JP2021143745A - センターデファレンシャル装置 - Google Patents

センターデファレンシャル装置 Download PDF

Info

Publication number
JP2021143745A
JP2021143745A JP2020044082A JP2020044082A JP2021143745A JP 2021143745 A JP2021143745 A JP 2021143745A JP 2020044082 A JP2020044082 A JP 2020044082A JP 2020044082 A JP2020044082 A JP 2020044082A JP 2021143745 A JP2021143745 A JP 2021143745A
Authority
JP
Japan
Prior art keywords
shaft
gear
torque
planetary gear
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020044082A
Other languages
English (en)
Inventor
宏 磯野
Hiroshi Isono
宏 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020044082A priority Critical patent/JP2021143745A/ja
Publication of JP2021143745A publication Critical patent/JP2021143745A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Retarders (AREA)

Abstract

【課題】車両前後のトルクベクタリングが可能であり、かつ、コンパクトで車載性に優れたセンターデファレンシャル装置を提供する。【解決手段】前輪側の第1回転軸4と後輪側の第2回転軸5との差動回転を可能にする差動機構3と、差動機構3に制御トルクを付与して各回転軸4,5を差動回転させるアクチュエータ6と、各回転軸4,5を互いに逆方向に回転させる反転機構7とを備えたセンターデファレンシャル装置1において、反転機構7を、差動機構3の第1差動反力要素28を介して制御トルクを第1回転軸4に伝達する第1制御遊星歯車機構42と、差動機構3の第2差動反力要素30を介して制御トルクを第2回転軸5に伝達する第2制御遊星歯車機構43とから構成し、第1制御遊星歯車機構42における第1歯車列49のギヤ比と、第2制御遊星歯車機構43における第2歯車列50のギヤ比とを、互いに異ならせる。【選択図】図1

