルキルカルボン酸アニオン等)、スルホニルイミドアニオン、ビス(アルキルスルホニル)イミドアニオン、及び、トリス(アルキルスルホニル)メチドアニオン等が挙げられる。
脂肪族スルホン酸アニオン及び脂肪族カルボン酸アニオンにおける脂肪族部位は、アルキル基であってもシクロアルキル基であってもよく、炭素数1〜30の直鎖状又は分岐鎖状のアルキル基、及び、炭素数3〜30のシクロアルキル基が好ましい。
芳香族スルホン酸アニオン及び芳香族カルボン酸アニオンにおける芳香環基としては、炭素数6〜14のアリール基が好ましく、例えば、フェニル基、トリル基、及び、ナフチル基が挙げられる。
上記で挙げたアルキル基、シクロアルキル基、及び、アリール基が有することができる置換基の具体例としては、ニトロ基、フッ素原子等のハロゲン原子、カルボキシル基、水酸基、アミノ基、シアノ基、アルコキシ基(好ましくは炭素数1〜15)、シクロアルキル基(好ましくは炭素数3〜15)、アリール基(好ましくは炭素数6〜14)、アルコキシカルボニル基(好ましくは炭素数2〜7)、アシル基(好ましくは炭素数2〜12)、アルコキシカルボニルオキシ基(好ましくは炭素数2〜7)、アルキルチオ基(好ましくは炭素数1〜15)、アルキルスルホニル基(好ましくは炭素数1〜15)、アルキルイミノスルホニル基(好ましくは炭素数1〜15)、アリールオキシスルホニル基(好ましくは炭素数6〜20)、アルキルアリールオキシスルホニル基(好ましくは炭素数7〜20)、シクロアルキルアリールオキシスルホニル基(好ましくは炭素数10〜20)、アルキルオキシアルキルオキシ基(好ましくは炭素数5〜20)、及び、シクロアルキルアルキルオキシアルキルオキシ基(好ましくは炭素数8〜20)が挙げられる。
アラルキルカルボン酸アニオンにおけるアラルキル基としては、炭素数7〜12のアラルキル基が好ましく、例えば、ベンジル基、フェネチル基、ナフチルメチル基、ナフチルエチル基、及び、ナフチルブチル基が挙げられる。
スルホニルイミドアニオンとしては、例えば、サッカリンアニオンが挙げられる。
ビス(アルキルスルホニル)イミドアニオン、及び、トリス(アルキルスルホニル)メチドアニオンにおけるアルキル基としては、炭素数1〜5のアルキル基が好ましい。これらのアルキル基の置換基としては、ハロゲン原子、ハロゲン原子で置換されたアルキル基、アルコキシ基、アルキルチオ基、アルキルオキシスルホニル基、アリールオキシスルホニル基、及び、シクロアルキルアリールオキシスルホニル基が挙げられ、フッ素原子又はフッ素原子で置換されたアルキル基が好ましい。
また、ビス(アルキルスルホニル)イミドアニオンにおけるアルキル基は、互いに結合して環構造を形成してもよい。これにより、酸強度が増加する。
その他の非求核性アニオンとしては、例えば、フッ素化燐(例えば、PF )、フッ素化ホウ素(例えば、BF )、及び、フッ素化アンチモン(例えば、SbF )が挙げられる。
非求核性アニオンとしては、スルホン酸の少なくともα位がフッ素原子で置換された脂肪族スルホン酸アニオン、フッ素原子若しくはフッ素原子を有する基で置換された芳香族スルホン酸アニオン、アルキル基がフッ素原子で置換されたビス(アルキルスルホニル)イミドアニオン、又は、アルキル基がフッ素原子で置換されたトリス(アルキルスルホニル)メチドアニオンが好ましい。なかでも、パーフロロ脂肪族スルホン酸アニオン(好ましくは炭素数4〜8)、又は、フッ素原子を有するベンゼンスルホン酸アニオンがより好ましく、ノナフロロブタンスルホン酸アニオン、パーフロロオクタンスルホン酸アニオン、ペンタフロロベンゼンスルホン酸アニオン、又は、3,5−ビス(トリフロロメチル)ベンゼンスルホン酸アニオンが更に好ましい。
酸強度の観点からは、発生酸のpKaが−1以下であることが、感度向上のために好ましい。
また、非求核性アニオンとしては、以下の一般式(AN1)で表されるアニオンも好ましい。
Figure 2022001960
式中、
Xfは、それぞれ独立に、フッ素原子、又は、少なくとも1つのフッ素原子で置換されたアルキル基を表す。
及びRは、それぞれ独立に、水素原子、フッ素原子、又は、アルキル基を表し、複数存在する場合のR及びRは、それぞれ同一でも異なっていてもよい。
Lは、二価の連結基を表し、複数存在する場合のLは同一でも異なっていてもよい。
Aは、環状の有機基を表す。
xは1〜20の整数を表し、yは0〜10の整数を表し、zは0〜10の整数を表す。
一般式(AN1)について、更に詳細に説明する。
Xfのフッ素原子で置換されたアルキル基におけるアルキル基の炭素数は、1〜10が好ましく、1〜4がより好ましい。また、Xfのフッ素原子で置換されたアルキル基としては、パーフルオロアルキル基が好ましい。
Xfとしては、フッ素原子又は炭素数1〜4のパーフルオロアルキル基が好ましい。Xfの具体例としては、フッ素原子、CF、C、C、C、CHCF、CHCHCF、CH、CHCH、CH、CHCH、CH、及び、CHCH等が挙げられ、中でも、フッ素原子、又は、CFが好ましい。特に、双方のXfがフッ素原子であることが好ましい。
及びRのアルキル基は、置換基(好ましくはフッ素原子)を有していてもよく、置換基中の炭素数は1〜4が好ましい。置換基としては、炭素数1〜4のパーフルオロアルキル基が好ましい。R及びRの置換基を有するアルキル基の具体例としては、CF、C、C、C、C11、C13、C15、C17、CHCF、CHCHCF、CH、CHCH、CH、CHCH、CH、及び、CHCH等が挙げられ、中でも、CFが好ましい。
及びRとしては、フッ素原子又はCFが好ましい。
xは1〜10の整数が好ましく、1〜5がより好ましい。
yは0〜4の整数が好ましく、0がより好ましい。
zは0〜5の整数が好ましく、0〜3の整数がより好ましい。
Lの2価の連結基としては特に限定されず、―COO−、−CO−、−O−、−S―、−SO−、−SO−、アルキレン基、シクロアルキレン基、アルケニレン基、及び、これらの複数が連結した連結基等が挙げられ、総炭素数12以下の連結基が好ましい。中でも、―COO−、−OCO−、−CO−、又は、−O−が好ましく、―COO−、又は、−OCO−がより好ましい。
Aの環状の有機基としては、環状構造を有するものであれば特に限定されず、脂環基、芳香環基、及び、複素環基(芳香族性を有するものだけでなく、芳香族性を有さないものも含む)等が挙げられる。
脂環基としては、単環でも多環でもよく、シクロペンチル基、シクロヘキシル基、及び、シクロオクチル基等の単環のシクロアルキル基が好ましく、その他にも、ノルボルニル基、トリシクロデカニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の多環のシクロアルキル基が好ましい。中でも、ノルボルニル基、トリシクロデカニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の炭素数7以上のかさ高い構造を有する脂環基が、露光後加熱工程での膜中拡散性を抑制でき、MEEF(Mask Error Enhancement Factor)向上の観点から好ましい。
芳香環基としては、ベンゼン環、ナフタレン環、フェナンスレン環、及び、アントラセン環等が挙げられる。
複素環基としては、フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、ジベンゾチオフェン環、及び、ピリジン環等由来の基が挙げられる。中でも、フラン環、チオフェン環、及び、ピリジン環由来の基が好ましい。
また、環状の有機基としては、ラクトン構造も挙げられ、具体例としては、前述の一般式(LC1−1)〜(LC1−17)で表されるラクトン構造が挙げられる。
上記環状の有機基は、置換基を有していてもよい。上記置換基としては、アルキル基(直鎖状、分岐鎖状、及び、環状のいずれであってもよく、炭素数1〜12が好ましい)、シクロアルキル基(単環、及び、多環のいずれであってもよく、多環である場合スピロ環であってもよい。炭素数は3〜20が好ましい)、アリール基(炭素数6〜14が好ましい)、水酸基、アルコキシ基、エステル基、アミド基、ウレタン基、ウレイド基、チオエーテル基、スルホンアミド基、及び、スルホン酸エステル基等が挙げられる。なお、環状の有機基を構成する炭素(環形成に寄与する炭素)はカルボニル炭素であってもよい。
201、R202及びR203の有機基としては、アリール基、アルキル基、及び、シクロアルキル基等が挙げられる。
201、R202及びR203のうち、少なくとも1つがアリール基であることが好ましく、三つ全てがアリール基であることがより好ましい。アリール基としては、フェニル基、及び、ナフチル基等の他に、インドール残基、及び、ピロール残基等のヘテロアリール基も可能である。
201〜R203のアルキル基としては、炭素数1〜10の直鎖状又は分岐鎖状アルキル基が好ましく、メチル基、エチル基、n−プロピル基、i−プロピル基、又は、n−ブチル基等がより好ましい。
201〜R203のシクロアルキル基としては、炭素数3〜10のシクロアルキル基が好ましく、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、又は、シクロへプチル基がより好ましい。
これらの基が有してもよい置換基としては、ニトロ基、フッ素原子等のハロゲン原子、カルボキシル基、水酸基、アミノ基、シアノ基、アルコキシ基(好ましくは炭素数1〜1
5)、シクロアルキル基(好ましくは炭素数3〜15)、アリール基(好ましくは炭素数6〜14)、アルコキシカルボニル基(好ましくは炭素数2〜7)、アシル基(好ましくは炭素数2〜12)、及び、アルコキシカルボニルオキシ基(好ましくは炭素数2〜7)等が挙げられる。
一般式(ZII)中、
204〜R205は、それぞれ独立に、アリール基、アルキル基、又は、シクロアルキル基を表す。
204〜R205のアリール基、アルキル基、及び、シクロアルキル基としては、前述の一般式(ZI)におけるR201〜R203のアリール基、アルキル基、及び、シクロアルキル基として説明した基と同様である。
204〜R205のアリール基、アルキル基、及び、シクロアルキル基が有していてもよい置換基としては、前述の化合物(ZI)におけるR201〜R203のアリール基、アルキル基、及び、シクロアルキル基が有していてもよいものが挙げられる。
は、非求核性アニオンを表し、一般式(ZI)に於けるZの非求核性アニオンと同様のものが挙げられる。
光酸発生剤としては、特開2014−41328号公報の段落<0368>〜<0377>、及び、特開2013−228681号公報の段落<0240>〜<0262>(対応する米国特許出願公開第2015/004533号明細書の<0339>)が援用でき、これらの内容は本願明細書に組み込まれる。また、好ましい具体例として以下の化合物が挙げられるが、これらに限定されるものではない。
Figure 2022001960
Figure 2022001960
Figure 2022001960
レジスト組成物中の光酸発生剤の含有量は特に制限されないが、本発明の効果がより優れる点で、組成物の全固形分に対して、5〜50質量%が好ましく、10〜40質量%がより好ましく、10〜35質量%が更に好ましく、10質量%超35質量%未満が特に好ましい。
光酸発生剤は、1種単独で使用してもよいし、2種以上を併用してもよい。光酸発生剤を2種以上併用する場合は、その合計量が上記範囲内であることが好ましい。
<(C)溶剤>
レジスト組成物は、溶剤を含んでいてもよい。
溶剤は、(M1)プロピレングリコールモノアルキルエーテルカルボキシレート、並びに、(M2)プロピレングリコールモノアルキルエーテル、乳酸エステル、酢酸エステル、アルコキシプロピオン酸エステル、鎖状ケトン、環状ケトン、ラクトン、及び、アルキレンカーボネートからなる群より選択される少なくとも1つの少なくとも一方を含んでいることが好ましい。なお、この溶剤は、成分(M1)及び(M2)以外の成分を更に含んでいてもよい。
本発明者らは、このような溶剤と上述した樹脂とを組み合わせて用いると、組成物の塗布性が向上すると共に、現像欠陥数の少ないパターンが形成可能となることを見出している。その理由は必ずしも明らかではないが、これら溶剤は、上述した樹脂の溶解性、沸点及び粘度のバランスが良いため、組成物膜の膜厚のムラ及びスピンコート中の析出物の発生等を抑制できることに起因していると本発明者らは考えている。
成分(M1)としては、プロピレングリコールモノメチルエーテルアセテート(PGMEA:propylene glycol monomethylether acetate)、プロピレングリコールモノメチルエーテルプロピオネート、及び、プロピレングリコールモノエチルエーテルアセテートからなる群より選択される少なくとも1つが好ましく、プロピレングリコールモノメチルエーテルアセテート(PGMEA)がより好ましい。
成分(M2)としては、以下のものが好ましい。
