JP2021155471A - 油性インク組成物及び筆記具 - Google Patents

油性インク組成物及び筆記具 Download PDF

Info

Publication number
JP2021155471A
JP2021155471A JP2020053905A JP2020053905A JP2021155471A JP 2021155471 A JP2021155471 A JP 2021155471A JP 2020053905 A JP2020053905 A JP 2020053905A JP 2020053905 A JP2020053905 A JP 2020053905A JP 2021155471 A JP2021155471 A JP 2021155471A
Authority
JP
Japan
Prior art keywords
cellulose
oil
ink composition
based ink
fine fibrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020053905A
Other languages
English (en)
Inventor
達也 難波
Tatsuya Namba
達也 難波
洋介 後居
Yosuke Goi
洋介 後居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP2020053905A priority Critical patent/JP2021155471A/ja
Publication of JP2021155471A publication Critical patent/JP2021155471A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pens And Brushes (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

【課題】分散性に優れつつ、乾燥性に優れる技術を提供する。【解決手段】油性インク組成物は、微細繊維状セルロースと、有機溶剤と、着色剤と、を含有し、前記微細繊維状セルロースは、(A)数平均繊維径が2nm以上500nm以下であり、(B)平均アスペクト比が10以上1000以下であり、(C)セルロースI型結晶構造を有し、(D)アニオン性官能基を有し、(E)前記(D)記載のアニオン性官能基の一部、または全てに、所定の有機オニウムイオンが結合している。【選択図】なし