Description

この発明は、四輪駆動車両の前輪および後輪に伝達するトルクの配分(分配率)を制御することが可能なセンターデファレンシャル装置に関するものである。
特許文献1に記載されている駆動歯車装置は、車両に搭載されるいわゆるトルクベクタリング装置であり、駆動力源の出力トルクを左右の駆動輪に分配して伝達する差動機構、および、差動機構から左右の駆動輪へ伝達するトルクの分配率を制御する制御用のアクチュエータ(制御用モータ、あるいは、差動用モータ)を備えている。差動機構は、二組のシングルピニオン型の遊星歯車機構から構成されている。この特許文献1の「図1」に示されている例では、二組の遊星歯車機構における各サンギヤが入力要素となり、各キャリアが出力要素となり、各リングギヤが反力要素となっている。具体的には、二組の遊星歯車機構における各サンギヤが、結合軸によって互いに連結されている。結合軸の中央部分には入力ギヤが設けられており、駆動力源からトルクが伝達される。各キャリアには、それぞれ、駆動軸(出力軸)を介して左右の駆動輪が連結されている。そして、左右のリングギヤが、反転機構(逆回転部材)を介して互いに連結されている。更に、一方のリングギヤには、制御用モータがトルク伝達可能に連結されている。反転機構は、第1歯車部材と第2歯車部材とから構成されている。第1歯車部材は、一方のリングギヤの外周部に形成された外歯ギヤと噛み合う第1ピニオン、軸部材、および、第2ピニオンを有している。軸部材の両端に、それぞれ、第1ピニオンおよび第2ピニオンが取り付けられている。同様に、第2歯車部材は、他方のリングギヤの外周部に形成された外歯ギヤと噛み合う第1ピニオン、軸部材、第2ピニオンを有している。軸部材の両端に、それぞれ、第1ピニオンおよび第2ピニオンが取り付けられている。そして、第1歯車部材の第2ピニオンと第2歯車部材の第2ピニオンとが噛み合っている。したがって、反転機構は、左右のリングギヤの間で、一方のリングギヤに入力される制御用モータのトルクを、その回転方向を反転させて他方のリングギヤへ伝達する。
なお、上記の特許文献1の「図19」に示されている例では、二組の遊星歯車機構における各リングギヤが入力要素となり、各キャリアが出力要素となり、各サンギヤが反力要素となっている。具体的には、二組の遊星歯車機構における各リングギヤが、結合部材によってトルク伝達可能に連結されている。結合部材は、一方のリングギヤの外周部に形成された外歯ギヤと噛み合う第1ピニオン、他方のリングギヤの外周部に形成された外歯ギヤと噛み合う第2ピニオン、および、軸部材を有している。軸部材の両端に、それぞれ、第1ピニオンおよび第2ピニオンが取り付けられている。また、一方のリングギヤの外歯ギヤには、駆動力源からのトルクが伝達される駆動ギヤが噛み合っている。各キャリアには、それぞれ、駆動軸(出力軸)を介して左右の駆動輪が連結されている。そして、各サンギヤが、上記のような結合軸の代わりに、逆回転モータユニットを介して互いに連結されている。逆回転モータユニットは、モータと歯車機構とから構成されている。モータのロータ軸の一方の端部が、逆回転モータユニットにおける第1出力軸を形成している。ロータ軸の他方の端部にはピニオンが取り付けられており、歯車機構の第1カウンタギヤと噛み合っている。第1カウンタギヤは、カウンタギヤ軸の一方の端部に取り付けられている。カウンタギヤ軸の他方の端部には、第2カウンタギヤが取り付けられている。第2カウンタギヤは、逆回転モータユニットにおける第2出力軸が形成された回転部材の内歯ギヤと噛み合っている。第1出力軸および第2出力軸は同軸上に配置されている。第1出力軸は、一方のサンギヤに連結されている。第2出力軸は、他方のサンギヤに連結されている。したがって、逆回転モータユニットは、左右のサンギヤの間で、一方のサンギヤに入力されるモータのトルクを、その回転方向を反転させて他方のサンギヤへ伝達する。すなわち、逆回転モータユニットは、上記のような制御用モータおよび反転機構として機能する。
特許第6122119号公報
上記の特許文献1に記載された駆動歯車装置は、左右の駆動輪に対するトルクの配分(分配率)を制御することが可能なトルクベクタリング装置として車両に搭載することを想定している。また、上記の特許文献1に記載された駆動歯車装置の機構を応用して、いわゆる、センターデファレンシャル装置を構成することができる。すなわち、特許文献1に記載された駆動歯車装置の第1出力軸および第2出力軸の一方を前輪にトルクを伝達する回転軸とし、他方を後輪にトルクを伝達する回転軸とすることにより、四輪駆動車両の前後の駆動輪に対するトルクの配分(分配率)を制御することが可能な差動装置(センターデファレンシャル装置)を構成できる。特許文献1に記載された駆動歯車装置、あるいは、それを応用したセンターデファレンシャル装置のいずれにしても、車両への搭載を容易にするためには、装置の体格をできる限り小型化することが望ましい。しかしながら、特許文献1の「図1」に示されている例では、反転機構が左右の遊星歯車機構における各リングギヤの外周側に配置されている。また、制御用(差動用)モータも各リングギヤの外周側に配置されている。そのため、装置の径方向に体格が増大してしまう。それに対して、例えば、制御用モータとリングギヤとの間に減速比が大きい減速機構を設ければ、制御用モータを小型化できる。あるいは、制御用または差動用の大きなトルクを得ることができる。しかしながら、新たに減速機構を設けることによって、結局、装置の体格が大型化してしまうおそれがある。
また、特許文献1の「図19」に示されている例では、反転機構と制御モータとを兼ねる逆回転モータユニットが、左右の遊星歯車機構における各サンギヤの間に配置されている。そのため、上記の特許文献1の「図1」に示されている例と比較して、装置の径方向への大型化を抑制できる可能性がある。しかしながら、径方向への大型化を抑制しつつ、逆回転モータユニットを各サンギヤの間に配置することは容易ではない。逆回転モータユニットは、第1出力軸および第2出力軸とカウンタギヤ軸とが平行に配置された二軸構造であって、構造が複雑になっている。また、モータを小型化するために、あるいは、より大きなトルクを得るために減速機構を設けると、更に構造が複雑になってしまう。その結果、例えば遊星歯車機構の外径の範囲内に逆回転モータユニットを収めることが困難になり、結局、装置の体格が増大してしまうおそれがある。
この発明は上記の技術的課題に着目して考え出されたものであり、四輪駆動車両の前輪および後輪に伝達するトルクの配分(分配率)や前後の差動回転を、アクチュエータを用いて積極的に制御することができ、かつ、体格を小型化して車両への搭載が容易なセンターデファレンシャル装置を提供することを目的とするものである。
上記の目的を達成するために、この発明は、駆動力源から駆動トルクが入力される入力部材と、車両の全長方向に同軸上で前後に対向して配置され、互いに相対回転可能な第1回転軸および第2回転軸と、前記入力部材と前記第1回転軸および前記第2回転軸との間で、前記入力部材に入力された前記駆動トルクを前記第1回転軸と前記第2回転軸とに分配して伝達するとともに、前記第1回転軸と前記第2回転軸との差動回転が可能な差動機構と、前記第1回転軸および前記第2回転軸と同軸上に配置され、前記差動機構に制御トルクを付与して前記第1回転軸と前記第2回転軸とを差動回転させるアクチュエータと、前記第1回転軸と前記第2回転軸とが差動回転する際に前記第1回転軸および前記第2回転軸を互いに逆方向に回転させる反転機構と、を備えたセンターデファレンシャル装置において、前記差動機構は、前記全長方向に同軸上で前後に対向して配置される第1動力遊星歯車機構と第2動力遊星歯車機構とから構成され、前記第1動力遊星歯車機構は、前記入力部材から前記駆動トルクが伝達される動力入力要素と、前記第1回転軸に前記駆動トルクを出力する第1動力出力要素と、前記動力入力要素から前記第1動力出力要素に伝達する前記駆動トルクに対する反力として前記制御トルクが伝達される第1差動反力要素とを有し、前記第2動力遊星歯車機構は、前記動力入力要素と、前記第2回転軸に前記駆動トルクを出力する第2動力出力要素と、前記動力入力要素から前記第2動力出力要素に伝達する前記駆動トルクに対する反力として前記制御トルクが伝達される第2差動反力要素とを有しており、前記反転機構は、それぞれ、前記第1回転軸および前記第2回転軸と同軸上に配置され、前記第1差動反力要素を介して前記制御トルクを前記第1回転軸に伝達する第1制御遊星歯車機構と、前記第2差動反力要素を介して前記制御トルクを前記第2回転軸に伝達する第2制御遊星歯車機構とから構成され、前記第1制御遊星歯車機構は、前記アクチュエータから前記制御トルクが入力される制御入力要素と、前記第1回転軸に前記制御トルクを出力する第1制御出力要素と、前記制御入力要素から前記制御トルクが伝達される第1プラネタリギヤと、前記第1プラネタリギヤに噛み合い、前記第1制御出力要素を形成する第1ギヤとを有し、前記第2制御遊星歯車機構は、前記制御入力要素と、前記第2回転軸に前記制御トルクを出力する第2制御出力要素と、前記第1プラネタリギヤと同軸上に配置され、前記制御入力要素から前記制御トルクが伝達される第2プラネタリギヤと、前記第2プラネタリギヤに噛み合い、前記第2制御出力要素を形成する第2ギヤとを有し、前記第1プラネタリギヤおよび前記第1ギヤを含む第1歯車列のギヤ比と、前記第2プラネタリギヤおよび前記第2ギヤを含む第2歯車列のギヤ比とが、互いに異なっており、前記制御入力要素の回転数に対する前記第1制御出力要素の回転数の割合を表す第1減速比、および、前記制御入力要素の回転数に対する前記第2制御出力要素の回転数の割合を表す第2減速比が、いずれも、“1”よりも大きく、前記制御トルクを増幅して前記第1制御出力要素および前記第2制御出力要素に伝達する減速歯車機構を形成していることを特徴とするものである。
また、この発明では、前記第2回転軸は、前記第2ギヤが取り付けられて前記第2ギヤと一体に回転する中間軸と、前記中間軸と同軸上に配置され、前記中間軸と相対回転可能な先端軸とから構成されており、前記中間軸と前記先端軸とを連結して前記中間軸と前記先端軸とが一体に回転し、かつ、前記駆動トルクを前記第1回転軸および前記第2回転軸(すなわち、前記中間軸および前記先端軸)の両方に伝達する4WD状態と、前記中間軸と前記先端軸との連結を解いて前記中間軸と前記先端軸とが相対回転し、かつ、前記中間軸の回転を止めて前記駆動トルクを前記第1回転軸のみに伝達する2WD状態とを選択的に設定する切替機構を備え、前記反転機構(すなわち、前記減速歯車機構)は、前記4WD状態における前記第1減速比が前記2WD状態における前記第1減速比よりも大きい。
また、この発明では、前記アクチュエータは、前記制御トルクを出力する電気モータであって、前記2WD状態で、前記駆動トルクを助勢または代替するアシストトルクとして、前記動力入力要素を駆動するトルクを出力する。
また、この発明では、前記電気モータは、中空形状のロータを有し、前記ロータの中空部分に、前記差動機構および前記反転機構の少なくとも一部を内蔵している。
また、この発明は、前記第1回転軸および前記第2回転軸と同軸上に配置され、通電することによって作動して前記第1回転軸または前記第2回転軸を制動し、かつ、前記通電を解除した後も前記第1回転軸または前記第2回転軸を制動して回転を止めた状態を保持することが可能な電動ブレーキ(兼、パーキングブレーキ)を備え、前記電動ブレーキは、可動部材が前記第1回転軸および前記第2回転軸の回転軸線方向に動作して、前記可動部材が、前記第1回転軸または前記第2回転軸と一体に回転する回転部材と共に、固定部材(非回転部材)に係合することにより、前記第1回転軸または前記第2回転軸を制動する摩擦クラッチ機構と、前記可動部材を前記回転軸線方向に前後動させる送りねじ機構と、前記送りねじ機構を駆動する電気モータとを有している。
また、この発明では、前記切替機構は、通電することによって作動し、可動部材が前記第1回転軸および前記第2回転軸の回転軸線方向の後端側に動作して、前記可動部材が、前記中間軸と一体に回転する第1回転部材および前記先端軸と一体に回転する第2回転部材と共に、固定部材(非回転部材)に係合することにより、第2回転軸(すなわち、前記中間軸および前記先端軸)を制動し、かつ、前記通電を解除した後も前記第2回転軸を制動して回転を止めた状態を保持することが可能な電動ブレーキ(兼、パーキングブレーキ)として機能するとともに、前記可動部材が前記回転軸線方向の前端側に動作して、前記可動部材ならびに前記第1回転部材および前記第2回転部材と前記固定部材との係合を解放し、かつ、前記中間軸と前記先端軸とを連結することにより、前記4WD状態を設定するとともに、前記可動部材が前記回転軸線方向の中間位置に動作して、前記可動部材および前記第2回転部材と前記固定部材との係合を解放し、かつ、前記第1回転部材と前記固定部材との係合を維持して前記中間軸の回転を止めることにより、前記2WD状態を設定する摩擦クラッチ機構と、前記可動部材を前記回転軸線方向に前後動させる送りねじ機構と、前記送りねじ機構を駆動する電気モータとを有している。
また、この発明は、前記第2回転軸から入力される前記駆動トルクを、前記車両の車幅方向における左側駆動軸と右側駆動軸とに分配して伝達するとともに、前記左側駆動軸と前記右側駆動軸との差動回転が可能な左右デファレンシャル機構を一体的に備えている。
また、この発明では、前記駆動力源は、前記第1回転軸および前記第2回転軸を駆動するトルクを出力する電気モータであって、前記第1回転軸および前記第2回転軸と同軸上で一体的に配置されている。
また、この発明では、前記電気モータは、中空形状のロータを有し、前記ロータの中空部分に、前記電気モータの出力トルクを増幅して前記入力部材に伝達する減速ギヤ機構を内蔵している。
また、この発明は、噛み合いクラッチを用いて前記差動機構の差動回転を止めて(すなわち、前記差動機構を一体に回転させて)デフロック状態を選択的に設定するデフロック機構、または、摩擦クラッチを用いて前記差動機構の差動回転を抑制して差動制限状態を設定する差動制限機構を備えている。
そして、この発明では、前記アクチュエータは、前記制御トルクを出力する電気モータであって、前記デフロック状態または前記差動制限状態で、前記駆動トルクを助勢または代替するアシストトルクとして、前記動力入力要素を駆動するトルクを出力する。
この発明のセンターデファレンシャル装置は、差動機構によって、駆動力源から入力される駆動トルクを第1回転軸および第2回転軸(すなわち、四輪駆動車両における前後の推進軸)に分配して伝達する。それとともに、第1回転軸と第2回転軸との間の回転数差を吸収する。すなわち、第1回転軸と第2回転軸との間に回転数差が生じると、それら第1回転軸と第2回転軸とを差動回転させる。第1回転軸と第2回転軸とが差動回転する際には、反転機構の反転機能により、第1回転軸と第2回転軸とが互いに逆の回転方向に相対回転する。そのため、第1回転軸と第2回転軸との間の回転数差を効率よく吸収できる。
また、この発明のセンターデファレンシャル装置は、差動機構の各差動反力要素に制御トルクを付与するアクチュエータを備えている。そのため、上記のような差動装置としての作用に加えて、アクチュエータが出力する制御トルクにより、第1回転軸および第2回転軸に対するトルクの分配率、ならびに、第1回転軸と第2回転軸との間の差動回転を、積極的に制御できる。すなわち、四輪駆動車両の前後の駆動輪に対するいわゆるトルクベクタリングを行うことができる。
また、この発明のセンターデファレンシャル装置では、反転機構が、第1回転軸および第2回転軸と同一の回転軸線上に配置される。反転機構は、基本的に、主な回転要素を第1回転軸および第2回転軸と同一の回転軸線上に配置するいわゆる一軸構造となっている。したがって、センターデファレンシャル装置の主要部分が一軸構造で構成される。そのため、センターデファレンシャル装置の径方向への大型化を抑制し、容易に、反転機構を設けることができる。また、第1回転軸と第2回転軸とを互いに逆方向に回転させる反転機能は、第1制御遊星歯車機構における第1歯車列のギヤ比と、第2制御遊星歯車機構における第2歯車列のギヤ比とを互いに異ならせることによって実現される。例えば、基準となる所定の歯車の歯数に対して第1ギヤの歯数を増やし(または、減らし)、基準となる所定の歯車の歯数に対して第2ギヤの歯数を減らす(または、増やす)ことにより、容易に、第1歯車列のギヤ比と第2歯車列のギヤ比とを異ならせることができる。したがって、この発明のセンターデファレンシャル装置における反転機構は、複雑な構成を用いることなく、容易に構成することができる。
また、この発明のセンターデファレンシャル装置では、上記のように、第1制御遊星歯車機構における第1歯車列のギヤ比と、第2制御遊星歯車機構における第2歯車列のギヤ比とを互いに異ならせている。そのため、前後の回転軸の回転数が等しい状態では、第1制御遊星歯車機構および第2制御遊星歯車機構がそれぞれトルクを伝達する際に、それらの第1歯車列における歯車の噛み合いと、第2歯車列における歯車の噛み合いとが互いに干渉する。その結果、反転機構が実質的に係合状態となり、一体となって回転する。したがって、第1回転軸および第2回転軸は、差動回転することなく、一体となって回転する。それに対して、第1回転軸の回転数と第2回転軸の回転数との間に回転数差がある状態では、上記のような第1歯車列と第2歯車列との間の歯車の干渉による係合状態が解消され、第1制御遊星歯車機構および第2制御遊星歯車機構は、第1歯車列および第2歯車列のそれぞれのギヤ比に応じてトルクを伝達する。その結果、一方の回転軸に対して他方の回転軸が反転するように、第1回転軸および第2回転軸がそれぞれ回転する。すなわち、第1回転軸および第2回転軸は、差動回転しつつ、互いに逆の回転方向に相対回転する。このように、この発明のセンターデファレンシャル装置は、駆動力源から入力される駆動トルクを前後の回転軸に分配して伝達するとともに、第1回転軸と第2回転軸との間の回転数差を吸収する差動装置として機能する。それに加えて、アクチュエータを制御して制御トルクを変化させることにより、第1回転軸および第2回転軸に対するトルク配分を制御するトルクベクタリングが可能である。
また、この発明のセンターデファレンシャル装置では、反転機構における第1制御遊星歯車機構および第2制御遊星歯車機構は、いずれも、減速比が“1”よりも大きい減速歯車機構を形成している。すなわち、反転機構は、上記のような反転機能に加えて、アクチュエータの制御トルクを増幅する減速機能を備えている。したがって、この発明のセンターデファレンシャル装置によれば、反転機構の減速機能によって制御トルクを増幅する分、制御トルクを出力するアクチュエータの小型化を図ることができる。そのため、センターデファレンシャル装置を小型化できる。
上記のように、この発明のセンターデファレンシャル装置は、反転機構が一軸構造となっており、複雑な構造を用いることなく、容易に、反転機構を構成できる。また、反転機構を第1回転軸および第2回転軸と同軸上に配置することにより、センターデファレンシャル装置の径方向への大型化を抑制できる。更に、反転機構の減速機能(トルク増幅作用)によってアクチュエータを小型化できる。したがって、この発明のセンターデファレンシャル装置によれば、容易に、反転機構およびアクチュエータの小型化を図ることができ、ひいては、センターデファレンシャル装置の体格を小型化できる。その結果、小型化したセンターデファレンシャル装置を容易に車両に搭載すること、すなわち、車両への搭載性を向上させることができる。
更に、この発明のセンターデファレンシャル装置は、切替機構が設けられ、駆動トルクを第1回転軸および第2回転軸の両方に伝達する4WD状態と、第2回転軸の中間軸の回転を拘束して(第2回転軸の先端軸は自由に回転する状態で)、駆動トルクを第1回転軸のみに伝達する2WD状態とを切り替えて設定することができる。したがって、この発明のセンターデファレンシャル装置を車両に搭載して、いわゆるパートタイム方式の四輪駆動車両を構成できる。あるいは、切替機構の動作を自動制御することにより、いわゆるフルタイム方式の四輪駆動車両を構成できる。また、4WD状態における第1減速比が2WD状態における第1減速比よりも大きくなるように、反転機構(すなわち、減速歯車機構)が構成される。そのため、4WD状態では、2WD状態と比較して、駆動力源が出力する駆動トルクをより大きく増幅することができる。したがって、主に低速走行や悪路走行などの場面で選択される4WD状態における第1減速比(駆動トルクの増幅率)を大きくし、大きな駆動トルクを得ることができる。そのため、4WD状態における車両の発進・加速性能および走破性能を高めることができる。また、主に中速・高速走行での常用域で選択される2WD状態における第1減速比(駆動トルクの増幅率)を小さくし、通常走行時の車両のエネルギ効率を高めることができる。そして、上記のように、切替機構は、4WD状態と2WD状態とを切り替える機能に加えて、4WD状態における反転機構の第1減速比(相対的に大きい減速比)と2WD状態における反転機構の第1減速比(相対的に小さい減速比)との間で変速を行う変速機能を有している。したがって、駆動状態の切り替え機能と変速機能とを一つの切替機構に集約し、コンパクトなセンターデファレンシャル装置を構成できる。
また、この発明のセンターデファレンシャル装置では、アクチュエータとして電気モータが用いられる。電気モータを制御して制御トルクを変化させることにより、第1回転軸と第2回転軸との間の差動回転を制御できる。また、電気モータの回生トルクによって、第1回転軸と第2回転軸との間の差動回転を制限することができる。更に、上記のような切替機構によって2WD状態を設定した場合に、すなわち、第2回転軸の中間軸と先端軸とが相対回転するとともに、中間軸の回転を止めて駆動力源が出力する駆動トルクを第1回転軸のみに伝達する状態で、電気モータ(アクチュエータ)が出力するトルクで第1回転軸を駆動することができる。そのため、2WD状態のときに、電気モータ(アクチュエータ)で駆動トルクを助勢し、あるいは、駆動トルクを代替して、駆動力をアシストすることができる。すなわち、電気モータ(アクチュエータ)でアシストトルクを出力することができる。そのため、2WD状態における車両の動力性能や加速性能を向上させることができる。また、例えば、駆動力源にフェールが生じた場合に、電気モータ(アクチュエータ)の出力トルクで駆動力を発生することができる。したがって、駆動力源のフェールセーフあるいは冗長系を構築することができる。
また、上記のようにアクチュエータとして電気モータを用いる場合、電気モータのロータを中空構造とし、そのロータの中空部分に、差動機構および反転機構の少なくとも一部が設けられる。そのため、軸方向のサイズを短縮したコンパクトなセンターデファレンシャル装置を構成できる。
また、この発明のセンターデファレンシャル装置では、摩擦クラッチ機構、送りねじ機構、および、電気モータから構成される電動ブレーキが設けられる。例えば、摩擦クラッチ機構は、送りねじ機構によって動作する。送りねじ機構は、電気モータによって駆動される。そのような電動ブレーキにより、いわゆるオンボードタイプのブレーキ装置を備えたセンターデファレンシャル装置を構成できる。また、送りねじ機構を用いた電動ブレーキは、送りねじ機構を駆動する電気モータに対する通電を解除した場合でも送りねじ機構の動作位置を保持できる。すなわち、第1回転軸または第2回転軸を制動して回転を止めた状態で電気モータに対する通電を解除しても、その制動状態を保持できる。そのため、電動ブレーキは、駐車時に車両の制動状態を保持するパーキングブレーキとしても機能する。したがって、オンボードタイプのブレーキ装置としての機能と、パーキングブレーキとしての機能とを兼ね備えたコンパクトなセンターデファレンシャル装置を構成できる。