プロピレングリコールモノアルキルエーテルとしては、プロピレングリコールモノメチルエーテル(PGME:propylene glycol monomethylether)、及び、プロピレングリコールモノエチルエーテルが好ましい。
乳酸エステルとしては、乳酸エチル、乳酸ブチル、又は、乳酸プロピルが好ましい。
酢酸エステルとしては、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸プロピル、酢酸イソアミル、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、又は、酢酸3−メトキシブチルが好ましい。
また、酪酸ブチルも好ましい。
アルコキシプロピオン酸エステルとしては、3−メトキシプロピオン酸メチル(MMP:methyl 3−Methoxypropionate)、又は、3−エトキシプロピオン酸エチル(EEP:ethyl 3−ethoxypropionate)が好ましい。
鎖状ケトンとしては、1−オクタノン、2−オクタノン、1−ノナノン、2−ノナノン、アセトン、2−ヘプタノン、4−ヘプタノン、1−ヘキサノン、2−ヘキサノン、ジイソブチルケトン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、又は、メチルアミルケトンが好ましい。
環状ケトンとしては、メチルシクロヘキサノン、イソホロン、又は、シクロヘキサノンが好ましい。
ラクトンとしては、γ−ブチロラクトンが好ましい。
アルキレンカーボネートとしては、プロピレンカーボネートが好ましい。
成分(M2)としては、プロピレングリコールモノメチルエーテル(PGME)、乳酸エチル、3−エトキシプロピオン酸エチル、メチルアミルケトン、シクロヘキサノン、酢酸ブチル、酢酸ペンチル、γ−ブチロラクトン、又は、プロピレンカーボネートがより好ましい。
上記成分の他、炭素数が7以上(7〜14が好ましく、7〜12がより好ましく、7〜10が更に好ましい)、かつ、ヘテロ原子数が2以下のエステル系溶剤を用いることが好ましい。
炭素数が7以上かつヘテロ原子数が2以下のエステル系溶剤の好ましい例としては、酢酸アミル、酢酸2−メチルブチル、酢酸1−メチルブチル、酢酸ヘキシル、プロピオン酸ペンチル、プロピオン酸ヘキシル、プロピオン酸ブチル、イソ酪酸イソブチル、プロピオン酸ヘプチル、及び、ブタン酸ブチル等が挙げられ、酢酸イソアミルが好ましい。
成分(M2)としては、引火点(以下、fpともいう)が37℃以上であるものが好ましい。このような成分(M2)としては、プロピレングリコールモノメチルエーテル(fp:47℃)、乳酸エチル(fp:53℃)、3−エトキシプロピオン酸エチル(fp:49℃)、メチルアミルケトン(fp:42℃)、シクロヘキサノン(fp:44℃)、酢酸ペンチル(fp:45℃)、2−ヒドロキシイソ酪酸メチル(fp:45℃)、γ−ブチロラクトン(fp:101℃)、又は、プロピレンカーボネート(fp:132℃)が好ましい。これらのうち、プロピレングリコールモノエチルエーテル、乳酸エチル、酢酸ペンチル、又は、シクロヘキサノンがより好ましく、プロピレングリコールモノエチルエーテル、又は、乳酸エチルが更に好ましい。
なお、ここで「引火点」とは、東京化成工業株式会社又はシグマアルドリッチ社の試薬カタログに記載されている値を意味している。
溶剤は、成分(M1)を含んでいることが好ましい。溶剤は、実質的に成分(M1)のみからなるか、又は、成分(M1)と他の成分との混合溶剤であることがより好ましい。後者の場合、溶剤は、成分(M1)と成分(M2)との双方を含んでいることが更に好ましい。
成分(M1)と成分(M2)との質量比(M1/M2)は、「100/0」〜「15/85」の範囲内にあることが好ましく、「100/0」〜「40/60」の範囲内にあることがより好ましく、「100/0」〜「60/40」の範囲内にあることが更に好ましい。つまり、溶剤は、成分(M1)のみからなるか、又は、成分(M1)と成分(M2)との双方を含んでおり、かつ、それらの質量比が以下の通りであることが好ましい。即ち、後者の場合、成分(M2)に対する成分(M1)の質量比は、15/85以上であることが好ましく、40/60以上であることよりが好ましく、60/40以上であることが更に好ましい。このような構成を採用すると、現像欠陥数を更に減少させることが可能となる。
なお、溶剤が成分(M1)と成分(M2)との双方を含んでいる場合、成分(M2)に対する成分(M1)の質量比は、例えば、99/1以下とする。
上述した通り、溶剤は、成分(M1)及び(M2)以外の成分を更に含んでいてもよい。この場合、成分(M1)及び(M2)以外の成分の含有量は、溶剤の全量に対して、5〜30質量%の範囲内にあることが好ましい。
レジスト組成物中の溶剤の含有量は、固形分濃度が0.5〜30質量%となるように定めることが好ましく、1〜20質量%となるように定めることがより好ましい。こうすると、レジスト組成物の塗布性を更に向上させることができる。
<(D)酸拡散制御剤>
レジスト組成物は、酸拡散制御剤を更に含んでいてもよい。酸拡散制御剤は、光酸発生剤から生じた酸をトラップするクエンチャーとして作用し、レジスト膜中における酸の拡散現象を制御する役割を果たす。
酸拡散制御剤は、例えば、塩基性化合物であってもよい。
塩基性化合物としては、下記一般式(A)〜一般式(E)で示される構造を有する化合物が好ましい。
Figure 2022001960
一般式(A)及び一般式(E)中、R200、R201及びR202は、同一でも異なってもよく、水素原子、アルキル基(好ましくは炭素数1〜20)、シクロアルキル基(好ましくは炭素数3〜20)又はアリール基(好ましくは炭素数6〜20)を表し、ここで、R201とR202は、互いに結合して環を形成してもよい。
上記アルキル基について、置換基を有するアルキル基としては、炭素数1〜20のアミノアルキル基、炭素数1〜20のヒドロキシアルキル基、又は、炭素数1〜20のシアノアルキル基が好ましい。
203、R204、R205及びR206は、同一でも異なってもよく、炭素数1〜20のアルキル基を表す。
これら一般式(A)及び一般式(E)中のアルキル基は、無置換であることがより好ましい。
塩基性化合物として、グアニジン、アミノピロリジン、ピラゾール、ピラゾリン、ピペラジン、アミノモルホリン、アミノアルキルモルフォリン、又は、ピペリジン等が好まし。なかでも、イミダゾール構造、ジアザビシクロ構造、オニウムヒドロキシド構造、オニウムカルボキシレート構造、トリアルキルアミン構造、アニリン構造又はピリジン構造を有する化合物、水酸基及び/又はエーテル結合を有するアルキルアミン誘導体、又は、水酸基及び/又はエーテル結合を有するアニリン誘導体等がより好ましい。
イミダゾール構造を有する化合物としては、イミダゾール、2、4、5−トリフェニルイミダゾール、及び、ベンズイミダゾール等が挙げられる。ジアザビシクロ構造を有する化合物としては、1、4−ジアザビシクロ[2,2,2]オクタン、1、5−ジアザビシクロ[4,3,0]ノナ−5−エン、及び、1、8−ジアザビシクロ[5,4,0]ウンデカ−7−エン等が挙げられる。オニウムヒドロキシド構造を有する化合物としては、トリアリールスルホニウムヒドロキシド、フェナシルスルホニウムヒドロキシド、及び、2−オキソアルキル基を有するスルホニウムヒドロキシド等が挙げられる。具体的にはトリフェニルスルホニウムヒドロキシド、トリス(t−ブチルフェニル)スルホニウムヒドロキシド、ビス(t−ブチルフェニル)ヨードニウムヒドロキシド、フェナシルチオフェニウムヒドロキシド、及び、2−オキソプロピルチオフェニウムヒドロキシド等が挙げられる。オニウムカルボキシレート構造を有する化合物としては、オニウムヒドロキシド構造を有する化合物のアニオン部がカルボキシレートになったものであり、例えばアセテート、アダマンタン−1−カルボキシレート、及び、パーフロロアルキルカルボキシレート等が挙げられる。トリアルキルアミン構造を有する化合物としては、トリ(n−ブチル)アミン、及び、トリ(n−オクチル)アミン等が挙げられる。アニリン化合物としては、2,6−ジイソプロピルアニリン、N,N−ジメチルアニリン、N,N−ジブチルアニリン、及び、N,N−ジヘキシルアニリン等が挙げられる。水酸基及び/又はエーテル結合を有するアルキルアミン誘導体としては、エタノールアミン、ジエタノールアミン、トリエタノールアミン、及び、トリス(メトキシエトキシエチル)アミン等が挙げられる。水酸基及び/又はエーテル結合を有するアニリン誘導体としては、N,N−ビス(ヒドロキシエチル)アニリン等が挙げられる。
塩基性化合物として、フェノキシ基を有するアミン化合物、及び、フェノキシ基を有するアンモニウム塩化合物が好ましく挙げられる。
アミン化合物としては、1級、2級、及び、3級のアミン化合物を使用でき、少なくとも1つのアルキル基が窒素原子に結合しているアミン化合物が好ましい。アミン化合物は、3級アミン化合物であることがより好ましい。アミン化合物は、少なくとも1つのアルキル基(好ましくは炭素数1〜20)が窒素原子に結合していれば、アルキル基の他に、シクロアルキル基(好ましくは炭素数3〜20)又はアリール基(好ましくは炭素数6〜12)が窒素原子に結合していてもよい。
また、アミン化合物は、オキシアルキレン基を有することが好ましい。オキシアルキレン基の数は、分子内に1以上が好ましく、3〜9がより好ましく、4〜6が更に好ましい。オキシアルキレン基の中でもオキシエチレン基(−CHCHO−)、又は、オキシプロピレン基(−CH(CH)CHO−若しくはCHCHCHO−)が好ましく、オキシエチレン基がより好ましい。
アンモニウム塩化合物としては、1級、2級、3級、及び、4級のアンモニウム塩化合物が挙げられ、少なくとも1つのアルキル基が窒素原子に結合しているアンモニウム塩化合物が好ましい。アンモニウム塩化合物は、少なくとも1つのアルキル基(好ましくは炭素数1〜20)が窒素原子に結合していれば、アルキル基の他に、シクロアルキル基(好ましくは炭素数3〜20)又はアリール基(好ましくは炭素数6〜12)が窒素原子に結合していてもよい。
アンモニウム塩化合物は、オキシアルキレン基を有することが好ましい。オキシアルキレン基の数は、分子内に1以上が好ましく、3〜9がより好ましく、4〜6が更に好ましい。オキシアルキレン基の中でもオキシエチレン基(−CHCHO−)、又は、オキシプロピレン基(−CH(CH)CHO−、又は、−CHCHCHO−)が好ましく、オキシエチレン基がより好ましい。
アンモニウム塩化合物のアニオンとしては、ハロゲン原子、スルホネート、ボレート、及び、フォスフェート等が挙げられ、中でも、ハロゲン原子、又は、スルホネートが好ましい。ハロゲン原子としては、クロライド、ブロマイド、又は、アイオダイドが好ましい。スルホネートとしては、炭素数1〜20の有機スルホネートが好ましい。有機スルホネートとしては、炭素数1〜20のアルキルスルホネート、及び、アリールスルホネートが挙げられる。アルキルスルホネートのアルキル基は置換基を有していてもよく、置換基としては例えばフッ素原子、塩素原子、臭素原子、アルコキシ基、アシル基、及び、芳香環基等が挙げられる。アルキルスルホネートとして、具体的にはメタンスルホネート、エタンスルホネート、ブタンスルホネート、ヘキサンスルホネート、オクタンスルホネート、ベンジルスルホネート、トリフルオロメタンスルホネート、ペンタフルオロエタンスルホネート、及び、ノナフルオロブタンスルホネート等が挙げられる。アリールスルホネートのアリール基としてはベンゼン環基、ナフタレン環基、及び、アントラセン環基が挙げられる。ベンゼン環基、ナフタレン環基、及び、アントラセン環基が有することができる置換基としては、炭素数1〜6の直鎖状又は分岐鎖状のアルキル基、又は、炭素数3〜6のシクロアルキル基が好ましい。直鎖状又は分岐鎖状のアルキル基、及び、シクロアルキル基としては、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、i−ブチル基、t−ブチル基、n−ヘキシル基、及び、シクロヘキシル基等が挙げられる。他の置換基としては炭素数1〜6のアルコキシ基、ハロゲン原子、シアノ基、ニトロ基、アシル基、及び、アシルオキシ基等が挙げられる。
フェノキシ基を有するアミン化合物、及び、フェノキシ基を有するアンモニウム塩化合物とは、アミン化合物又はアンモニウム塩化合物のアルキル基の窒素原子と反対側の末端にフェノキシ基を有するものである。
フェノキシ基の置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子、シアノ基、ニトロ基、カルボキシル基、カルボン酸エステル基、スルホン酸エステル基、アリール基、アラルキル基、アシルオキシ基、及び、アリールオキシ基等が挙げられる。置換基の置換位は、2〜6位のいずれであってもよい。置換基の数は、1〜5のいずれであってもよい。