Description

本発明は、油性インク組成物及び筆記具に関する。
従来から、分散剤中で微粒子を安定して分散させる目的により、塗料に微細繊維状セルロースを用いることが知られている(例えば、特許文献1)。また、一般に、微細繊維状セルロースは、親水性が高いために、有機溶剤への分散性に劣る。
このため、特許文献1では、有機溶剤を用いるために、微細繊維状セルロースと、ポリエーテルアミンとを含む油性インク組成物が開示されている。
特開2018−44101号公報
一般に、インクは、吐出された後に、速やかに乾燥することが好ましい。しかしながら、特許文献1に記載の油性インク組成物は、分散性に優れるが、乾燥性については改善の余地があった。このため、有機溶剤を用いる油性インク組成物であって、分散性に優れつつ、乾燥性に優れる油性インク組成物の開発が望まれていた。
本発明は、上記の課題を解決するためになされたものであり、以下の形態として実現することができる。
(1)本発明の一形態によれば、微細繊維状セルロースと、有機溶剤と、着色剤と、を含有する油性インク組成物が提供される。この油性インク組成物において、前記微細繊維状セルロースは、以下の(A)から(E)の条件を満たすことを特徴とする。
(A)数平均繊維径が2nm以上500nm以下
(B)平均アスペクト比が10以上1000以下
(C)セルロースI型結晶構造を有する
(D)アニオン性官能基を有する
(E)前記(D)記載のアニオン性官能基の一部、または全てに、下記式(1)で示す有機オニウムイオンが結合している
Figure 2021155471
〔前記式(1)中、Mは窒素原子又はリン原子を示し、R、R、R、Rは、炭素数1以上20以下の直鎖もしくは分岐のアルキル基、アレーン基、又はアリル基を示す。〕
この形態の油性インク組成物によれば、分散性に優れつつ、乾燥性に優れる。
(2)上記形態の油性インク組成物において、前記式(1)中、R、R、R、Rの少なくとも一つは、炭素数が6以上であり、R、R、R、Rの炭素数の和は40以下であってもよい。
この形態の油性インク組成物によれば、分散性に優れつつ、より乾燥性に優れる。
(3)上記形態の油性インク組成物において、前記アニオン性官能基は、カルボキシ基であってもよい。
この形態の油性インク組成物によれば、より分散性に優れつつ、より乾燥性に優れる。
(4)上記形態の油性インク組成物において、前記微細繊維状セルロースの含有量に対する前記着色剤の含有量の比(前記着色剤/前記微細繊維状セルロース)は、1以上400以下であってもよい。
この形態の油性インク組成物によれば、より分散性に優れつつ、より乾燥性に優れる。
(5)上記形態の油性インク組成物において、25℃における粘度が100mPa・s以上であってもよい。
この形態の油性インク組成物によれば、より分散性に優れる。
なお、本発明は、種々の形態で実現することが可能であり、例えば、油性インク組成物を用いた筆記具や、油性インク組成物の製造方法等の態様で実現することができる。
繊維径の測定方法を説明する図。
A.油性インク組成物
本発明の一実施形態である油性インク組成物は、微細繊維状セルロースと、有機溶剤と、着色剤と、を含有する油性インク組成物であって、微細繊維状セルロースは、以下の(A)から(E)の条件を満たすことを特徴とする。本明細書において、「油性インク組成物」とは、水の含有量が1質量%以下のインク組成物を示す。
(A)数平均繊維径が2nm以上500nm以下
(B)平均アスペクト比が10以上1000以下
(C)セルロースI型結晶構造を有する
(D)アニオン性官能基を有する
(E)(D)記載のアニオン性官能基の一部、または全てに、下記式(1)で示す有機オニウムイオンが結合している
Figure 2021155471
〔式(1)中、Mは窒素原子又はリン原子を示し、R、R、R、Rは、炭素数1以上20以下の直鎖もしくは分岐のアルキル基、アレーン基、又はアリル基を示す。〕
本明細書において、上記(1)式に記載の有機オニウムイオンを、単に「有機オニウムイオン」とも呼ぶ。
本実施形態の油性インク組成物は、分散性に優れつつ、かつ、乾燥性に優れる。本明細書において、「乾燥性」とは、吐出後速やかに乾燥する性質を示す。このような効果を奏するメカニズムは明らかではないが、以下の推定メカニズムが考えられる。つまり、微細繊維状セルロースを十分に疎水化することが可能であるため、溶剤中において微細繊維状セルロースが凝集することなく分散可能である結果として、分散性に優れると考えられる。また、上記式(1)で示す有機オニウムイオンの分子量が比較的小さいために粘性によって溶媒を長時間保持するということがないために、乾燥性に優れると考えられる。
[微細繊維状セルロース]
微細繊維状セルロースは、下記の条件を満たすものである。
<数平均繊維径>
上記微細繊維状セルロースの数平均繊維径は2nm以上500nm以下であるが、好ましくは2nm以上150nm以下であり、より好ましくは2nm以上100nm以下であり、特に好ましくは3nm以上80nm以下である。上記数平均繊維径が2nm未満であると、微細繊維状セルロースが溶解することにより、溶剤中で微細繊維状セルロースの3次元的ネットワークが形成されなくなり、着色剤を分散安定化できない虞がある。一方、上記数平均繊維径が500nmを超える場合も微細繊維状セルロースが沈降する虞がある。また最大繊維径は、微細繊維状セルロースの分散性の点で、1000nm以下であることが好ましく、特に好ましくは500nm以下である。
上記微細繊維状セルロースの数平均繊維径および数平均繊維長は、例えば、以下の方法により測定することができる。すなわち、固形分率で0.05〜0.1質量%の微細セルロースの水分散体を調製した後、その分散体を、親水化処理済みのカーボン膜被覆グリッド上にキャストして、透過型電子顕微鏡(TEM)の観察用試料とする。
図1は、繊維径の測定方法を説明する図である。繊維径は、1本の繊維Fの長手方向に直交する線と繊維の外周との2つの交点間の距離を測定することで求めることができる。つまり、図1で示す点P1と点P2との間の距離を測定することで求めることができる。繊維長は、繊維の全体が観察画像中に写っている繊維の長さを測定して求める。繊維の長さを測定する際、繊維に折れ曲がりがある場合は、例えば、折れ曲がり点が1点であれば、一端から折れ曲がり点までの長さと、この折れ曲がり点から他端までの長さの合計値を繊維長とする。なお、繊維径及び繊維長は少なくとも25本以上の繊維を観察する。また、大きな繊維径の繊維を含む場合には、ガラス上へキャストした表面の走査型電子顕微鏡(SEM)像を観察してもよい。そして、構成する繊維の大きさに応じて5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行ってもよい。このようにして得られた繊維径及び繊維長のデータにより、数平均繊維長および数平均繊維径を算出する。
<平均アスペクト比>
上記微細繊維状セルロースの平均アスペクト比は10以上1000以下であるが、好ま
しくは100以上、より好ましくは200以上である。平均アスペクト比が10未満であ
ると表面電荷が少なくなり、着色剤を分散安定化できないという問題が生じる。
上記微細繊維状セルロースの平均アスペクト比は、先に述べた方法に従って得られた数平均繊維径および数平均繊維長を用いて、下記の式により算出される。
平均アスペクト比=数平均繊維長[nm]/数平均繊維径[nm]
<セルロースI型結晶構造>
上記微細繊維状セルロースは、I型結晶構造を有する天然由来のセルロース原料を微細化した繊維である。すなわち、天然セルロースの生合成の過程においては、まず、ほぼ例外なくミクロフィブリルと呼ばれるナノファイバーが形成されており、ミクロフィブリルが多束化することによって高次な固体構造を構成する。
上記微細繊維状セルロースを構成するセルロースがI型結晶構造を有することは、例えば、広角X線回折像測定により得られる回折プロファイルにおいて、2シータ=14〜17°付近と、2シータ=22〜23°付近の2つの位置に典型的なピークをもつことから同定することができる。
<アニオン性官能基>
上記微細繊維状セルロースはアニオン性官能基を有する。本明細書において、アニオン性官能基とは、pH7の水中において半数以上の水素イオンが乖離する官能基を示す。アニオン性官能基としては、特に制限されないが、例えば、カルボキシ基、リン酸基、硫酸基等が挙げられる。アニオン性官能基としては、微細繊維状セルロースへのアニオン性官能基の導入が容易であるため、カルボキシ基が好ましい。
微細繊維状セルロースにカルボキシ基を導入する方法としては、特に制限されないが、例えば、(i)カルボキシ基を有する化合物、カルボキシ基を有する化合物の酸無水物、及びそれらの誘導体からなる群から選ばれる少なくとも1種を、微細繊維状セルロースの水酸基に反応させる方法や、(ii)微細繊維状セルロースの水酸基を酸化する事によってカルボキシ基に変換する方法等が挙げられる。
上記カルボキシ基を有する化合物としては、特に限定されないが、例えば、ハロゲン化酢酸が挙げられる。ハロゲン化酢酸としては、例えば、クロロ酢酸、ブロモ酢酸、ヨード酢酸等が挙げられる。
上記カルボキシ基を有する化合物の酸無水物としては、特に限定されないが、例えば、無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。
上記カルボキシ基を有する化合物の誘導体としては、特に限定されないが、例えば、カルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体等が挙げられる。
カルボキシ基を有する化合物の酸無水物のイミド化物としては、特に限定されないが、例えば、マレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。
カルボキシ基を有する化合物の酸無水物の誘導体としては、特に限定されないが、例えば、カルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が置換基(例えば、アルキル基、フェニル基等)で置換されたものが挙げられる。カルボキシ基を有する化合物の酸無水物としては、特に限定されないが、例えば、ジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等が挙げられる。
微細繊維状セルロースの水酸基を酸化する方法としては、特に限定されないが、例えば、N−オキシル化合物を酸化触媒とし、共酸化剤を作用させる方法が挙げられる。
微細繊維状セルロースにカルボキシ基を導入する方法としては、繊維表面の水酸基の選択性に優れており、反応条件も穏やかであることから、セルロースの水酸基を酸化する方法が好ましい。以下、水酸基の酸化によりカルボキシ基が導入された微細繊維状セルロースを、「酸化セルロース」とも呼ぶ。