また、この発明のセンターデファレンシャル装置は、前端側位置、中間位置、および、後端側位置の三つの位置に動作する切替機構が設けられ、前端側位置で設定する4WD状態と、中間位置で設定する2WD状態と、後端側位置で機能する電動ブレーキとを選択的に切り替えるように構成される。そのような三位置の切替機構は、例えば、回転軸線方向で上記の三位置に前後動する可動部材、第2回転軸の中間軸と一体に回転する第1回転部材、第2回転軸の先端軸と一体に回転する第2回転部材、固定部材(非回転部材)、摩擦クラッチ機構、送りねじ機構、および、電気モータから構成される。摩擦クラッチ機構は、送りねじ機構によって動作する。送りねじ機構は、電気モータによって駆動される。摩擦クラッチ機構、送りねじ機構、および、電気モータは、電動ブレーキを構成する。送りねじ機構、および、電気モータは、切替機構と電動ブレーキとで共用されている。すなわち、切替機構および電動ブレーキを一つの共通のアクチュエータで動作させることができ、その分、部材や部品点数を削減し、コンパクトなセンターデファレンシャル装置を構成できる。
また、この発明のセンターデファレンシャル装置では、車両の幅方向における左右の駆動輪に駆動トルクを分配する左右デファレンシャル機構が一体的に組み付けられる。そのため、例えば、駆動力源と共に、センターデファレンシャル装置および左右輪のデファレンシャル装置を一体的に備えた車両の駆動ユニットを構成できる。
また、この発明のセンターデファレンシャル装置では、第1回転軸および第2回転軸と同軸上に、駆動力源として電気モータが一体的に組み付けられる。そのため、例えば、左右輪のデファレンシャル装置と共に、センターデファレンシャル装置および左右輪のデファレンシャル装置を一体的に備えた車両の電動駆動ユニットを構成できる。
また、上記のように駆動力源として電気モータを用いる場合、電気モータのロータを中空構造とし、そのロータの中空部分に減速ギヤ機構が設けられる。すなわち、この発明のセンターデファレンシャル装置における駆動力源として、ロータの中空部に減速ギヤ機構を内蔵したギヤードモータが組み付けられる。そのような構造のギヤードモータを用いることにより、軸方向のサイズを短縮したコンパクトな車両の電動駆動ユニットを構成できる。
また、この発明のセンターデファレンシャル装置では、噛み合いクラッチを用いたデフロック機構、または、摩擦クラッチを用いた差動制限機構が設けられる。そのため、この発明のセンターデファレンシャル装置を搭載した車両の走破性能や操縦安定性能を向上させることができる。
そして、この発明のセンターデファレンシャル装置では、更に、上記のようなデフロック機構または差動制限機構によってデフロック状態または差動制限状態を設定した場合に、電気モータ(アクチュエータ)が出力するトルクで第1回転軸を駆動することができる。そのため、電気モータ(アクチュエータ)で駆動トルクを助勢し、あるいは、駆動トルクを代替して、駆動力をアシストすることができる。すなわち、電気モータ(アクチュエータ)でアシストトルクを出力することができる。したがって、この発明のセンターデファレンシャル装置を搭載した車両の動力性能や加速性能を向上させることができる。また、例えば、駆動力源にフェールが生じた場合に、電気モータ(アクチュエータ)の出力トルクで駆動力を発生することができる。したがって、駆動力源のフェールセーフあるいは冗長系を構築することができる。
この発明のセンターデファレンシャル装置の一例(第1実施例)を説明するための図である。 この発明のセンターデファレンシャル装置の他の例(第2実施例)を説明するための図である。 この発明のセンターデファレンシャル装置の他の例(第3実施例)を説明するための図である。 この発明のセンターデファレンシャル装置の他の例(第4実施例)を説明するための図である。 この発明のセンターデファレンシャル装置の他の例(第5実施例)を説明するための図である。 この発明のセンターデファレンシャル装置の他の例(第6実施例)を説明するための図である。 この発明のセンターデファレンシャル装置の他の例(第7実施例)を説明するための図である。 この発明のセンターデファレンシャル装置の他の例(第8実施例)を説明するための図である。 この発明のセンターデファレンシャル装置の他の例(第9実施例)を説明するための図である。 この発明のセンターデファレンシャル装置の他の例(第10実施例)を説明するための図である。
この発明の実施形態を、図を参照して説明する。なお、以下に示す実施形態は、この発明を具体化した場合の一例に過ぎず、この発明を限定するものではない。
〔第1実施例〕
この発明を適用したセンターデファレンシャル装置の一例を図1に示してある。この発明の実施形態におけるセンターデファレンシャル装置1は、主要な構成要素として、入力部材2、差動機構3、第1回転軸4、第2回転軸5、アクチュエータ6、および、反転機構7を備えている。
入力部材2は、所定の駆動力源が出力する駆動トルクが入力される。図1に示す例では、入力部材2は、中空形状の回転軸であり、外周面の所定部分でセンターデファレンシャル装置1のケース8に回転可能に支持されている。入力部材2の中空部分には、第1回転軸4が配置されている。入力部材2と第1回転軸4とは相対回転する。ケース8は、回転することのない固定部材あるいは非回転部材である。なお、図1に示す例では、後述する電気モータ9が、駆動力源としてセンターデファレンシャル装置1に一体的に組み込まれている。そのため、ケース8は、電気モータ9のケース(または、モータハウジング)を兼ねている。更に、センターデファレンシャル装置1には、後述するアクチュエータ6の電気モータ(制御モータ)41が一体的に組み込まれている。したがって、ケース8は、電気モータ41のケース(または、モータハウジング)も兼ねている。
入力部材2の一方(図1の左側)の端部には、後述する減速ギヤ機構11を介して、駆動力源が連結されている。入力部材2の他方(図1の右側)の端部は、後述する差動機構3の第3サンギヤ軸39が連結されている。図1に示す例では、駆動力源として、電気モータ9が、センターデファレンシャル装置1に組み付けられ、ユニット化されている。
電気モータ9は、第1回転軸4および第2回転軸5と同軸上(同一の回転軸線AL1上)で、一体的に配置されており、第1回転軸4および第2回転軸5を駆動するトルクを出力する。電気モータ9は、例えば、永久磁石式の同期モータ、あるいは、誘導モータなどによって構成されている。
また、電気モータ9は、中空形状のロータ10を有しており、そのロータ10の中空部分に、減速ギヤ機構11が内蔵されている。すなわち、電気モータ9は、減速ギヤ機構11を内蔵するいわゆるギヤードモータである。減速ギヤ機構11は、電気モータ9の出力トルクを増幅して入力部材2に伝達する。減速ギヤ機構11は、入力軸12、出力軸13、固定部材14、および、ギヤセット15を有している。
入力軸12には、駆動力源すなわち電気モータ9が出力する駆動トルクが伝達される。図1に示す例では、入力軸12は、後述するギヤセット15のキャリア21によって形成されている。具体的には、キャリア21の回転軸部分が入力軸12となっている。入力軸12は、キャリア21と共に、電気モータ9のロータ10と一体に回転する。また、入力軸12は、中空形状の回転軸となっている。入力軸12の中空部分には、出力軸13および固定部材14が配置されている。それら出力軸13および固定部材14と入力軸12とは相対回転する。
出力軸13は、入力部材2にトルクを伝達する。図1に示す例では、出力軸13は、後述するギヤセット15の第2サンギヤ17によって形成されている。具体的には、第2サンギヤ17の回転軸部分(図示せず)が出力軸13となっている。出力軸13は、入力部材2と同様の中空形状の回転軸となっており、入力部材2の一方の端部に連結されている。もしくは、入力部材2の一方の端部に、出力軸13が一体に形成されている。出力軸13の中空部分には、第1回転軸4が配置されている。出力軸13と第1回転軸4とは相対回転する。また、出力軸13は、出力軸13の外周部分に配置されるキャリア21の一方(図1の右側)の端部(すなわち、後述する第2アーム23)を回転可能に支持している。
固定部材14は、中空形状の軸部材となっており、一方(図1の左側)の端部がケース8に回転不可能なように固定されている。固定部材14の他方(図1の右側)の端部には、後述するギヤセット15の第1サンギヤ16が取り付けられている。もしくは、固定部材14の他方の端部に、第1サンギヤ16が一体に形成されている。固定部材14の中空部分には、第1回転軸4が配置されている。固定部材14と第1回転軸4とは相対回転する。固定部材14は、固定部材14の外周部分に配置されるキャリア21の他方(図1の左側)の端部(すなわち、後述する第1アーム22)を回転可能に支持している。
ギヤセット15は、構成要素として、第1サンギヤ16、第2サンギヤ17、第1プラネタリギヤ18、第2プラネタリギヤ19、プラネタリギヤ軸20、および、キャリア21を有している。ギヤセット15は、上記の各構成要素によって、一種の複合遊星歯車機構を形成している。
第1サンギヤ16は、固定部材14に回転が不可能なように固定されている。具体的には、固定部材14の他方の端部における外周部分に、第1サンギヤ16が取り付けられている。あるいは、固定部材14の他方の端部における外周部分に、第1サンギヤ16が一体に形成されている。したがって、第1サンギヤ16は、固定部材14によって回転が規制されている。
第2サンギヤ17は、第1サンギヤ16と同一の回転軸線AL1上に配置されている。第2サンギヤ17は、出力軸13と一体になって回転する。具体的には、出力軸13の一方(図1の左側)の端部における外周部分に、第2サンギヤ17が取り付けられている。あるいは、出力軸13の一方の端部における外周部分に、第2サンギヤ17が一体に形成されている。したがって、第2サンギヤ17は、出力軸13と共に固定部材14に相対回転可能に支持されている。
第1プラネタリギヤ18および第2プラネタリギヤ19は、いずれも、小径の外歯歯車であり、第1プラネタリギヤ18は、第1サンギヤ16に噛み合っている。第2プラネタリギヤ19は、第2サンギヤ17に噛み合っている。第1プラネタリギヤ18と第2プラネタリギヤ19とは、同軸上に配置され、プラネタリギヤ軸20に回転可能に支持されている。また、第1プラネタリギヤ18および第2プラネタリギヤ19は、互いに一体に形成されている。
キャリア21は、第1プラネタリギヤ18および第2プラネタリギヤ19を共に自転および公転が可能なように保持する。具体的には、キャリア21は、第1プラネタリギヤ18および第2プラネタリギヤ19を回転可能に支持するプラネタリギヤ軸20の両端を固定している。それとともに、キャリア21は、電気モータ9のロータ10と一体になって回転する。具体的には、キャリア21は、プラネタリギヤ軸20の一方(図1の左側)の端部を支持する第1アーム22と、プラネタリギヤ軸20の他方(図1の右側)の端部を支持する第2アーム23とを有している。第1アーム22および第2アーム23は、それぞれ、ロータ10の内周面に取り付けられており、ロータ10と一体になって回転する。そのため、ロータ10と共にキャリア21が回転することにより、第1プラネタリギヤ18および第2プラネタリギヤ19は、プラネタリギヤ軸20上を自転しつつ、ロータ10およびキャリア21の回転軸上(すなわち、回転軸線AL1上)を公転する。したがって、キャリア21は、プラネタリギヤ軸20を支持して、第1プラネタリギヤ18および第2プラネタリギヤ19を共に自転および公転が可能なように保持している。
上記のように、第1プラネタリギヤ18および第2プラネタリギヤ19は、キャリア21よって自転および公転が可能なように保持されている。したがって、ギヤセット15は、いわゆるリングギヤを有していないものの、第1プラネタリギヤ18および第2プラネタリギヤ19が、それぞれ、第1サンギヤ16および第2サンギヤ17の外周部分を自転かつ公転するいわゆるプラネタリギヤとなって、一種の複合遊星歯車機構を構成している。
なお、ギヤセット15は、上記のような第1プラネタリギヤ18および第2プラネタリギヤ19ならびにプラネタリギヤ軸20によるプラネタリギヤセットを、少なくとも一組備えていればよい。図1では、二組のプラネタリギヤセットを示してある。プラネタリギヤセットを介して電気モータ9のロータ10を内周面側から支持することを考慮すると、各サンギヤ16,17の円周方向に等間隔で、少なくとも三組のプラネタリギヤセットを設けることが好ましい。
また、減速ギヤ機構11は、駆動力源すなわち電気モータ9の出力トルクを増幅するためのものであり、できるだけ大きな“減速比”を設定可能なことが好ましい。そのために、この減速ギヤ機構11のギヤセット15は、第1サンギヤ16と第1プラネタリギヤ18との間のギヤ比(第1ギヤ比u)と、第2サンギヤ17と第2プラネタリギヤ19との間のギヤ比(第2ギヤ比u)とを互いに異ならせて、入力軸12の回転速度に対して出力軸13の回転速度が減速するように構成されている。なお、この発明の実施形態では、減速ギヤ機構11の“減速比”を、入力軸12の回転速度に対する出力軸13の回転速度の比率として定義する。
具体的には、第1サンギヤ16の歯数と第2サンギヤ17の歯数とを互いに等しくし、第1プラネタリギヤ18の歯数と第2プラネタリギヤ19の歯数とを互いに異ならせることにより、上記のような第1ギヤ比uと第2ギヤ比uとを互いに異ならせることができる。あるいは、第1サンギヤ16の歯数と第2サンギヤ17の歯数とを互いに異ならせ、第1プラネタリギヤ18の歯数と第2プラネタリギヤ19の歯数とを互いに等しくすることにより、上記のような第1ギヤ比uと第2ギヤ比uとを互いに異ならせることができる。あるいは、第1サンギヤ16の歯数と第2サンギヤ17の歯数とを互いに異ならせ、第1プラネタリギヤ18の歯数と第2プラネタリギヤ19の歯数とを互いに異ならせることにより、上記のような第1ギヤ比uと第2ギヤ比uとを互いに異ならせることができる。すなわち、各サンギヤ16,17の歯数および各プラネタリギヤ18,19の歯数をそれぞれ調整することにより、容易に、上記のような第1ギヤ比uと第2ギヤ比uとを互いに異ならせることができる。
また、この発明の実施形態における減速ギヤ機構11では、第1サンギヤ16と第1プラネタリギヤ18との間のギヤ比を、第1ギヤ比uとして、第1サンギヤ16の歯数に対する第1プラネタリギヤ18の歯数の比率として定義する。また、第2サンギヤ17と第2プラネタリギヤ19との間のギヤ比を、第2ギヤ比uとして、第2サンギヤ17の歯数に対する第2プラネタリギヤ19の歯数の比率として定義する。
したがって、第1プラネタリギヤ18の歯数をzP1、第1サンギヤ16の歯数をzS1とすると、第1ギヤ比uは、
=zP1/zS1
となる。同様に、第2プラネタリギヤ19の歯数をzP2、第2サンギヤ17の歯数をzS2とすると、第2ギヤ比uは、
=zP2/zS2
となる。
例えば、図1に示す例では、図中に括弧内の数値で示すように、第1サンギヤ16の歯数zS1および第2サンギヤ17の歯数zS2がいずれも“30”であり、第1プラネタリギヤ18の歯数zP1が“17”であり、第2プラネタリギヤ19の歯数zP2が“20”となっている。この場合、第1ギヤ比uは、
=17/30≒0.57
となる。同様に、第2ギヤ比uは、
=20/30≒0.67
となる。このように、第1プラネタリギヤ18の歯数zP1と第2プラネタリギヤ19の歯数zP2とを互いに異ならせていることにより、第1ギヤ比uと第2ギヤ比uとが互いに異なっている。
図1に示すように構成されたギヤセット15の減速比、すなわち、減速ギヤ機構11の減速比Rは、第1サンギヤ16の歯数をzS1、第2サンギヤ17の歯数をzS2、第1プラネタリギヤ18の歯数をzP1、第2プラネタリギヤ19の歯数をzP2とすると、理論上、下記の演算式から算出できる。
=|1/{1−(zS1/zP1)×(zP2/zS2)}|
上記の例のように、第1サンギヤ16の歯数zS1、および、第2サンギヤ17の歯数zS2が“30”であり、第1プラネタリギヤ18の歯数zP1が“17”であり、第2プラネタリギヤ19の歯数zP2が“20”である場合は、減速比Rは、
=|1/{1−(30/17)×(20/30)}|≒5.7
となる。
更に、例えば、第1サンギヤ16の歯数zS1、および、第2サンギヤ17の歯数zS2をいずれも“30”とし、第1プラネタリギヤ18の歯数zP1を“18”、第2プラネタリギヤ19の歯数zP2を“20”とした場合には、減速比Rは、
=|1/{1−(30/18)×(20/30)}|≒9.1
となる。このように、例えば、第1サンギヤ16の歯数zS1と第2サンギヤ17の歯数zS2とを互いに等しく設定した場合は、第1プラネタリギヤ18の歯数zP1と第2プラネタリギヤ19の歯数zP2とを互いに異ならせることにより、相対的に大きな減速比Rを設定できる。その場合、第1プラネタリギヤ18の歯数zP1と第2プラネタリギヤ19の歯数zP2との差が小さいほど、減速比Rは大きくなる。
したがって、減速比Rは、第1プラネタリギヤ18の歯数zP1と第2プラネタリギヤ19の歯数zP2との差が“1”の場合に最大となる。例えば、上記の例のように第1サンギヤ16の歯数zS1、および、第2サンギヤ17の歯数zS2をいずれも“30”とし、第2プラネタリギヤ19の歯数zP2“20”とした場合は、第1プラネタリギヤ18の歯数zP1を“19”として、歯数zP2と歯数zP1との差が“1”となるように設定することにより、減速比Rは、
=|1/{1−(30/19)×(20/30)}|≒19.0
となる。この減速比R(≒19.0)は、上記のように第1サンギヤ16の歯数zS1と第2サンギヤ17の歯数zS2とを等しく設定した場合の最大値となる。
仮に、第1プラネタリギヤ18の歯数zP1と第2プラネタリギヤ19の歯数zP2との差を“0”にすると、すなわち、歯数zP1と歯数zP2とを互いに等しく設定すると、理論上、減速比Rは無限大になる。言い換えると、第1ギヤ比uと第2ギヤ比uとが互いに等しくなると、減速比Rは無限大になってしまう。そのような場合には、第1サンギヤ16が回転不可能に固定されていることにより、実質的に、第2サンギヤ17すなわち出力軸13も回転不可能な状態になってしまう。それに対して、この発明の実施形態における減速ギヤ機構11では、上記のように、第1ギヤ比uと第2ギヤ比uとを互いに異ならせている。そのため、減速比Rが無限大になってしまう状態を回避しつつ、相対的に大きな減速比Rを設定できる。上記の例から分かるように、第1ギヤ比uと第2ギヤ比uとの差が“0”にならない範囲で、それら第1ギヤ比uと第2ギヤ比uとの差を小さくするほど、大きい減速比Rを設定できる。
差動機構3は、第1動力遊星歯車機構24、および、第2動力遊星歯車機構25から構成されている。第1動力遊星歯車機構24、および、第2動力遊星歯車機構25は、それぞれ、同軸上で前後(図1における左右に)に対向して配置されている。第1動力遊星歯車機構24は、動力入力要素26、第1動力出力要素27、および、第1差動反力要素28を有している。動力入力要素26は、入力部材2から駆動トルクが伝達される。第1動力出力要素27は、第1回転軸4に駆動トルクを出力する。第1差動反力要素28には、第1動力出力要素27に伝達される駆動トルクに対する反力として、アクチュエータ6から後述する制御トルクが伝達される。一方、第2動力遊星歯車機構25は、動力入力要素26、第2動力出力要素29、および、第2差動反力要素30を有している。動力入力要素26は、上記の第1動力遊星歯車機構24と兼用されている。第2動力出力要素29は、第2回転軸5に駆動トルクを出力する。第2差動反力要素30には、第2動力出力要素29に伝達される駆動トルクに対する反力として、アクチュエータ6から後述する制御トルクが伝達される。なお、図1に示す例では、後述するキャリア37が、第1差動反力要素28と第2差動反力要素30とを兼ねている。
また、差動機構3は、第1プラネタリギヤ31、第2プラネタリギヤ32、および、第3プラネタリギヤ33の三組のプラネタリギヤと、第1サンギヤ34、第2サンギヤ35、および、第3サンギヤ36の三つのサンギヤと、キャリア37とを有している。第1プラネタリギヤ31、第2プラネタリギヤ32、および、第3プラネタリギヤ33は、同軸上で直列に配置されている。第1サンギヤ34、第2サンギヤ35、および、第3サンギヤ36は、同軸上で直列に配置されている。キャリア37は、第1プラネタリギヤ31、第2プラネタリギヤ32、および、第3プラネタリギヤ33を、それぞれ、自転可能に、かつ、各サンギヤ34,35,36の周りを公転可能に保持している。
第1プラネタリギヤ31、第2プラネタリギヤ32、および、第3プラネタリギヤ33は、それぞれ、キャリア37に固定されたプラネタリギヤ軸38に回転自在に支持されている。プラネタリギヤ軸38はキャリア37と一体に回転する。第1プラネタリギヤ31、第2プラネタリギヤ32、および、第3プラネタリギヤ33は、いずれも、プラネタリギヤ軸38を回転軸とする自転方向で一体に回転する(自転方向に相対回転しない)。第1プラネタリギヤ31と第1サンギヤ34とが噛み合っている。第2プラネタリギヤ32と第2サンギヤ35とが噛み合っている。第3プラネタリギヤ33と第3サンギヤ36とが噛み合っている。第1サンギヤ34、第2サンギヤ35、および、第3サンギヤ36は、互いに相対回転可能なように、それぞれ、ケース8に回転自在に支持されている。
第3サンギヤ36と一体に回転する第3サンギヤ軸39が、入力部材2に取り付けられている。第3サンギヤ軸39と入力部材2とは一体に回転する。すなわち、第3サンギヤ36と入力部材2とは一体に回転する。そのため、駆動力源すなわち電気モータ9が発生する駆動トルクは、減速ギヤ機構11および入力部材2を介して、第3サンギヤ36に伝達される。したがって、第3サンギヤ36は、差動機構3の動力入力要素26となっている。
第1サンギヤ34は、第1回転軸4に連結されている。第1サンギヤ34と第1回転軸4とは一体に回転する。そのため、差動機構3に伝達された駆動トルクの一部は、第1サンギヤ34から第1回転軸4に出力される。したがって、第1サンギヤ34は、差動機構3の第1動力出力要素27となっている。
第2サンギヤ35は、第2回転軸5に連結されている。第2サンギヤ35と第2回転軸5とは一体に回転する。そのため、差動機構3に伝達された駆動トルクの一部は、第2サンギヤ35から第2回転軸5に出力される。したがって、第2サンギヤ35は、差動機構3の第2動力出力要素29となっている。
キャリア37と一体に回転するプラネタリギヤ軸38が、後述する減速遊星歯車機構51を介して、アクチュエータ6の制御トルク出力軸40に連結されている。したがって、キャリア37には、減速遊星歯車機構51およびプラネタリギヤ軸38を介して、アクチュエータ6が出力する制御トルクが伝達される。後述するように、アクチュエータ6からキャリア37に伝達される制御トルクは、動力入力要素26から第1動力出力要素27に伝達される駆動トルク、および、動力入力要素26から第2動力出力要素29に伝達される駆動トルクに対する反力として作用する。したがって、キャリア37は、差動機構3の第1差動反力要素28および第2差動反力要素30となっている。