フェノキシ基と窒素原子との間に、少なくとも1つのオキシアルキレン基を有することが好ましい。オキシアルキレン基の数は、分子内に1以上が好ましく、3〜9がより好ましく、4〜6が更に好ましい。オキシアルキレン基の中でもオキシエチレン基(−CHCHO−)、又は、オキシプロピレン基(−CH(CH)CHO−又は−CHCHCHO−)が好ましく、オキシエチレン基がより好ましい。
フェノキシ基を有するアミン化合物は、フェノキシ基を有する1又は2級アミン及びハロアルキルエーテルを加熱して反応させた後、反応系に強塩基(例えば、水酸化ナトリウム、水酸化カリウム、及び、テトラアルキルアンモニウム等)の水溶液を添加し、更に、有機溶剤(例えば、酢酸エチル及びクロロホルム等)で反応生成物を抽出することにより得ることができる。又は、1又は2級アミンと末端にフェノキシ基を有するハロアルキルエーテルを加熱して反応させた後、反応系に強塩基の水溶液を添加し、更に、有機溶剤で反応生成物を抽出することにより得ることができる。
〔プロトンアクセプター性官能基を有し、かつ、活性光線又は放射線の照射により分解してプロトンアクセプター性が低下、消失、又はプロトンアクセプター性から酸性に変化した化合物を発生する化合物(PA)〕
レジスト組成物は、塩基性化合物として、プロトンアクセプター性官能基を有し、かつ、活性光線又は放射線の照射により分解してプロトンアクセプター性が低下若しくは消失、又はプロトンアクセプター性から酸性に変化した化合物を発生する化合物(以下、化合物(PA)ともいう)を含んでいてもよい。
プロトンアクセプター性官能基とは、プロトンと静電的に相互作用し得る基、又は、電子を有する官能基であって、例えば、環状ポリエーテル等のマクロサイクリック構造を有する官能基、又は、π共役に寄与しない非共有電子対をもった窒素原子を有する官能基を意味する。π共役に寄与しない非共有電子対を有する窒素原子とは、例えば、下記一般式に示す部分構造を有する窒素原子である。
Figure 2022001960
プロトンアクセプター性官能基の好ましい部分構造として、例えば、クラウンエーテル構造、アザクラウンエーテル構造、1〜3級アミン構造、ピリジン構造、イミダゾール構造、及び、ピラジン構造等が挙げられる。
化合物(PA)は、活性光線又は放射線の照射により分解してプロトンアクセプター性が低下若しくは消失、又は、プロトンアクセプター性から酸性に変化した化合物を発生する。ここで、プロトンアクセプター性の低下若しくは消失、又は、プロトンアクセプター性から酸性への変化とは、プロトンアクセプター性官能基にプロトンが付加することに起因するプロトンアクセプター性の変化である。具体的には、プロトンアクセプター性官能基を有する化合物(PA)とプロトンからプロトン付加体が生成する時、その化学平衡に於ける平衡定数が減少することを意味する。
化合物(PA)の具体例としては、例えば、特開2014−41328号公報の段落<0421>〜<0428>、特開2014−134686号公報の段落<0108>〜<0116>に記載されたものを援用することができ、これらの内容は本明細書に組み込まれる。
下記に、酸拡散制御剤の具体例を示すが、本発明はこれに限定されるものではない。
Figure 2022001960
Figure 2022001960
Figure 2022001960
レジスト組成物中の酸拡散制御剤の含有量は、組成物の全固形分に対して、0.001〜10質量%が好ましく、0.01〜5質量%がより好ましい。
酸拡散制御剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
光酸発生剤と酸拡散制御剤とのレジスト組成物中の使用割合は、光酸発生剤/酸拡散制御剤(モル比)=2.5〜300であることが好ましい。感度及び解像度の点からモル比は2.5以上が好ましく、露光後加熱処理までの経時でのレジストパターンの太りによる解像度の低下抑制の点からモル比は300以下が好ましい。光酸発生剤/酸拡散制御剤(モル比)は、5.0〜200がより好ましく、7.0〜150が更に好ましい。
酸拡散制御剤としては、例えば、特開2013−11833号公報の段落<0140>〜<0144>に記載の化合物(アミン化合物、アミド基含有化合物、ウレア化合物、及び、含窒素複素環化合物等)も挙げられる。
<(E)疎水性樹脂>
レジスト組成物は、上記樹脂(A)とは別に樹脂(A)とは異なる疎水性樹脂を含んでいてもよい。
疎水性樹脂はレジスト膜の表面に偏在するように設計されることが好ましいが、界面活性剤とは異なり、必ずしも分子内に親水基を有する必要はなく、極性物質及び非極性物質を均一に混合することに寄与しなくてもよい。
疎水性樹脂を添加することの効果として、水に対するレジスト膜表面の静的及び動的な接触角の制御、並びに、アウトガスの抑制等が挙げられる。
疎水性樹脂は、膜表層への偏在化の観点から、“フッ素原子”、“珪素原子”、及び、“樹脂の側鎖部分に含まれたCH部分構造”のいずれか1種以上を有することが好ましく、2種以上を有することがより好ましい。また、上記疎水性樹脂は、炭素数5以上の炭化水素基を有することが好ましい。これらの基は樹脂の主鎖中に有していても、側鎖に置換していてもよい。
疎水性樹脂が、フッ素原子及び/又は珪素原子を含む場合、疎水性樹脂における上記フッ素原子及び/又は珪素原子は、樹脂の主鎖中に含まれていてもよく、側鎖中に含まれていてもよい。
疎水性樹脂がフッ素原子を含んでいる場合、フッ素原子を有する部分構造としては、フッ素原子を有するアルキル基、フッ素原子を有するシクロアルキル基、又は、フッ素原子を有するアリール基が好ましい。
フッ素原子を有するアルキル基(好ましくは炭素数1〜10、より好ましくは炭素数1〜4)は、少なくとも1つの水素原子がフッ素原子で置換された直鎖状又は分岐鎖状のアルキル基であり、更にフッ素原子以外の置換基を有していてもよい。
フッ素原子を有するシクロアルキル基は、少なくとも1つの水素原子がフッ素原子で置換された単環又は多環のシクロアルキル基であり、更にフッ素原子以外の置換基を有していてもよい。
フッ素原子を有するアリール基としては、フェニル基、及び、ナフチル基等のアリール基の少なくとも1つの水素原子がフッ素原子で置換されたものが挙げられ、更にフッ素原子以外の置換基を有していてもよい。
フッ素原子又は珪素原子を有する繰り返し単位の例としては、US2012/0251948A1の段落<0519>に例示されたものが挙げられる。
また、上記したように、疎水性樹脂は、側鎖部分にCH部分構造を含むことも好ましい。
ここで、疎水性樹脂中の側鎖部分が有するCH部分構造は、エチル基、及び、プロピル基等が有するCH部分構造を含むものである。
一方、疎水性樹脂の主鎖に直接結合しているメチル基(例えば、メタクリル酸構造を有する繰り返し単位のα−メチル基)は、主鎖の影響により疎水性樹脂の表面偏在化への寄与が小さいため、本発明におけるCH部分構造に含まれないものとする。
疎水性樹脂に関しては、特開2014−010245号公報の段落<0348>〜<0415>の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
なお、疎水性樹脂としてはこの他にも特開2011−248019号公報、特開2010−175859号公報、特開2012−032544号公報記載の樹脂も好ましく用いることができる。
レジスト組成物が疎水性樹脂を含む場合、疎水性樹脂の含有量は、組成物の全固形分に対して、0.01〜20質量%が好ましく、0.1〜15質量%がより好ましい。
<界面活性剤(F)>
レジスト組成物は、界面活性剤(F)を含んでいてもよい。界面活性剤を含むことにより、密着性により優れ、現像欠陥のより少ないパターンを形成することが可能となる。
界面活性剤としては、フッ素系及び/又はシリコン系界面活性剤が好ましい。
フッ素系及び/又はシリコン系界面活性剤としては、例えば、米国特許出願公開第2008/0248425号明細書の段落<0276>に記載の界面活性剤が挙げられる。また、エフトップEF301又はEF303(新秋田化成(株)製);フロラードFC430、431又は4430(住友スリーエム(株)製);メガファックF171、F173、F176、F189、F113、F110、F177、F120又はR08(DIC(株)製);サーフロンS−382、SC101、102、103、104、105又は106(旭硝子(株)製);トロイゾルS−366(トロイケミカル(株)製);GF−300又はGF−150(東亜合成化学(株)製)、サーフロンS−393(セイミケミカル(株)製);エフトップEF121、EF122A、EF122B、RF122C、EF125M、EF135M、EF351、EF352、EF801、EF802又はEF601((株)ジェムコ製);PF636、PF656、PF6320又はPF6520(OMNOVA社製);KH−20(旭化成(株)製);FTX−204G、208G、218G、230G、204D、208D、212D、218D又は222D((株)ネオス製)を用いてもよい。なお、ポリシロキサンポリマーKP−341(信越化学工業(株)製)も、シリコン系界面活性剤として用いることができる。
また、界面活性剤は、上記に示すような公知の界面活性剤の他に、テロメリゼーション法(テロマー法ともいわれる)又はオリゴメリゼーション法(オリゴマー法ともいわれる)により製造されたフルオロ脂肪族化合物を用いて合成してもよい。具体的には、このフルオロ脂肪族化合物から導かれたフルオロ脂肪族基を備えた重合体を、界面活性剤として用いてもよい。このフルオロ脂肪族化合物は、例えば、特開2002−90991号公報に記載された方法によって合成できる。
また、米国特許出願公開第2008/0248425号明細書の段落<0280>に記載されているフッ素系及び/又はシリコン系以外の界面活性剤を使用してもよい。
これら界面活性剤は、1種を単独で用いてもよく、又は、2種以上を組み合わせて用いてもよい。
レジスト組成物が界面活性剤を含む場合、界面活性剤の含有量は、組成物の全固形分に対して、0.0001〜2質量%が好ましく、0.0005〜1質量%がより好ましい。
<その他の添加剤(G)>
レジスト組成物は、溶解阻止化合物、染料、可塑剤、光増感剤、光吸収剤、及び/又は、現像液に対する溶解性を促進させる化合物(例えば、分子量1000以下のフェノール化合物、又はカルボキシル基を含んだ脂環族若しくは脂肪族化合物)を更に含んでいてもよい。
レジスト組成物は、溶解阻止化合物を更に含んでいてもよい。ここで「溶解阻止化合物」とは、酸の作用により分解して有機系現像液中での溶解度が減少する、分子量3000以下の化合物である。
<<パターン形成方法>>
上記レジスト組成物を用いたパターン形成方法の手順は特に制限されないが、以下の工程を有することが好ましい。
工程1:レジスト組成物を用いて、基板上にレジスト膜を形成する工程工程2:レジスト膜をEUV光で露光する工程工程3:アルカリ現像液を用いて、露光されたレジスト膜を現像し、パターンを形成する工程
以下、上記それぞれの工程の手順について詳述する。
なお、以下ではアルカリ現像液を用いた態様について述べるが、有機溶剤を現像液として用いてパターンを形成する態様であってもよい。
<工程1:レジスト膜形成工程>
工程1は、レジスト組成物を用いて、基板上にレジスト膜を形成する工程である。
レジスト組成物の定義は、上述の通りである。
レジスト組成物を用いて基板上にレジスト膜を形成する方法としては、レジスト組成物を基板上に塗布する方法が挙げられる。
なお、塗布前にレジスト組成物を必要に応じてフィルター濾過することが好ましい。フィルターのポアサイズとしては、0.1μm以下が好ましく、0.05μm以下がより好ましく、0.03μm以下が更に好ましい。また、フィルターは、ポリテトラフロロエチレン製、ポリエチレン製、又は、ナイロン製が好ましい。
レジスト組成物は、集積回路素子の製造に使用されるような基板(例:シリコン、二酸化シリコン被覆)上に、スピナー又はコーター等の適当な塗布方法により塗布できる。塗布方法としては、スピナーを用いたスピン塗布が好ましい。スピナーを用いたスピン塗布をする際の回転数は、1000〜3000rpmが好ましい。
レジスト組成物の塗布後、基板を乾燥し、レジスト膜を形成してもよい。なお、必要により、レジスト膜の下層に、各種下地膜(無機膜、有機膜、反射防止膜)を形成してもよい。
乾燥方法としては、加熱して乾燥する方法が挙げられる。加熱は通常の露光機、及び/又は、現像機に備わっている手段で行うことができ、ホットプレート等を用いて行ってもよい。加熱温度は80〜150℃が好ましく、80〜140℃がより好ましく、80〜130℃が更に好ましい。加熱時間は30〜1000秒が好ましく、60〜800秒がより好ましく、60〜600秒が更に好ましい。
レジスト膜の膜厚は特に制限されないが、より高精度な微細パターンを形成できる点から、10〜65nmが好ましく、15〜50nmがより好ましい。