また、微細繊維状セルロースにリン酸基を導入する方法としては、特に限定されないが、例えば、以下の方法が挙げられる。すなわち、(i)乾燥した、あるいは湿潤状態のセルロース繊維原料に、リン酸またはリン酸誘導体の粉末や水溶液を混合する方法、(ii)セルロース繊維原料の分散液に、リン酸またはリン酸誘導体の水溶液を添加する方法等が挙げられる。これら方法においては、一般に、リン酸またはリン酸誘導体の粉末や水溶液を混合または添加した後に、脱水処理、加熱処理等を行う。このようにすることにより、セルロースを構成するグルコースユニットの水酸基にリン酸基を含む化合物またはその塩が脱水反応することによってリン酸エステルが形成されることにより、セルロースを構成するグルコースユニットの水酸基にリン酸基又はその塩が導入される。ここで、リン酸またはリン酸誘導体としては、特に限定されないが、例えば、リン原子を含有するオキソ酸、ポリオキソ酸あるいはそれらの誘導体から選ばれる少なくとも1種の化合物が挙げられる。
微細繊維状セルロースの含有量に対するアニオン性官能基の含有量(アニオン性官能基の含有量[mmol]/微細繊維状セルロースの含有量[g])は、特に限定されないが、微細繊維状セルロースの分散性に優れる点から、1.0mmol/g以上3.0mmol/g以下であることが好ましく、0.5mmol/g以上2.5mmol/g以下であることがより好ましく、さらに好ましくは1.5mmol/g以上2.0mmol/g以下である。
アニオン性官能基量は、以下のように測定できる。
例えば、アニオン性官能基がカルボキシ基の場合における測定法を以下に示す。すなわち、乾燥質量を精秤した微細繊維状セルロースから0.5〜1質量%スラリーを60ml調製した後、0.1Mの塩酸水溶液によってpHを約2.5とする。その後、0.05Mの水酸化ナトリウム水溶液を滴下することにより、電気伝導度測定を行う。測定はpHが約11になるまで続ける。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(V[ml])から、下記の式に従いカルボキシ基量Cを求めることができる。
C[mmol/g]=V[ml]×(0.05/セルロース質量[g])
アニオン性官能基がカルボキシメチル基の場合における測定法を以下に示す。すなわち、乾燥質量を精秤した微細繊維状セルロースから0.6質量%スラリーに調製した後、0.1M塩酸水溶液を加えてpH2.4とする。その後、0.05Nの水酸化ナトリウム水溶液を滴下することによりpHが11になるまで電気伝導度を測定する。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量から、上記の数式に従いカルボキシ基量Cを求める。その後、下記の式に従い、カルボキシメチル基量Cmを求めることができる。
Cm[mmol/g]=(162×C)/(1−58×C)×1000
[有機オニウムイオン]
本実施形態の有機オニウムイオンは、上述の式(1)に示されるオニウムイオンである。有機オニウムイオンとしては、特に限定されない。
アルキル基を含む有機オニウムイオンとしては、例えば、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラブチルアンモニウムイオン、テトラヘキシルアンモニウムイオン、テトラオクチルアンモニウムイオン、テトラデシルアンモニウムイオン、テトラドデシルアンモニウムイオン等が挙げられる。また、アルキル基を含む有機オニウムイオンとしては、例えば、トリメチルドデシルアンモニウムイオン、トリメチルテトラデシルアンモニウムイオン、トリメチルオクダデシルアンモニウムイオン、トリブチルドデシルアンモニウムイオン、トリオクチルメチルアンモニウムアンモニウムイオン等が挙げられる。また、アルキル基を含む有機オニウムイオンとしては、例えば、オクチルジメチルエチルアンモニウムイオン、ドデシルジメチルエチルアンモニウムイオン、ジデシルジメチルアンモニウムイオン等が挙げられる。また、アルキル基を含む有機オニウムイオンとしては、例えば、テトラエチルホスホニウムイオン、テトラブチルホスホニウムイオン、テトラオクチルホスホニウムイオン等が挙げられる。また、アルキル基を含む有機オニウムイオンとしては、例えば、トリブチルメチルホスホニウムイオン、トリブチルドデシルホスホニウムイオン、トリブチルテトラデシルホスホニウムイオン、トリブチルヘキサデシルホスホニウムイオン、トリヘキシルテトラデシルホスホニウムイオン等が挙げられる。
アレーン基を含む有機オニウムイオンとしては、例えば、ベンジルトリメチルアンモニウムイオン、ベンジルトリブチルアンモニウムイオン、ベンジルジメチルドデシルアンモニウムイオン、ベンジルジメチルテトラデシルアンモニウムイオン、ベンジルジメチルオクタデシルアンモニウムイオン等が挙げられる。また、アレーン基を含む有機オニウムイオンとしては、例えば、ベンジルジメチルフェニルアンモニウムイオン、トリエチルフェニルアンモニウムイオン、ジメチルフェニルアンモニウムイオン等が挙げられる。また、アレーン基を含む有機オニウムイオンとしては、例えば、テトラフェニルホスホニウムイオン、ベンジルトリフェニルホスホニウムイオン、メチルトリフェニルホスホニウムイオン、エチルトリフェニルホスホニウムイオン、ブチルトリフェニルホスホニウムイオン、テトラデシルトリフェニルホスホニウムイオン等が挙げられる。
アリル基を含む有機オニウムイオンとしては、例えば、ジアリルジメチルアンモニウムイオン、アリルトリフェニルホスホニウムイオン等が挙げられる。
有機オニウムイオンにおいて、より優れた乾燥性を実現する観点から、R、R、R、Rの少なくとも一つは、炭素数が6以上であることが好ましい。また、有機オニウムイオンは、より優れた乾燥性を実現する観点から、R、R、R、Rは、全て、炭素数が6以上であることが好ましい。また、有機オニウムイオンは、R、R、R、Rは、全て、炭素数が7以上10以下のアルキル基であることがさらに好ましい。具体的には、有機オニウムイオンは、テトラオクチルアンモニウムイオンと、テトラオクチルホスホニウムイオンとの少なくとも一方を含むことが好ましい。また、より優れた乾燥性を実現する観点から、R、R、R、Rの炭素数の和は、50以下であることが好ましく、45以下であることがより好ましく、40以下であることがさらに好ましい。
また、微細繊維状セルロース1gあたりの有機オニウムイオンの配合量については、特に限定されないが、微細繊維状セルロース1gに対して、有機オニウムイオンが、1.0mmol以上が好ましく、1.5mmol以上がより好ましく、1.8mmol以上がさらに好ましい。このようにすることにより、微細繊維状セルロースが溶剤中において凝集することが抑制できるため、保存安定性が向上する。また、微細繊維状セルロース1gに対して、有機オニウムイオンが、3.0mmol以下が好ましく、2.5mmol以下がより好ましく、2.2mmol以下がさらに好ましい。このようにすることにより、微細繊維状セルロースの粘性による溶媒の保持力を抑制できるため、高い乾燥性を実現することができる。
[有機溶剤]
本実施形態の油性インク組成物は、有機溶剤を含む。本明細書において、有機溶剤とは、水以外の液体であって、25℃1atmにおいて液体である有機化合物を示す。有機溶剤としては、後述する微細繊維状セルロースの製造工程で使用する有機溶剤を用いてもよい。有機溶剤は、特に限定されないが、例えば、メタノール、エタノール、イソプロピルアルコール、2−ブタノール、1−ペンタノール、オクチルアルコール、デシルアルコール、ラウリルアルコール、ミリスチルアルコール、ステアリルアルコール、グリセリン、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、2-メチル−1−プロパノールグリセリン等のアルコール類が挙げられる。また、有機溶剤としては、例えば、酢酸、プロピオン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン、オレイン酸、リノレン酸、乳酸、安息香酸、コハク酸、マレイン酸、フマル酸等のカルボン酸類、ヘキサン、ヘプタン、オクタン、デカン、流動パラフィン等の炭化水素類等が挙げられる。また、有機溶剤としては、例えば、トルエン、キシレン、エチルベンゼン、ナフタレン等の芳香族炭化水素類、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトアニリド等のアミド類、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ベンゾフェノン等のケトン類、塩化メチレン、クロロホルム、四塩化炭素、トリクロロエチレン、テトラクロロエチレン等のハロゲン類等が挙げられる。また、有機溶剤としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等のカーボネート類、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酪酸メチル、アジピン酸ジ2-エチルヘキシル、アジピン酸ジイソノニル、アジピン酸ジイソデシル、セバシン酸ジ2-エチルヘキシル、アゼライン酸ジ2-エチルヘキシル、4−シクロヘキセン−1,2−ジカルボン酸ビス(2−エチルヘキシル)、リン酸トリクレジル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル等のエステル類、ポリエチレングリコール、ポリテトラメチレンオキシド、ポリオキシエチレンアルキルエーテル等のポリエーテル類、ポリジメチルシロキサン等のシリコーンオイル類等が挙げられる。また、有機溶剤としては、例えば、ジメチルスルホキシド、アセトニトリル、プロピオニトリル、エステル油、軽油、灯油、原油、サラダ油、大豆油、ヒマシ油、トリグリセライド、ポリイソプレン、フッ素変性油等があげられる。これらは単独でもしくは二種以上併せて用いられる。また、有機溶剤の代わりに、反応性の官能基を含む有機性媒体でもよい。有機性媒体としては、例えば、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸n―へキシル、メタクリル酸n−へキシル、アクリル酸2−エチルヘキシル、メタアクリル酸2−エチルヘキシル、ノナンジオールジアクリレート、フェノキシエチルアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、フェニルグリシジルエーテルアクリレート、ヘキサメチレンジイソシアネートウレタンプレポリマー、フェニルグリシジルエーテルアクリレートトルエンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートトルエンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートイソホロンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、クロロスチレン、メトキシスチレン、ブトキシスチレン、ビニル安息香酸等が挙げられる。有機溶剤は、単独で用いてもよく、2種以上を併用してもよい。