このように、差動機構3では、第3サンギヤ36が動力入力要素26となり、第1サンギヤ34が第1動力出力要素27となり、キャリア37が第1差動反力要素28となって、第1動力遊星歯車機構24が構成されている。それとともに、第3サンギヤ36が動力入力要素26となり、第2サンギヤ35が第2動力出力要素29となり、キャリア37が第2差動反力要素30となって、第2動力遊星歯車機構25が構成されている。
第1差動反力要素28および第2差動反力要素30(すなわち、キャリア37)は、動力入力要素26(すなわち、第3サンギヤ36)から第1動力出力要素27(すなわち、第1サンギヤ34)および第2動力出力要素29(すなわち、第2サンギヤ35)に駆動トルクを伝達する際に、第1動力出力要素27と第2動力出力要素29との間の回転速度の差を許容するように、動力入力要素26ならびに第1動力出力要素27および第2動力出力要素29の回転時に反力支持される。
第1回転軸4、および、第2回転軸5は、同軸上で前後に対向して配置されている。この発明の実施形態におけるセンターデファレンシャル装置1は、四輪駆動車両に搭載することを想定して構成されている。すなわち、この発明の実施形態におけるトルクベクタリング装置1では、第1回転軸4、および、第2回転軸5が、それぞれ、車両(図示せず)の全長方向(回転軸線AL方向)に同軸上で、全長方向の前後(図1における左右)に対向して配置される。また、第1回転軸4、および、第2回転軸5は、第1動力遊星歯車機構24、および、第2動力遊星歯車機構25と同軸上に配置されている。具体的には、第1回転軸4、および、第2回転軸5、ならびに、第1動力遊星歯車機構24、および、第2動力遊星歯車機構25は、同一の回転軸線AL1上に配置されている。第1回転軸4と第2回転軸5とは、互いに相対回転可能である。第1回転軸4は、突出側(図1の左側)の端部が、ケース8に回転可能に支持されている。同様に、第2回転軸5は、突出側(図1の右側)の端部が、ケース8に回転可能に支持されている。
第1回転軸4、および、第2回転軸5は、それぞれ、差動機構3の第1動力出力要素27および第2動力出力要素29に連結されている。したがって、第1回転軸4と第2回転軸5とは、差動機構3の作用によって差動回転する。例えば、この発明の実施形態におけるセンターデファレンシャル装置1を搭載した車両が旋回走行する場合、差動機構3が車両の差動装置として機能し、前輪側の第1回転軸4と後輪側の第2回転軸5との回転数差に応じて、それら第1回転軸4と第2回転軸5とが差動回転する。また、後述するように、アクチュエータ6の制御トルクを変化させて前後の駆動輪のトルク配分を制御する場合、すなわち、前後の駆動輪に対するトルクベクタリングを行う場合に、第1回転軸4と第2回転軸5とが差動回転する。
アクチュエータ6は、アクチュエータ6で発生するトルクを、制御トルクとして差動機構3に付与する。差動機構3は、第1差動反力要素28および第2差動反力要素30に制御トルクが付与されることにより、第1回転軸4と第2回転軸5とを差動回転させる。アクチュエータ6としては、例えば、電気モータ、あるいは、ブレーキ機構を用いることができる。電気モータは、制御トルクとして、第1差動反力要素28および第2差動反力要素30を駆動する力行トルクを出力する。あるいは、制御トルクとして、第1差動反力要素28および第2差動反力要素30を制動する回生トルクを出力する。ブレーキ機構は、制御トルクとして、第1差動反力要素28および第2差動反力要素30を制動するトルクを出力する。例えば、通電されることにより発生する磁気吸引力を利用して所定の回転部材を制動する励磁作動型の電磁ブレーキや、電気モータによって駆動される送りねじ機構を用いて摩擦制動力を発生させる電動ブレーキなどを用いることができる。
アクチュエータ6は、制御トルクとして、上記のようなトルクを出力する制御トルク出力軸40を有している。図1に示す例では、制御トルクとして、力行トルクまたは回生トルクを出力する電気モータ41が用いられている。したがって、電気モータ41のロータ軸が制御トルク出力軸40になっている。制御トルク出力軸40は、後述する減速遊星歯車機構51を介して、キャリア37のプラネタリギヤ軸38に連結されている。
電気モータ41は、第1回転軸4および第2回転軸5と同軸上(同一の回転軸線AL1上)で、一体的に配置されており、制御トルク出力軸40を駆動するトルクを出力する。電気モータ41は、例えば、永久磁石式の同期モータ、あるいは、誘導モータなどによって構成されている。
上記のように、この発明の実施形態におけるセンターデファレンシャル装置1では、アクチュエータ6として電気モータ41を用いることができる。電気モータ41を制御して制御トルクを変化させることにより、第1回転軸4と第2回転軸5との間の差動回転を制御できる。あるいは、電気モータ41の回生トルクによって、第1回転軸4と第2回転軸5との間の差動回転を制限すること(差動制限またはデファレンシャル・ロック)ができる。
反転機構7は、第1回転軸4および第2回転軸5と同軸上に配置されている。反転機構7は、第1回転軸4と第2回転軸5とが差動回転する場合に、それら第1回転軸4および第2回転軸5を互いに逆方向に回転させる。反転機構7は、第1制御遊星歯車機構42、および、第2制御遊星歯車機構43から構成されている。第1制御遊星歯車機構42、および、第2制御遊星歯車機構43は、いずれも、第1回転軸4および第2回転軸5と同軸上に配置されている。具体的には、第1回転軸4および第2回転軸5、ならびに、第1制御遊星歯車機構42および第2制御遊星歯車機構43は、いずれも、同一の回転軸線AL1上に配置されている。第1制御遊星歯車機構42は、差動機構3の第1差動反力要素28を介して、アクチュエータ6が出力する制御トルクを第1回転軸4に伝達する。第2制御遊星歯車機構43は、差動機構3の第2差動反力要素30を介して、アクチュエータ6が出力する制御トルクを第2回転軸5に伝達する。
反転機構7は、第1回転軸4と第2回転軸5とが同方向に等速で回転する場合に、動力入力要素26(すなわち、第3サンギヤ36)、ならびに、第1動力出力要素27(すなわち、第1サンギヤ34)および第2動力出力要素29(すなわち、第2サンギヤ35)と共に連れ回りするように構成されている。
第1制御遊星歯車機構42は、制御入力要素44、第1制御出力要素45、第1プラネタリギヤ31、および、第1ギヤ46を有している。制御入力要素44は、アクチュエータ6から制御トルクが入力される。第1制御出力要素45は、第1回転軸4に制御トルクを出力する。反転機構7において、第1プラネタリギヤ31は、制御入力要素44から制御トルクが伝達される。第1ギヤ46は、第1プラネタリギヤ31と噛み合い、第1制御出力要素45を形成する。一方、第2制御遊星歯車機構43は、制御入力要素44、第2制御出力要素47、第2プラネタリギヤ32、および、第2ギヤ48を有している。制御入力要素44は、上記の第1制御遊星歯車機構42と兼用されている。第2制御出力要素47は、第2回転軸5に制御トルクを出力する。反転機構7において、第2プラネタリギヤ32は、制御入力要素44から制御トルクが伝達される。第2ギヤ48は、第2プラネタリギヤ32と噛み合い、第2制御出力要素47を形成する。
反転機構7は、第1プラネタリギヤ31、第2プラネタリギヤ32、および、第3プラネタリギヤ33の三組のプラネタリギヤと、第1サンギヤ34、第2サンギヤ35、および、第3サンギヤ36の三つのサンギヤと、キャリア37とを有している。それらのうち、キャリア37が制御入力要素44となり、第1サンギヤ34が第1制御出力要素45となって第1制御遊星歯車機構42を構成している。この場合、第1プラネタリギヤ31と噛み合う第1サンギヤ34が、第1制御出力要素45であって、かつ、第1ギヤ46となっている。また、キャリア37が制御入力要素44となり、第2サンギヤ35が第2制御出力要素47となって第2制御遊星歯車機構43を構成している。この場合、第2プラネタリギヤ32と噛み合う第2サンギヤ35が、第2制御出力要素47であって、かつ、第2ギヤ48となっている。
第1プラネタリギヤ31および第1ギヤ46を含む第1歯車列49のギヤ比と、第2プラネタリギヤ32および第2ギヤ48を含む第2歯車列50のギヤ比とが、互いに異なっている。具体的には、第1歯車列49における第1プラネタリギヤ31と第1サンギヤ34との歯車対のギヤ比と、第2歯車列50における第2プラネタリギヤ32と第2サンギヤ35との歯車対のギヤ比とが、互いに異なっている。図1に示す例では、第1サンギヤ34の歯数と、第2サンギヤ35の歯数と、第3サンギヤ36の歯数とが、いずれも等しい。第1プラネタリギヤ31の歯数と、第2プラネタリギヤ32の歯数と、第3プラネタリギヤ33の歯数とが、いずれも各サンギヤ34,35,36の歯数よりも少ない。そして、第3プラネタリギヤ33の歯数よりも第1プラネタリギヤ31の歯数が多く、かつ、第3プラネタリギヤ33の歯数よりも第2プラネタリギヤ32の歯数が少ない。例えば、図1に括弧内の数値で示すように、各サンギヤ34,35,36の歯数が“30”、第1プラネタリギヤ31の歯数が“19”、第2プラネタリギヤ32の歯数が“17”、第3プラネタリギヤ33の歯数が“18”となっている。
この場合、第1歯車列49のギヤ比u11は、第1プラネタリギヤ31の歯数をzP11、第1サンギヤ34の歯数をzS11とすると、
11=zP11/zS11
となる。したがって、例えば、上記の例のように、第1プラネタリギヤ31の歯数zP11が“19”、第1サンギヤ34の歯数zS11が“30”である場合には、第1歯車列49のギヤ比u11は、
11≒0.63
となる。同様に、第2歯車列50のギヤ比u12は、第2プラネタリギヤ32の歯数をzP12、第2サンギヤ35の歯数をzS12とすると、
12=zP12/zS12
となる。したがって、例えば、上記の例のように、第2プラネタリギヤ32の歯数zP12が“17”、第2サンギヤ35の歯数zS12が“30”である場合には、第2歯車列50のギヤ比u12は、
12≒0.56
となる。第1プラネタリギヤ31の歯数zP11と第2プラネタリギヤ32の歯数zP12とを互いに異ならせていることにより、第1歯車列49のギヤ比u11と第2歯車列50のギヤ比u12とが互いに異なっている。
上記のように、第1制御遊星歯車機構42における第1歯車列49のギヤ比u11と、第2制御遊星歯車機構43における第2歯車列50のギヤ比u12とが互いに異なっている。そのため、第1回転軸4の回転数と第2回転軸5の回転数とが等しい状態では、第1制御遊星歯車機構42および第2制御遊星歯車機構43がそれぞれトルクを伝達する際に、それら第1制御遊星歯車機構42における第1歯車列49と第2制御遊星歯車機構43における第2歯車列50とが互いに干渉する。図1に示す例では、第1歯車列49における第1プラネタリギヤ31の歯数zP11(zP11=19)が、第3サンギヤ36および第3プラネタリギヤ33を含む歯車列における第3プラネタリギヤ33の歯数zP13(zP13=18)よりも一歯多いことにより、第1歯車列49における第1サンギヤ34が、第3サンギヤ36よりも一歯分速く回転しようとする。一方、第2歯車列50における第2プラネタリギヤ32の歯数zP12(zP12=17)が、第3サンギヤ36と第3プラネタリギヤ33との歯車列における第3プラネタリギヤ33の歯数zP13(zP13=18)よりも一歯少ないことにより、第2歯車列50における第2サンギヤ35が、第3サンギヤ36よりも一歯分遅く回転しようとする。そのため、第1サンギヤ34と第2サンギヤ35とが、相対的に、互いに逆方向に回転しようとする。この場合、第1サンギヤ34と噛み合う第1プラネタリギヤ31と、第2サンギヤ35と噛み合う第2プラネタリギヤ32とは、一体に自転かつ公転し、自転方向および公転方向のいずれにも相対回転しない。そのため、第1歯車列49の噛み合い部と、第2歯車列50の噛み合い部とに、互いに逆方向のトルクが作用して、第1歯車列49と第2歯車列50とが互いに干渉する。その結果、反転機構7が、実質的に係合状態となり、一体となって回転する。したがって、第1回転軸4および第2回転軸5は、差動回転することなく、一体となって回転する。
それに対して、第1回転軸4の回転数と第2回転軸5の回転数との間に回転数差がある状態では、上記のような第1歯車列49と第2歯車列50との間の歯車の干渉による反転機構7の実質的な係合状態が解消される。そのため、第1制御遊星歯車機構42および第2制御遊星歯車機構43は、それぞれ、第1歯車列49のギヤ比u11および第2歯車列50のギヤ比u12に応じてトルクを伝達する。図1に示す例では、第1歯車列49と第2歯車列50とが差動回転することにより、反転機構7の実質的な係合状態が解消される。その場合、第1歯車列49の噛み合い部、および、第2歯車列50の噛み合い部には、上記のように、互いに逆方向のトルクが作用する。したがって、第1サンギヤ34および第2サンギヤ35が、互いに逆方向に相対回転する。すなわち、第1サンギヤ34に対して第2サンギヤ35が反転するように、第1サンギヤ34および第2サンギヤ35がそれぞれ回転する。その結果、一方の回転軸4(または5)に対して他方の回転軸5(または4)が反転するように、第1回転軸4および第2回転軸5がそれぞれ回転する。すなわち、第1回転軸4および第2回転軸5は、差動回転しつつ、互いに逆方向に相対回転する。
更に、反転機構7は、制御入力要素44の回転数に対する第1制御出力要素45の回転数の割合を表す第1減速比、および、制御入力要素44の回転数に対する第2制御出力要素47の回転数の割合を表す第2減速比が、いずれも、“1”よりも大きくなるように構成されている。図1に示す例では、キャリア37と第1サンギヤ34との間の第1減速比、および、キャリア37と第2サンギヤ35との間の第2減速比が、いずれも、“1”よりも大きくなるように構成されている。そのため、第1制御遊星歯車機構42、および、第2制御遊星歯車機構43は、それぞれ、キャリア37の入力回転数に対して、第1サンギヤ34および第2サンギヤ35の出力回転数を減速する減速歯車機構を形成している。したがって、第1制御遊星歯車機構42、および、第2制御遊星歯車機構43は、後述するように、キャリア37に入力されるアクチュエータ6の制御トルクを増幅して、第1回転軸4側および第2回転軸5側へ伝達する。
例えば、前述した例のように、第1プラネタリギヤ31の歯数zP11が“19”、第1サンギヤ34の歯数zS11が“30”であり、第2プラネタリギヤ32の歯数zP12が“17”、第2サンギヤ35の歯数zS12が“30”であり、第3プラネタリギヤ33の歯数zP13が“18”、第3サンギヤ36の歯数zS13が“30”である場合には、第1制御遊星歯車機構42の第1減速比R、および、第2制御遊星歯車機構43の第2減速比Rは、それぞれ、
=1/{1−(zS13/zP13)×(zP11/zS11)}≒−18
=1/{1−(zS13/zP13)×(zP12/zS12)}≒18
となる。従来の一般的な遊星歯車機構で実現可能な減速比が、概ね4から10程度であることと比較して、相対的に、大きな減速比が得られている。
なお、第1制御遊星歯車機構42では、差動機構3の第1差動反力要素28(すなわち、キャリア37)の回転方向と、差動機構3の第1動力出力要素27(すなわち、第1サンギヤ34)の回転方向とが、同じ回転方向となり、それら第1差動反力要素28と第1動力出力要素27との間で制御トルクを伝達する。一方、第2制御遊星歯車機構43では、差動機構3の第2差動反力要素30(すなわち、キャリア37)の回転方向に対して、差動機構3の第2動力出力要素29(すなわち、第2サンギヤ35)の回転方向が反転されて、それら第2差動反力要素30と第2動力出力要素29との間で制御トルクを伝達する。したがって、第1制御遊星歯車機構42おける第1動力出力要素27、または、第2制御遊星歯車機構43おける第2動力出力要素29のいずれか一方の回転方向を正回転方向とすれば、他方の回転方向は負回転方向または逆回転方向となる。そのため、この発明の実施形態の説明では、便宜的に、第1制御遊星歯車機構42おける第1動力出力要素27、または、第2制御遊星歯車機構43おける第2動力出力要素29のいずれか一方の減速比に負(ー)の符号を付けている。図1に示す例では、反転機構7におけるアクチュエータ6と第1回転軸4および第2回転軸5との間の減速比Rを、“R=±18”と表示してある。
なお、図1に示す例では、センターデファレンシャル装置1は、反転機構7、第1回転軸4、および、第2回転軸5と同軸上に、減速遊星歯車機構51が設けられている。減速遊星歯車機構51は、アクチュエータ6と差動機構3のキャリア37との間で、アクチュエータ6が出力する制御トルクを増幅して差動機構3および反転機構7に伝達する。
減速遊星歯車機構51は、シングルピニオン型の遊星歯車機構から構成されている。減速遊星歯車機構51は、サンギヤ52、リングギヤ53、および、キャリア54を有している。サンギヤ52は、アクチュエータ6の制御トルク出力軸40に連結されている。サンギヤ52と制御トルク出力軸40とは一体に回転する。リングギヤ53は、差動機構3および反転機構7の各プラネタリギヤ31,32,33、ならびに、各サンギヤ34,35,36を覆うカバー状に形成された連結部材55を介して、第3サンギヤ軸39および第3サンギヤ36に連結されている。リングギヤ53は、連結部材55および第3サンギヤ36と一体になって回転する。キャリア54は、減速遊星歯車機構51のプラネタリギヤ56を自転かつ公転可能に支持している。キャリア54は、上記のキャリア37と兼用されており、それらキャリア54とキャリア37とは一体に回転する。減速遊星歯車機構51は、制御トルク出力軸40から制御トルクが伝達されてサンギヤ52が回転する場合、リングギヤ53が反力要素となり、サンギヤ52の回転数に対してキャリア54の回転数が減速する。すなわち、減速遊星歯車機構51は、アクチュエータ6の減速機構として機能する。したがって、減速遊星歯車機構51は、アクチュエータ6とキャリア37との間で、アクチュエータ6が出力する制御トルクを増幅して、キャリア37に伝達する。
図1に示す例では、図中に括弧内の数値で示すように、減速遊星歯車機構51におけるサンギヤ52の歯数が“25”、リングギヤ53の歯数が“75”、プラネタリギヤ56の歯数が“25”となっており、この減速遊星歯車機構51の減速比は“4”となる。したがって、減速遊星歯車機構51の減速比を加味した、反転機構7におけるアクチュエータ6と第1回転軸4および第2回転軸5との間の実質的な減速比R’は、“R’=±18×4=±70”となる。減速遊星歯車機構51を設けることにより、より一層大きな減速比を得ることができる。
このように、この発明の実施形態におけるセンターデファレンシャル装置1では、反転機構7における第1制御遊星歯車機構42および第2制御遊星歯車機構43が、いずれも、減速比Rが“1”よりも大きい減速歯車機構を形成している。すなわち、反転機構7は、第1回転軸4と第2回転軸5とが差動回転する際に、それら第1回転軸4と第2回転軸5とを互いに逆の回転方向に相対回転させる反転機能に加えて、アクチュエータ6の制御トルクを増幅する減速機能(トルク増幅機能)を備えている。上記の図1に示す例では、減速比Rが“18”(実質的な減速比R’は“72”)となる大きなトルク増幅機能を有している。したがって、この発明の実施形態におけるセンターデファレンシャル装置1によれば、反転機構7の減速機能によって制御トルクを増幅する分、アクチュエータ6の小型化を図ることができる。そのため、センターデファレンシャル装置1を小型化できる。
また、この発明の実施形態におけるセンターデファレンシャル装置1は、反転機構7が一軸構造となっている。そのため、複雑な構造を用いることなく、容易に、上記のような反転機能と減速機能とを兼ね備えた反転機構7を構成できる。また、反転機構7を第1回転軸4および第2回転軸5と同軸上に配置することにより、センターデファレンシャル装置1の径方向への大型化を抑制できる。更に、反転機構7の減速機能によってアクチュエータ6を小型化できる。したがって、この発明の実施形態におけるセンターデファレンシャル装置1によれば、容易に、反転機構7およびアクチュエータ6の小型化を図ることができ、ひいては、センターデファレンシャル装置1の体格を小型化できる。その結果、小型化したセンターデファレンシャル装置1を容易に車両に搭載することができる。
なお、上記の第1プラネタリギヤ31、第2プラネタリギヤ32、および、第3プラネタリギヤ33、ならびに、第1サンギヤ34、第2サンギヤ35、および、第3サンギヤ36の配列の順序は、図1に示す順序に限定されない。例えば、第1プラネタリギヤ31および第1サンギヤ34と、第2プラネタリギヤ32および第2サンギヤ35とを入れ替えて配置した構成でもよい。あるいは、第3プラネタリギヤ33および第3サンギヤ36を、図1の右側に配置した構成でもよい。
図2から図10に、この発明を適用したセンターデファレンシャル装置1の他の実施例を示してある。なお、以下に図示して説明するセンターデファレンシャル装置1において、上述した図1、あるいは、既出の図面で示したセンターデファレンシャル装置1と構成や機能が同じ部材もしくは部品等については、図1、あるいは、既出の図面で用いた参照符号と同じ参照符号を付けてある。
〔第2実施例〕
図2に示すセンターデファレンシャル装置1は、駆動力源として電気モータ101を備えている。電気モータ101は、減速ギヤ機構102を直列的に配置したギヤードモータである。電気モータ101は、第1回転軸4および第2回転軸5と同軸上(同一の回転軸線AL1上)に、一体的に配置されており、第1回転軸4および第2回転軸5を駆動するトルクを出力する。減速ギヤ機構102は、電気モータ101と差動機構3および反転機構7との間に配置されている。
減速ギヤ機構102は、電気モータ101の出力トルクを増幅して入力部材2に伝達する。減速ギヤ機構102は、入力軸103、出力軸104、および、ギヤセット105を有している。
入力軸103は、後述するギヤセット105の第1サンギヤ107および第2サンギヤ108の回転軸部分(図示せず)によって形成されている。入力軸103は、第1サンギヤ107および第2サンギヤ108と共に、電気モータ101のロータ106と一体に回転する。
出力軸104は、入力部材2にトルクを伝達する。図2に示す例では、出力軸104は、後述するギヤセット105の第2キャリア111によって形成されている。具体的には、第2キャリア111の回転軸部分(図示せず)が出力軸104となっている。出力軸104は、入力部材2と同様の中空形状の回転軸となっており、入力部材2の一方の端部に連結されている。もしくは、入力部材2の一方の端部に、出力軸104が一体に形成されている。出力軸104の中空部分には、第1回転軸4が配置されている。出力軸104と第1回転軸4とは相対回転する。
ギヤセット105は、二組の遊星歯車機構を組み合わせた複合遊星歯車機構から構成されている。具体的には、ギヤセット105は、第1サンギヤ107、第2サンギヤ108、リングギヤ109、第1キャリア110、第2キャリア111、第1プラネタリギヤ112、および、第2プラネタリギヤ113を有している。第1サンギヤ107と第2サンギヤ108とは、同軸上で直列に配置され、かつ、一体に回転する。第1サンギヤ107に第1プラネタリギヤ112が噛み合っている。第1プラネタリギヤ112は、内歯歯車のリングギヤ109にも噛み合っている。第2サンギヤ108に第2プラネタリギヤ113が噛み合っている。第2プラネタリギヤ113は、リングギヤ109にも噛み合っている。第1キャリア110は、ケース8に回転不可能に固定されており、第1プラネタリギヤ112を自転可能に保持している。第2キャリア111は、第2プラネタリギヤ113を自転可能に、かつ、第2サンギヤ108の周りを公転可能に保持している。第1キャリア110と第2キャリア111とは、同軸上で直列に配置されている。第2キャリア111は、第1キャリア110に対して相対回転する。