なお、レジスト膜の上層にトップコート組成物を用いてトップコートを形成してもよい。
トップコート組成物は、レジスト膜と混合せず、更にレジスト膜上層に均一に塗布できることが好ましい。
また、トップコートの形成前にレジスト膜を乾燥することが好ましい。次いで、得られたレジスト膜上に、上記レジスト膜の形成方法と同様の手段によりトップコート組成物を塗布し、更に乾燥することで、トップコートを形成できる。
トップコートの膜厚は、10〜200nmが好ましく、20〜100nmがより好ましく、40〜80nmが更に好ましい。
トップコートについては、特に限定されず、従来公知のトップコートを、従来公知の方法によって形成でき、例えば、特開2014−059543号公報の段落<0072>〜<0082>の記載に基づいてトップコートを形成できる。
例えば、特開2013−61648号公報に記載されたような塩基性化合物を含むトップコートを、レジスト膜上に形成することが好ましい。トップコートが含み得る塩基性化合物の具体的な例は、後述するレジスト組成物が含んでいてもよい塩基性化合物が挙げられる。
また、トップコートは、エーテル結合、チオエーテル結合、水酸基、チオール基、カルボニル結合及びエステル結合からなる群より選択される基又は結合を少なくとも一つ含む化合物を含むことが好ましい。
<工程2:露光工程>
工程2は、レジスト膜をEUV光で露光する工程である。
露光の方法としては、形成したレジスト膜に所定のマスクを通してEUV光を照射する方法が挙げられる。
露光後、現像を行う前にベーク(加熱)を行うことが好ましい。ベークにより露光部の反応が促進され、感度及びパターン形状がより良好となる。
加熱温度は80〜150℃が好ましく、80〜140℃がより好ましく、80〜130℃が更に好ましい。
加熱時間は10〜1000秒が好ましく、10〜180秒がより好ましく、30〜120秒が更に好ましい。
加熱は通常の露光機、及び/又は現像機に備わっている手段で行うことができ、ホットプレート等を用いて行ってもよい。
この工程は露光後ベークともいう。
<工程3:現像工程>
工程3は、アルカリ現像液を用いて、露光されたレジスト膜を現像し、パターンを形成する工程である。
現像方法としては、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、及び、一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出しつづける方法(ダイナミックディスペンス法)が挙げられる。
また、現像を行う工程の後に、他の溶剤に置換しながら、現像を停止する工程を実施してもよい。
現像時間は未露光部の樹脂が十分に溶解する時間であれば特に制限はなく、10〜300秒が好ましく、20〜120秒がより好ましい。
現像液の温度は0〜50℃が好ましく、15〜35℃がより好ましい。
アルカリ現像液は、アルカリを含むアルカリ水溶液を用いることが好ましい。アルカリ水溶液の種類は特に制限されないが、例えば、テトラメチルアンモニウムヒドロキシドに代表される4級アンモニウム塩、無機アルカリ、1級アミン、2級アミン、3級アミン、アルコールアミン、又は、環状アミン等を含むアルカリ水溶液が挙げられる。なかでも、アルカリ現像液は、テトラメチルアンモニウムヒドロキシド(TMAH)に代表される4級アンモニウム塩の水溶液であることが好ましい。アルカリ現像液には、アルコール類、界面活性剤等を適当量添加してもよい。アルカリ現像液のアルカリ濃度は、通常、0.1〜20質量%である。また、アルカリ現像液のpHは、通常、10.0〜15.0である。
<他の工程>
上記パターン形成方法は、工程3の後に、リンス液を用いて洗浄する工程を含むことが好ましい。
アルカリ現像液を用いて現像する工程の後のリンス工程に用いるリンス液としては、例えば、純水が挙げられる。なお、純水には、界面活性剤を適当量添加してもよい。
リンス液には、界面活性剤を適当量添加してもよい。
リンス工程の方法は特に限定されないが、例えば、一定速度で回転している基板上にリンス液を吐出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、及び、基板表面にリンス液を噴霧する方法(スプレー法)等が挙げられる。
また、本発明のパターン形成方法は、リンス工程の後に加熱工程(Post Bake)を含んでいてもよい。本工程により、ベークによりパターン間及びパターン内部に残留した現像液及びリンス液が除去される。また、本工程により、レジストパターンがなまされ、パターンの表面荒れが改善される効果もある。リンス工程の後の加熱工程は、通常40〜250℃(好ましくは90〜200℃)で、通常10秒間〜3分間(好ましくは30秒間〜120秒間)行う。
また、形成されたパターンをマスクとして、基板のエッチング処理を実施してもよい。つまり、工程3にて形成されたパターンをマスクとして、基板(または、下層膜及び基板)を加工して、基板にパターンを形成してもよい。
基板(または、下層膜及び基板)の加工方法は特に限定されないが、工程3で形成されたパターンをマスクとして、基板(または、下層膜及び基板)に対してドライエッチングを行うことにより、基板にパターンを形成する方法が好ましい。
ドライエッチングは、1段のエッチングであっても、複数段からなるエッチングであってもよい。エッチングが複数段からなるエッチングである場合、各段のエッチングは同一の処理であっても異なる処理であってもよい。
エッチングは、公知の方法をいずれも用いることができ、各種条件等は、基板の種類又は用途等に応じて、適宜、決定される。例えば、国際光工学会紀要(Proc.ofSPIE)Vol.6924,692420(2008)、特開2009−267112号公報等に準じて、エッチングを実施できる。また、「半導体プロセス教本 第四版 2007年刊行 発行人:SEMIジャパン」の「第4章 エッチング」に記載の方法に準ずることもできる。
中でも、ドライエッチングとしては、酸素プラズマエッチングが好ましい。
レジスト組成物、及び、本発明のパターン形成方法において使用される各種材料(例えば、溶剤、現像液、リンス液、反射防止膜形成用組成物、トップコート形成用組成物等)は、金属等の不純物を含まないことが好ましい。これら材料に含まれる不純物の含有量としては、1質量ppm以下が好ましく、10質量ppb以下がより好ましく、100質量ppt以下が更に好ましく、10質量ppt以下が特に好ましく、1質量ppt以下が最も好ましい。ここで、金属不純物としては、Na、K、Ca、Fe、Cu、Mg、Al、Li、Cr、Ni、Sn、Ag、As、Au、Ba、Cd、Co、Pb、Ti、V、W、及び、Zn等が挙げられる。
各種材料から金属等の不純物を除去する方法としては、例えば、フィルターを用いた濾過が挙げられる。フィルター孔径としては、ポアサイズ100nm未満が好ましく、10nm以下がより好ましく、5nm以下が更に好ましい。フィルターとしては、ポリテトラフルオロエチレン製、ポリエチレン製、又は、ナイロン製のフィルターが好ましい。フィルターは、上記フィルター素材とイオン交換メディアとを組み合わせた複合材料で構成されていてもよい。フィルターは、有機溶剤であらかじめ洗浄したものを用いてもよい。フィルター濾過工程では、複数種類のフィルターを直列又は並列に接続して用いてもよい。複数種類のフィルターを使用する場合は、孔径及び/又は材質が異なるフィルターを組み合わせて使用してもよい。また、各種材料を複数回濾過してもよく、複数回濾過する工程が循環濾過工程であってもよい。
レジスト組成物の製造においては、例えば、樹脂、及び、光酸発生剤等の各成分を溶剤に溶解させた後、素材が異なる複数のフィルターを用いて循環濾過を行うことが好ましい。例えば、孔径50nmのポリエチレン製フィルター、孔径10nmのナイロン製フィルター、孔径3nmのポリエチレン製フィルターを順列に接続し、10回以上循環濾過を行うことが好ましい。フィルター間の圧力差は小さい程好ましく、一般的には0.1MPa以下であり、0.05MPa以下であることが好ましく、0.01MPa以下であることがより好ましい。フィルターと充填ノズルの間の圧力差も小さい程好ましく、一般的には0.5MPa以下であり、0.2MPa以下であることが好ましく、0.1MPa以下であることがより好ましい。
レジスト組成物の製造装置の内部は、窒素等の不活性ガスによってガス置換を行うことが好ましい。これにより、酸素等の活性ガスが組成物中に溶解することを抑制できる。
レジスト組成物はフィルターによって濾過された後、清浄な容器に充填される。容器に充填されたレジスト組成物は、冷蔵保存されることが好ましい。これにより、経時による性能劣化が抑制される。組成物の容器への充填が完了してから、冷蔵保存を開始するまでの時間は短い程好ましく、一般的には24時間以内であり、16時間以内が好ましく、12時間以内がより好ましく、10時間以内が更に好ましい。保存温度は0〜15℃が好ましく、0〜10℃がより好ましく、0〜5℃が更に好ましい。
また、各種材料に含まれる金属等の不純物を低減する方法としては、各種材料を構成する原料として金属含有量が少ない原料を選択する方法、各種材料を構成する原料に対してフィルター濾過を行う方法、及び、装置内をテフロン(登録商標)でライニングする等してコンタミネーションを可能な限り抑制した条件下で蒸留を行う方法等が挙げられる。
フィルター濾過の他、吸着材による不純物の除去を行ってもよく、フィルター濾過と吸着材とを組み合わせて使用してもよい。吸着材としては、公知の吸着材を用いることができ、例えば、シリカゲル及びゼオライト等の無機系吸着材、並びに、活性炭等の有機系吸着材を使用できる。上記各種材料に含まれる金属等の不純物を低減するためには、製造工程における金属不純物の混入を防止することが必要である。製造装置から金属不純物が十分に除去されたかどうかは、製造装置の洗浄に使用された洗浄液中に含まれる金属成分の含有量を測定することで確認できる。使用後の洗浄液に含まれる金属成分の含有量は、100質量ppt(parts per trillion)以下が好ましく、10質量ppt以下がより好ましく、1質量ppt以下が更に好ましい。
リンス液等の有機系処理液には、静電気の帯電、引き続き生じる静電気放電に伴う、薬液配管及び各種パーツ(フィルター、O−リング、チューブ等)の故障を防止する為、導電性の化合物を添加してもよい。導電性の化合物は特に制限されないが、例えば、メタノールが挙げられる。添加量は特に制限されないが、好ましい現像特性又はリンス特性を維持する観点で、10質量%以下が好ましく、5質量%以下がより好ましい。
薬液配管としては、SUS(ステンレス鋼)、又は、帯電防止処理の施されたポリエチレン、ポリプロピレン、若しくはフッ素樹脂(ポリテトラフルオロエチレン、パーフルオロアルコキシ樹脂等)で被膜された各種配管を用いることができる。フィルター及びO−リングに関しても同様に、帯電防止処理の施されたポリエチレン、ポリプロピレン、又は、フッ素樹脂(ポリテトラフルオロエチレン、パーフルオロアルコキシ樹脂等)を用いることができる。
本発明の方法により形成されるパターンに対して、パターンの表面荒れを改善する方法を適用してもよい。パターンの表面荒れを改善する方法としては、例えば、国際公開第2014/002808号に開示された水素を含有するガスのプラズマによってパターンを処理する方法が挙げられる。その他にも、特開2004−235468号公報、米国特許出願公開第2010/0020297号明細書、特開2008−83384号公報、及び、Proc. of SPIE Vol.8328 83280N−1”EUV Resist Curing Technique for LWR Reduction and Etch Selectivity Enhancement”に記載されているような公知の方法が挙げられる。
形成されるパターンがライン状である場合、パターン高さをライン幅で割った値で求められるアスペクト比が、2.5以下が好ましく、2.1以下がより好ましく、1.7以下が更に好ましい。
形成されるパターンがトレンチ(溝)パターン状又はコンタクトホールパターン状である場合、パターン高さをトレンチ幅又はホール径で割った値で求められるアスペクト比が、4.0以下が好ましく、3.5以下がより好ましく、3.0以下が更に好ましい。
本発明のパターン形成方法は、DSA(Directed Self−Assembly)におけるガイドパターン形成(例えば、ACS Nano Vol.4 No.8 Page4815−4823参照)にも用いることができる。
また、上記の方法によって形成されたパターンは、例えば、特開平3−270227号公報、及び、特開2013−164509号公報に開示されたスペーサープロセスの芯材(コア)として使用できる。
また、本発明は、上記したパターン形成方法を含む、電子デバイスの製造方法、及び、この製造方法により製造された電子デバイスにも関する。