[着色剤]
本実施形態の油性インク組成物は、着色剤を含む。着色剤としては、顔料と、染料とを含む。本実施形態の油性インク組成物としては、着色剤として、顔料を含むことが好ましい。顔料としては、特に限定されないが、例えば、無機顔料、有機顔料等があげられる。顔料は、単独で用いてもよく、2種以上を併用してもよい。
上記無機顔料としては、特に限定されないが、例えば、カーボンブラック、酸化チタン、亜鉛華、ベンガラ、酸化クロム、鉄黒、コバルトブルー、アルミナホワイト、酸化鉄黄、ビリジアン、硫化亜鉛、カドミウムイエロー、朱、ガドミウムレッド、黄鉛、モリブデードオレンジ、ジンククロメート、ストロンチウムクロメート、ホワイトカーボン、クレー、タルク、群青、バライト粉、鉛白、紺青、マンガンバイオレット、アルミニウム粉、真鍮粉等が挙げられる。
上記有機顔料としては、特に限定されないが、例えば、アゾレーキ、不溶性アゾ顔料、キレートアゾ顔料、フタロシアニン顔料、ペリレン及びペリレン顔料、アントラキノン顔料、キナクリドン顔料、染料レーキニトロ顔料、ニトロソ顔料等が挙げられる。
染料としては、特に限定されないが、例えば、酸性染料、反応染料、塩基性染料、分散性染料、直接染料、蛍光染料等が挙げられる。具体的には、染料としては、例えば、C.I.ベーシックイエロー35、C.I.ベーシックイエロー40、C.I.アシッドオレンジ28、C.I.アシッドブルー92;エオシン、フロキシン、ウォーターイエロー#6−C、アシッドレッド、ウォーターブルー#105、ブリリアントブルーFCF、ニグロシンNB;ダイレクトブラック154、ダイレクトスカイブルー5B、バイオレットBB、ローダミン、メチルバイオレット等が挙げられる。染料は、単独で用いてもよく、2種以上を併用してもよい。
油性インク組成物において、微細繊維状セルロースは、着色剤の均一な分散性と保存安定性の点から、0.05質量%以上3.0質量%以下が好ましく、0.05質量%以上1.0質量%以下がより好ましい。
本発明における油性インク組成物において、着色剤の含有量は、着色剤の均一な分散性と保存安定性の点から、1.0質量%以上30質量%以下が好ましく、1.0質量%以上20質量%以下がより好ましい。
本発明における油性インク組成物において、微細繊維状セルロースの含有量に対する着色剤の含有量の比(着色剤/微細繊維状セルロース)は、着色剤の均一な分散性と高い乾燥性を有する点から、1以上400以下が好ましく、より好ましくは10以上100以下の範囲である。
本発明における油性インク組成物において、着色剤の均一な分散性と高い乾燥性を有する点から、25℃における粘度は、100mPa・s以上であることが好ましく、300mPa・s以上であることがより好ましく、500mPa・s以上であることがさらに好ましい。一方、油性インク組成物の25℃における粘度は、10,000mPa・s以下であることが好ましく、8,000mPa・s以下であることがより好ましく、5,000mPa・s以下であることがさらに好ましい。本明細書において、粘度は、BM粘度計(BROOKFIELD社製)を用いて、ローターNo.3、30rpm、180秒で測定した値である。
[その他の添加剤]
本実施形態の油性インク組成物は、必要に応じて、本発明の効果を妨げない範囲で、任意成分を含んでもよい。
前記任意成分としては、特に限定されないが、例えば、ラメ剤、パール剤、防腐剤、香料、可塑剤、消泡剤、充填剤、酸化防止剤、紫外線吸収剤、硬化剤、触媒、溶剤、界面活性剤、難燃剤、帯電防止剤、熱安定剤等が挙げられる。また、前記任意成分としては、例えば、着色剤の分散、皮張り防止、レベリング、乾燥促進等の目的で添加される添加剤が挙げられる。
本実施形態の油性インク組成物は、例えば、油性インクに用いることができる。具体的には、油性インク組成物は、例えば、インクジェット用インクや、印刷用インク、筆記具用インク等の材料として好適に用いることができる。
[微細繊維状セルロースの製造方法]
本実施形態の微細繊維状セルロースの製造方法は、特に限定されないが、下記工程(1)〜(4)を有する製造方法によれば、より効率的に製造できるため好ましい。
工程(1):セルロースI型結晶構造を有するセルロース繊維を水に分散させた後、そのセルロース繊維の水酸基を、カルボキシ基を有する置換基に変換する工程
工程(2):上記セルロース繊維の分散媒である水を有機溶剤に置換する工程
工程(3):上記置換後のセルロース繊維に有機オニウムイオンを添加する工程
工程(4):上記有機オニウムイオンが結合したセルロース繊維を上記有機溶媒中でナノ解繊する工程
<工程(1)>
工程(1)は、セルロースI型結晶構造を有するセルロースの水酸基を、酸化等によりカルボキシ基を有する置換基に変換させる工程である。ここで、カルボキシ基を有する置換基としては例えば、カルボキシ基、カルボキシ塩基、カルボキシアルキル基等が挙げられる。
セルロースI型結晶構造を有するセルロースとしては、一般に、天然セルロースが用いられる。ここで、天然セルロースとは、植物,動物,バクテリア産生ゲル等のセルロースの生合成系から単離した精製セルロースを意味する。天然セルロースとしては、より具体的に、針葉樹系パルプ、広葉樹系パルプ、コットンリンター,コットンリント等の綿系パルプ、麦わらパルプ,バガスパルプ等の非木材系パルプ、バクテリアセルロース(BC)、ホヤから単離されるセルロース、海草から単離されるセルロース等が挙げられる。天然セルロースのなかでも、針葉樹系パルプ、広葉樹系パルプ、コットンリンター、コットンリント等の綿系パルプ、麦わらパルプ,バガスパルプ等の非木材系パルプが好ましい。上記天然セルロースは、叩解等の表面積を高める処理を施すと、反応効率を高めることができ、生産性を高めることができるため好ましい。
上記セルロース繊維表面の水酸基がカルボキシ基を有する置換基に変換されたセルロースとしては、例えば、酸化セルロース、カルボキシメチルセルロース、多価カルボキシメチルセルロース、及び、それら塩等が挙げられる。これらのなかでも、繊維表面の水酸基の選択性に優れており、反応条件も穏やかである、N−オキシル化合物を酸化剤として用いた酸化セルロースが好ましい。以下において、N−オキシル化合物を酸化剤として用いた酸化セルロースを得る方法について、詳述する。
(酸化処理工程)
上記酸化セルロースは上記天然セルロースと、N−オキシル化合物と、共酸化剤の存在下で酸化処理をすることにより、カルボキシ基を含有するセルロース繊維が得られる。
上記酸化反応におけるセルロースの分散媒体は水であり、反応水溶液中のセルロース濃度は、セルロースの充分な拡散が可能な濃度であれば任意である。一般に、反応水溶液の約5質量%以下であるが、機械的撹拌力の強い装置を使用することにより反応濃度を上げることができる。
上記N−オキシル化合物としては、例えば、一般に酸化触媒として用いられるニトロキシラジカルを有する化合物があげられる。上記N−オキシル化合物は、水溶性の化合物が好ましく、なかでもピペリジンニトロキシオキシラジカルがより好ましく、2,2,6,6−テトラメチルピペリジノオキシラジカル、4−アセトアミド−2,2,6,6−テトラメチルピペリジノオキシラジカルが特に好ましい。上記N−オキシル化合物の添加は、触媒量と同等量を例示でき、好ましくは0.1〜4mmol/l、より好ましくは0.2〜2mmol/lの範囲で反応水溶液に添加する。
上記共酸化剤とは、直接的にセルロースの水酸基を酸化する物質ではなく、酸化触媒として用いられるN−オキシル化合物を酸化する物質のことである。例えば、次亜ハロゲン酸またはその塩、亜ハロゲン酸またはその塩、過ハロゲン酸またはその塩、過酸化水素、過有機酸等が挙げられる。これらは単独で用いてもよく、二種を併用してもよい。これらのなかでも、次亜塩素酸ナトリウム、次亜臭素酸ナトリウム等のアルカリ金属次亜ハロゲン酸塩が好ましい。そして、上記次亜塩素酸ナトリウムを使用する場合は、臭化ナトリウム等の臭化アルカリ金属の存在下で反応を進めることが、反応速度の点において好ましい。上記臭化アルカリ金属の添加量は、上記N−オキシル化合物に対して約1〜40倍モル量、好ましくは約10〜20倍モル量である。
上記反応水溶液のpHは約8〜11の範囲で維持されることが好ましい。水溶液の温度は約4〜40℃において任意であるが、反応は室温(25℃)で行うことが可能であり、特に温度の制御は必要としない。
一般に、目的とするカルボキシ基量等を得るために、酸化の程度を共酸化剤の添加量と反応時間により制御する。
(還元処理工程)
上記酸化処理後のセルロース繊維は、還元剤により還元させることが好ましい。これにより、アルデヒド基およびケトン基の一部ないし全部が還元され、水酸基に戻る。なお、カルボキシ基は還元されない。そして、上記還元による、上記酸化セルロースのカルボニル基(アルデヒド基とケトン基)の合計含量は、0.3mmol/g以下とすることが好ましく、特に好ましくは0.1mmol/g以下である。これにより、微細繊維状セルロースの分子量低下が抑制され、溶剤中での増粘効果を長期間維持することができる。ここで、カルボニル基(アルデヒド基とケトン基)の合計含量は、後述するセミカルバジド法によって算出される。なお、カルボニル基を0.5mmol/g以下とすることにより、長期保存による凝集物の発生を抑制でき、粘度が時間経過と共に著しく低下することを抑制できる。なお、上記還元反応に使用する還元剤としては、一般的なものを使用することが可能であるが、好ましくは、LiBH、NaBHCN、NaBHが挙げられる。これらのなかでも、NaBHは、コスト及び利用可能性という観点から特に好ましい。
カルボキシ基を有する置換基に変換されたセルロースを還元剤の量は、基準として、0.1〜20質量%が好ましく、特に好ましくは3〜10質量%である。反応条件は室温(25℃)または室温より若干高い温度で、10分〜10時間、好ましくは30分〜2時間行なわれる。
セミカルバジド法による、カルボニル基(アルデヒド基とケトン基)の合計含量の測定は、例えば、次のようにして行われる。すなわち、まず、乾燥させた試料に、リン酸緩衝液によりpH=5に調整したセミカルバジド塩酸塩3g/l水溶液を正確に50ml加えた後、密栓し、その後、二日間振とうする。ついで、この溶液10mlを正確に100mlビーカーに採取した後、5N硫酸を25ml、0.05Nヨウ素酸カリウム水溶液5mlを加え、その後、10分間撹拌する。そして、5質量%ヨウ化カリウム水溶液10mlを加えた後、直ちに自動滴定装置を用いて、0.1Nチオ硫酸ナトリウム溶液にて滴定する。その滴定量等から、下記の式に従い、試料中のカルボニル基量を求めることができる。なお、セミカルバジドは、アルデヒド基やケトン基と反応してシッフ塩基(イミン)を形成するが、カルボキシ基とは反応しないことから、上記測定により、カルボニル基量のみを定量できると考えられる。