上記の第1サンギヤ107および第2サンギヤ108が、減速ギヤ機構102の入力軸103として、電気モータ101のロータ106に連結されている。そして、第2キャリア111が、減速ギヤ機構102の出力軸104として、差動機構3の動力入力要素26(すなわち、第3サンギヤ36)に連結されている。そのため、減速ギヤ機構102は、第1サンギヤ107および第2サンギヤ108、すなわち、入力軸103の入力回転数に対して、第2キャリア111および差動機構3の第3サンギヤ36、すなわち、動力入力要素26の回転数を減速する。したがって、減速ギヤ機構102は、駆動力源の電気モータ101で発生する駆動トルクを増幅して、差動機構3の動力入力要素26へ伝達する。
例えば、図2に示す例では、図中に括弧内の数値で示すように、第1サンギヤ107の歯数が“22”であり、第2サンギヤ108の歯数が“32”であり、第1プラネタリギヤ112の歯数が“22”であり、第2プラネタリギヤ113の歯数が“17”であり、そして、リングギヤ109の歯数が“66”となっている。この場合、減速比Rは、“R=9.8”となる。この図2に示す減速ギヤ機構102では、前述の図1で示した例における減速ギヤ機構11の減速比Rが“R=5.7”であることと比較して、より大きな減速比が得られている。
なお、図2に示す例では、反転機構7は、図中に括弧内の数値で示すように、第1プラネタリギヤ31の歯数zP11が“21”であり、第1サンギヤ34の歯数zS11が“40”であり、第2プラネタリギヤ32の歯数zP12が“19”であり、第2サンギヤ35の歯数zS12が“40”であり、第3プラネタリギヤ33の歯数zP13が“20”であり、そして、第3サンギヤ36の歯数zS13が“40となっている。この場合の減速比Rは、“R=±20”となる。
また、図2に示す例では、減速遊星歯車機構51は、図中に括弧内の数値で示すように、サンギヤ52の歯数が“25”であり、リングギヤ53の歯数が“65”であり、プラネタリギヤ56の歯数が“20”となっている。この場合、この減速遊星歯車機構51の減速比は“3.6”となる。したがって、反転機構7におけるアクチュエータ6と第1回転軸4および第2回転軸5との間の実質的な減速比R’は、“R’=±20×3.6=±72”となる。
〔第3実施例〕
図3に示すセンターデファレンシャル装置1は、アクチュエータ6として電気モータ121を備えている。電気モータ121は、中空形状のロータ122を有している。電気モータ121は、第1回転軸4および第2回転軸5と同軸上(同一の回転軸線AL1上)で、一体的に配置されている。そして、電気モータ121は、ロータ122の中空部分に、差動機構3および反転機構7の一部を内蔵している。
具体的には、図3に示す例では、差動機構3のキャリア37が、差動機構3および反転機構7の各プラネタリギヤ31,32,33、ならびに、各サンギヤ34,35,36を覆うカバー状またはケース状に形成されている。この図3に示す例では、前述の図1で示した例における減速遊星歯車機構51は設けられていない。そして、カバー形状のキャリア37の外周部分に、電気モータ121のロータ122が連結されている。キャリア37とロータ122とは一体に回転する。
したがって、図3に示すように、差動機構3および反転機構7の一部(図3の左端部)が、ロータ122の内周部分に配置される。そのため、この図3に示すセンターデファレンシャル装置1では、例えば、前述の図1で示した例のように、アクチュエータ6(電気モータ9)と差動機構3および反転機構7とを直列的に配置した場合と比較して、軸方向(図3の左右方向)の全長を短縮することができる。
なお、図3に示す例では、反転機構7は、図中に括弧内の数値で示すように、第1プラネタリギヤ31の歯数zP11が“19”であり、第1サンギヤ34の歯数zS11が“30”であり、第2プラネタリギヤ32の歯数zP12が“17”であり、第2サンギヤ35の歯数zS12が“30”であり、第3プラネタリギヤ33の歯数zP13が“18”であり、そして、第3サンギヤ36の歯数zS13が“30となっている。この場合の減速比Rは、“R=±18”となる。
〔第4実施例〕
図4に示すセンターデファレンシャル装置1では、第2回転軸5が、中間軸131、および、先端軸132から構成されている。そして、駆動トルクを第1回転軸4および第2回転軸5の両方に伝達する4WD状態と、駆動トルクを第1回転軸4のみに伝達する2WD状態とを選択的に設定するための切替機構133を備えている。切替機構133は、第1回転軸4および第2回転軸5と同軸上(同一の回転軸線AL1上)で、一体的に配置されている。
中間軸131は、第2ギヤ48、すなわち、反転機構7の第2サンギヤ35が取り付けられて第2ギヤ(第2サンギヤ35)と一体に回転する。先端軸132は、中間軸131と同軸上(回転軸線AL1上)で前後に対向して配置されている。中間軸131と先端軸132とは、互いに相対回転可能である。
切替機構133は、センターデファレンシャル装置1の4WD状態と2WD状態とを、選択的に切り替えて設定する。4WD状態は、中間軸131と先端軸132とを連結して、それら中間軸131と先端軸132とが一体に回転し、かつ、アクチュエータ6が出力する駆動トルクを第1回転軸4および第2回転軸5(すなわち、中間軸131および先端軸132)の両方に伝達する。2WD状態は、中間軸131と先端軸132との連結を解いて、それら中間軸131と先端軸132とが相対回転し、かつ、中間軸131の回転を止めて、アクチュエータ6が出力する駆動トルクを第1回転軸4のみに伝達する。切替機構133は、第1摩擦クラッチ134、および、第2摩擦クラッチ135から構成されている。
第1摩擦クラッチ134は、通電されることにより発生する磁気吸引力を利用して所定の回転部材を制動する励磁作動型の電磁クラッチである。具体的には、第1摩擦クラッチ134は、制動フランジ136、摩擦係合部137、可動スリーブ138、および、コイル部139を有している。
制動フランジ136は、円盤状の回転部材であり、中間軸131の先端部(図4の右端)に取り付けられている。または、中間軸131の先端部に、中間軸131と一体に形成されている。制動フランジ136と中間軸131とは一体に回転する。
摩擦係合部137は、制動フランジ136と一体に回転する複数の摩擦プレート(図示せず)、および、ケース8などの固定部材に回転不可能に固定された複数の摩擦プレート(図示せず)を有しており、それら各摩擦プレートが交互に配置されている。
可動スリーブ138は、中間軸131および制動フランジ136と同軸上に配置されている。可動スリーブ138は、中空の回転部材であり、基体となる円筒部140、および、円筒部140の一方(図4の左側)の端部に形成された押圧フランジ部141を有している。可動スリーブ138の押圧フランジ部141側の内周部分と、制動フランジ136の先端部(図4の右端)の外周部分とがスプライン嵌合されており、可動スリーブ138は、回転軸線AL1上で前後動(図4の左右方向の移動)が可能になっている。
コイル部139は、ケース8に固定されており、所定の電圧が印加されることによって磁気吸引力を発生する。コイル部139で発生させた磁気吸引力は、可動スリーブ138の押圧フランジ部141に作用し、押圧フランジ部141を摩擦係合部137側へ吸着させる。したがって、コイル部139に通電することにより、摩擦係合部137が押圧フランジ部141によってコイル部139側に押圧され、摩擦係合部137の回転側(制動フランジ136側)の摩擦プレートと固定側(ケース8側)の摩擦プレートとが摩擦係合する。その結果、制動フランジ136が制動され、制動フランジ136の回転が止められる。
第2摩擦クラッチ135は、上記の第1摩擦クラッチ134(電磁クラッチ)のコイル部139に通電のないクラッチOFFの状態で、常時係合状態になる、いわゆるノーマルクローズタイプの摩擦クラッチである。第1摩擦クラッチ134のコイル部139に通電されたクラッチONの状態では、第2摩擦クラッチ135は解放状態になる。具体的には、上記の可動スリーブ138、連結フランジ142、摩擦係合部143、および、リターンスプリング144を有している。
連結フランジ142は、円盤状の回転部材であり、先端軸132の後端部(図4の左端)に取り付けられている。または、先端軸132の後端部に、先端軸132と一体に形成されている。連結フランジ142と先端軸132とは一体に回転する。
摩擦係合部143は、連結フランジ142と一体に回転する複数の摩擦プレート(図示せず)、および、可動スリーブ138と一体に回転する複数の摩擦プレート(図示せず)を有しており、それら各摩擦プレートが交互に配置されている。
リターンスプリング144は、圧縮コイルばねから形成されており、回転軸線AL1方向で、可動スリーブ138を連結フランジ142側(図4の右側)に押圧する弾性力(付勢力)を発生する。リターンスプリング144の付勢力により、摩擦係合部143を挟んで、可動スリーブ138が連結フランジ142側に押圧され、摩擦係合部143の可動スリーブ138側の摩擦プレートと連結フランジ142側の摩擦プレートとが摩擦係合する。その結果、可動スリーブ138と連結フランジ142とが係合し、一体に回転する。すなわち、中間軸131と先端軸132とが、第2回転軸5として一体に回転する。リターンスプリング144は、第1摩擦クラッチ134がONの状態で、可動スリーブ138がコイル部139側に吸引されて移動した場合に、所期の圧縮位置よりも更に圧縮される。リターンスプリング144が所期の圧縮位置を超えて圧縮されることにより、摩擦係合部143の係合状態が解かれ、中間軸131と先端軸132とは互いに相対回転する。
上記のような第1摩擦クラッチ134および第2摩擦クラッチ135から構成される切替機構133は、コイル部139に通電がないクラッチOFFの状態で、第2回転軸5の中間軸131と先端軸132とを連結し、それら中間軸131と先端軸132とが一体に回転し、かつ、駆動トルクを第1回転軸4および第2回転軸5(すなわち、中間軸131および先端軸132)の両方に伝達する4WD状態を設定する。また、コイル部139に通電するクラッチONの状態で、第2回転軸5の中間軸131と先端軸132との連結を解いて、中間軸131と先端軸132とが相対回転し、かつ、中間軸131の回転を止めて(先端軸132は自由に回転する状態で)、駆動トルクを第1回転軸4のみに伝達する2WD状態を設定する。
このように、切替機構133を設けたセンターデファレンシャル装置1は、2WD状態では、中間軸131の回転を止めた状態で、駆動力源が出力する駆動トルクを、反転機構7の第1制御遊星歯車機構42を介して、第1回転軸4のみに伝達する。4WD状態では、駆動力源が出力する駆動トルクを、反転機構7の第1制御遊星歯車機構42および第2制御遊星歯車機構43を介して、それぞれ、第1回転軸4およびに第2回転軸5の両方に伝達する。したがって、4WD状態では、2WD状態と比較して二倍の駆動トルクが第1回転軸4に伝達される。言い換えると、反転機構7では、4WD状態における第1制御遊星歯車機構42の第1減速比Rが、2WD状態における第1制御遊星歯車機構42の第1減速比Rよりも二倍大きくなる。
したがって、この図4に示すセンターデファレンシャル装置1を車両に搭載して、いわゆるパートタイム方式の四輪駆動車両を構成できる。あるいは、上記のような切替機構133の動作を自動制御することにより、いわゆるフルタイム方式の四輪駆動車両を構成できる。
また、この発明の実施形態におけるセンターデファレンシャル装置1では、4WD状態における第1減速比Rが2WD状態における第1減速比Rよりも大きくなるように、反転機構7が構成される。そのため、4WD状態では、実質的に、2WD状態と比較して、駆動力源が出力する駆動トルクをより大きく増幅することができる。したがって、主に低速走行や悪路走行などの場面で選択される4WD状態における第1減速比R(駆動トルクの増幅率)を大きくし、大きな駆動トルクを得ることができる。そのため、4WD状態における車両の発進・加速性能および走破性能を高めることができる。また、主に中速・高速走行での常用域で選択される2WD状態における第1減速比R(駆動トルクの増幅率)を小さくし、通常走行時の車両のエネルギ効率を高めることができる。
また、上記のように、切替機構133は、4WD状態と2WD状態とを切り替える機能に加えて、4WD状態における反転機構7の第1減速比R(相対的に大きい減速比)と2WD状態における反転機構の第1減速比R(相対的に小さい減速比)との間で変速を行う変速機能を有している。したがって、駆動状態の切り替え機能と変速機能とを一つの切替機構133に集約し、コンパクトなセンターデファレンシャル装置1を構成できる。
また、この発明の実施形態におけるセンターデファレンシャル装置1では、アクチュエータ6として電気モータ41が用いられている。その電気モータ41を制御して制御トルクを変化させることにより、第1回転軸4と第2回転軸5との間の差動回転を制御できる。また、電気モータ41の回生トルクによって、第1回転軸4と第2回転軸5との間の差動回転を制限することができる。
更に、この発明の実施形態におけるセンターデファレンシャル装置1では、上記のような切替機構133によって2WD状態を設定した場合に、すなわち、第2回転軸5の中間軸131と先端軸132とが相対回転するとともに、中間軸131の回転を止めて駆動トルクを第1回転軸4のみに伝達する状態で、電気モータ41(アクチュエータ6)が出力するトルクで第1回転軸を駆動することができる。すなわち、2WD状態のときに、電気モータ41で駆動トルクを助勢し、あるいは、駆動トルクを代替して、駆動力をアシストすることができる。すなわち、電気モータ41でアシストトルクを出力することができる。そのため、2WD状態における車両の動力性能や加速性能を向上させることができる。また、例えば、駆動力源にフェールが生じた場合に、電気モータ41の出力トルクで駆動力を発生することができる。したがって、駆動力源のフェールセーフあるいは冗長系を構築することができる。
なお、図4に示す例では、減速ギヤ機構11は、図中に括弧内の数値で示すように、第1サンギヤ16の歯数zS1が“30”であり、第2サンギヤ17の歯数zS2が“30”であり、第1プラネタリギヤ18の歯数zP1が“16”であり、そして、第2プラネタリギヤ19の歯数zP2が“20”となっている。この場合、減速比Rは、“R=4”となる
また、図4に示す例では、反転機構7は、図中に括弧内の数値で示すように、第1プラネタリギヤ31の歯数zP11が“16”であり、第1サンギヤ34の歯数zS11が“30”であり、第2プラネタリギヤ32の歯数zP12が“32”であり、第2サンギヤ35の歯数zS12が“30”であり、第3プラネタリギヤ33の歯数zP13が“24”であり、そして、第3サンギヤ36の歯数zS13が“30となっている。この場合の減速比Rは、“R=±3”となる。
そして、図4に示す例では、減速遊星歯車機構51は、図中に括弧内の数値で示すように、サンギヤ52の歯数が“40”であり、リングギヤ53の歯数が“80”であり、プラネタリギヤ56の歯数が“20”となっている。この場合、この減速遊星歯車機構51の減速比は“3”となる。したがって、反転機構7におけるアクチュエータ6と第1回転軸4および第2回転軸5との間の実質的な減速比R’は、“R’=±3×3=±9”となる。
〔第5実施例〕
図5に示すセンターデファレンシャル装置1は、上記の図4で示したセンターデファレンシャル装置1をベースにして、左右デファレンシャル機構151が設けられている。左右デファレンシャル機構151は、車両の車幅方向における左側駆動軸152と右側駆動軸153と有している。左右デファレンシャル機構151は、第1回転軸4および第2回転軸5の回転軸線AL1に対して、左側駆動軸152および右側駆動軸の回転軸線AL2が直交するように、一体的に配置されている。左右デファレンシャル機構151は、第2回転軸5から入力される駆動トルクを、左側駆動軸152と右側駆動軸153とに分配して伝達する。また、左右デファレンシャル機構151は、左側駆動軸152と右側駆動軸153との差動回転が可能になっている。
左右デファレンシャル機構151としては、従来、車両に搭載されている一般的なデファレンシャルギヤを採用することができる。図5に示す例では、左右デファレンシャル機構151は、左右の駆動軸152,153に伝達するトルクの配分(分配率)を積極的に制御することが可能な、いわゆるトルクベクタリング機能を備えている。具体的には、左右デファレンシャル機構151は、主要な構成要素として、左側駆動軸152、右側駆動軸153、入力部材154、差動機構155、制御モータ156、および、反転機構157を備えている。
入力部材154には、第2回転軸5から、駆動力源が出力する駆動トルクが伝達される。図5に示す例では、第2回転軸5の先端軸132に形成されたかさ歯車158と噛み合うリングギヤによって入力部材154が構成されている。この入力部材154は、前述したセンターデファレンシャル装置1の入力部材2と同様に機能する。
差動機構155は、三つのサンギヤ、三組のプラネタリギヤ、および、各プラネタリギヤを保持するキャリアを有する二組の遊星歯車機構から構成されている。この差動機構155は、前述したセンターデファレンシャル装置1の差動機構3と同様に機能する。
制御モータ156は、左右デファレンシャル機構151のアクチュエータとして、差動機構155に付与する制御トルクを出力する。差動機構155は、制御トルクが付与されることにより、左側駆動軸152と右側駆動軸153とを差動回転させる。この制御モータ156は、前述したセンターデファレンシャル装置1の電気モータ41(アクチュエータ6)と同様に機能する。
反転機構157は、差動機構155と兼用で、三つのサンギヤ、三組のプラネタリギヤ、および、各プラネタリギヤを保持するキャリアを有する二組の遊星歯車機構から構成されている。反転機構157は、左側駆動軸152と右側駆動軸153とが差動回転する場合に、それら左側駆動軸152および右側駆動軸153を互いに逆方向に回転させる。この反転機構157は、前述したセンターデファレンシャル装置1の反転機構7と同様に機能する。また、反転機構157は、前述したセンターデファレンシャル装置1の減速遊星歯車機構51と同様に機能する減速遊星歯車機構159を有している。
要するに、この左右デファレンシャル機構151は、前述したセンターデファレンシャル装置1と原理的に同じ構成であり、前述したセンターデファレンシャル装置1と同様に機能する。すなわち、左右デファレンシャル機構151は、左側駆動軸152と右側駆動軸153との差動回転を可能にし、第2回転軸5から入力される駆動トルクを、左側駆動軸152と右側駆動軸153とに分配して伝達する。それとともに、左右デファレンシャル機構151は、左側駆動軸152と右側駆動軸153とに伝達するトルクの配分(分配率)を積極的に制御することができる。すなわち、車両の左右の駆動輪に対するいわゆるトルクベクタリングを行うことができる。
したがって、図5に示すセンターデファレンシャル装置1では、車両の幅方向における左右の駆動輪に駆動トルクを分配する左右デファレンシャル機構151が一体的に組み付けられる。そのため、例えば、駆動力源と共に、センターデファレンシャル装置1および左右輪のデファレンシャル装置を一体的に備えた車両の駆動ユニットを構成できる。
〔第6実施例〕
図6に示すセンターデファレンシャル装置1は、上記の図5で示した(左右デファレンシャル機構151を一体に組み付けた)センターデファレンシャル装置1をベースにして、デフロック機構161が設けられている。デフロック機構161は、差動機構3の差動回転を止めて(すなわち、差動機構3を一体に回転させて)デフロック状態を選択的に設定する。具体的には、デフロック機構161は、例えば、通電されることにより発生する磁気吸引力を利用して、差動機構3の差動回転を止める励磁作動型の電磁クラッチによって構成されている。図6に示す例では、デフロック機構161は、噛み合いクラッチ部162、および、コイル部163から構成されている。
噛み合いクラッチ部162は、例えば、差動機構3のキャリア37と連結部材55との間に設けられており、係合状態でキャリア37と連結部材55とを係合し、差動機構3の差動回転を止める。噛み合いクラッチ部162は、例えば、リターンスプリング(図示せず)によって、通常時(コイル部163に通電がない状態)に解放状態となる。
コイル部163は、ケース8に固定されており、所定の電圧が印加されることによって磁気吸引力を発生する。コイル部163で発生させた磁気吸引力は、噛み合いクラッチ部162の可動部分(図示せず)に作用し、可動部分をコイル部163側へ吸着させて、噛み合いクラッチ部162を係合させる。したがって、コイル部163に通電することにより、噛み合いクラッチ部162が係合状態になり、差動機構3の差動回転を止められる。その結果、センターデファレンシャル装置1が、いわゆるデフロック状態になる。
このように、デフロック機構161を設けたセンターデファレンシャル装置1は、状況に応じてデフロック機構161を作動させて、センターデファレンシャル装置1をデフロック状態にすることができる。したがって、このセンターデファレンシャル装置1を搭載した車両の走破性能や操縦安定性能を向上させることができる。
更に、この発明の発明の実施形態におけるセンターデファレンシャル装置1では、上記のようなデフロック機構161によってデフロック状態を設定した場合に、電気モータ41(アクチュエータ6)が出力するトルクで第1回転軸4を駆動することができる。すなわち、電気モータ41(アクチュエータ6)で駆動トルクを助勢し、あるいは、駆動トルクを代替して、駆動力をアシストすることができる。すなわち、電気モータ41でアシストトルクを出力することができる。そのため、センターデファレンシャル装置1を搭載した車両の動力性能や加速性能を向上させることができる。また、例えば、駆動力源にフェールが生じた場合に、電気モータ41(アクチュエータ6)の出力トルクで駆動力を発生することができる。したがって、駆動力源のフェールセーフあるいは冗長系を構築できる。
〔第7実施例〕
図7に示すセンターデファレンシャル装置1は、上記の図5で示した(左右デファレンシャル機構151を一体に組み付けた)センターデファレンシャル装置1をベースにして、差動制限機構171が設けられている。差動制限機構171は、差動機構3の差動回転を抑制して差動制限状態を選択的に設定する。具体的には、差動制限機構171は、例えば、通電されることにより発生する磁気吸引力を利用して、差動機構3の差動回転を止める励磁作動型の電磁クラッチによって構成されている。図7に示す例では、差動制限機構171は、摩擦クラッチ部172、および、コイル部173から構成されている。
摩擦クラッチ部172は、例えば、差動機構3のキャリア37と連結部材55との間に設けられており、解放状態から係合状態に向けてキャリア37と連結部材55とを連続的に係合し、差動機構3の差動回転を抑制する。摩擦クラッチ部172は、例えば、リターンスプリング(図示せず)によって、通常時(コイル部173に通電がない状態)に解放状態となる。
コイル部173は、ケース8に固定されており、所定の電圧が印加されることによって磁気吸引力を発生する。コイル部173で発生させた磁気吸引力は、摩擦クラッチ部172の可動部分(図示せず)に作用し、可動部分をコイル部173側へ吸着させて、摩擦クラッチ部172を係合させる。したがって、コイル部173に通電する電流を制御することにより、摩擦クラッチ部172がスリップ係合(半係合)または係合状態になり、差動機構3の差動回転を抑制できる。その結果、センターデファレンシャル装置1が、差動制限状態になる。