本発明の電子デバイスは、電気電子機器(家電、OA(Office Automation)、メディア関連機器、光学用機器及び通信機器等)に、好適に、搭載されるものである。
以下、実施例により、本発明について更に詳細に説明するが、本発明はこれらに限定されるものではない。
<合成例1:ポリマーP−1の合成>
ポリマーP−1の各繰り返し単位(M−2/M−4/M−23)に相当するモノマーを、左から順に15.5g、25.4g、9.8g、及び重合開始剤V−601(和光純薬工業(株)製)(3.17g)をシクロヘキサノン(105g)に溶解させた。このように得られた溶液を、モノマー溶液とした。
反応容器中にシクロヘキサノン(194.3g)を入れ、系中が85℃となるように調整した上記反応容器中に、窒素ガス雰囲気下で、4時間かけて上記モノマー溶液を滴下した。得られた反応溶液を、反応容器中で2時間、85℃で撹拌した後、これを室温になるまで放冷した。
放冷後の反応溶液を、メタノール及び水の混合液(メタノール/水=5/5(質量比))に20分かけて滴下し、析出した粉体をろ取した。得られた粉体を乾燥し、ポリマーP−1(31.6g)を得た。
NMR(核磁気共鳴)法から求めた繰り返し単位の組成比(質量比)は30/50/20であった。ポリマーP−1の重量平均分子量は標準ポリスチレン換算で8000、分散度(Mw/Mn)は1.6であった。
その他のポリマーも同様の手順、又は、既知の手順で合成した。
ポリマーP−1〜P−67に使用したモノマー構造を下記に示す。また、下記表1に、各ポリマーの組成比(質量比)、重量平均分子量(Mw)、分散度を示す。組成比は、各繰り返し単位の左から順に対応する。
以下の構造式中の「LUMO」は、各繰り返し単位を構成するモノマーの最低空軌道準位のエネルギー(eV)を表す。「Tg」は、Bicerano法により算出した、各繰り返し単位のみから構成されるホモポリマーのTg(℃)を表す。
Figure 2022001960
Figure 2022001960
Figure 2022001960
Figure 2022001960
<光酸発生剤のカチオン部>
以下の構造式中の「LUMO」は、各カチオン部の最低空軌道準位のエネルギー(eV)を表す。
Figure 2022001960
<光酸発生剤のアニオン部>
以下の構造式中の体積(Å)は、各アニオンに水素原子がついた酸(発生酸)の体積を表す。
Figure 2022001960
<酸拡散制御剤>
Figure 2022001960
Figure 2022001960
<疎水性樹脂>
なお、以下の式中の数値は、各繰り返し単位のモル%を表す。
Figure 2022001960
<界面活性剤>
W−1: メガファックF176(DIC(株)製;フッ素系)
W−2: メガファックR08(DIC(株)製;フッ素及びシリコン系)
<溶剤>
SL−1: プロピレングリコールモノメチルエーテルアセテート(PGMEA)
SL−2: プロピレングリコールモノメチルエーテル(PGME)
SL−3: 乳酸エチルSL−4: γ−ブチロラクトンSL−5: シクロヘキサノン
<現像液及びリンス液>
D−1: 3.00質量%テトラメチルアンモニウムヒドロキシド水溶液
D−2: 2.38質量%テトラメチルアンモニウムヒドロキシド水溶液
D−3: 1.50質量%テトラメチルアンモニウムヒドロキシド水溶液
D−4: 1.00質量%テトラメチルアンモニウムヒドロキシド水溶液
D−5: 0.80質量%テトラメチルアンモニウムヒドロキシド水溶液
D−6: 純水
D−7: FIRM Extreme 10(AZEM製)
<下層膜>
UL−1: AL412(Brewer Science社製)
UL−2: SHB−A940 (信越化学工業社製)
<組成物の調製>
表2に示す固形分濃度及び組成で素材を混合しレジスト材料を調製し、これを0.03μmのポアサイズを有するポリエチレンフィルターで濾過してそれぞれの組成物を調製した。
以下の「ポリマー」欄、「光酸発生剤」欄、「酸拡散制御剤」欄、「添加ポリマー」欄、及び、「界面活性剤」欄に記載の各成分の含有量(質量%)は、全固形分に対する各成分の割合を表す。
Figure 2022001960
Figure 2022001960
<EUV露光実施例>
表3に記載の下層膜(下地)を形成したシリコンウエハ(12インチ)上に、表3に記載の組成物を塗布して、塗膜を(レジスト塗布条件)に記載のbake条件にて加熱し、表3に記載の膜厚のレジスト膜を形成し、レジスト膜を有するシリコンウエハを得た。
EUV露光装置(Exitech社製、Micro Exposure Tool、NA0.3、Quadrupol、アウターシグマ0.68、インナーシグマ0.36)を用いて、得られたレジスト膜を有するシリコンウエハに対してパターン照射を行った。なお、レチクルとしては、ラインサイズ=20nmであり、かつ、ライン:スペース=1:1であるマスクを用いた。
その後、下記表3に示した条件でベーク(Post Exposure Bake;PEB)した後、下記表3に示した現像液で30秒間パドルして現像し、下記表3に示したリンス液でパドルしてリンスした。その後、4000rpmの回転数で30秒間シリコンウエハを回転させ、更に、90℃で60秒間ベークすることにより、ピッチ40nm、ライン幅20nm(スペース幅20nm)のラインアンドスペースパターンを得た。結果を表3にまとめる。
<評価>
上記形成したレジストパターンについて、下記に示す評価を行った。
[A値]
組成物中に含まれる、全固形分由来成分の原子について、下記一般式(1)で求められるEUV光吸収パラメータであるA値を算出した。
一般式(1):A=([H]×0.04+[C]×1.0+[N]×2.1+[O]×3.6+[F]×5.6+[S]×1.5+[I]×39.5)/([H]×1+[C]×12+[N]×14+[O]×16+[F]×19+[S]×32+[I]×127)
上記[H]、[C]、[N]、[O]、[F]、[S]、及び、[I]は、レジスト組成物中に含まれる成分の構造及び含有量より計算した。
[B値(ΔLUMO)]
下記一般式(2)に求められるB値(ΔLUMO)を算出した。
一般式(2):B値=LUMO(Polymer)−LUMO(PAG_Cation)
上記LUMO(Polymer)は、ポリマーの全繰り返し単位に対して5質量%以上含まれる繰り返し単位のうち、最低空軌道準位のエネルギー値が最も低いモノマー由来の繰り返し単位の、モノマーの最低空軌道準位のエネルギー値を表す。
上記LUMO(PAG_Cation)は、質量換算で組成物中に最も多く含有されている光酸発生剤のカチオン部の最低空軌道準位のエネルギー値を表す。
各化合物のLUMO値は、現在広く用いられている量子化学計算プログラムGaussian09(Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A.Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.)により計算した。計算手法としては密度汎関数法を、汎関数にはB3LYPを用いた。基底関数には、ヨウ素以外の原子は6-31+G(d,p)を用い、ヨウ素原子はaug-cc-PVDZ-PPを用いた。aug-cc-PVDZ-PPは、WEBで公開されているデータベース「Basis Set Exchange (https://bse.pnl.gov/bse/portal)」より入手した。
なお、本手法により、構造最適化計算を行い生成エネルギーが最小となる構造に対してLUMO値を計算した。光酸発生剤のカチオン部のLUMO値を計算する際は、カウンターアニオンとしてトリフルオロメタンスルホン酸由来のアニオンを用いた。
なお、上述したように、LUMO値は、誘電率を考慮した値となっており、ベンゼン(比誘電率=2.2706)のパラメータを利用した。
[酸基の含有量]
酸解離定数(pKa)が13以下の酸基について、ポリマー1g中に含まれる密度(mmol/g)を計算した。該当する酸基が複数ある場合には、合算した密度を計算した。pKaの計算には、Marvinsketch(Chem Axson社)を用いた。
[酸拡散長(D)]
本評価に用いた組成物は、下記のように調製した。
表2に示す(R−1)〜(R−67)の組成物に対し、酸拡散制御剤を除き、かつ、固形分濃度10.0質量%とした組成物をそれぞれ(R−1)〜(R−67)として調製した。また、(R−1)〜(R−67)の組成物に対し、さらに光酸発生剤を除いた組成物をそれぞれ(R−1)〜(R−67)として調製した。
シリコンウエハの上に、組成物(R−1)〜(R−67)をそれぞれ塗布し、表3に示された対応する組成物のbake条件の温度で60秒間加熱して、膜厚が約300nmのレジスト膜を形成した。PAS5500/850(ASML社製)でレジスト膜を露光した後、得られた膜をカミソリでシリコンウエハから削り取ることによって粉末を得た。この粉末をプレス成形によりペレット状に成型した。
次に、組成物(R−1)〜(R−67)を用いてシリコンウエハの上に塗布し、表3に示された対応する組成物のbake条件の温度で60秒間加熱して、膜厚が約300nmの樹脂膜を形成した。次に、樹脂膜の組成物に対応する上記ペレットを、各樹脂膜上の一部に乗せ、表3に示された対応する組成物のPEB条件で加熱した。
加熱後の樹脂膜を23℃、0.26NのTMAH(水酸化テトラメチルアンモニウム)水溶液で現像した。
現像処理後の樹脂膜の厚みについて、上記ペレットを乗せた部分と、乗せていない部分の厚みをそれぞれ、DNS Lambdaエース(λ=633nm)により測定し、その差ΔLを求めた。Journal Photopolymer Science Technology, Vol.17, No.3, 2004 p.p.379-384に記載の下記式を用いて酸拡散係数(D)を算出した。
ΔL=2(D・tPEB1/2erfc−1(Ecrit/E)
[Tg]
使用したポリマーのガラス転移温度(Tg)を上述した方法により算出した。
[感度]
露光量を変化させながら、ラインアンドスペースパターンのライン幅を測定し、ライン幅が20nmとなる際の露光量を求め、これを感度(mJ/cm)とした。この値が小さいほど、レジストが高感度であることを示し良好な性能であることを示す。
[LER]
感度評価における最適露光量にて解像したラインアンドスペースのレジストパターンの観測において、測長走査型電子顕微鏡(SEM:Scanning Electron Microscope(日立ハイテクノロジー社製 CG−4100))にてパターン上部から観察する際、パターンの中心からエッジまでの距離を任意のポイントで観測し、その測定ばらつきを3σで評価した。値が小さいほど良好な性能であることを示す。
[Z−factor]
上記で求めた感度、LERを用いて、下記式で表わされるZ−factorを求めた。
Z−factor=(解像力)×(LER)×(感度)
ここで解像力は、20nmとした。Z−factorの値が小さいほど、解像力、LER、及び、感度というレジストのトータル性能で優れることを示し、2.0E−08(mJ・nm)より小さい場合は性能良好であり、1.7E−08(mJ・nm)より小さい場合は更に性能良好であり、1.4E−08(mJ・nm)より小さい場合は特に性能良好であることを示す。
[倒れ性能(パターン倒れ性能)]
露光量を変化させながら、ラインアンドスペースパターンのライン幅を測定した。この際、10μm四方にわたりパターンが倒れることなく解像している最小のライン幅を、倒れ線幅とした。この値が小さいほど、パターン倒れのマージンが広く、性能良好であることを示す。
Figure 2022001960
Figure 2022001960
Figure 2022001960
上記表に示すように、本発明の組成物を用いた場合、EUV露光評価において良好な性能を示すことが確認された。A値が0.14以上の場合に良好なZ−factorを示すことが分かり、実施例1〜19の比較より、特に0.16以上の場合には、極めて良好な性能を示した。この結果は、A値で示されるEUV吸収効率が大きくなることで、ショットノイズ起因の性能劣化を改良できたためと考えられる。
また、実施例1〜19と、実施例20〜32の比較から分かるように、ΔLUMOが0.20eV以上で、酸基の含有量が0.8〜6.0mmol/gで、発生酸の大きさが240Å以上で、発生酸中の有機酸基以外の極性基の数が4個未満(実施例28が極性基の数が4個に該当)で、光酸発生剤量の含有量が10質量%超35質量%未満である場合(実施例1〜19)、Z−factorがより良好であることが確認された。
また、レジスト固形分濃度が2.5質量%よりも大きい場合、パターン倒れ性能が劣化することが確認された。
また、実施例16、22、および、実施例33〜45の結果からTgが90℃より大きい場合、性能が良好であることが確認できた。