カルボニル基量[mmol/g]=(D−B)×f×(0.125/w)
D:サンプルの滴定量[ml]
B:空試験の滴定量[ml]
f:0.1Nチオ硫酸ナトリウム溶液のファクター
w:試料量[g]
<工程(2)>
工程(2)として、まず、上記処理後のセルロース繊維を酸で洗浄することにより、工程(1)で導入したカルボキシ基を酸型にする。その後、適宜、ろ過と水洗とを繰り返すことにより精製した後、遠心分離機等により固液分離を行う。その後、有機溶剤によるセルロースの洗浄を繰り返し行った後、水から有機溶剤へと溶媒置換を行う。
(酸)
上記酸は、セルロース繊維水分散液を酸性に維持するものであり、酸の種類は特に限定されない。酸としては、例えば、塩酸、硝酸、硫酸、リン酸、酢酸、過酸化水素等の無機酸、クエン酸、リンゴ酸、乳酸、アジピン酸、セバシン酸、セバシン酸ソーダ、ステアリン酸、マレイン酸、コハク酸、酒石酸、フマル酸、グルコン酸等の有機酸等が挙げられる。酸によるセルロース繊維の変質や損傷を回避でき、かつ、廃液処理が容易であるため、酸としては、塩酸を用いることが好ましい。
<工程(3)>
工程(3)は、上記分散媒置換後の酸化セルロースに対し、上述の式(1)で示す有機オニウムイオンを添加する工程である。これにより、上記酸化セルロースのカルボキシ基に、上記式(1)に示される有機オニウムイオンが結合し、セルロースの親油化が行われる。なお、上記反応は、有機溶媒中で行われる。
<工程(4)>
工程(4)は、上記親油化後のセルロース繊維を有機溶剤中でナノ解繊する工程である。上記ナノ解繊に使用する分散機としては、例えば、高速回転下でのホモミキサー、高圧ホモジナイザー、超高圧ホモジナイザー、超音波分散処理、ビーター、ディスク型レファイナー、コニカル型レファイナー、ダブルディスク型レファイナー、グラインダー等が挙げられる。これらの強力な叩解能力がある装置を使用することにより、より微細化することが可能となるため、より効率的かつ高度なダウンサイジングが可能となる。なお、上記分散機としては、例えば、スクリュー型ミキサー、パドルミキサー、ディスパー型ミキサー、タービン型ミキサー等を用いてもよい。
以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、例中、「%」とあるのは、特に限定のない限り質量基準を意味する。
まず、実施例および比較例の作製に先立ち、実施例用のセルロース繊維A1〜A4および比較例用のセルロース繊維A5,A6を、以下の製造例1〜6に従って調製した。
〔製造例1:セルロース繊維A1(実施例用)の調製〕
針葉樹パルプ2gに、水150ml、臭化ナトリウム0.25g、TEMPO(2,2,6,6−テトラメチルピペリジノオキシラジカル)0.025gを加えた後、充分撹拌して分散させた。その後、13%次亜塩素酸ナトリウム水溶液を、針葉樹パルプ1.0gに対して次亜塩素酸ナトリウム量が5.2mmol/gとなるように加えることにより、反応を開始した。反応の進行に伴いpHが低下するため、pHを10〜11に保持するように0.5N水酸化ナトリウム水溶液を滴下しながら、pHの変化が見られなくなるまで反応させた。この反応時間は120分だった。反応終了後、0.1N塩酸を添加することにより中和した後、遠心分離機で固液分離し、その後、純水を加えることにより、固形分濃度4%に調整した。その後、24%水酸化ナトリウム水溶液にてスラリーのpHを10に調整した。スラリーの温度を30℃とした後、水素化ホウ素ナトリウムをセルロース繊維に対して0.2mmol/g加えることによって、2時間反応させることにより、還元処理した。反応後、0.1N塩酸を添加することによりpHを2以下に調整した後、ろ過と水洗とを繰り返して精製することにより、セルロース繊維A1を得た。
〔製造例2:セルロース繊維A2(実施例用)の調製〕
次亜塩素酸ナトリウム水溶液の添加量を、針葉樹パルプ1.0gに対して12.0mmol/gとした以外は、セルロース繊維A1の調製法と同様の方法にて、セルロース繊維A2を得た。
〔製造例3:セルロース繊維A3(実施例用)の調製〕
イソプロパノール(IPA)435gと水65gと水酸化ナトリウム9.9gとの混合液中に、針葉樹パルプ100gを入れた後、30℃で1時間撹拌した。このスラリーに50%モノクロル酢酸のIPA溶液23.0gを加えた後、70℃まで昇温した後、1.5時間反応させた。得られた反応物を80%メタノールで洗浄し、その後、メタノールで置換した後、乾燥させることによって、セルロース繊維A3を得た。
〔製造例4:セルロース繊維A4(実施例用)の調製〕
尿素20g、リン酸二水素ナトリウム二水和物12g、リン酸水素二ナトリウム8gを20gの水に溶解させることにより、リン酸化剤を作製した。その後、家庭用ミキサーで粉砕した針葉樹パルプ(NBKP)20gを、リン酸化剤にニーダーで攪拌しながらスプレー噴霧することにより、リン酸化剤含浸パルプを得た。次いで、リン酸化剤含浸パルプを140℃に加熱したダンパー付きの送風乾燥機内で60分間、加熱処理することにより、リン酸化パルプを得た。得られたリン酸化パルプに水を加えて固形分濃度2%とした後、攪拌混合して均一に分散させた後、濾過と脱水との操作を2回繰り返した。次いで、得られた回収パルプに水を加えることにより、固形分濃度2%とした。その後、攪拌しながら、1N水酸化ナトリウム水溶液を少しずつ添加することにより、pH12〜13のパルプスラリーを得た。続いて、このパルプスラリーを濾過後、脱水した後、更に水を加えて濾過と脱水との操作を2回繰り返した。その後、メタノールで置換後に乾燥させることにより、セルロース繊維A4を得た。
〔製造例5:セルロース繊維A5(比較例用)の調製〕
針葉樹漂白クラフトパルプ(NBKP)50gを水4,950gに分散させることにより、パルプ濃度2%の分散液を調製した。この分散液をセレンディピターMKCA6−3(増幸産業社製)で30回処理することにより、セルロース繊維A5を得た。
〔製造例6:セルロース繊維A6(比較例用)の調製〕
原料の針葉樹パルプに代えて再生セルロースを使用するとともに、次亜塩素酸ナトリウム水溶液の添加量を、再生セルロース1.0gに対して27.0mmol/gとした以外は、セルロース繊維A1の調製法と同様の方法にて、セルロース繊維A6を調製した。
上記セルロース繊維を用いて、下記評価方法に従い、各特性の評価を行った。
<結晶構造>
X線回折装置(リガク社製、RINT−Ultima3)を用いて、セルロース繊維の回折プロファイルを測定した。2シータ=14〜17°付近と、2シータ=22〜23°付近の2つの位置に典型的なピークが見られる場合は結晶構造(I型結晶構造)が「あり」と評価し、これらのピークの少なくとも一方が見られない場合は「なし」と評価した。
<カルボキシ基量の測定>
上記セルロース繊維0.25gを水に分散させたセルロース水分散体60mlを調製した後、0.1Nの塩酸水溶液によってpHを約2.5とした。その後、0.05Mの水酸化ナトリウム水溶液を滴下することにより、電気伝導度測定を行った。測定は、pHが11になるまで続けた。電気伝導度の変化が緩やかな弱酸の中和段階において、消費された水酸化ナトリウム量(V)を用いて、下記式に基づいてカルボキシ基量を求めた。
カルボキシ基量[mmol/g]=V[ml]×(0.05/セルロース質量[g])
<カルボキシメチル基量の測定>
上記セルロース繊維を0.6質量%スラリーに調製した後、0.1M塩酸水溶液を加えてpH2.4とした。その後、0.05Nの水酸化ナトリウム水溶液を滴下することにより、電気伝導度測定を行った。測定は、pHが11になるまで続けた。電気伝導度の変化が緩やかな弱酸の中和段階において、消費された水酸化ナトリウム量からカルボキシ基量を測定した後、カルボキシメチル基量は、下記式に基づいて算出することが出来る。
カルボキシメチル基量[mmol/g]=(162×C)/(1−58×C)×1000
C:カルボキシ基量[mmol/g]
<リン酸基量の測定>
上記セルロース繊維をイオン交換水で固形分濃度0.2質量%となるように希釈した後、イオン交換樹脂による処理を行った後、アルカリを用いた滴定によってリン酸基量を測定した。イオン交換樹脂による処理では、0.2%微細セルロース繊維含有スラリーに体積あたり1/10の強酸性イオン交換樹脂(オルガノ社製、アンバージェット1024)を加えた後、1時間振とう処理を行った。その後、この懸濁液を目開き90μmのメッシュ上に注ぐことにより、樹脂とスラリーとを分離した。アルカリを用いた滴定では、イオン交換後の微細セルロース繊維水分散体に、0.1Nの水酸化ナトリウム水溶液を加えながら、水分散体が示す電気伝導度の値の変化を計測した。すなわち、電気伝導度の値が最も小さくなるまでに加えたアルカリ量[mmol]を、滴定対象スラリー中の固形分[g]で除した値を、リン酸基量[mmol/g]とした。
<カルボニル基量の測定>
上記セルロース繊維を約0.2g精秤し、これに、リン酸緩衝液によりpH=5に調整したセミカルバジド塩酸塩3g/l水溶液を正確に50ml加え、密栓し、二日間振とうした。つぎに、この溶液10mlを正確に100mlビーカーに採取し、5N硫酸25ml、0.05Nヨウ素酸カリウム水溶液5mlを加え、10分間撹拌した。その後、5質量%ヨウ化カリウム水溶液10mlを加え、直ちに自動滴定装置を用いて、0.1Nチオ硫酸ナトリウム溶液にて滴定し、その滴定量等から、下記式に従い、試料中のカルボニル基量(アルデヒド基とケトン基との合計含量)を求めた。
カルボニル基量[mmol/g]=(D−B)×f×(0.125/w)
D:サンプルの滴定量[ml]
B:空試験の滴定量[ml]
f:0.1Nチオ硫酸ナトリウム溶液のファクター
w:試料量[g]
上記複数のセルロース繊維の評価結果を以下に示す。
Figure 2021155471
〔実施例1〕
(修飾剤の調製)
テトラオクチルアンモニウムブロマイド(東京化成社製)を0.1Nになるようにエタノールへ溶解させた後、テトラオクチルアンモニウムブロマイドの5倍量のイオン交換樹脂(東京化成社製、アンバーライトIRN78)を加えた後、一晩振盪機にて攪拌した。その後、ろ過によってイオン交換樹脂を取り除くことにより、0.1Nテトラオクチルアンモニウムヒドロキシドエタノール溶液を得た。
(油性インク組成物の調製)