このように、差動制限機構171を設けたセンターデファレンシャル装置1は、状況に応じて差動制限機構171を作動させて、センターデファレンシャル装置1を差動制限状態にすることができる。したがって、このセンターデファレンシャル装置1を搭載した車両の走破性能や操縦安定性能を向上させることができる。
更に、この発明の発明の実施形態におけるセンターデファレンシャル装置1では、上記のような差動制限状態によって差動制限状態を設定した場合に、電気モータ41(アクチュエータ6)が出力するトルクで第1回転軸4を駆動することができる。すなわち、電気モータ41(アクチュエータ6)で駆動トルクを助勢し、あるいは、駆動トルクを代替して、駆動力をアシストすることができる。すなわち、電気モータ41でアシストトルクを出力することができる。そのため、センターデファレンシャル装置1を搭載した車両の動力性能や加速性能を向上させることができる。また、例えば、駆動力源にフェールが生じた場合に、電気モータ41(アクチュエータ6)の出力トルクで駆動力を発生することができる。したがって、駆動力源のフェールセーフあるいは冗長系を構築できる。
〔第8実施例〕
図8に示すセンターデファレンシャル装置1は、上記の図5で示した(左右デファレンシャル機構151を一体に組み付けた)センターデファレンシャル装置1をベースにして、ブレーキ機構181が設けられている。ブレーキ機構181は、第1回転軸4および第2回転軸5と同軸上(同一の回転軸線AL1上)で、一体的に配置されている。ブレーキ機構181は、通電することによって作動して第1回転軸4または第2回転軸5を制動し、通電を解除した後も第1回転軸4または第2回転軸5を制動して回転を止めた状態を保持することが可能な電動ブレーキである。具体的には、ブレーキ機構181は、摩擦クラッチ機構182および、電気モータ184によって駆動される送りねじ機構183から構成されている。
摩擦クラッチ機構182は、可動部材185、回転部材186、および、固定部材187を有している。可動部材185は、第1回転軸4および第2回転軸5と同軸上(回転軸線AL1上)に配置され、回転軸線AL1上を前後動する。回転部材186は、第1回転軸4または第2回転軸5(図8に示す例では第1回転軸4)に取り付けられた円盤状の部材であり、外周部分に摩擦プレート(図示せず)が形成されている。固定部材187は、回転部材186の摩擦プレート部分と係合する摩擦プレートであり、ケース8などの非回転部材に、回転不可能に固定されている。固定部材187は、第1回転軸4および第2回転軸5と同軸上(回転軸線AL1上)で、可動部材185に対向して配置される。
送りねじ機構183は、電気モータ184によって駆動され、摩擦クラッチ機構182の可動部材185を回転軸線AL1方向に前後動させる。電気モータ184は、通電されることによってトルクを発生し、送りねじ機構183を駆動する。送りねじ機構183は、電気モータ184に通電して作動することにより、可動部材185を回転軸線AL1方向で固定部材187側に移動させる。
したがって、ブレーキ機構181は、電気モータ184に通電して送りねじ機構183を作動させることにより、可動部材185が回転軸線AL1方向に動作して、可動部材185が、第1回転軸4と一体に回転する回転部材186と共に、固定部材187(ケース8)に係合する。ブレーキ機構181は、上記のような送りねじ機構183を用いていることにより、電気モータ184の通電を解除した後も、第1回転軸4を制動して回転を止めた状態を保持することができる。そのため、ブレーキ機構181は、車両のパーキングブレーキとしても機能する。
このように、ブレーキ機構181を設けることにより、いわゆるオンボードタイプのブレーキ装置を備えたセンターデファレンシャル装置1を構成できる。また、送りねじ機構183を用いたブレーキ機構181は、送りねじ機構183を駆動する電気モータ184に対する通電を解除した場合でも送りねじ機構183の動作位置を保持できる。すなわち、第1回転軸4または第2回転軸5を制動して回転を止めた状態で電気モータ184に対する通電を解除しても、その制動状態を保持できる。そのため、ブレーキ機構181は、駐車時に車両の制動状態を保持するパーキングブレーキとして用いることも可能である。したがって、オンボードタイプのブレーキ装置としての機能と、パーキングブレーキとしての機能とを兼ね備えたコンパクトなセンターデファレンシャル装置1を構成できる。
〔第9実施例〕
図9に示すセンターデファレンシャル装置1は、上記の図8で示した(左右デファレンシャル機構151、および、ブレーキ機構181を一体に組み付けた)センターデファレンシャル装置1をベースにして、切替機構191が設けられている。切替機構191は、前述の切替機構133に替わって設けられている。すなわち、前述の切替機構133が、通電のないOFFの状態(通常の状態)で第1回転軸4と第2回転軸5との差動回転を許容した4WD状態を設定する、いわゆるノーマルオープンタイプのクラッチ機構であるのに対して、この図9に示す切替機構191は、通電のないOFFの状態で第2回転軸5の中間軸131の回転を止める、いわゆるノーマルクローズタイプのクラッチ機構となっている。切替機構191は、第1摩擦クラッチ192、および、第2摩擦クラッチ193から構成されている。
第1摩擦クラッチ192は、通電されることにより発生する磁気吸引力を利用して所定の回転部材を制動する励磁作動型の電磁クラッチである。具体的には、第1摩擦クラッチ192は、制動フランジ194、摩擦係合部195、可動スリーブ196、および、コイル部197を有している。
制動フランジ194は、円盤状の回転部材であり、中間軸131の先端部(図9の左端)に取り付けられている。または、中間軸131の先端部に、中間軸131と一体に形成されている。制動フランジ194と中間軸131とは一体に回転する。
摩擦係合部195は、可動スリーブ196と一体に回転する複数の摩擦プレート(図示せず)、および、先端軸132と一体に回転する複数の摩擦プレート(図示せず)を有しており、それら各摩擦プレートが交互に配置されている。
可動スリーブ196は、中間軸131および制動フランジ194と同軸上に配置されている。可動スリーブ196は、中空の回転部材であり、基体となる円筒部198、および、円筒部198の中央部分に形成された押圧フランジ部199を有している。可動スリーブ196の一方の端部(図9の右端)の内周部分と、制動フランジ194の先端部(図9の左端)の外周部分とがスプライン嵌合されており、可動スリーブ196は、回転軸線AL1上で前後動(図9の左右方向の移動)が可能になっている。
コイル部197は、ケース8に固定されており、所定の電圧が印加されることによって磁気吸引力を発生する。コイル部197で発生させた磁気吸引力は、可動スリーブ196の押圧フランジ部199に作用し、押圧フランジ部199を摩擦係合部195側へ吸着させる。したがって、コイル部197に通電することにより、摩擦係合部195が押圧フランジ部199によってコイル部197側に吸引され、摩擦係合部195の可動スリーブ196側の摩擦プレートと先端軸132側の摩擦プレートとが摩擦係合する。その結果、可動スリーブ196と先端軸132とが係合する。すなわち、中間軸131と先端軸132とが連結状態になる。
第2摩擦クラッチ193は、上記の第1摩擦クラッチ192(電磁クラッチ)のコイル部197に通電のないクラッチOFFの状態で、常時係合状態になる、いわゆるノーマルクローズタイプの摩擦クラッチである。第1摩擦クラッチ192のコイル部197に通電されたクラッチONの状態では、第2摩擦クラッチ193は解放状態になる。具体的には、上記の可動スリーブ196、固定フランジ200、摩擦係合部201、および、リターンスプリング202を有している。
固定フランジ200は、円盤状の部材であり、ケース8に取り付けられ、回転不可能に固定されている。
摩擦係合部201は、固定フランジ200に回転不可能に固定された複数の摩擦プレート(図示せず)、および、可動スリーブ196と一体に回転する複数の摩擦プレート(図示せず)を有しており、それら各摩擦プレートが交互に配置されている。
リターンスプリング202は、圧縮コイルばねから形成されており、回転軸線AL1方向で、可動スリーブ196を固定フランジ200側(図9の右側)に押圧する弾性力(付勢力)を発生する。リターンスプリング202の付勢力により、摩擦係合部201を挟んで、可動スリーブ196が固定フランジ200側に押圧され、摩擦係合部201の可動スリーブ196側の摩擦プレートと固定フランジ200側の摩擦プレートとが摩擦係合する。その結果、可動スリーブ196は制動され、回転が止められる。すなわち、中間軸131が制動され、中間軸131の回転が止められる。リターンスプリング202は、第1摩擦クラッチ192がONの状態で、可動スリーブ196がコイル部197側に吸引されて移動した場合に所期の圧縮位置よりも更に圧縮される。リターンスプリング202が所期の圧縮位置を超えて圧縮されることにより、摩擦係合部201の係合状態が解かれ、中間軸131の制動が解除される。
上記のような第1摩擦クラッチ192および第2摩擦クラッチ193から構成される切替機構191は、コイル部197に通電がないクラッチOFFの状態で、第2回転軸5の中間軸131と先端軸132との連結を解いて、中間軸131と先端軸132とが相対回転し、かつ、中間軸131の回転を止めて(先端軸132は自由に回転する状態で)、駆動トルクを第1回転軸4のみに伝達する2WD状態を設定する。また、コイル部197に通電するクラッチONの状態で、第2回転軸5の中間軸131と先端軸132とを連結し、それら中間軸131と先端軸132とが一体に回転し、かつ、駆動トルクを第1回転軸4および第2回転軸5(すなわち、中間軸131および先端軸132)の両方に伝達する4WD状態を設定する。
したがって、この図9に示すセンターデファレンシャル装置1を車両に搭載して、いわゆるパートタイム方式の四輪駆動車両を構成できる。あるいは、通常は2WD状態の車両をベースにして、上記のような切替機構191の動作を自動制御することにより、いわゆるフルタイム方式の四輪駆動車両を構成できる。
〔第10実施例〕
図10に示すセンターデファレンシャル装置1は、上記の図8で示した(左右デファレンシャル機構151、および、ブレーキ機構181を一体に組み付けた)センターデファレンシャル装置1をベースにして、切替機構211が設けられている。切替機構211は、図8で示したセンターデファレンシャル装置1の切替機構133およびブレーキ機構181に替わって設けられている。すなわち、切替機構211は、切替機構133の機能と、ブレーキ機構181の機能とを兼ね備えている。具体的には、切替機構211は、第1可動部材212、第2可動部材213、第1回転部材214、第2回転部材215、固定部材216、摩擦クラッチ機構217、送りねじ機構218、および、電気モータ219から構成されている。
第1可動部材212は、先端軸132と同軸上で、先端軸132の外周部分に配置されている。第1可動部材212は、中空の回転部材であり、基体となる円筒部220、および、円筒部220の一方(図10の右側)の端部に形成された押圧フランジ部221を有している。第1可動部材212の円筒部220の外周部分と、ケース8の内周部分とがスプライン嵌合されており、第1可動部材212は、回転不可能に拘束されつつ、回転軸線AL1上で前後動(図10の左右方向の移動)が可能になっている。第1可動部材212は、後述する送りねじ機構218によって動作する部材であり、この発明の実施形態における「可動部材」に相当する。
第2可動部材213は、中間軸131と同軸上で、中間軸131の外周部分に配置されている。第2可動部材213は、中空の回転部材であり、基体となる円筒部222、円筒部220の中央部分に形成された押圧フランジ部223を有している。第2可動部材213の円筒部220の内周部分と、後述する第1回転部材214の外周部分とがスプライン嵌合されており、第2可動部材213は、第1回転部材214と一体に回転しつつ、回転軸線AL1上で前後動(図10の左右方向の移動)が可能になっている。
第1回転部材214は、円盤状の回転部材であり、中間軸131の先端部(図10の左端)に取り付けられている。または、中間軸131の先端部に、中間軸131と一体に形成されている。第1回転部材213と中間軸131とは一体に回転する。
第2回転部材215は、円盤状の回転部材であり、先端軸132の後端部(図10の右端)に取り付けられている。または、先端軸132の後端部に、先端軸132と一体に形成されている。第2回転部材215と先端軸132とは一体に回転する。
固定部材216は、円盤状の部材であり、ケース8に取り付けられ、回転不可能に固定されている。
摩擦クラッチ機構217は、第1摩擦係合部224、および、第2摩擦係合部225を有している。第1摩擦係合部224は、第1回転部材214と一体に回転する複数の摩擦プレート(図示せず)、および、第2回転部材215と一体に回転する複数の摩擦プレート(図示せず)を有しており、それら各摩擦プレートが交互に配置されている。第2摩擦係合部225は、第1回転部材214と一体に回転する複数の摩擦プレート(図示せず)、および、固定部材216に回転不可能に固定された複数の摩擦プレート(図示せず)を有しており、それら各摩擦プレートが交互に配置されている。
また、第2摩擦係合部225は、リターンスプリング226を有している。リターンスプリング226は、圧縮コイルばねから形成されており、回転軸線AL1方向で、第2可動部材213を固定部材216側(図10の右側)に押圧する弾性力(付勢力)を発生する。リターンスプリング226の付勢力により、第2摩擦係合部225を挟んで、第2可動部材213が固定部材216側に押圧され、第2摩擦係合部225の第1回転部材214側の摩擦プレートと固定部材216側の摩擦プレートとが摩擦係合する。その結果、第1回転部材214は制動され、回転が止められる。すなわち、中間軸131が制動され、中間軸131の回転が止められる。リターンスプリング226は、第1可動部材212が、回転軸線AL1方向の前端(図10の左端)に移動した場合に所期の圧縮位置よりも更に圧縮される。リターンスプリング226が所期の圧縮位置を超えて圧縮されることにより、第2摩擦係合部225の係合状態が解かれ、中間軸131の制動が解除される。
送りねじ機構218は、電気モータ219によって駆動され、第1可動部材212を回転軸線AL1方向に前後動させる。電気モータ219は、通電されることによってトルクを発生し、送りねじ機構218を駆動する。送りねじ機構218は、電気モータ219に通電して作動することにより、第1可動部材212を回転軸線AL1方向で第2摩擦係合部225側に移動させる。
したがって、切替機構211は、電気モータ219に通電して送りねじ機構218を駆動することによって作動し、第1可動部材212(可動部材)が回転軸線AL1方向の後端側に動作して、第1可動部材212が、中間軸131と一体に回転する第1回転部材214および先端軸132と一体に回転する第2回転部材215と共に、固定部材216(ケース8)に係合することにより、第2回転軸5(すなわち、中間軸131および先端軸132)を制動する。また、送りねじ機構218を用いているため、通電を解除した後も第2回転軸5を制動して回転を止めた状態を保持できる。すなわち、切替機構211は、第2回転軸5を制動する電動ブレーキ、および、駐車時に作動させるパーキングブレーキとしても機能する。
また、切替機構211は、第1可動部材212が回転軸線AL1の前端側に動作して、第1可動部材212ならびに第1回転部材214および第2回転部材215と固定部材216との係合を解放し、かつ、中間軸131と先端軸132とを連結することにより、4WD状態を設定する。そして、第1可動部材212が回転軸線AL1方向の中間位置に動作して、第1可動部材212および第2回転部材215と固定部材216との係合を解放し、かつ、第1回転部材214と固定部材216との係合を維持して中間軸131の回転を止めることにより、2WD状態を設定する。したがって、切替機構211は、前述した切替機構133と同様に機能する。
このように、図10に示すセンターデファレンシャル装置1では、前端側位置、中間位置、および、後端側位置の三つの位置に動作する切替機構211が設けられ、前端側位置で設定する4WD状態と、中間位置で設定する2WD状態と、後端側位置で機能する電動ブレーキ機能とを選択的に切り替えるように構成される。そのような三位置の切替機構211は、送りねじ機構218および電気モータ219が用いられて動作する。したがって、電気モータ219は、切替機構211を、上記のような2WD状態と4WD状態との切替機構として機能させる場合、および、電動ブレーキとして機能させる場合の両方場合のアクチュエータとして共用されている。すなわち、切替機構および電動ブレーキを一つの共通のアクチュエータで動作させることができる。そのため、部材や部品点数を削減し、コンパクトなセンターデファレンシャル装置1を構成できる。
1 センターデファレンシャル装置
2 入力部材
3 差動機構
4 第1回転軸
5 第2回転軸
6 アクチュエータ
7 反転機構
8 ケース
9 電気モータ(駆動力源)
10 (電気モータ6の)ロータ
11 減速ギヤ機構
12 (減速ギヤ機構11の)入力軸
13 (減速ギヤ機構11の)出力軸
14 (減速ギヤ機構11の)固定部材
15 (減速ギヤ機構11の)ギヤセット
16 (減速ギヤ機構11の)第1サンギヤ
17 (減速ギヤ機構11の)第2サンギヤ
18 (減速ギヤ機構11の)第1プラネタリギヤ
19 (減速ギヤ機構11の)第2プラネタリギヤ
20 (減速ギヤ機構11の)プラネタリギヤ軸
21 (減速ギヤ機構11の)キャリア
22 (減速ギヤ機構11の)第1アーム
23 (減速ギヤ機構11の)第2アーム
24 (差動機構3の)第1動力遊星歯車機構
25 (差動機構3の)第2動力遊星歯車機構
26 (差動機構3の)動力入力要素
27 (差動機構3の)第1動力出力要素
28 (差動機構3の)第1差動反力要素
29 (差動機構3の)第2動力出力要素
30 (差動機構3の)第2差動反力要素
31 (差動機構3の)第1プラネタリギヤ
32 (差動機構3の)第2プラネタリギヤ
33 (差動機構3の)第3プラネタリギヤ
34 (差動機構3の)第1サンギヤ
35 (差動機構3の)第2サンギヤ
36 (差動機構3の)第3サンギヤ
37 (差動機構3の)キャリア
38 (差動機構3の)プラネタリギヤ軸
39 (差動機構3の)第3サンギヤ軸
40 (アクチュエータ6の)制御トルク出力軸
41 電気モータ(アクチュエータ)
42 (反転機構7の)第1制御遊星歯車機構
43 (反転機構7の)第2制御遊星歯車機構
44 (反転機構7の)制御入力要素
45 (反転機構7の)第1制御出力要素
46 (反転機構7の)第1ギヤ
47 (反転機構7の)第2制御出力要素
48 (反転機構7の)第2ギヤ
49 (反転機構7の)第1歯車列
50 (反転機構7の)第2歯車列
51 減速遊星歯車機構
52 (減速遊星歯車機構51の)サンギヤ
53 (減速遊星歯車機構51の)リングギヤ
54 (減速遊星歯車機構51の)キャリア
55 (減速遊星歯車機構51の)連結部材
56 (減速遊星歯車機構51の)プラネタリギヤ
101 電気モータ(駆動力源)
102 減速ギヤ機構
103 (減速ギヤ機構102の)入力軸
104 (減速ギヤ機構102の)出力軸
105 (減速ギヤ機構102の)ギヤセット
106 (電気モータ60の)ロータ
107 (ギヤセット64の)第1サンギヤ
108 (ギヤセット64の)第2サンギヤ
109 (ギヤセット64の)リングギヤ
110 (ギヤセット64の)第1キャリア
111 (ギヤセット64の)第2キャリア
112 (ギヤセット64の)第1プラネタリギヤ
113 (ギヤセット64の)第2プラネタリギヤ
121 電気モータ(アクチュエータ)
122 (電気モータ121の)ロータ
131 (第2回転軸5の)中間軸
132 (第2回転軸5の)先端軸
133 切替機構
134 (切替機構133の)第1摩擦クラッチ
135 (切替機構133の)第2摩擦クラッチ
136 (第1摩擦クラッチ134の)制動フランジ
137 (第1摩擦クラッチ134の)摩擦係合部
138 (第1摩擦クラッチ134の)可動スリーブ
139 (第1摩擦クラッチ134の)コイル部
140 (可動スリーブ138の)円筒部
141 (可動スリーブ138の)押圧フランジ部
142 (第2摩擦クラッチ135の)連結フランジ
143 (第2摩擦クラッチ135の)摩擦係合部
144 (第2摩擦クラッチ135の)リターンスプリング
151 左右デファレンシャル機構
152 (左右デファレンシャル機構151の)左側駆動軸
153 (左右デファレンシャル機構151の)右側駆動軸
154 (左右デファレンシャル機構151の)入力部材
155 (左右デファレンシャル機構151の)差動機構
156 (左右デファレンシャル機構151の)制御モータ(アクチュエータ)
157 (左右デファレンシャル機構151の)反転機構
158 (先端軸132に形成された)かさ歯車
159 減速遊星歯車機構
161 デフロック機構
162 (デフロック機構161の)噛み合いクラッチ部
163 (デフロック機構161の)コイル部
171 差動制限機構
172 (差動制限機構171の)摩擦クラッチ部
173 (差動制限機構171の)コイル部
181 ブレーキ機構(電動ブレーキ)
182 (ブレーキ機構181の)摩擦クラッチ機構
183 (ブレーキ機構181の)送りねじ機構
184 (ブレーキ機構181の)電気モータ
185 (摩擦クラッチ機構182の)可動部材
186 (摩擦クラッチ機構182の)回転部材
187 (摩擦クラッチ機構182の)固定部材
191 切替機構
192 (切替機構191の)第1摩擦クラッチ
193 (切替機構191の)第2摩擦クラッチ
194 (第1摩擦クラッチ134の)制動フランジ
195 (第1摩擦クラッチ134の)摩擦係合部
196 (第1摩擦クラッチ134の)可動スリーブ
197 (第1摩擦クラッチ134の)コイル部
198 (可動スリーブ138の)円筒部
199 (可動スリーブ138の)押圧フランジ部
200 (第2摩擦クラッチ135の)固定フランジ
201 (第2摩擦クラッチ135の)摩擦係合部
202 (第2摩擦クラッチ135の)リターンスプリング
211 切替機構
212 (切替機構191の)第1可動部材
213 (切替機構191の)第2可動部材
214 (切替機構191の)第1回転部材
215 (切替機構191の)第2回転部材
216 (切替機構191の)固定部材
217 (切替機構191の)摩擦クラッチ機構
218 (切替機構191の)送りねじ機構
219 (切替機構191の)電気モータ
220 (第1可動部材212の)円筒部
221 (第1可動部材212の)押圧フランジ部
222 (第2可動部材213の)円筒部
223 (第2可動部材213の)押圧フランジ部
224 (摩擦クラッチ機構217の)第1摩擦係合部
225 (摩擦クラッチ機構217の)第2摩擦係合部
226 (第2摩擦係合部225の)リターンスプリング
AL1 (第1回転軸4および第2回転軸5の)回転軸線
AL2 (左側駆動軸152および右側駆動軸153の)回転軸線