Claims (8)

  1. 酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する樹脂、及び、光酸発生剤を含むか、または、
    光酸発生基を有する繰り返し単位を有する、酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する樹脂を含み、
    要件1及び要件2を満たす、EUV光用感光性組成物。
    要件1:式(1)で求められるA値が0.14以上である。
    式(1):A=([H]×0.04+[C]×1.0+[N]×2.1+[O]×3.6+[F]×5.6+[S]×1.5+[I]×39.5)/([H]×1+[C]×12+[N]×14+[O]×16+[F]×19+[S]×32+[I]×127)
    [H]は、前記EUV光用感光性組成物中の全固形分の全原子に対する、前記全固形分由来の水素原子のモル比率を表し、[C]は、前記EUV光用感光性組成物中の全固形分の全原子に対する、前記全固形分由来の炭素原子のモル比率を表し、[N]は、前記EUV光用感光性組成物中の全固形分の全原子に対する、前記全固形分由来の窒素原子のモル比率を表し、[O]は、前記EUV光用感光性組成物中の全固形分の全原子に対する、前記全固形分由来の酸素原子のモル比率を表し、[F]は、前記EUV光用感光性組成物中の全固形分の全原子に対する、前記全固形分由来のフッ素原子のモル比率を表し、[S]は、前記EUV光用感光性組成物中の全固形分の全原子に対する、前記全固形分由来の硫黄原子のモル比率を表し、[I]は、前記EUV光用感光性組成物中の全固形分の全原子に対する、前記全固形分由来のヨウ素原子のモル比率を表す。
    要件2:前記EUV光用感光性組成物中の固形分濃度が2.5質量%以下である。
  2. 酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する樹脂、並びに、カチオン部及びアニオン部からなる光酸発生剤を含み、
    式(2)で求められるB値が0eV以上である、請求項1に記載のEUV光用感光性組成物。
    式(2):B値=LUMO(Polymer)−LUMO(PAG_Cation)
    前記LUMO(Polymer)は、前記樹脂の全繰り返し単位に対して5質量%以上含まれる繰り返し単位のうち、最低空軌道準位のエネルギー値が最も低いモノマー由来の繰り返し単位の、モノマーの最低空軌道準位のエネルギー値を表す。
    前記LUMO(PAG_Cation)は、質量換算で前記EUV光用感光性組成物中に最も多く含有されている前記光酸発生剤のカチオン部の最低空軌道準位のエネルギー値を表す。
  3. 前記光酸発生剤より発生する酸の体積が、240Å以上である、請求項1又は2に記載のEUV光用感光性組成物。
  4. 前記樹脂のガラス転移温度が90℃より大きい、請求項1〜3のいずれか1項に記載のEUV光用感光性組成物。
  5. 前記樹脂が、酸解離定数が13以下の酸基を有する、請求項1〜4のいずれか1項に記載のEUV光用感光性組成物。
  6. 前記酸基の含有量が0.80〜6.00mmol/gである、請求項5に記載のEUV光用感光性組成物。
  7. 請求項1〜6のいずれか1項に記載のEUV光用感光性組成物を用いて、基板上にレジスト膜を形成する工程と、
    前記レジスト膜をEUV光で露光する工程と、
    アルカリ現像液を用いて、前記露光されたレジスト膜を現像し、パターンを形成する工程と、を有するパターン形成方法。
  8. 請求項7に記載のパターン形成方法を含む、電子デバイスの製造方法。
JP2021163220A 2017-04-21 2021-10-04 Euv光用感光性組成物、パターン形成方法、電子デバイスの製造方法 Active JP7239661B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2017084466 2017-04-21
JP2017084466 2017-04-21
JP2017103304 2017-05-25
JP2017103304 2017-05-25
JP2018064289 2018-03-29
JP2018064289 2018-03-29
JP2019513589A JP7002537B2 (ja) 2017-04-21 2018-04-12 Euv光用感光性組成物、パターン形成方法、電子デバイスの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019513589A Division JP7002537B2 (ja) 2017-04-21 2018-04-12 Euv光用感光性組成物、パターン形成方法、電子デバイスの製造方法