上記セルロース繊維A1にメタノールを加えてろ過するメタノール洗浄を繰り返した後、さらにメチルエチルケトン(Methyl ethyl ketone:MEK)洗浄を繰り返すことにより、上記セルロース繊維に含まれる水をMEKに置換した。その後、MEKで置換したセルロース繊維A1に、MEKとセルロース繊維のカルボキシ基量と等量の0.1Nテトラオクチルアンモニウムヒドロキシドエタノール溶液を加えた後、セルロース濃度が1%になるように希釈した。その後、高圧ホモジナイザー(スギノマシン社製、スターバースト)を用いて圧力100MPaで4回処理することにより、微細繊維状セルロースMEK分散液を得た。上記微細繊維状セルロースMEK分散液にトルエンを加えた後、ロータリーエバポレーター(東京理化機器社製)により微細繊維状セルロースの濃度が2%になるようにMEKとエタノールとを留去することにより、溶剤をMEKからトルエンへと置換した。さらに、溶剤としてのトルエンと、着色剤としての酸化チタン(石原産業社製、タイペーク CR−50)と、を加えた後、T.K.ホモミクサー(PRIMIX社製)を用いて8000rpm×10分間撹拌することにより、セルロース濃度を0.5%、着色剤濃度を10%に調整した油性インク組成物を得た。
〔実施例2、5〜17、比較例4〕
下記の表に示すように配合量や組成等を変更した以外は、実施例1と同様の手法で微細繊維状セルロースMEK分散液、油性インク組成物を調製した。
〔実施例3〕
セルロース繊維A3に水を加え、固形分1%に希釈した後、T.K.ホモミクサー(PRIMIX社製)を用いて8000rpm×10分間撹拌しながら、溶液のpHが2になるまで1N塩酸を加えた。その後、濾過を行い、水で十分洗浄した。次に、メタノールで繰り返して洗浄した後、さらにMEKで洗浄することにより、MEKに溶剤置換した酸型セルロース繊維A3を作製した。この酸型セルロース繊維A3に、MEKと、セルロース繊維のカルボキシ基量と等量の0.1Nテトラオクチルアンモニウムヒドロキシドエタノール溶液とを加え、セルロース濃度が1%になるように希釈した。その後、高圧ホモジナイザー(スギノマシン社製、スターバースト)を用いて圧力100MPaで4回処理することにより、微細繊維状セルロースMEK分散液を得た。
この微細繊維状セルロースMEK分散液にトルエンを加えた後、ロータリーエバポレーター(東京理化機器社製)により微細繊維状セルロースの濃度が1%になるようにMEKとエタノールとを留去することにより、溶剤をMEKからトルエンへと置換した。さらに、溶剤としてのトルエンと、着色剤としての酸化チタン(石原産業社製、タイペーク CR−50)とを加えた後、T.K.ホモミクサー(PRIMIX社製)を用いて8000rpm×10分間撹拌することにより、セルロース濃度を0.5%、着色剤濃度を10%に調整した油性インク組成物を得た。
〔実施例4〕
セルロース繊維A3の代わりにセルロース繊維A4にした以外は実施例3と同様の手法で上記微細繊維状セルロースMEK分散液、油性インク組成物を調製した。
〔比較例1〕
セルロース繊維A2に、水と、セルロース繊維のカルボキシ基量と等量になるように24%水酸化ナトリウム水溶液と、を加え、セルロース濃度が1%になるように希釈した後、高圧ホモジナイザー(スギノマシン社製、スターバースト)を用いて圧力100MPaで1回処理することにより、微細繊維状セルロース水分散液を得た。この微細繊維状セルロース水分散液を凍結乾燥によって乾燥することにより水を留去した後、MEKで固形分が1%になるように希釈した。その後、高圧ホモジナイザー(スギノマシン社製、スターバースト)を用いて圧力100MPaで4回処理した。しかしながら、MEK中においてセルロース繊維が沈降してしまうため、微細繊維状セルロースMEK分散液の調製には至らなかった。
〔比較例2〕
セルロース繊維A5にメタノールを加えた後、ろ過した。その後、メタノール洗浄を繰り返した後、さらにMEK洗浄を繰り返した後、MEKで固形分が1%になるように希釈した。その後、高圧ホモジナイザー(スギノマシン社製、スターバースト)を用いて圧力100MPaで4回処理した。しかしながら、MEK中においてセルロース繊維が沈降してしまうため、微細繊維状セルロースMEK分散液の調製には至らなかった。
〔比較例3〕
セルロース繊維A6を凍結乾燥によって乾燥することにより水を留去した後、MEKと、セルロース繊維のカルボキシ基量と等量の0.1Nテトラオクチルアンモニウムヒドロキシドエタノール溶液と、を加え、セルロース濃度が1%になるように希釈した。その後、高圧ホモジナイザー(スギノマシン社製、スターバースト)を用いて圧力100MPaで4回処理することにより、微細繊維状セルロースMEK分散液を得た。この微細繊維状セルロースMEK分散液にトルエンを加えた後、ロータリーエバポレーター(東京理化機器社製)によって微細繊維状セルロースの濃度が1%になるようにMEKとエタノールとを留去することにより、溶剤をMEKからトルエンへと置換した。さらに、溶剤としてのトルエンと、着色剤としての酸化チタン(石原産業社製、タイペーク CR−50)と、を加え、T.K.ホモミクサー(PRIMIX社製)を用いて8000rpm×10分間撹拌することにより、セルロース濃度を0.5%、着色剤濃度を10%に調整した油性インク組成物を得た。
〔比較例4,5〕
特開2018−44101に記載の製造方法に準じて、有機オニウムイオンの代わりにポリエーテルアミンを用いて油性インク組成物を作製した。
上記油性インク組成物等を用いて、下記評価方法に従い、各特性の評価を行った。
<数平均繊維径、アスペクト比の測定>
上記微細繊維状セルロースMEK分散液中のセルロース繊維の数平均繊維径、および繊維長を、透過型電子顕微鏡(TEM、日本電子社製JEM−1400)を用いて観察した。すなわち、各セルロース繊維を親水化処理済みのカーボン膜被覆グリッド上にキャストした後、2質量%ウラニルアセテートでネガティブ染色したTEM像(倍率:10000倍)を用いて、上述した方法により、数平均繊維径、および数平均繊維長を算出した。さらに、これらの値を用いてアスペクト比を下記式に従い、算出した。
アスペクト比=数平均繊維長[nm]/数平均繊維径[nm]
<分散性の測定>
油性インク組成物を試験管に移しとり、一日保存した後、試験管中の系全体の高さと、着色剤が分散している層(分散層)の高さとを、試験管の目盛または定規等により測定した後、これらの高さを用いて下記式に従い、分散性[%]を算出した。
分散性[%]=(着色剤の分散層の高さ/系全体の高さ)×100
<保存安定性の測定>
油性インク組成物を試験管に移しとった後、40℃で一ヶ月保存した後、試験管中の系全体の高さと、着色剤が分散している層(分散層)の高さとを、試験管の目盛または定規等により測定した後、これらの高さを用いて分散性(保存後)[%]を算出した。上記分散性[%]と分散性(保存後)[%]と下記式とを用いて、保存安定性[%]を算出した。なお、上記分散性が50%以下の場合、保存安定性の測定は行わないこととした。
保存安定性[%]=(分散性(保存後)/分散性)×100
<粘度>
油性インク組成物をスクリュー瓶に75g測りとった後、40℃で一ヶ月保存した後に、25℃における粘度[mPa・s]を測定した。粘度は、BM粘度計(BROOKFIELD社製)を用いて、ローターNo.3、30rpm、180秒で測定した値である。なお、上記分散性が50%以下の場合、粘度の測定は行わないこととした。
<粘度保持率>
油性インク組成物をスクリュー瓶に75g測りとった後、一晩保存後に、25℃における粘度(保存後)[mPa・s]を測定した。粘度は、BM粘度計(BROOKFIELD社製)を用いて、ローターNo.3、30rpm、180秒で測定した値である。上記粘度[mPa・s]と粘度(保存後)[mPa・s]と下記式とを用いて、粘度保持率[%]を算出した。
粘度保持率[%]=(粘度(保存後)/粘度)×100
<乾燥性>
筆記用紙(上質紙、坪量104g/m)に上記油性インク組成物を1g滴下した後、バーコーター(24μm)を用いて皮膜を作製した。皮膜作製の10秒後に、ビニール片で皮膜を擦過することにより、皮膜の伸び度合いと汚れを目視で観察した後、下記評価基準で評価した。
○:皮膜がほとんど伸びず、用紙に汚れもない。
△:皮膜がやや伸びる。
×:皮膜が伸び、用紙が汚れている。
以下に、試験結果を示す。
Figure 2021155471
Figure 2021155471
Figure 2021155471
※1 日本ピグメント社製、フタロシアニンブルー
※2 戸田工業社製、弁柄
※3 昭和キャボット社製、ショウブラック
※4 HUNTSMAN社製、JEFFAMINE M-2005、分子量:2000
※5 HUNTSMAN社製、JEFFAMINE M-2070、分子量:2000
※6 MEK分散物を調製できないので、測定不可
※7 MEKに溶解しているため、測定不可
上述の結果から以下のことが分かった。つまり、実施例1〜17は、比較例1〜4と比較して、分散性が高いことが分かった。比較例1は、修飾剤の疎水性が足りないために、分散性が低く、この結果、MEK分散液が調製できなかったと考えられる。比較例2は、修飾剤がないために分散性が低く、この結果、MEK分散液が調製できなかったと考えられる。比較例3は、セルロース繊維については凝集することなく溶剤中に分散した。しかし、比較例3は、セルロース繊維が結晶構造を有さないために着色剤の分散安定化が困難であり、この結果として、分散性が低かった。
また、実施例1〜17は、比較例5,6と比較して、乾燥性に優れることが分かった。比較例5,6は、油性インク組成物を調製可能であったが、修飾剤であるポリエーテルアミンの分子量が非常に大きい。このため、ポリエーテルアミンが粘性を付与して溶媒の保持力を高めるため、比較例5,6は乾燥性が低かった。
これに対して、実施例に用いた修飾剤は、4級オニウムイオンを用いているため、セルロース繊維を十分に疎水化することが可能である。このため、実施例は、溶剤中においてセルロース繊維が凝集することなく分散する結果として、油性インク組成物を調製可能である。また、実施例に用いた修飾剤は、4級オニウムイオンを用いているため、修飾剤の分子量が比較的小さいために修飾剤の可塑性が低い。この結果として、実施例は、分散性、保存安定性、乾燥性に優れていることが分かった。
ここで、実施例1から実施例4は、互いに異なるセルロース繊維を用いた結果である。実施例2,5〜11は、互いに異なる修飾剤を用いた結果である。実施例2,12〜14は、互いに異なる着色剤を用いた結果である。実施例2,15〜17は、セルロース繊維濃度と着色剤濃度との少なくとも一方が互いに異なる結果である。
本発明の油性インク組成物は分散性が高く、かつ、乾燥性が高いため、例えば、油性インクの分野に好適に用いることができる。
本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例中の技術的特徴は、上述の課題の一部または全部を解決するために、あるいは、上述の効果の一部または全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
P1…点
P2…点
F…繊維