Claims (11)

  1. 駆動力源から駆動トルクが入力される入力部材と、車両の全長方向に同軸上で前後に対向して配置され、互いに相対回転可能な第1回転軸および第2回転軸と、前記入力部材と前記第1回転軸および前記第2回転軸との間で、前記入力部材に入力された前記駆動トルクを前記第1回転軸と前記第2回転軸とに分配して伝達するとともに、前記第1回転軸と前記第2回転軸との差動回転が可能な差動機構と、前記第1回転軸および前記第2回転軸と同軸上に配置され、前記差動機構に制御トルクを付与して前記第1回転軸と前記第2回転軸とを差動回転させるアクチュエータと、前記第1回転軸と前記第2回転軸とが差動回転する際に前記第1回転軸および前記第2回転軸を互いに逆方向に回転させる反転機構と、を備えたセンターデファレンシャル装置において、
    前記差動機構は、
    前記全長方向に同軸上で前後に対向して配置される第1動力遊星歯車機構と第2動力遊星歯車機構とから構成され、
    前記第1動力遊星歯車機構は、前記入力部材から前記駆動トルクが伝達される動力入力要素と、前記第1回転軸に前記駆動トルクを出力する第1動力出力要素と、前記動力入力要素から前記第1動力出力要素に伝達する前記駆動トルクに対する反力として前記制御トルクが伝達される第1差動反力要素とを有し、
    前記第2動力遊星歯車機構は、前記動力入力要素と、前記第2回転軸に前記駆動トルクを出力する第2動力出力要素と、前記動力入力要素から前記第2動力出力要素に伝達する前記駆動トルクに対する反力として前記制御トルクが伝達される第2差動反力要素とを有しており、
    前記反転機構は、
    それぞれ、前記第1回転軸および前記第2回転軸と同軸上に配置され、前記第1差動反力要素を介して前記制御トルクを前記第1回転軸に伝達する第1制御遊星歯車機構と、前記第2差動反力要素を介して前記制御トルクを前記第2回転軸に伝達する第2制御遊星歯車機構とから構成され、
    前記第1制御遊星歯車機構は、前記アクチュエータから前記制御トルクが入力される制御入力要素と、前記第1回転軸に前記制御トルクを出力する第1制御出力要素と、前記制御入力要素から前記制御トルクが伝達される第1プラネタリギヤと、前記第1プラネタリギヤに噛み合い、前記第1制御出力要素を形成する第1ギヤとを有し、
    前記第2制御遊星歯車機構は、前記制御入力要素と、前記第2回転軸に前記制御トルクを出力する第2制御出力要素と、前記第1プラネタリギヤと同軸上に配置され、前記制御入力要素から前記制御トルクが伝達される第2プラネタリギヤと、前記第2プラネタリギヤに噛み合い、前記第2制御出力要素を形成する第2ギヤとを有し、
    前記第1プラネタリギヤおよび前記第1ギヤを含む第1歯車列のギヤ比と、前記第2プラネタリギヤおよび前記第2ギヤを含む第2歯車列のギヤ比とが、互いに異なっており、
    前記制御入力要素の回転数に対する前記第1制御出力要素の回転数の割合を表す第1減速比、および、前記制御入力要素の回転数に対する前記第2制御出力要素の回転数の割合を表す第2減速比が、いずれも、“1”よりも大きく、
    前記制御トルクを増幅して前記第1制御出力要素および前記第2制御出力要素に伝達する減速歯車機構を形成している
    ことを特徴とするセンターデファレンシャル装置。
  2. 請求項1に記載のセンターデファレンシャル装置において、
    前記第2回転軸は、前記第2ギヤが取り付けられて前記第2ギヤと一体に回転する中間軸と、前記中間軸と同軸上に配置され、前記中間軸と相対回転可能な先端軸とから構成されており、
    前記中間軸と前記先端軸とを連結して前記中間軸と前記先端軸とが一体に回転し、かつ、前記駆動トルクを前記第1回転軸および前記第2回転軸の両方に伝達する4WD状態と、前記中間軸と前記先端軸との連結を解いて前記中間軸と前記先端軸とが相対回転し、かつ、前記中間軸の回転を止めて前記駆動トルクを前記第1回転軸のみに伝達する2WD状態とを選択的に設定する切替機構を備え、
    前記反転機構は、前記4WD状態における前記第1減速比が前記2WD状態における前記第1減速比よりも大きい
    ことを特徴とするセンターデファレンシャル装置。
  3. 請求項2に記載のセンターデファレンシャル装置において、
    前記アクチュエータは、
    前記制御トルクを出力する電気モータであって、
    前記2WD状態で、前記駆動トルクを助勢または代替するアシストトルクとして、前記動力入力要素を駆動するトルクを出力する
    ことを特徴とするセンターデファレンシャル装置。
  4. 請求項3に記載のセンターデファレンシャル装置において、
    前記電気モータは、
    中空形状のロータを有し、
    前記ロータの中空部分に、前記差動機構および前記反転機構の少なくとも一部を内蔵している
    ことを特徴とするセンターデファレンシャル装置。
  5. 請求項1から4のいずれか一項に記載のセンターデファレンシャル装置において、
    前記第1回転軸および前記第2回転軸と同軸上に配置され、通電することによって作動して前記第1回転軸または前記第2回転軸を制動し、かつ、前記通電を解除した後も前記第1回転軸または前記第2回転軸を制動して回転を止めた状態を保持することが可能な電動ブレーキを備え、
    前記電動ブレーキは、
    可動部材が前記第1回転軸および前記第2回転軸の回転軸線方向に動作して、前記可動部材が、前記第1回転軸または前記第2回転軸と一体に回転する回転部材と共に、固定部材に係合することにより、前記第1回転軸または前記第2回転軸を制動する摩擦クラッチ機構と、
    前記可動部材を前記回転軸線方向に前後動させる送りねじ機構と、
    前記送りねじ機構を駆動する電気モータと
    を有している
    ことを特徴とするセンターデファレンシャル装置。
  6. 請求項2から4のいずれか一項に記載のセンターデファレンシャル装置において、
    前記切替機構は、
    通電することによって作動し、可動部材が前記第1回転軸および前記第2回転軸の回転軸線方向の後端側に動作して、前記可動部材が、前記中間軸と一体に回転する第1回転部材および前記先端軸と一体に回転する第2回転部材と共に、固定部材に係合することにより、第2回転軸を制動し、かつ、前記通電を解除した後も前記第2回転軸を制動して回転を止めた状態を保持することが可能な電動ブレーキとして機能するとともに、前記可動部材が前記回転軸線方向の前端側に動作して、前記可動部材ならびに前記第1回転部材および前記第2回転部材と前記固定部材との係合を解放し、かつ、前記中間軸と前記先端軸とを連結することにより、前記4WD状態を設定するとともに、前記可動部材が前記回転軸線方向の中間位置に動作して、前記可動部材および前記第2回転部材と前記固定部材との係合を解放し、かつ、前記第1回転部材と前記固定部材との係合を維持して前記中間軸の回転を止めることにより、前記2WD状態を設定する摩擦クラッチ機構と、
    前記可動部材を前記回転軸線方向に前後動させる送りねじ機構と、
    前記送りねじ機構を駆動する電気モータと
    を有している
    ことを特徴とするセンターデファレンシャル装置。
  7. 請求項1から6のいずれか一項に記載のセンターデファレンシャル装置において、
    前記第2回転軸から入力される前記駆動トルクを、前記車両の車幅方向における左側駆動軸と右側駆動軸とに分配して伝達するとともに、前記左側駆動軸と前記右側駆動軸との差動回転が可能な左右デファレンシャル機構を一体的に備えている
    ことを特徴とするセンターデファレンシャル装置。
  8. 請求項1から7のいずれか一項に記載のセンターデファレンシャル装置において、
    前記駆動力源は、
    前記第1回転軸および前記第2回転軸を駆動するトルクを出力する電気モータであって、
    前記第1回転軸および前記第2回転軸と同軸上に一体的に配置されている
    ことを特徴とするセンターデファレンシャル装置。
  9. 請求項8に記載のセンターデファレンシャル装置において、
    前記電気モータは、
    中空形状のロータを有し、
    前記ロータの中空部分に、前記電気モータの出力トルクを増幅して前記入力部材に伝達する減速ギヤ機構を内蔵している
    ことを特徴とするセンターデファレンシャル装置。
  10. 請求項1から9のいずれか一項に記載のセンターデファレンシャル装置において、
    噛み合いクラッチを用いて前記差動機構の差動回転を止めてデフロック状態を選択的に設定するデフロック機構、または、摩擦クラッチを用いて前記差動機構の差動回転を抑制して差動制限状態を設定する差動制限機構を備えている
    ことを特徴とするセンターデファレンシャル装置。
  11. 請求項10に記載のセンターデファレンシャル装置において、
    前記アクチュエータは、
    前記制御トルクを出力する電気モータであって、
    前記デフロック状態または前記差動制限状態で、前記駆動トルクを助勢または代替するアシストトルクとして、前記動力入力要素を駆動するトルクを出力する
    ことを特徴とするセンターデファレンシャル装置。
JP2020044082A 2020-03-13 2020-03-13 センターデファレンシャル装置 Pending JP2021143745A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020044082A JP2021143745A (ja) 2020-03-13 2020-03-13 センターデファレンシャル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020044082A JP2021143745A (ja) 2020-03-13 2020-03-13 センターデファレンシャル装置