Publications (2)

Publication Number Publication Date
JP2022001960A true JP2022001960A (ja) 2022-01-06
JP7239661B2 JP7239661B2 (ja) 2023-03-14

Family

ID=63856751

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019513589A Active JP7002537B2 (ja) 2017-04-21 2018-04-12 Euv光用感光性組成物、パターン形成方法、電子デバイスの製造方法
JP2021163220A Active JP7239661B2 (ja) 2017-04-21 2021-10-04 Euv光用感光性組成物、パターン形成方法、電子デバイスの製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019513589A Active JP7002537B2 (ja) 2017-04-21 2018-04-12 Euv光用感光性組成物、パターン形成方法、電子デバイスの製造方法

Country Status (8)

Country Link
US (1) US11604414B2 (ja)
EP (1) EP3614206B1 (ja)
JP (2) JP7002537B2 (ja)
KR (2) KR102455267B1 (ja)
CN (1) CN110537148B (ja)
IL (1) IL270030B2 (ja)
TW (2) TWI817945B (ja)
WO (1) WO2018193954A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102455267B1 (ko) * 2017-04-21 2022-10-17 후지필름 가부시키가이샤 Euv광용 감광성 조성물, 패턴 형성 방법, 전자 디바이스의 제조 방법
US20210173309A1 (en) * 2017-09-04 2021-06-10 Fujifilm Corporation Method of forming reversed pattern and method of manufacturing electronic device
EP3731016A4 (en) * 2017-12-22 2021-02-24 FUJIFILM Corporation COMPOSITION OF RESIN SENSITIVE TO ACTIVE LIGHT OR SENSITIVE TO RADIATION, RESERVE FILM, PATTERN FORMATION PROCESS, MASK FORMING INCLUDING RESERVE FILM, PHOTOMASK MANUFACTURING PROCESS AND ELECTRONIC DEVICE MANUFACTURING METHOD
WO2019167725A1 (ja) * 2018-02-28 2019-09-06 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法、樹脂
KR102459638B1 (ko) * 2018-07-06 2022-10-28 후지필름 가부시키가이샤 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막, 패턴 형성 방법, 전자 디바이스의 제조 방법, 수지
JP7186592B2 (ja) 2018-12-04 2022-12-09 東京応化工業株式会社 レジスト組成物、レジストパターン形成方法、及び化合物
JP7238743B2 (ja) * 2018-12-18 2023-03-14 信越化学工業株式会社 レジスト材料及びパターン形成方法
JP7478540B2 (ja) 2019-01-22 2024-05-07 住友化学株式会社 レジスト組成物及びレジストパターンの製造方法
CN113166312B (zh) * 2019-01-28 2022-10-28 富士胶片株式会社 感光化射线性或感放射线性树脂组合物、抗蚀剂膜、图案形成方法及电子器件的制造方法
JPWO2020174767A1 (ja) * 2019-02-28 2021-11-11 富士フイルム株式会社 パターンつき基板の製造方法、回路基板の製造方法、タッチパネルの製造方法、及び積層体
KR102635086B1 (ko) * 2019-03-29 2024-02-08 후지필름 가부시키가이샤 Euv광용 감광성 조성물, 패턴 형성 방법, 전자 디바이스의 제조 방법
CN114008525A (zh) * 2019-05-22 2022-02-01 东京应化工业株式会社 抗蚀剂组合物纯化品的制造方法、抗蚀剂图案形成方法、及抗蚀剂组合物纯化品
KR20230003124A (ko) 2020-05-29 2023-01-05 후지필름 가부시키가이샤 감활성광선성 또는 감방사선성 수지 조성물, 패턴 형성 방법, 레지스트막, 전자 디바이스의 제조 방법, 화합물, 화합물의 제조 방법
WO2021251083A1 (ja) 2020-06-10 2021-12-16 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
EP4166537A4 (en) 2020-06-10 2024-03-13 Fujifilm Corp RESIN COMPOSITION SENSITIVE TO ACTIVE RAY OR RADIATION, RESIST FILM, PATTERN FORMING METHOD, METHOD FOR MANUFACTURING ELECTRONIC DEVICE AND COMPOUND
KR20230124649A (ko) 2021-01-22 2023-08-25 후지필름 가부시키가이샤 패턴 형성 방법, 및 전자 디바이스의 제조 방법
KR20230131889A (ko) 2021-02-09 2023-09-14 후지필름 가부시키가이샤 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막,포지티브형 패턴 형성 방법, 전자 디바이스의 제조 방법
JPWO2022172689A1 (ja) 2021-02-12 2022-08-18
WO2022172602A1 (ja) 2021-02-15 2022-08-18 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
KR20230148360A (ko) 2021-03-29 2023-10-24 후지필름 가부시키가이샤 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막, 패턴 형성 방법, 전자 디바이스의 제조 방법
WO2022210253A1 (ja) 2021-03-31 2022-10-06 富士フイルム株式会社 可逆的付加-開裂連鎖移動重合ポリマーの製造方法
WO2022210254A1 (ja) 2021-03-31 2022-10-06 富士フイルム株式会社 脱チオカルボニルチオ基化ポリマーの製造方法
EP4324822A1 (en) 2021-04-16 2024-02-21 FUJIFILM Corporation Active light-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, method for producing electronic device, and compound
KR20240019274A (ko) 2021-07-14 2024-02-14 후지필름 가부시키가이샤 패턴 형성 방법, 전자 디바이스의 제조 방법, 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막
JPWO2023286763A1 (ja) 2021-07-14 2023-01-19
CN117693716A (zh) 2021-07-14 2024-03-12 富士胶片株式会社 图案形成方法、电子器件的制造方法
IL310843A (en) 2021-08-25 2024-04-01 Fujifilm Corp Chemical fluid and method for forming a pattern