Claims (6)

  1. 微細繊維状セルロースと、有機溶剤と、着色剤と、を含有する油性インク組成物であって、
    前記微細繊維状セルロースは、以下の(A)から(E)の条件を満たすことを特徴とする、油性インク組成物。
    (A)数平均繊維径が2nm以上500nm以下
    (B)平均アスペクト比が10以上1000以下
    (C)セルロースI型結晶構造を有する
    (D)アニオン性官能基を有する
    (E)前記(D)記載のアニオン性官能基の一部、または全てに、下記式(1)で示す有機オニウムイオンが結合している
    Figure 2021155471
    〔前記式(1)中、Mは窒素原子又はリン原子を示し、R、R、R、Rは、炭素数1以上20以下の直鎖もしくは分岐のアルキル基、アレーン基、又はアリル基を示す。〕
  2. 前記式(1)中、R、R、R、Rの少なくとも一つは、炭素数が6以上であり、R、R、R、Rの炭素数の和は40以下であることを特徴とする、請求項1に記載の油性インク組成物。
  3. 前記アニオン性官能基は、カルボキシ基であることを特徴とする、請求項1又は2に記載の油性インク組成物。
  4. 前記微細繊維状セルロースの含有量に対する前記着色剤の含有量の比(前記着色剤/前記微細繊維状セルロース)は、1以上400以下であることを特徴とする、請求項1から請求項3のいずれか1項に記載の油性インク組成物。
  5. 25℃における粘度が100mPa・s以上であることを特徴とする、請求項1から請求項4のいずれか1項に記載の油性インク組成物。
  6. 請求項1から請求項5のいずれか1項に記載の油性インク組成物を用いた筆記具。
JP2020053905A 2020-03-25 2020-03-25 油性インク組成物及び筆記具 Pending JP2021155471A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020053905A JP2021155471A (ja) 2020-03-25 2020-03-25 油性インク組成物及び筆記具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020053905A JP2021155471A (ja) 2020-03-25 2020-03-25 油性インク組成物及び筆記具