Publications (1)

Publication Number Publication Date
JP2021143745A true JP2021143745A (ja) 2021-09-24

Family

ID=77766198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020044082A Pending JP2021143745A (ja) 2020-03-13 2020-03-13 センターデファレンシャル装置

Country Status (1)

Country Link
JP (1) JP2021143745A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132016A (ja) * 2019-02-21 2020-08-31 アイシン精機株式会社 動力伝達ユニット

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132016A (ja) * 2019-02-21 2020-08-31 アイシン精機株式会社 動力伝達ユニット
JP7275633B2 (ja) 2019-02-21 2023-05-18 株式会社アイシン 動力伝達ユニット

Similar Documents

Publication Publication Date Title
JP6010140B2 (ja) 純電気駆動可能な自動車のドライブトレイン
JP6378219B2 (ja) モータ駆動ユニット
US10625605B2 (en) Vehicular power unit
JP2006022879A (ja) 電動モータ駆動装置
JP6325586B2 (ja) モータ駆動ユニット
JP2006234062A (ja) 正逆転可能な2段変速機
JP4363188B2 (ja) 差動制限装置
JP2021143745A (ja) センターデファレンシャル装置
US20180370354A1 (en) Vehicular power transmission device
JP2010144762A (ja) 駆動力配分装置
US11572940B2 (en) Vehicular differential device
JP7251506B2 (ja) トルクベクタリング装置
JP6852634B2 (ja) 車両用動力ユニット
JP2021156378A (ja) トルクベクタリング装置
JP6642530B2 (ja) 車両用動力ユニット
JP2018189120A (ja) 車両用ブレーキユニット
JP6794913B2 (ja) 歯車伝動装置
JP2021076203A (ja) 減速装置
JP6617723B2 (ja) 制動装置
JP2005155871A (ja) 高分子アクチュエータおよびクラッチ装置
JP7457186B2 (ja) カップリング装置
US11578788B2 (en) Power transmission mechanism
CN210212518U (zh) 一种后轮主动转向装置
JPH0483945A (ja) 動力伝導装置
JP4038033B2 (ja) 車両の前後輪駆動装置およびクラッチの切換方法