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205811A (ja) * 2012-03-29 2013-10-07 Fujifilm Corp パターン形成方法、パターン形成方法における加熱温度選択方法、感極紫外線性樹脂組成物、レジスト膜、並びに、これらを用いた電子デバイスの製造方法、及び、電子デバイス

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270227A (ja) 1990-03-20 1991-12-02 Mitsubishi Electric Corp 微細パターンの形成方法
JP2002090991A (ja) 2000-09-13 2002-03-27 Fuji Photo Film Co Ltd ポジ型レジスト組成物
JP3963846B2 (ja) 2003-01-30 2007-08-22 東京エレクトロン株式会社 熱的処理方法および熱的処理装置
CN100424822C (zh) 2003-06-06 2008-10-08 东京毅力科创株式会社 基板的处理膜表面粗糙度的改善方法及基板的处理装置
JP2008083384A (ja) 2006-09-27 2008-04-10 Fujifilm Corp ポジ型レジスト組成物及びそれを用いたパターン形成方法
US7998654B2 (en) 2007-03-28 2011-08-16 Fujifilm Corporation Positive resist composition and pattern-forming method
JP4550126B2 (ja) 2008-04-25 2010-09-22 東京エレクトロン株式会社 エッチングマスク形成方法、エッチング方法、および半導体デバイスの製造方法
JP2010175859A (ja) 2009-01-29 2010-08-12 Fujifilm Corp 感活性光線または感放射線性樹脂組成物、およびこれを用いたパターン形成方法
JP5618625B2 (ja) 2010-05-25 2014-11-05 富士フイルム株式会社 パターン形成方法及び感活性光線性又は感放射線性樹脂組成物
JP5802369B2 (ja) 2010-07-29 2015-10-28 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、並びに、それを用いたレジスト膜及びパターン形成方法
KR101744608B1 (ko) * 2011-03-28 2017-06-08 후지필름 가부시키가이샤 감활성 광선성 또는 감방사선성 수지 조성물, 및 이 조성물을 이용한 감활성 광선성 또는 감방사선성 막 및 패턴 형성 방법
JP5056974B1 (ja) 2011-06-01 2012-10-24 Jsr株式会社 パターン形成方法及び現像液
JP2013061648A (ja) 2011-09-09 2013-04-04 Rohm & Haas Electronic Materials Llc フォトレジスト上塗り組成物および電子デバイスを形成する方法
JP5723842B2 (ja) 2011-09-29 2015-05-27 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、それを用いたレジスト膜及びパターン形成方法、半導体デバイスの製造方法及び半導体デバイス、並びに、樹脂の製造方法
JP5818710B2 (ja) 2012-02-10 2015-11-18 東京応化工業株式会社 パターン形成方法
JP5789623B2 (ja) 2012-03-29 2015-10-07 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、並びにそれを用いた感活性光線性又は感放射線性膜及びパターン形成方法
JP6008608B2 (ja) 2012-06-25 2016-10-19 東京エレクトロン株式会社 レジストマスクの処理方法
JP6012289B2 (ja) 2012-06-28 2016-10-25 富士フイルム株式会社 パターン形成方法、感活性光線性又は感放射線性樹脂組成物、レジスト膜、及び電子デバイスの製造方法
JP6297269B2 (ja) * 2012-06-28 2018-03-20 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC ポリマー組成物、このポリマー組成物を含むフォトレジスト、およびこのフォトレジストを含むコーティングされた物品
JP5873826B2 (ja) 2012-07-27 2016-03-01 富士フイルム株式会社 パターン形成方法、及び電子デバイスの製造方法
JP5850873B2 (ja) 2012-07-27 2016-02-03 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、それを用いたレジスト膜、パターン形成方法、及び電子デバイスの製造方法
US10613440B2 (en) 2012-07-30 2020-04-07 Nissan Chemical Industries, Ltd. Silicon-containing EUV resist underlayer film-forming composition containing onium sulfonate
JP5836299B2 (ja) 2012-08-20 2015-12-24 富士フイルム株式会社 パターン形成方法、感電子線性又は感極紫外線性樹脂組成物、及びレジスト膜、並びに、これらを用いた電子デバイスの製造方法
JP5825248B2 (ja) * 2012-12-12 2015-12-02 信越化学工業株式会社 ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP6088827B2 (ja) 2013-01-10 2017-03-01 富士フイルム株式会社 ネガ型レジスト組成物、それを用いたレジスト膜及びパターン形成方法、並びにレジスト膜を備えたマスクブランクス
JP6267533B2 (ja) 2014-02-14 2018-01-24 信越化学工業株式会社 パターン形成方法
JP6163438B2 (ja) * 2014-02-27 2017-07-12 富士フイルム株式会社 パターン形成方法、電子デバイスの製造方法、及び、電子デバイス、並びに、感活性光線性又は感放射線性樹脂組成物、及び、レジスト膜
JP6353681B2 (ja) * 2014-03-31 2018-07-04 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物の製造方法、感活性光線性又は感放射線性膜の製造方法、感活性光線性又は感放射線性膜を備えたマスクブランクスの製造方法、フォトマスクの製造方法、パターン形成方法及び電子デバイスの製造方法
JP2016085382A (ja) 2014-10-27 2016-05-19 Jsr株式会社 レジストパターン形成方法及び感放射線性樹脂組成物
KR102455267B1 (ko) * 2017-04-21 2022-10-17 후지필름 가부시키가이샤 Euv광용 감광성 조성물, 패턴 형성 방법, 전자 디바이스의 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205811A (ja) * 2012-03-29 2013-10-07 Fujifilm Corp パターン形成方法、パターン形成方法における加熱温度選択方法、感極紫外線性樹脂組成物、レジスト膜、並びに、これらを用いた電子デバイスの製造方法、及び、電子デバイス

Also Published As

Publication number Publication date
TWI817945B (zh) 2023-10-11
KR20220063296A (ko) 2022-05-17
CN110537148A (zh) 2019-12-03
TWI828193B (zh) 2024-01-01
TW201843525A (zh) 2018-12-16
JP7002537B2 (ja) 2022-01-20
IL270030A (ja) 2019-12-31
EP3614206B1 (en) 2024-03-13
US20200050106A1 (en) 2020-02-13
IL270030B2 (en) 2023-12-01
JPWO2018193954A1 (ja) 2020-02-20
KR102395705B1 (ko) 2022-05-09
EP3614206A1 (en) 2020-02-26
WO2018193954A1 (ja) 2018-10-25
CN110537148B (zh) 2023-09-15
KR20190124316A (ko) 2019-11-04
TW202238268A (zh) 2022-10-01
KR102455267B1 (ko) 2022-10-17
JP7239661B2 (ja) 2023-03-14
US11604414B2 (en) 2023-03-14
EP3614206A4 (en) 2020-05-13
IL270030B1 (en) 2023-08-01

Similar Documents

Publication Publication Date Title
JP7002537B2 (ja) Euv光用感光性組成物、パターン形成方法、電子デバイスの製造方法
JP6694451B2 (ja) パターン形成方法及び電子デバイスの製造方法
WO2020004306A1 (ja) 感活性光線性又は感放射線性樹脂組成物、パターン形成方法、電子デバイスの製造方法、樹脂
JP7200267B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2019187803A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
KR102404436B1 (ko) 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막, 패턴 형성 방법, 전자 디바이스의 제조 방법
WO2020158366A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
KR102450804B1 (ko) 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막, 패턴 형성 방법, 전자 디바이스의 제조 방법, 수지
US11703758B2 (en) Photosensitive composition for EUV light, pattern forming method, and method for manufacturing electronic device
JP7254917B2 (ja) 感活性光線性又は感放射線性樹脂組成物、パターン形成方法、電子デバイスの製造方法
JP7220229B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2021131655A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び電子デバイスの製造方法
JP6861284B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
KR102374311B1 (ko) 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막, 패턴 형성 방법, 및 전자 디바이스의 제조 방법
WO2022158338A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、電子デバイスの製造方法、化合物、及び樹脂
WO2021065549A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び、電子デバイスの製造方法
WO2021177294A1 (ja) パターン形成方法、電子デバイスの製造方法、感活性光線性又は感放射線性樹脂組成物、レジスト膜
KR102635086B1 (ko) Euv광용 감광성 조성물, 패턴 형성 방법, 전자 디바이스의 제조 방법
JP7039715B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2020261885A1 (ja) 感活性光線性又は感放射線性樹脂組成物、パターン形成方法、レジスト膜、電子デバイスの製造方法
WO2021065548A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び電子デバイスの製造方法
WO2022158326A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び電子デバイスの製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230302

R150 Certificate of patent or registration of utility model

Ref document number: 7239661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150