Publications (1)

Publication Number Publication Date
JP2021155471A true JP2021155471A (ja) 2021-10-07

Family

ID=77917217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020053905A Pending JP2021155471A (ja) 2020-03-25 2020-03-25 油性インク組成物及び筆記具

Country Status (1)

Country Link
JP (1) JP2021155471A (ja)

Similar Documents

Publication Publication Date Title
JP5545775B2 (ja) 水性インク組成物およびそれを用いた筆記具
JP6105139B1 (ja) 油性インク組成物
JP5872097B1 (ja) セルロースエステル水性分散体
JP5944564B1 (ja) ゲル状組成物の製法およびそれにより得られたゲル状組成物
JP6771821B2 (ja) 塗料組成物
JP5701570B2 (ja) 粘性水系組成物およびその製法
JP5872099B1 (ja) セルロースエステル水性分散体
JP6784553B2 (ja) セルロースナノファイバー濃縮物の製造方法
JP6723632B2 (ja) 配管摩擦抵抗低減剤及び輸送媒体
JP2017043647A (ja) セルロースエステル水性分散体
US20160200958A1 (en) Drilling slurry additive
JP2018135405A (ja) 筆記具用油性インク組成物
JP2021152123A (ja) セルロース組成物及びセルロース組成物の製造方法
JP6910703B2 (ja) 熱硬化性樹脂組成物
WO2022224800A1 (ja) 水性インク組成物及びその製造方法並びに記録方法
JP7457551B2 (ja) 塗料組成物
JP2021155471A (ja) 油性インク組成物及び筆記具
JP7223401B2 (ja) 筆記具用油性インキ組成物
JP6560779B1 (ja) コート剤組成物およびその製造方法
JP6560778B1 (ja) 塗料組成物およびその製造方法
JP6796437B2 (ja) 微粒子含有組成物
JP2017025283A (ja) セルロースエステル水性分散体
JP7457550B2 (ja) コーティング剤
JP6393568B2 (ja) 筆記具用水性インク組成物
JP2017048274A (ja) 筆記具用水性インク組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240109